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Abstract
We study a model of binary decisions in a fully connected network of interacting agents.
Individual decisions are determined by social influence, coming from direct interactions
with neighbours, and a group level pressure that accounts for social environment. In a com-
petitive environment, the interplay of these two aspects results in the presence of a persistent
disordered phase where no majority is formed. We show how the introduction of a delay
mechanism in the agent’s detection of the global average choice may drastically change this
scenario, giving rise to a coordinated self sustained periodic behaviour.

Keywords Non linear voter models · Opinion dynamics · Scaling limits · Hopf bifurcation

Mathematics Subject Classification 60K35 · 62P25 · 91C15 · 91D30

1 Introduction

The study of dynamics of social systems through the language and tools of Statistical Physics
has generated growing interest in recent decades in various scientific communities, such
as social scientists, mathematicians, physicists and computer scientists. A social system
can in fact be represented as a multitude of individuals who can randomly change their
state by interacting with each other or being influenced by external constraints and inputs.
Despite their simplicity when compared to the complexity of human social interactions,
Statistical Physics models are able to capture several aspects which are often observed in
social communities, such as long-term correlations, scaling laws, or the passage, depending
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on the values of the parameters involved, from a disordered phase in which agents’ decisions
are unpredictable, to a phase inwhich they coordinate and generate a collective self-organized
behaviour: in particular, phenomena such as synchronization or periodic motions may appear
(see, e.g., [5,7,15,22,26]). This feature is a central issue in the study of social dynamics,
whose aim is to understand how the structure of social networks, the nature of interactions
and the diverse social responses affect the macroscopic behaviour of the system. In this
paper we consider a non linear voter model with mean field interaction, which represents a
population of ”contrarians” who are subject to a positive social influence exerted by their
neighbours. More precisely, the agents operate in a competitive environment, so that they are
interested in choosing actions that go in the opposite direction to that of the majority, but, at
the same time, their behaviour is influenced by interactions with their neighbours and a sort
of flock effect pushes them to imitate the agents with whom they have a direct interaction.
As an example linked to current events, we may think to epidemiological models, where
susceptible individuals may face dichotomic behavioural choices, so that, in order to avoid
getting infected, they try to reduce contacts by preferring choices contrary to that of the
majority. At the same time, they may adopt irrational behaviours due to social influence or
to an imitation mechanism, adapting their choices to those of their neighbours [4,25].
A similar situation may occur in the context of opinion dynamics or behavioral economics
(e.g., [1,13,14,16,24]). We shall compare this model to the one where agents are cooperative
and a fast convergence to consensus occurs. Also, we are interested in how perturbations
of different types may change the large scale picture of the system as the number of agents
grows to infinity, giving rise to periodic self-organized behaviours of the agents. This type
of phenomenon has already been described in many models of spin systems with mean-field
interaction where some kind of frustration is present in the agents’ attitude; for example,
in [3,8,9], a dissipation term (that, in absence of interaction, leads the system to a neutral
condition where no action is preferred over the other) is added in the evolution of Curie–
Weiss-like models.

In [6] and [24] the authors show that periodicity may be triggered when the information
about the prevailing choices in the system reaches each agent with a certain amount of delay.
Notice that the delay hypothesis, besides being interesting from amathematical point of view,
is quite natural in a context of social interactions and makes the models more realistic, since
usually a single agent does not know in real time what the overall state of the system is.
In particular, in [6], an analysis of the role of delay in the emergence of large scale periodic
behaviors for an Ising type two-population model has been done. Following their approach,
wewill modify ourmodel by introducing a delaymechanism in the system’s evolution andwe
will show that for the modified model a phase transition occurs: depending on the parameters
that characterize the delay, themascoscopic system undergoes a Hopf bifurcation and a stable
limit cycle appears in the dynamics.

Going into more detail, we consider a continuous time Markov process representing a
population of N agents whomay assume two possible states, 0 or 1, representing two possible
actions (or opinions). Allowed transitions are the ones where agents change their state one at
a time. For h ∈ {0, 1}, the rate at which each agent switches from state 1−h to state h is given
bymhφ(mh), wheremh is the fraction of agents that are currently in state h in the population.
The function φ is assumed to be positive and it can be interpreted as the effect of a group
pressure, i.e., it measures the degree to which agents conform or oppose to majority. Indeed,
if φ is increasing, we get a cooperative (or conformist) population, while if φ is decreasing,
members of the population are competitive (or contrarians). Our focus is on the competitive
case, for which, while the microscopic system converges a.s. to ”consensus” (i.e., to one
of the two absorbing states, the ”all 0’s” and ”all 1’s” configurations), a stable equilibrium
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point, representing a mixed phase where both actions coexist in the community, appears in
the large scale dynamics as N → ∞. Actually, we will show that, with high probability, the
time spent by the microscopic system close to such mixed phase is at least exponential in
the system’s size (from which it follows that the mean absorption time is at least exponential
too).

We thenmodify the model and add a delay term in the dynamics by replacing φ(mh) in the

transition rate defined above with φ
( ∫ t

0 K (t − s)mh(s) ds
)
, where mh(s) is the fraction of

agents that are in state h at time s and K (t) is a Gamma distribution delay kernel (also known

as Erlang kernel), i.e., K (t) = kn+1

n! tne−kt with k > 0 and n ∈ N. This specific choice of
the kernel, besides being effective for application purposes, makes the model more tractable
from a mathematical point of view. For this model in the case when φ is a strictly decreasing
function, using the coefficient k as a bifurcation parameter, we show that, for large N , wemay
still have a stable equilibrium corresponding to a disordered phase, but there exists a critical
value of k such that the system loses its stability giving rise to macroscopic self sustained
oscillations.

2 AModel of Social Interactions Under Peer-Pressure

2.1 Definition, Macroscopic Dynamics and Stability

We consider a family of N agents indexed with an integer i from 1 to N ; they can choose
two different actions (or two different opinions) in the set {0, 1}. We denote by σ N

i ∈ {0, 1}
the state of agent i and by σ N := (σ N

i )i≥1 be the configuration of the whole family. Each
agent, after an exponentially distributed time of parameter 1, selects at random one agent
in the population and adopts its state with a probability which depends on a function φ of
the magnetization mN = 1

N

∑N
i=1 σ N

i , that represents a measure of the peer pressure felt by
each agent. We assume that φ is a strictly positive C1 function. The dynamics is described by
a {0, 1}N valued continuous time Markov process {σN (t)}t≥0 = {(σN

1 (t), . . . ,σN
N (t)

)}t≥0,
defined on a probability space (�,F, {Ft }, P), with transition rates for the i th component
σ N
i given by:

c(i, σ N ) =
{
mNφ(mN ) if σ N

i = 0,
(1 − mN )φ(1 − mN ) if σ N

i = 1.
(1)

The generator of the process is therefore given by

LN f
(
σ N ) =

N∑
i=1

c(i, σ N )[ f (σ N ,i ) − f (σ N )] (2)

where f : {0, 1}N → R and σ N ,i denotes the configuration obtained by σ N by replacing
σ N
i with 1−σ N

i . We use the bold notationmN := {mN (t)}t≥0 to denote the Markov process

defined by mN (t) = 1
N

∑N
i=1 σN

i (t).
As N goes to infinity, assuming that a law large number holds, we expect the process{

mN ; N > 1
}
to converge in distribution towards a deterministic process m := {m(t)}t≥0

which solves the following equation

ṁ = m(1 − m)
[
φ(m) − φ(1 − m)

]
. (3)

We have indeed the following result:

123



6 Page 4 of 21 M. Aleandri, I. G. Minelli

0 0.5 1

(a) a > 0

0 0.5 1

(b) a < 0

Fig. 1 Stability of the equilibrium points 0,1/2 and 1 for φ linear

Proposition 2.1 Suppose there exists a non-random m̄ ∈ [0, 1] such that, for every ε > 0,

lim
N→+∞ P

(|mN (0) − m̄| > ε
) = 0.

Then, as N → +∞, the sequence of Markov processes
{
mN ; N > 1

}
converges in dis-

tribution, with respect to the Skorohod topology, to the unique solution of equation (3) with
m(0) = m̄.

Proof Let EN = {x ∈ [0, 1] : x = j
N , 0 ≤ j ≤ N } and LN be the generator defined in (2).

For f : EN → R we can write f (mN ) = ( f ◦ g)(σ N ) with g : {0, 1}N → EN given by
g(σ N ) = 1

N

∑N
i=1 σ N

i . Then, we have LN ( f ◦ g)(σ N ) = GN f (mN ), where

GN f (x) = Nx(1 − x)φ (x)

[
f

(
x + 1

N

)
− f (x)

]

+Nx(1 − x)φ (1 − x)

[
f

(
x − 1

N

)
− f (x)

]
.

Denoting by G the generator of the semigroup associated to the evolution (3), by a simple
computation we get

lim
N→+∞ sup

x∈EN
|GN f (x) − G f (x)| = 0.

for any f ∈ C1([0, 1]). Then, by applying standard results on convergence of Markov pro-
cesses (see, e.g., [11], Ch. 3, Corollary 7.4 and Ch. 4, Theorem 8.10) we obtain the desired
result. �	
We can observe that for any fixed N , by elementary theory of Markov processes, the
microscopic variable mN has two absorbing states, 0 and 1, and it reaches one of them
in finite time with probability one. On the other hand, depending on the solutions of equation
φ(m) − φ(1 − m) = 0 in [0, 1], new equilibrium points, other that 0 and 1, may appear
in the macroscopic scale. Moreover, the stability of equilibria depends on the value of the
derivative of φ in such points and it may happen that the points 0 and 1 are unstable.
For example, taking φ a linear function

φ(x) = ax + b

with a ∈ R and b > max{−a, 0} , the interpretation of the role of φ in the dynamics is
clearly determined by its derivative. If a > 0, the function is strictly increasing, so that the
probability that one agent adopts a given opinion is proportional to how much that opinion
is widespread in the population; we say in this case that agents have a cooperative behaviour
and. If a < 0, the function is strictly decreasing and agents have a competitive behaviour,
i.e., they have a bigger probability to adopt an opinion opposite to that of the majority. This
behaviour is reflected in the stability of the equilibrium points of the ODE (3), see Fig. 1;
if a > 0 the points 0 and 1 are asymptotically stable and the point 0.5 is unstable while for
a < 0 the stability is exchanged.
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Notice that the particular choice of a = 0 leads to the classical mean field voter model,
so that the ODE (3) becomes ṁ = 0 and the macroscopic system is frozen at its initial state.
An easy calculation shows that if φ is either strictly increasing or strictly decreasing we get
the same phase diagram as for the linear case with a > 0 and a < 0 respectively. Then we
shall refer to a cooperative (respectively, competitive) population if the gossip function is
strictly increasing (respectively, decreasing).
Let us consider now the dynamics of the ”limiting particle” σ, evolving through a time-
inhomogeneous {0, 1}-valued Markov process with jump rates

c(i, σ, t) =
{
m(t)φ(m(t)) if σi = 0,
(1 − m(t))φ(1 − m(t)) if σi = 1,

(4)

where
(
m(t)

)
is the solution to the differential equation (3). Next proposition states that

propagation of chaos holds, i.e., as N → ∞, particles behave independently according to
the evolution of σ defined in (4) and (3).

More precisely, we recall that, given a polish space (E, ρ), for a sequence of random
vectors {XN ; N ≥ 1}, where XN = (XN

1 , . . . , XN
N ) ∈ EN has a permutation invariant

distribution for any N , we say that propagation of chaos holds (or, equivalently, that the
sequence is μ-chaotic), if there exists a probability measure μ on E such that, for any fixed
h ∈ N, we have

(
XN
1 , . . . , XN

h

)
d−→

(
Y N
1 , . . . , Y N

h

)
as N → +∞,

where Y N
1 , . . . , Y N

h are i.i.d. with common distribution μ.

Proposition 2.2 Let us fix T > 0. For any N > 1, letσN ,T = {(σN
1 (t), . . . ,σN

N (t))}t∈[0,T ] be
theMarkov processwith generatorLN defined in (1) and (2).Denote byμ[0,T ] the distribution
of theMarkov processesσT = {σ(t)}t∈[0,T ] with transition rates defined by (4) and (3) and by
μ0 be the distribution ofσ(0). Assume thatσN ,T (0) has a permutation invariant distribution
and limN→∞ E

[|σN ,T
i (0) − σ̄N

i (0)|] = 0 for any i , where {σ̄N
i (0); i ≥ 1} are i.i.d. with

common distribution μ0. Then, the sequence of stochastic processes {σN ,T ; N ≥ 1} is
μ[0,T ]-chaotic.

The proof can be obtained as an application of Proposition 3.2 in [2] and it turns out to be
an easy consequence of the analogous result for the delayed case, which will be proved in
Proposition 3.2 below.

In next sections, we will restrict for simplicity to the case when φ is strictly monotone,
but all the results can be extended to a general function φ with localization arguments.

2.2 Time Spent Close to Macroscopic Stable Equilibria

We have seen that, depending on the choice of the function φ, new stable equilibrium points
may appear in the thermodynamic limit. This suggests to investigate, for N large but finite,
the amount of time the microscopic variable mN spends near these equilibria during its
transient phase. In Theorem 2.1 below, we consider the case when φ is a strictly monotone
function, but the result (with the obvious adjustments) clearly holds for any φ which is strictly
monotone in a neighborhood of each equilibrium point, provided that the initial condition
is chosen appropriately. We recall that when φ is strictly increasing the ODE (3) has two
asymptotically stable solutions, 0 and 1, while when φ is strictly decreasing the ODE (3) has
only one asymptotically stable solution, 1/2. For the first case we show that, whenever the
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initial condition m̄ is smaller than 1/2 (respectively, larger than 1/2) with high probability
the microscopic process gets trapped in a small neighborhood of 0 (respectively, 1). For the
second case we show that the microscopic process reaches a small interval containing 1/2 in
a finite time and remains close to it for a time exponentially large in N .

Theorem 2.1 For every ε > 0 and N sufficiently large,

(i) if φ is strictly increasing, then ∀ m̄ < 1
2 there exist Cε > 0 and Tε > 0 such that

Pm̄

(
sup
t≥Tε

mN (t) > ε

)
< 5Ne−CεN ;

and, ∀ m̄ > 1
2 there exist Cε > 0 and Tε > 0 such that

Pm̄

(
inf
t≥Tε

mN (t) < 1 − ε

)
< 5Ne−CεN ;

(ii) if φ it strictly decreasing, then ∀ m̄ ∈ (0, 1) there exist Cε > 0, Ĉε > 0 and Tε > 0 such
that

Pm̄

(
sup

t∈[Tε ,Tε+eĈε N ]
|mN (t) − 1

2
| > ε

)
< 14N 2e−CεN .

Proof Similarly to [12], the argument of the proof uses Kurtz’s Theorem and two auxiliary
Lemmas, which are stated in the appendix.

We recall that {mN (t)}t≥0 is a birth and death process with values in EN = { i
N : 0 ≤

i ≤ N } and with birth and death rates given respectively by r+(x) = Nx(1 − x)φ(x) and
r−(x) = Nx(1 − x)φ(1 − x), x ∈ EN . Assume that φ is strictly decreasing and let us fix
ε ∈ (0, 1

2 ) and N ≥ 2
φ( 12 )

so that μ := maxx∈EN

(
r+(x) + r−(x)

) ≥ 1. In this case, letting

ε̄ = ε
3 we have, for any x < 1

2 − ε̄,

r+(x)

r−(x)
= φ(x)

φ(1 − x)
≥ φ( 12 − ε̄)

φ( 12 + ε̄)
≥ 1 + δ

and, for any x > 1
2 + ε̄

r−(x)

r+(x)
= φ(1 − x)

φ(x)
≥ φ( 12 − ε̄)

φ( 12 + ε̄)
≥ 1 + δ

for a suitable δ > 0. Then we can apply Lemma B.2 with x0 = 1
2 − 2ε̄ first to the case

X(t) = mN (t) and then to the case X(t) = 1 − mN (t) to obtain respectively

Px

(
inf

t∈[0,eε̄Cp N ]
mN (t) <

1

2
− 3ε̄

)
< 10N 2e−ε̄CpN ∀x >

1

2
− 2ε̄

Px

(
sup

t∈[0,eε̄CpN ]
mN (t) >

1

2
+ 3ε̄

)
< 10N 2e−ε̄CpN ∀x <

1

2
+ 2ε̄

from which it follows that, for any ε ∈ (0, 1
2 )

Px

⎛
⎜⎝ sup

t∈
[
0,e

ε
3 CpN

]

∣∣∣∣mN (t) − 1

2

∣∣∣∣ > ε

⎞
⎟⎠ < 10N 2e− ε

3CpN ∀x ∈ Iε =
(
1

2
− 2

3
ε,

1

2
+ 2

3
ε

)
.

(5)
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Observe that, for any m(0) ∈ (0, 1), the solution of (3) converges to 1/2 as t → +∞, then
we can find Tε such that m(Tε) ∈ ( 1

2 − ε
3 ,

1
2 + ε

3

)
and, letting m̄ = m(0), we can write

Pm̄

⎛
⎜⎝ sup

t∈
[
Tε ,Tε+e

ε
3 Cp N

]
∣∣mN (t) − 1

2

∣∣ > ε

⎞
⎟⎠ ≤

Pm̄

⎛
⎝ sup

t∈[Tε ,Tε+e
ε
3 Cp N ]

∣∣mN (t) − 1

2

∣∣ > ε

∣∣∣∣ mN (Tε) ∈ Iε

⎞
⎠ + Pm̄

(
mN (Tε) /∈ Iε

)
. (6)

Applying Kurtz’s Theorem B.1 we have

Pm̄(mN (Tε) /∈ Iε) ≤ Pm̄

(
sup

t∈[0,Tε ]
|mN (t) − m(t)| >

ε

3

)
< 4e−( ε

3 )
2CTε N .

Then, letting Ĉε = ε
3Cp and Cε = min{ ε

3Cp,
( e
3

)2
CTε }, using (5) and the Markov property

for the first term of (6) we get the desired result.
Now, assume that φ is strictly increasing and fix ε ∈ (0, 1

2 ). Then, for any x ∈ (0, ε] we
have r−(x)

r+(x) = φ(1−x)
φ(x) >

φ(1−ε)
φ(ε)

= 1 + δ for some δ > 0, and applying Lemma B.1 we get
that, for any x < ε

2 ,

Px

(
sup
t≥0

mN > ε

)
<

ε

2
e− ε

2CN .

Then, observing that, for any m(0) < 1
2 we have limt→+∞ m(t) = 0 and choosing Tε such

that m(Tε) < ε
4 , we can use the same argument as above and, for any m̄ = m(0) < 1

2 , we
get

Pm̄

(
sup
t≥Tε

mN (t) > ε

)
< 5Ne−CεN

for a suitable constantCε . Finally, the second inequality in statement ii) can be obtained from
the first one by considering the process {1 − mN (t)}t≥0. �	

Remark 1 Notice that, by the assumptions on φ, it follows that the time Tε in Theorem 2.1
above is of order log ε.

Remark 2 As an immediate consequence of part i i) of Theorem 2.1, we get that in the case
of a competitive population the mean absorption time for the microscopic process is at least
exponential in the system’s size. Indeed, letting τ be such time, it is enough to fix any ε > 0
and m̄ ∈ (0, 1) and observe that Em̄[τ ] ≥ eĈεN Pm̄(supt∈[Tε ,Tε+eĈε N ] |mN (t) − 1

2 | ≤ ε).
Observe that, instead, for the classical mean field voter model (which corresponds to our
model with φ constant) the dependence of absorption time on the size of the system is of
power law type.
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3 Large Scale Dynamics in the Presence of Delay: Emergence of
Periodic Behaviours

3.1 Definition, Thermodynamic Limit and Chaos Propagation

Let now suppose that each agent gets information on the state of the system with a certain
delay. We modify the model in such a way that the influence of the magnetization on the
dynamics is weighted through a delay kernel of Erlang type, as done in [10] and [6].
For k ∈ R+, n ∈ N fixed, the information available to each agent at time t is represented by
the variables

γ(N ,n)(t) :=
∫ t

0
mN (s)

(t − s)n

n! kn+1e−k(t−s)ds,

η(N ,n)(t) :=
∫ t

0

(
1 − mN (s)

) (t − s)n

n! kn+1e−k(t−s)ds,

The parameters n and k tune the weight given to the past configurations, more precisely the
parameter k tells us how close to the current time t is the maximum weight of the delay and
the parameter n gives us information on the shape of the peak.
The evolution of the opinion of an agent i is given by the following time inhomogeneous
transition rates:

c(i, σ N , t) =
{
mN (t)φ

(
γ (N ,n)(t)

)
if σ N

i = 0,(
1 − mN (t))φ

(
η(N ,n)(t)

)
if σ N

i = 1.

The advantage of using Erlang kernels is that, by increasing the number of variables, the
system becomes markovian: indeed let us define, for j = 0, . . . , n the processes γ(N , j) :=
{γ(N , j)(t)}t≥0 and η(N , j) := {η(N , j)(t)}t≥0 with

γ(N , j)(t) :=
∫ t

0
mN (s)

(t − s) j

j ! k j+1e−k(t−s)ds,

η(N , j)(t) :=
∫ t

0

(
1 − mN (s)

) (t − s) j

j ! k j+1e−k(t−s)ds.

LettingγN := (
γ(N , j)

)n
j=0 andηN := (

η(N , j)
)n
j=0 anddenotingbyγ N = (

γ (N , j)
)n
j=0, ηN =(

η(N , j)
)n
j=0 ∈ R

n+1 their possible states, the system is completely described by the
N + 2(n + 1) dimensional process

{(
σN (t),γN (t),ηN (t)

)}
t≥0

which is a Markov process with generator

Ld
N f (σ N , γ N , ηN ) =

N∑
i=1

c
(
i, σ N , γ (N ,n), η(N ,n)

) [
f (σ N ,i , γ N , ηN ) − f (σ N , γ N , ηN )

]

+
n∑
j=0

[
k
(
γ (N , j−1) − γ (N , j)) ∂ f

∂γ (N , j)
+ k

(
η(N , j−1) − η(N , j)) ∂ f

∂η(N , j)

]
(7)

where

c(i, σ N , t) =
{
mNφ(γ (N ,n)) if σ N

i = 0,(
1 − mN )φ(η(N ,n)) if σ N

i = 1
,
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f is a smooth function on {0, 1}N × [0, 1]n+1 × [0, 1]n+1, σ N ,i denotes the configuration
obtained from σ N by replacing σ N

i with 1 − σ N
i and we have used the convention

γ (N ,−1) := mN η(N ,−1) := 1 − mN .

Remark 3 Observe that, if for some time t ′ > 0 themagnetizationmN (t ′) ∈ {0, 1} then agents
will not change their state for any t > t ′ and for all j , the process

(
γ(N , j)(t),η(N , j)(t)

)
will

converge, as t → ∞, to either (0, 1) or (1, 0) according to the value of mN (t ′).
As in the case without delay, we study the limiting dynamics as N goes to infinity.

Next proposition states convergence in distribution of the sequence of microscopic processes
{(mN , γ N , ηN

); N ≥ 1} to the solution to the following non linear system of ODEs:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ = m(1 − m)[φ(γ (n)) − φ(η(n))],
γ̇ (n) = k[γ (n−1) − γ (n)],
η̇(n) = k[η(n−1) − η(n)],
. . . . . . . . .

. . . . . . . . .

γ̇ (0) = k[m − γ (0)],
η̇(0) = k[1 − m − η(0)],

(8)

withγ ( j)(t) = ∫ t
0 m(s) (t−s) j

j ! k j+1e−k(t−s)ds andη( j)(t) = ∫ t
0 (1−m(s)) (t−s) j

j ! k j+1e−k(t−s)ds,
∀ j = 0, . . . , n.

Proposition 3.1 Assume that, given (m̄, γ̄ , η̄) ∈ [0, 1]2n+3, for every ε > 0,

lim
N→+∞ P

(
‖(mN (0),γN (0),ηN (0)

) − (m̄, γ̄ , η̄)‖ > ε
)

= 0

where ‖v‖ denotes the norm of the vector v. Then, as N → +∞, the sequence of Markov
processes

{
(mN ,γN ,ηN ); N ≥ 1

}
converges in distribution, with respect to the Skorohod

topology, to the unique solution of the system of equations (8) with
(
m(0), γ (0), η(0)

) =
(m̄, γ̄ , η̄).

Proof Following the proof of Proposition 2.1 observe that, for any f : EN × [0, 1]n+1 ×
[0, 1]n+1 we have f (mN , γ N , ηN ) = ( f ◦ g)(σ N , γ N , ηN ) and Ld

N ( f ◦ g)(σ N , γ N , ηN ) =
Gd
N f (mN , γ N , ηN ) with

Gd
N f (mN , γ N , ηN ) = NmN (1 − mN )φ(η(N ,n))

[
f (mN − 1/N , γ (N ,n), η(N ,n))

− f (mN , γ (N ,n), η(N ,n))
]

+NmN (1 − mN )φ(γ (N ,n))
[
f (mN + 1/N , γ (N ,n), η(N ,n)) f (mN , γ (N ,n), η(N ,n))

]

+
n∑
j=0

k
(
γ (N , j−1) − γ (N , j)) ∂ f

∂γ (N , j)
+ k

(
η(N , j−1) − η(N , j)) ∂ f

∂η(N , j)
.

Then the conclusion follows as in Proposition 2.1 taking Gd the generator of the semigroup
associated to the deterministic evolution (8). �	
Next result is propagation of chaos: if N is large enough agents in any finite group behave
like independent units, each one following the evolution of a limit processσwith jump rates:

0 → 1 mφ
(
γ (n)

)
,

1 → 0 (1 − m)φ
(
η(n)

) (9)
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where m, γ (n) and η(n) are the solutions of (8).
We point out that propagation of chaos for a general class of stochastic differential equa-

tions with delay has been proved in [20]. However, this result does not apply to our model,
since the authors consider a delay term concentrated on a finite time interval.

Proposition 3.2 Let us fix T > 0. For any N > 1, let (σN ,T ,γN ,T ,ηN ,T ) =
{(σN (t),γN (t),ηN (t)

)}t∈[0,T ] be the Markov process with generator Ld
N defined in (7).

Denote byμ[0,T ] the distribution of the Markov processesσT = {σ(t)}t∈[0,T ] with transition
rates defined in (9) and (8) and by μ0 the distribution of σ(0). Assume that σN ,T (0) has
a permutation invariant distribution and limN→∞ E

[|σN ,T
i (0) − σ̄N

i (0)|] = 0 for any i ,
where {σ̄N

i (0); i ≥ 1} are i.i.d. with common distributionμ0. Then, the sequence of stochastic
processes {σN ,T ; N ≥ 1} is μ[0,T ]-chaotic.

Proof The proof uses standard arguments on propagation of chaos (see, e.g., [2,17,23]).
We recall that, given a polish space (E, ρ) and the setM1(E) of Borel probability measures
on E with finite first moment, the Wasserstein distance between μ, ν ∈ M1(E) is defined
by

W 1
ρ (μ, ν) = inf

{∫

E×E
ρ(x, y)π(dx, dy) : π has marginals μ and ν

}
(10)

and that convergence with respect to such distance implies weak convergence. Now,
let us fix h ∈ N. For N ≥ h, denote by μ

N ,h
[0,T ] the distribution of the process

{(σN
1 (t), . . . ,σN

h (t))}t∈[0,T ] and by μ⊗h
[0,T ] the product of h copies of μ[0,T ]. Such mea-

sures are defined on the space D([0, T ];Rh) of Rh- valued càdlàg functions on [0, T ] with
the Skorohod distance ρ.

We prove the following stronger result:

lim
N→+∞ W 1

ρ̄

(
μ
N ,h
[0,T ], μ

⊗h
[0,T ]

)
= 0,

where ρ̄ = ‖ · ‖∞ denotes the uniform metric onD([0, T ];Rh) andW 1
ρ̄ is defined as in (10).

To this purpose, we define a suitable coupling between the microscopic system and a system
of i.i.d. particles each one following the limiting dynamics.

Let us fix a probability space (�,F, {Ft }, P) satisfying the usual conditions, where it is
defined a family N = {N i ; i ≥ 1} of i.i.d. adapted Poisson random measures with intensity
� ⊗ �, where � denotes the restriction to [0,∞) of the Lebesgue measure. The microscopic
process (σN ,γN ,ηN ) can be realized as the solution of the following SDE with initial
condition σN (0) = σN ,T (0):

dσN (t)
i =

∫ ∞

0
ψ
(
σ
N (t−)
i

)
1(

0,ζ
(
σ

N (t−)
i ,mN (t−),γ(N ,n)(t−),η(N ,n)(t−)

)](u)N i (du, dt),

(11)

dγ(N , j)(t) = k
(
γ(N , j−1)(t) − γ(N , j)(t)

)
dt, (12)

dη(N , j)(t) = k
(
η(N , j−1)(t) − η(N , j)(t)

)
dt, (13)
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where i = 1, . . . , N , j = 0, . . . , n, ζ : {0, 1} × [0, 1] × [0, 1]2 → R+ is the jump rate
function

ζ
(
σ N
i ,mN , γ (N ,n), η(N ,n)

) = (1 − σ N
i )mNφ(γ (N ,n)) + σ N

i (1 − mN )φ(η(N ,n))

and ψ : {0, 1} → R+ is the jump amplitude function

ψ(σ N
i ) = 1 − 2σ N

i .

Strong existence and uniqueness of solutions of (11), (12), (13) can be easily derived from
Theorem 1.2 of [17]: indeed, equations (12), (13) are linear and, letting f (σ N

i , γ N , ηN , u) :=
ψ(σ N

i )1(0,λ(σ N
i ,m(σ N ),γ N ,n ,ηN .n)](u), where m(σ N ) = 1

N

∑N
j=1 σ N

j , recalling that φ is Lips-

chitz, the following L1 Lipschitz condition holds:

N∑
i=1

∫ ∣∣∣ f (σ N
i , γ N , ηN , u

) − f
(
σ̃ N
i , γ̃ N , η̃N , u

)∣∣∣ du ≤ C
∥∥∥(σ N , γ N , ηN ) − (

σ̃ N , γ̃ N , η̃N )∥∥∥

for all (σ N , γ N , ηN ), (σ̃ N , γ̃ N , η̃N ) ∈ {0, 1}N × [0, 1]n+1 × [0, 1]n+1, where ‖ · ‖ denotes
the �1 norm on RN × R

2n+2 and C is a suitable constant.
On the same probability space, let us consider a vector of i.i.d. processes σ̄N := (σ̄N

i )Ni=1
with evolution defined by:

dσ̄N
i (t) =

∫ ∞

0
ψ
(
σ̄N
i (t−)

)
1(

0,ζ
(
σ̄N

i (t−),m(t−),γ (n)(t−),η(n)(t−)
)](u)N i (du, dt) (14)

for i = 1, . . . , N , where m, γ (n), η(n) are the solutions to the (8) and the family of Poisson
random measure N = {N i ; i = 1, . . . , N } is the same as the one in equations (11).
Now, by the above properties we get, for any i = 1, . . . , h

E

[
sup

r∈[0,t]
∣∣σN

i (r) − σ̄N
i (r)

∣∣
]

≤ C1

∫ t

0
E

[
sup

r∈[0,s]
∣∣σN

i (r) − σ̄N
i (r)

∣∣
]
ds

+E
[∣∣σN

i (0) − σ̄N
i (0)

∣∣] + C2

∫ t

0
E
[∣∣m̄N (s) − m(s)

∣∣] ds

+C3

∫ t

0

∫ s

0
E
[∣∣m̄N (r) − m(r)

∣∣] (s − r)n

n! kn+1e−k(s−r)drds, (15)

where C1,C2,C3 depend only on ‖φ‖∞, ‖φ′‖∞, k and n.
Now, using the hypothesis on the initial conditions and the law of large numbers for the
sequence {m̄N ; N ≥ 1}, by Gronwall’s Lemma we can conclude that

E[ρ̄(σN , σ̄N )] ≤
h∑

i=1

E

[
sup

t∈[0,T ]

∣∣∣σN
i (t) − σ̄N

i (t)
∣∣∣
]

N→∞−−−−→ 0

and the proof is complete. �	

3.2 Delay Induced Hopf Bifurcation in Competitive Environments

The purpose of this section is to investigate the emergence of periodic solutions of the system
of ODEs (8) when the delay parameters are properly taken. We recall that points in the phase
space are vectors of the form (m, γ (n), η(n), . . . , γ (0), η(0)) ∈ R

2n+3.
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If φ is strictly monotone we can easily observe that the system has three equilibrium
points x0 = (0, 0, 1, . . . , 0, 1), x1 = (1, 1, 0, . . . , 1, 0) and x∗ = ( 12 ,

1
2 ,

1
2 , . . . ,

1
2 ,

1
2 ) in

R
2n+3. The points x0 and x1 are traps for the microscopic process, while the equilibrium

point x∗ appears only in the macroscopic model. We recall that in the model without delay a
phase transition occurs when the sign of the derivative of φ changes, so that the stability of
the point 1

2 gets modified. Here we a fix a strictly monotone function φ in the delayed model,
and look for a phase transition corresponding to the delay parameters n and k (as defined in
Sect. 3.1). More precisely, focusing on the case when φ is decreasing, we aim at showing
that, for at least one value of n, corresponding to the parameter k there is a supercritical Hopf
bifurcation at x∗, that is, for k below a certain threshold, the point x∗ becomes unstable and
a stable limit cycle bifurcates from it.

We start linearising the system (8) for a fixed n ≥ 1. The Jacobian matrix J (k) ∈ R
2n+3×

R
2n+3 at the equilibrium point x∗ is given by

J (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
φ′( 12 )

4
−φ′( 12 )

4 0 0 . . . 0 0
0 −k 0 k 0 . . . 0 0
0 0 −k 0 k . . . 0 0
0 0 0 −k 0 . . . 0 0
. . . . . . . . . .

. . . . . . . . . .

k 0 0 0 0 . . . −k 0
−k 0 0 0 0 . . . 0 −k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

We can immediately observe that only the derivative in 1
2 of the function φ appears in the

matrix. Letting c := φ′( 12 )

4 , the associated characteristic equation is given by:

(λ + k)n+1(λ(λ + k)n+1 − 2ckn+1) = 0 (17)

Observe that if φ is increasing, i.e. if c > 0, whatever the values of k and n are, there
exist at least one positive eigenvalue λ+ and one negative eigenvalue λ−. Indeed letting
g(λ) = (λ + k)n+1

(
λ(λ + k)n+1 − 2ckn+1

)
we have g(−k) = 0, and so λ− = −k, and

g(0) = −2ckn+1 < 0, which implies that there exists λ+ ∈ R+ such that g(λ+) = 0. Then
x∗ is unstable for any k and n.

Then, let us consider φ decreasing. In this case, since c < 0, the previous argument does
not apply and, due to the impossibility, to our knowledge, of writing an explicit expression
for the solutions to the characteristic equation (24) we cannot use standard arguments to
prove the existence of a Hopf bifurcation (see, e.g., Theorem 1 pag 352 in [21]). Then we
shall use the following criterion, stated in [19], for detecting Hopf bifurcation without using
eigenvalues.

Let consider a one-parameter family of differential equations

χ̇ (t) = Fk
(
χ(t)

)
, t ≥ 0, χ(t) ∈ R

n, k ∈ R, (18)

with an equilibrium point (x∗, k∗) and Fk ∈ C∞(
R
n
)
, ∀k ∈ R. Let denote the characteristic

polynomial of the Jacobian matrix J (k) := (
∂

∂zi
(Fk) j

)
i, j=1,...n by

p(λ; k) = pn(k)λ
n + · · · + p1(k)λ + p0(k)
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where every pi (k) is a smooth function of k and pn(k) = 1. For any j = 1, . . . , n define the
matrices

L j (k) =

⎛
⎜⎜⎜⎜⎝

p1(k) p0(k) · · · 0
p3(k) p2(k) · · · 0
· · · · · ·
· · · · · ·
p2 j−1(k) p2 j−2(k) · · · pn(k)

⎞
⎟⎟⎟⎟⎠

, (19)

where pi (k) = 0 if i < 0 or i > n and call Dj (k) their determinant, i.e. Dj (k) :=
det

(
L j (k)

)
.

Theorem 3.1 [19] Assume there is a smooth curve of equilibria
(
xk, k

)
with xk

∗ = x∗ for
the system of differential equations (18). If

(CH1)p0(k
∗) > 0, D1(k

∗) > 0, . . . , Dn−2(k
∗) > 0, Dn−1(k

∗) = 0 (20)

(CH2)
dDn−1(k∗)

dk
�= 0 (21)

then there exists a supercritical Hopf bifurcation.

In a model like the one we consider, the above criterion is analytically easy to apply
only for small values of n In any case, our interest in detecting delay-induced periodicity
is purely qualitative, therefore we will consider only the case n = 2. In the case when φ

is a linear function the dimension of the system can be reduced and we are able to get the
result analytically also for n = 3, 4, 5, with an explicit expression of the associated critical
parameter k∗ (see Appendix A). However, we believe that using numerical methods, the
result can be shown to hold for bigger values of n and for a general φ.
Let us first analyse the case when φ is linear function and we can find an explicit value for
the bifurcation parameter k∗.

Let φ(z) = −az + b, with b > a and a > 0, The system (8) can be rewritten introducing
new variables ξ (i) = γ (i) − η(i), i = 0, . . . , n as follows

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṁ = −am(1 − m)ξ (n);
ξ̇ (n) = k[ξ (n−1) − ξ (n)];
. . . . . . . . .

. . . . . . . . .

ξ̇ (0) = k[2m − ξ (0) − 1];

(22)

The equilibrium points are x0 = (0,−1, . . . ,−1), x1 = (1, 1, . . . , 1) and x∗ =
( 12 , 0, . . . , 0). Linearising the system at x∗, the Jacobian matrix J (k) ∈ R

2n+3 × R
2n+3

has the following form

J (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − a
4 0 0 . . . 0 0

0 −k k 0 . . . 0 0
0 −k k . . . 0 0
. . . . . . . . .

. . . . . . . . .

0 0 0 0 . . . −k k
2k 0 0 0 . . . 0 −k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

The associated characteristic equation is given by

λ(λ + k)n+1 + a

2
kn+1 = 0. (24)

123



6 Page 14 of 21 M. Aleandri, I. G. Minelli

(a) k1 < k∗ (b) k2 > k∗

(c) Evolution of the state of the system when k1 < k∗

Fig. 2 Simulations for n = 2: N = 10000, φ(z) = −2z + 3, k1 = 0.825 , k2 = 1.925

Now, using the notation in (18), we have χ = (m, ξ (n), . . . , ξ (0)) and Fk(χ) = (− am(1 −
m)ξ (n), k[ξ (n−1) − ξ (n)], . . . , k[2m − ξ (0) − 1]).

For n = 2, according to formula (24) and applying Theorem 3.1 we obtain

p(λ; k) = λ4 + 3kλ3 + 3k2λ2 + k3λ + a

2
k3 = 0

and

p0(k) = a

2
k3,

D1(k) = k3,

D2(k) = 3

2
k4(2k − a),

D3(k) = 1

2
k5(16k − 9a),

dD3(k)

dk
= 3

2
k4(96k − 45a).

Taking k∗ = 9
16a, conditions (CH1) and (CH2) are satisfied and we have an Hopf bifurca-

tion, see Fig. 2.
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Now, let fix n = 2 and consider the case of a general decreasing function φ. According
to (17), the characteristic polynomial has degree 2n + 3 and we have

p(λ; k) = λ7 + 6kλ6 + 15k2λ5 + 20k3λ4 + k3(15k − 2c)λ3 + 6k4(k − c)λ2 + k5(k − 6c)λ − 2ck6

and

p0(k) = −2ck6,

D1(k) = k5(k − 6c),

D2(k) = 2k9(3k2 − 6ck + 16c2),

D3(k) = 2k12(35k3 + 9ck2 − 18c2k − 32c3),

D4(k) = 4k15(224k3 + 276ck3 − 345c2k + 128c3),

D5(k) = 4k16(2016k4 + 2988ck3 − 3043c2k2 + 864c3k − 96c4),

D6(k) = 8k17(4096k4 + 6048ck3 − 6036c2k2 + 1393c3k − 144c4),
dD6(k)

dk
= 8k16(86016k4 + 120960ck3 − 114684c2k2 + 25074c3k − 2448).

The term D6(k) is zero if k = 0 and if k solves the following equation

4096k4 + 6048ck3 − 6036c2k2 + 1393c3k − 144c4 = 0.

Recalling that c < 0, the previous equation has two real solutions k1 = r1c and k2 = r2c,
where r1 < 0 and r2 > 0 (the explicit expressions of r1, r2 can be found using amathematical
software and their numerical approximation are r1 ≈ −2.21457and r2 ≈ .466319).Choosing
k∗ = k1 the conditions (CH1) and (CH2) are satisfied and we have an Hopf’s bifurcation
(as an example, see Fig. 3).

We have thus proven the following result

Proposition 3.3 Consider the system defined in (8), where φ is a strictly decreasing function
and n, k are the delay parameters, Let x∗ = ( 12 , . . . ,

1
2 ). Then, for n = 2, a supercritical

Hopf bifurcation (with bifurcation parameter k) occurs at equilibrium point x∗.

Remark 4 We have performed simulations of the macroscopic system and the microscopic
one for particular choices of φ and different values of k, see, e.g., Figs. 2 and 3 above and
Figs. 4 and 5 in the appendix. Although Hopf bifurcation describes a local phenomenon,
simulations suggest that, both in the linear and in the non linear case, a limit cycle appears
for any 0 < k < k∗.

4 Discussion and Conclusions

We have defined a model of social interactions with binary choices (that can be interpreted as
”actions”, or ”opinions”) where agents have an intrinsic attitude that affects the rate at which
they change their choices. Such attitude is expressed in terms of a function φ of the average
choice in the population, that can be interpreted as a ”gain function” and describes the way
agents feel a group pressure coming from their peers. We distinguish between populations
of conformist (cooperative) or contrarian (competitive) agents, secondly if the function φ is
strictly increasing or decreasing, even if more complex situations may be considered, where
agents’ attitude changes with the pressure’s intensity. At the same time, agents feel the effect
of social influence, i.e., they have a tendency to adjust their choices to the ones of agents with
whom they have a direct interaction. At a microscopic level, where almost sure convergence
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(a) k1 < k∗ (b) k2 > k∗

(c) Evolution of the state of the system when k1 < k∗

Fig. 3 Simulations for n = 2: N = 20000, φ(x) = − 1
2 tanh

(
4(x − 1

2 )
) + 3, k1 = 0.752, k2 = 1.263

to consensus occurs, a contrarian attitude of the agents acts as a noise which breaks the
order and produces a disordered metastable phase, where agents continuously change their
choices and there is not a prevailing choice in the community. The introduction of delay in
the dynamics can be interpreted as a further rise of perturbation that, however, may help
create a new ordered phase, where agents coordinate in a periodic behaviour.
Further developments of this model could include the presence of mass media, or the subdi-
vision of the community into groups of agents with different gain functions, in order to study
phenomena like polarization or fragmentation of choices.

Non linearmean field votermodels can be considered as a first level attempt in defining non
trivial dynamics in a social network of interacting agents. The model analysed in this paper,
while constituting an oversimplified description of human relationships, when observed at
a large scale, manages to illustrate some of the typical patterns that are observed in social
communities. On the other hand, questions and issues coming from the context of social
sciences may be a source of inspiration to design challenging mathematical problems.
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A Explicit Formulas in the Linear Case

We give explicit formulas for the critical parameter k∗ at which the system has supercritical
Hopf bifurcation in the cases when φ is linear and n = 3, 4, 5. The values of k∗ are obtained
by checking that the conditions of Theorem 3.1 re satisfied. We also show simulations of the
microscopic model, which confirm what is theoretically expected.

For n = 3 according to formula (24) we obtain

p(λ; k) = λ5 + 4kλ4 + 6k2λ3 + 4k3λ2 + k4λ + a

2
k4.

Then

p0(k) = a

2
k4,

D1(k) = k4,

D2(k) = k6(4k − 3a),

D3(k) = 5

2
k8(8k − 7a),

D4(k) = 1

4
k8(256k2 − 224ak − a2),

dD4(k)

dk
= 2k8(320k − 261a).

Taking k∗ = 1
16 (5

√
2 + 7)a, conditions (CH1) and (CH2) are satisfied and we have an

Hopf’s bifurcation, see Fig. 4.
For n = 4 we have

p(λ; k) = λ6 + 5kλ5 + 10k2λ4 + 10k3λ3 + 5k4λ2 + k5λ − 2ck5.

Then

p0(k) = a

2
k6,

D1(k) = k5,

D2(k) = 5k8(k − a),

D3(k) = 5

2
k11(16k − 19a)

D4(k) = 5

4
k12(224k2 − 264ak − 5a2),
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(a) k1 < k∗ (b) k2 > k∗

(c) Evolution of the state of the system when k1 < k∗

Fig. 4 Simulations for n = 3: N = 10000, φ(z) = −2z + 3, k1 = 1.359, k2 = 2.612

D5(k) = 1

4
k13(4096k2 − 4800ak − 125a2),

dD5(k)

dk
= 5

4
k12(12288k2 − 13440ak − 325a2).

Taking k∗ = 5
128 (7

√
5 + 15)a conditions (CH1) and (CH2) are satisfied and we have an

Hopf’s bifurcation.
Finally, for n = 5 we get

p(λ; k) = λ7 + 6kλ6 + 15k2λ5 + 20k3λ4 + 20k3λ4 + 15k4λ3 + 6k5λ2 + k6λ − 2ck6.

Then

p0(k) = a

2
k6,

D1(k) = k6,

D2(k) = 3

2
k10(4k − 5a),

D3(k) = 35k14(2k − 3a)

D4(k) = 7

2
k16(256k2 − 376ak − 15a2),
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(a) k1 < k∗ (b) k2 > k∗

(c) Evolution of the state of the system when k1 < k∗

Fig. 5 Simulations for n = 5: N = 20000, φ(z) = −2z + 3, k1 = 2.731, k2 = 4.031

D5(k) = 7

2
k182304k2 − 3354ak − 209a2),

D6(k) = 1

8
k18(4k + a)(16384k2 − 24832ak + a2),

dD6(k)

dk
= 3

4
k17(917504k3 − 1269760ak2 − 78584a2k + 3a3).

Taking k∗ = 1
128 (56

√
3 + 97)a conditions (CH1) and (CH2) are satisfied and we have an

Hopf’s bifurcation, see Fig. 5.

B Auxiliary Results

The general statement of Kurtz’s Theorem can be found in [18]. Here we write its specialized
version to the case of a birth and death process with values in EN = { i

N : 0 ≤ i ≤ N }, as
done in [12].

123



6 Page 20 of 21 M. Aleandri, I. G. Minelli

Theorem B.1 (Kurtz’s Theorem) Let {X(t)}t≥0 be a birth and death process on the state-
space EN with transitions rates, respectively, r+(x) = N f +(x) and r−(x) = N f −(x)
where f + and f − are Lipschitz continuous functions with constants L+, L−. Suppose that
X(0) = x0 deterministically. Consider the Cauchy problem:{

ẋ(t) = f +(x) − f −(x);
x(0) = x0.

Then for any ε > 0 and T > 0, for N sufficiently large,

P( sup
0≤t≤T

|X(t) − x(t)| > ε) ≤ 4 exp

(
−NTdg

(
εe−L̄T

4T f̄

))

where d = ‖ f + − f −‖∞, g(t) = (1 + t) log(1 + t) − t and L̄ = max{L+, L−}
For the proof of the following lemmas, see [12].

Lemma B.1 For N ≥ 1, let {X(t)}t≥0 beabirth anddeath process on EN = { i
N : 0 ≤ i ≤ N }

with rates r+(x) and r−(x) respectively. Assume r+(0) = r−(0) = 0 and that there exists
ε̄ > 0 such that

r−(x) ≥ (1 + δ)r+(x), ∀ x ∈ EN ∩ (0, 2ε̄]

for some δ > 0. Then, letting C = ln(1 + δ) and Px = P( · |X(0) = x), for any x < ε̄ we
have

Px
(
sup
t≥0

X(t) > 2ε̄
)

< ε̄Ne−ε̄CN . (25)

Lemma B.2 For N ≥ 1, let {X(t)}t≥0 beabirth anddeath process on EN = { i
N : 0 ≤ i ≤ N }

with rates r+(x) and r−(x) respectively. Let μ = maxx∈EN

(
r+(x) + r−(x)

)
. Assume that

there exists x0 ∈ (0, 1) and ε̄ > 0 such that (x0 − ε̄, x0 + ε̄) ⊂ (0, 1) and

r+(x) ≥ (1 + δ)r−(x) if x ∈ EN ∩ (x0 − ε̄, x0 + ε̄)

for some δ > 0 and let p = 1+δ
2+δ

. Then, for any x > x0

Px

(
inf

t∈[0,eε̄CpN ]
X(t) < x0 − ε̄

)
<

(
9μ2 + 1

9μ2

)
e−ε̄CpN

for a suitable constants Cp which depends only on p.
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