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We analyze the effect induced on standard quantum field theory (in a functional approach) by quantum
gravity corrections to a pure classical background. In the framework of the Kuchař and Torre proposal for a
gravity-matter theory constrained to a Gaussian reference frame, materialized as a fluid in the system evolution,
we consider a Born-Oppenheimer separation of the system, regarding the gravity degrees of freedom as the
slow varying component and the matter plus the Gaussian fluid as fast quantum coordinates. The slow gravity
component obeys theWheeler-DeWitt equation, and we consider a Wentzel-Kramer-Brillouin expansion of its
quantum dynamics via a Planckian parameter. The main issue of the proposed scenario is that, on one hand, we
recover a modified quantum field theory in the presence of a Hermitian Hamiltonian (not affected by
nonunitarity as in other approaches) and, on the other hand, we get the Gaussian fluid as a physical clock for
such an amended quantum theory (verifying the correct energy conditions). We also show its equivalence with
the kinematical action method, used in a previous work, in the homogeneous setting. Then, we implement the
proposed paradigm to describe the dynamics of a homogeneous free massless scalar field, living on an
isotropic universe, in the presence of a cosmological constant. We completely solve the dynamics up to the first
order correction in the Planckian parameter to the standard quantum field theory. We determine the explicit
form of the modified scalar field wave function, due to quantum features of the cosmic scale factor evolution.
Phenomenological considerations and discussions are provided.
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I. INTRODUCTION

One of the most puzzling questions affecting the canoni-
cal quantization [1] of the gravitational field [2–7] is the so-
called “frozen formalism,” i.e., the absence of a time
evolution of the Universe wave function [8–11]. This basic
problem of the quantum gravitational field dynamics has
been faced in the literature by many approaches, some
dealing with the Schrödinger equation [12–18] and others
facing related topics [19–24], although this problem still
remains an open issue, especially for what concerns the
definition of a causality relation.
In general, introducing a time variable for canonical

quantum gravity is a troublesome task. Many approaches
choose whether to follow a path of reduced quantization, i.e.,
defining a clock variable before the quantization procedure,
or to implement the Dirac method, where the quantum
version of the constraints is imposed on the system and the
time parameter is identified afterward (for example, see
discussions in Refs. [25,26] and references within); in this
work, we will focus on the second procedure.

A recurring proposal has been to somehow define
time via fluid variables into the theory, such as in
[12,13,15,27,28]. In this context, a very interesting attempt
must be considered in the analysis in [12], where the
request to constrain the canonical procedure to a specific
Gaussian reference frame has been pursued in a covariant
formulation. The very suggestive result of this proposal is
that the fixing procedure of a Gaussian frame has the effect
to materialize such a reference frame into the dynamics, in
the form of a fluid having zero pressure and thermal
conductivity; actually, it reduces to simply an incoherent
dust if the constraint concerns only the unit value of the
metric 0 − 0 − component. The shortcoming of the proposed
approach consists of the impossibility to deal with a fluid
which always satisfies the so-called “energy condition”; i.e.,
its physical nature is not guaranteed (for instance, the dust
could be endowed with a negative energy density).
Here, we intend to implement this idea on the level of a

Wentzel-Kramer-Brillouin (WKB) limit for the gravitational
field, which allows a Born-Oppenheimer (BO) separation of
the gravity-matter dynamics [29–34]. This scenario based on
an expansion of the quantum dynamics via a parameter of
the order of the Planck scale (or in the Planck constant)
allows us to recover the quantum field theory of matter on a
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classical curved background (in the functional representa-
tion) at the zeroth order of expansion, while at the higher
one, the Hamilton-Jacobi equation for the gravitational field,
naturally emerges. However, in the next order of approxi-
mation, the corrections to the functional Schrödinger equa-
tion are associated with a nonunitary contribution.
In [35], a detailed discussion and criticism of this type of

approach was presented, and a different proposal has been
inferred. In fact, instead of deriving the time evolution of
the matter wave function from its parametric dependence
on the classical (say better, quasiclassical) gravitational
variables, there the so-called “kinematical action” was
added to the dynamics introduced in [5] to covariantize
a quantum field theory on a classical background and so
outlining the natural constraints of the theory. In [36], the
kinematical action was also implemented in a fully quan-
tum gravity scenario to provide a time evolution for the
wave function, and it was also shown that, in the classical
limit, it acquires the morphology of a physical fluid. In
[35], the kinematical action does not appear in the classical
limit of gravity, since it is associated with a matterlike
variable in the BO approximation. This way, the kinemati-
cal action simply provides the proper time evolution of
quantum field theory; the quantum gravity corrections are
no longer affected by nonunitarity problems.
As a first step, here we consider the general case with the

full Hamiltonian formulation of gravity and matter in the
presence of a “reference fluid.” We construct the first three
orders of approximation in expansion with respect to a
Planckian parameter; the analysis is developed within a
Born-Oppenheimer scheme in which the gravitational
degrees of freedom correspond to the slow component,
while the matter sources and reference fluid are described
via fast variables. It is important to stress, in this respect,
that the BO separation is always performed requiring that,
as in [29], the gravitational degrees of freedom obey a
Wheeler-DeWitt equation alone (before the WKB approxi-
mation is implemented). We show the general form of the
quantum corrections to the functional Schrödinger equation
describing the standard quantum field theory. A key point is
that the reference fluid, while contributing to Einstein’s
equations with its stress-energy tensor, does not appear at
the first order of expansion (i.e., at the Planckian scale),
where the Hamilton-Jacobi equation for the gravitational
field alone is recovered. This feature must be taken into
account when discussing the energy conditions, as done in
[12], since the fluid itself is not a source for gravity at the
first order. Furthermore, we show that there exists a
connection between the reference fluid procedure and
the kinematical action path presented previously in [35]:
Indeed, when one implements only the Gaussian time
condition (i.e., the reference fluid is an incoherent dust,
not transporting heat), the resulting dynamics for the matter
sector corresponds exactly to the results obtained via the
kinematical action insertion in the homogeneous case,

when the component Ni of the deformation vector is set
to zero.
Then, we perform a cosmological study of the isotropic

universe in the presence of a homogeneous free massless
scalar field and a cosmological constant term (these last
two ingredients mimic the inflation paradigm of the early
Universe), and we include the fixing of a Gaussian frame
into the quantization procedure. According to the general
scheme mentioned above, the (materialized) reference
frame is described by matterlike variables, and the BO
separation is implemented in order to calculate the correc-
tion to the Hamiltonian spectrum of the free scalar field, as
the effect of the quantum corrections to the isotropic
universe dynamics.
The main result of the present study is to recover

quantum gravity corrections in the form of a Hermitian
modified Hamiltonian for the scalar field. Furthermore,
different from the analyses in [30,37,38], the matter wave
function is sensitive to the quantum gravity nature of the
scale factor, although its dependence is very weak, accord-
ing to the series expansion in the Planck scale. This result
offers a promising scenario to investigate more specific
questions, like the deformation that quantum gravity
corrections can cause on the spectrum of perturbations
induced by the inflationary scenario. We conclude by
observing that, in the proposed scheme, the idea of [12]
finds a new perspective: The materialized reference frame
is involved in the “fast” matter dynamics, and its energy
density no longer enters the Hamilton-Jacobi equation, so
that no violation of physical conditions takes place.
The paper is organized as follows. In Sec. II, we briefly

review the reference frame fixing proposal, illustrating
the main concerns regarding the Gaussian fluid (physical
or nonphysical) properties. In Sec. III, we introduce
the reference fluid model and perform its expansion
via the WKB procedure, showing the analogy with the
kinematical action insertion proposed in [35] and dem-
onstrating that the homogeneous (mini-super-space) case
corresponds to the choice of a fluid without heat con-
duction. In Sec. IV, we implement the procedure for the
homogeneous case, imposing only the time condition for
the reference frame. Section V contains the physical
considerations and concluding remarks.

II. THE KUCHAŘ-TORRE MODEL

Here we briefly present the procedure discussed in [12]
to develop a quantum formulation of geometrodynamics
with the reference frame fixing approach and its critical
issues.
The starting point is the notion of reference fluid: In

order to identify the dynamically significant components of
the metric that describe the evolution (essentially, space
points and a clock), one can fix a certain reference frame,
which will emerge as a fluid in the system. However, the
coordinate conditions are imposed before the constraints of
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vanishing super-Hamiltonian and supermomentum; in this
way, the reference fluid will break the diffeomorphism
invariance, requiring a reparametrization procedure to
make the system covariant.
In the original paper [12], the reference frame chosen is

the Gaussian one; however, one could, in general, construct
an analogous procedure for a different system of coordi-
nates (see discussion in Ref. [39]).
Choosing the Gaussian coordinates Xμ ¼ ðT; XiÞ, the

conditions to be imposed are

γ00 ¼ 1; γ0i ¼ 0; ð1Þ

being γαβ the space-time metric [we have adopted the
signature (þ;−;−;−)]. We are using greek indices
μ; α; β… to indicate 4D variables, and latin indices
i; j; k… for 3D (spatial) objects.
Following the original paper, here we consider only

the gravitational system with the Gaussian conditions.
The conditions (1) are obtained by inserting Lagrangian
multipliers F ;F i into the total action of the system that
reads

S ¼ Sg þ Sf; ð2Þ

where Sg is the usual Einstein-Hilbert action, and

Sf ¼
Z

d4x

�
−

ffiffiffiffiffiffi−γp
2

F ðγ00 − 1Þ þ ffiffiffiffiffiffi
−γ

p
F iγ

0i

�
ð3Þ

contains the Gaussian conditions. As a consequence, these
additional terms emerge in Einstein’s equations as a source
for gravity, thus breaking the diffeomorphism invariance.
A reparametrization of the action is then needed in order

to work in arbitrary coordinates other than the starting ones
(i.e., to recover covariance). This reflects the fact that the
Gaussian fluid is a “privileged” system of coordinates, but
one could, in principle, choose another arbitrary set. For
this reason, the Gaussian coordinates are written as func-
tions of arbitrary coordinates xα, with associated metric gαβ,
so that the equations will be unchanged for coordinate
transformations of the xα:

Sfpar ¼
Z

d4x

� ffiffiffiffiffiffi−gp
2

F ðgαβ∂αTðxÞ∂βTðxÞ − 1Þ

þ ffiffiffiffiffiffi
−g

p
F iðgαβ∂αTðxÞ∂βXiðxÞÞ

�
: ð4Þ

For compactness of notation, we avoid specifying the
dependence on the xα, which will be implicitly understood.
The reparametrization procedure shall clearly include the
simplest choice, which is when the reference frame is
precisely the Gaussian one. Indeed, we require that (4)
coincides with (3) when the arbitrary coordinates are

chosen as the Gaussian ones: xα ≡ δαμXμ (we refer to the
original paper for these steps).
Once the parametrized fluid formulation is obtained, one

can investigate the role of this object. Defining

Uα ¼ gαβ∂βT; ð5Þ

F α ¼ F i∂αXi; ð6Þ

it can be shown that the source term in Einstein’s equations
has the following form:

Tαβ ¼ FUαUβ þ 1

2
ðF αUβ þ F βUαÞ: ð7Þ

Here, the stress-energy tensor has no stress term; thus, it
corresponds to a heat-conducting dust, with four-velocity
Uα, energy density F, and heat flow F α. Implementing
only the Gaussian time condition in (1), but not the spatial
one, the authors demonstrate that the model reduces to an
incoherent dust, with only the quadratic term in Uα

appearing in (7), since the fluid does not transport heat.
The Hamiltonian description of the fluid is then

computed starting from (4), implementing the 3þ 1
Arnowitt-Deser-Misner (ADM) foliation [40], with hij
the 3D induced metric, finding

Hf ¼ W−1PþWWkPk; ð8Þ

Hf
i ¼ P∂iT þ Pk∂iXk; ð9Þ

where P, Pk are the momenta canonically conjugate to the
Gaussian coordinates ðT; XkÞ, and the coefficients

W ≔ ð1 − hjl∂jT∂lTÞ−1=2; ð10Þ

Wk ≔ hjl∂jT∂lXk ð11Þ

correspond to the spatial sector of the Gaussian restrictions
in (4). It is important to notice that the fluid super-
Hamiltonian (8) is linear and homogeneous in the momenta
P, Pk, a feature which will be useful later on.
It follows that the system composed of the gravitational

sector and the reference fluid is subjected to the constraints

Hg þHf ¼ 0; ð12Þ

Hg
i þHf

i ¼ 0; ð13Þ

that are, respectively, the Wheeler-DeWitt equation and the
diffeomorphism constraint [6,40], which have strongly
vanishing Poisson brackets, since they do not depend on
the new momenta P;Pk.
The fluid momenta P, Pk, which emerge parabolically in

the constraints and clearly separated from the other
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canonical variables, will play an important role in the
emerging dynamics. Indeed, for the general case of the
heat-conducting Gaussian fluid, the quantum version of
(12) and (13) leads to a Schrödinger equation

iℏ∂tΨ ¼ ĤΨ ¼
Z
Σ
d3xHg; ð14Þ

where

∂tΨ ¼
Z
Σ
d3x

δΨðTðxÞ; XkðxÞ; hjlðxÞÞ
δTðxÞ

����
T¼t

: ð15Þ

Here, the ADM splitting is chosen such that t ¼ T, so the
wave function Ψ is still a functional of XkðxÞ, hjlðxÞ, but it
is an ordinary function of the Gaussian time. In other
words, we exactly choose the Gaussian time of the
reference fluid as the time parameter for the space-time
foliation. It is clear then that the Gaussian time choice has
provided a meaningful clock for the system evolution,
whose state is now a functional of the remaining variables.
Other choices of the ADM splitting are possible, leading to
analogous functional equations (see discussion in the
original paper).
Equation (14) is equipped with the standard positive-

definite conserved norm that could be used to construct the
Hilbert space of the states. However, as noted by the
authors, the integrand of the norm cannot be easily
interpreted as the probability density, since the fluid
variables can be used only if the fluid itself is physical;
i.e., it satisfies the energy conditions. In other words, the
fluid can be used as a clock only if the associated stress-
energy tensor satisfies the weak, dominant, and strong
energy conditions (a discussion on the general form of
these conditions can be found in [41]).
For the incoherent dust case (F i ¼ 0), these are all

encoded in the request:

F ≥ 0: ð16Þ

In this case, the authors show that, if condition (16) is
satisfied at the beginning, it remains valid thanks to the
algebra of the super-Hamiltonian and supermomentum
operators. However, this is not true in the general case,
since the Gaussian fluid does not have a proper equation of
state. Indeed, for the heat-conducting fluid, the weak
energy condition is an inequality involving the multipliers
F ;F i, which is not satisfied in principle due to the
independent, arbitrary values of the multipliers, and it
can also be violated during the dynamical evolution.
In the Hamiltonian formalism, the energy conditions

require Hf ≥ 0, which using the constraint (12) becomes
Hg ≤ 0. This condition can be written as an equality using
the Heaviside functionΘ, as discussed in the original paper;
thus, it can be considered an additional constraint for the

system. However, the authors show that its Poisson brack-
ets with the super-Hamiltonian constraints do not always
vanish, so they are not first class for the general heat-
conducting Gaussian fluid. This property reflects the fact
that for the heat-conducting fluid, the energy conditions in
terms of multipliers are not preserved in the evolution.
Thus, the system must be closed with the additional
constraints Pk ¼ 0, which turn off the heat conduction
(i.e., F k ¼ 0). It follows that, in this implementation, the
quantum version of the energy conditions can be imposed
in a consistent way only for the incoherent dust.
These aspects prevent us from fully considering the

Gaussian fluid as a quantum clock in this formulation and
indicate that a different path should be considered in order
to provide a meaningful interpretation of the Schrödinger
equation for the Universe wave function. We will see below
how our approach overcomes this problem by restricting
the reference fluid to be a proper clock only for the fast
variables of the Born-Oppenheimer approximation.

III. WKB EXPANSION OF THE FLUID APPROACH

Here we present a possible formulation of the reference
fluid that allows a physical interpretation of the system
evolution.
One of the main tools of the approach is the WKB

procedure [42,43], which allows us to compute an approxi-
mate solution for the wave function satisfying a given
Schrödinger equation. We will not give an explicit review
of this method and its (many) applications for the gravi-
tational field here, referring the interested reader to the
previous work [35] and references within.
The core idea is to identify a suitable expansion

parameter, given the characteristics of the system under
study, and perform a perturbative expansion. This allows us
to compute, at each order, the functions whose exponential
gives the wave function solving the equation, as in

Ψ ¼ e
i
ℏðσ0þbσ1þb2σ2þ���Þ; ð17Þ

where b is the chosen expansion parameter; in this way, the
Schrödinger equation applied to this wave function gives a
set of equations, order by order, from which one can obtain
the approximate solutions σ0, σ1, and so on. It is worth
stressing here that the choice of expansion parameter is
crucial in order identify the nature of the lowest limit of
expansion: For example, choosing b ¼ ℏ, clearly the zeroth
order is the purely classical background of the theory.
Two works have been developed first using this

approach, i.e., considering a WKB expanded quantum
system for gravity and matter. The first one [29] used as
an expansion parameter the Planck constant ℏ, thus con-
sidering a purely classical background; the variables were
then naturally separated into quasiclassical and quantum
ones. Going up to OðℏÞ, the author identified a suitable
time parameter such that a functional Schrödinger equation
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for the quantum variables emerged. The second one [30] (see
also Refs. [10,44]) used a different expansion parameter
proportional to the Einstein coefficient κ (i.e., the gravita-
tional scale), so that the system was separated into gravi-
tational degrees of freedom and quantum matter variables.
In this way, the lowest order describes pure gravity in
vacuum, similar to a Born-Oppenheimer implementation of
the gravity-matter system. With some different hypotheses,
the expansion was performed up to the next order with
respect to standard quantum field theory, finding the
gravitational correction contributions to the Schrödinger
equation for the matter sector.

A. On the proposed physical point of view

In what follows, we develop the Born-Oppenheimer
separation between gravity and matter and the subsequent
WKB expansion for the gravitational component, following
[30], although we deal with functional derivatives and take
into account also the contribution of the supermomentum
constraint for gravity and matter (also the basic notation
follows that one in [30]). However, it is to be remarked that,
following the analysis in [29], we impose that the slow
varying gravitational component obeys separately the
corresponding (vacuum) Wheeler-DeWitt equation. This
leads to a similar result as in [30], but it is conceptually
more coherent with a standard Born-Oppenheimer decom-
position of the dynamics.
Apart from the similarity stressed above, our analysis

is intrinsically very different from the proposals in
[29,30,37] in the way a time coordinate emerges for the
functional Schrödinger equation describing the quantum
matter evolution. In fact, in such proposals, the label time
emerges throughout the dependence of the matter wave
functional on the gravitational degrees of freedom, which
play the role of parameters and, at the order of approxi-
mation M, are purely classical functions of the label time.
In other words, the time derivative of the functional χ is
constructed by the sum

∂th ·
δχ

δh
; ð18Þ

it is just the morphology of such a definition of the time
coordinate at the ground of the nonunitary effects emerg-
ing at the order 1=M of the approximation scheme.
In the scenario here proposed, however, the time variable

is provided by the reference fluid emerging when the
procedure derived in [12] is implemented via the Born-
Oppenheimer WKB algorithm and the coordinates describ-
ing such a reference fluid are treated as fast (matterlike)
variables. More specifically, our time variable, or to say
better, our time derivative, is constructed as in [12], but, in
our approximation scheme, it emerges in the quantum
matter dynamics only (no additional terms affect the
vacuum gravitational Hamilton-Jacobi equation).

In the proposed picture, the reference fluid plays a role
very similar to the one of the so-called kinematical action:
This additional term was postulated in [5] in order to make
covariant a quantum field theory for matter by outlining the
proper constraints, so that the canonical quantum prescrip-
tion can be implemented. Treating the fluid variables as a
fast component permits us to reduce the presence of the
fluid to an additional contribution for the quantum matter
dynamics, very similar to the kinematical action and
actually, the results obtained here overlap those discussed
in [35], where such a kinematical action has been added
ab initio. It is, however, important to remark that, in both
approaches, the possibility to deal with matter constraints
similar to the ones of quantum physics on an assigned
curved background, strictly relies on the development in the
order parameter we perform; their morphology is therefore
an intrinsic quantum manifestation, whose classical limit
would make no sense in our scenario.
This very different methodology in constructing a clock

for the quantum dynamics of matter has two advantages:
(i) It allows us to avoid the dilemma of nonunitarity of the
theory discussed in [30,37], and (ii) we can clarify how
some difficulties of the original analysis in [12] are over-
come when the Born-Oppenheimer separation takes place.
Actually, the role of a reference frame (or equivalently, of
an emerging reference fluid) must be naturally regarded as
similar to the one of matter: Therefore, when quantum field
theory is considered in the presence of quantum gravity
corrections, it must be included in the set of matterlike
variables. This brings up the following consideration:
Clearly, when as in [12], the full quantum gravity problem
is considered, and gravity, matter, and the reference fluid
are all on the same footing, the presence of a physical
reference system (see also Ref. [8]) becomes nontrivial.
Our point of view is that, if we take into account (like here)
the role of the Planckian parameter of expansion for the full
quantum gravity dynamics, then investigating the classical
contribution of the reference fluid (becoming nonphysical
since the energy conditions can be violated) has limited
sense. The reason is straightforward: With respect to the
expansion in a Planckian parameter, the gravitational
degrees of freedom approach at the highest orders of
expansion a quasiclassical limit, while the matter and the
reference fluid remain still in a quantum picture, i.e., the
concept of classical matter must be limited as applied only
to macroscopic phenomenological sources.

B. Implementation of the model

In this model, we consider the gravitational field,
together with the reference fluid and a self-interacting
scalar field ϕ with potential UmðϕÞ. This field schemati-
cally represents the matter sector, which can be generalized
for more scalar fields, and it assumes a key role in
cosmological applications (see Sec. IV). The action of
such a model can be taken as
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S ¼
Z

dt
Z
Σ
d3xðΠij _hij þ pϕ

_ϕ − NðHg þHmÞ

−NiðHg
i þHm

i ÞÞ þ Sf; ð19Þ

where we have performed the ADM foliation [40], so hij is
the metric induced on the 3D hypersurfaces Σ, and the
added term Sf represents the parametrized fluid of the
previous section (4). This term can be written explicitly in
ADM coordinates by observing that the Gaussian reference
frame conditions give the following requirements on the
components of the deformation vector Nμ:

N ¼ �1; Ni ¼ 0 ð20Þ

corresponding to the fluid action

Sf ¼
Z

dt
Z
Σ
d3x

ffiffiffi
h

p �
−
F
2

�
N −

1

N

�
þ F iNNi

�
: ð21Þ

As done in the previous section, the fluid terms can be
rewritten by using the momenta associated with the
Gaussian coordinates and introducing the coefficients
(10) and (11), so that the fluid super-Hamiltonian and
supermomentum are (8) and (9).
From Eq. (19), the Hamiltonian formalism of the theory

is straightforward. However, even in the presence of
matter fields, it has been shown [5] that the constraints
describing the Wheeler-DeWitt equation and the diffeo-
morphism invariance are not removed; i.e., the total super-
Hamiltonian and supermomentum must still vanish:

H ¼ Hf þHg þHm ¼ 0; ð22Þ

Hi ¼ Hf
i þHg

i þHm
i ¼ 0: ð23Þ

Here, the reference fluid functions have already been
specified in (8) and (9). The gravitational components in
(22) and (23) are easily computed [40]:

Hg ¼ −
ℏ2

2M
ð∇2

g þ g · ∇gÞ þMV; ð24Þ

Hg
i ¼ 2iℏhiD · ∇g; ð25Þ

where ∇g indicates the derivatives with respect to the
metric variables hij, the term g · ∇g ¼ gij δ

δhij
is inserted to

account for generic factor orderings [30], and in the
supermomentum we write hiD ·∇g ¼ hijDk

δ
δhkj

.

Finally, the scalar matter field components in (22) and
(23) are

Hm ¼ −ℏ2∇2
m þUm; ð26Þ

Hm
i ¼ −ð∂iϕÞ∇m; ð27Þ

with ∇2
m ¼ 1

2
ffiffi
h

p δ2

δϕ2, and Um includes the spatial gradients.

In Eqs. (24) and (25), we have rewritten the Einstein
coefficient in terms of the following parameter:

M≡ c2

32πG
¼ cm2

Pl

4ℏ
; ð28Þ

which is directly linked to the square of the reduced Planck
mass mPl. We will choose this parameter for the WKB
expansion, since it allows for a clear separation between the
gravitational background and the other components.
Following a scheme that is similar to the BO separation

[45] (as done previously in [29,30,35]), we postulate that
the system can be separated into a slow quantum gravita-
tional sector and a fast quantum component including the
reference fluid and the matter field, such that the wave
function can be taken as

Ψðhij;ϕ; XμÞ ¼ ψðhijÞχðϕ; Xμ; hijÞ; ð29Þ

where Xμ are the Gaussian coordinates, ψ is the function
associated with the slow gravitational background, and χ is
the function for the fast matter sector (depending para-
metrically on the background metric). Following the WKB
method, we can rewrite (29) expanding both the gravity
function ψ and the matter function χ:

Ψðhij;ϕ; XμÞ ¼ e
i
ℏðMS0þS1þ 1

MS2Þei
ℏðQ1þ 1

MQ2Þ: ð30Þ

Here, the expansion is performed up to order 1=M,
sufficient for the purpose of this paper. In this notation,
the functions Qnðϕ; Xμ; hijÞ are associated with the fast
matter sector (i.e., the first contributions to the matter
function χ), and similarly, SnðhijÞ are the slow background
functions.
To follow the BO approach, the adiabatic condition must

also be implemented, stating that the functional gradients of
the fast wave function with respect to slow coordinates are
small:

δQn

δhij
¼ O

�
1

M

�
; ð31Þ

which must be implemented order by order to the fast
functions Qn. We also require that

Ĥmχ

Ĥgχ
¼ O

�
1

M

�
; ð32Þ

which states that the fast matter sector lives at a smaller
energy scale with respect to gravity; i.e., it is of a smaller
order in the expansion parameter. For the same reason, we
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can consider the effect of the matter fields to be negligible
at the Planck scale, so that the gravitational wave function
satisfies a set of constraints on its own:

ĤgψðhijÞ ¼ 0; ð33Þ

Ĥg
iψðhijÞ ¼ 0: ð34Þ

These equations are to be adjoined to the total constraints
of the system deriving from (22) and (23); namely, the
system of equations to be expanded order by order reads
explicitly

�
−

ℏ2

2M
ð∇2

g þ g · ∇gÞ þMV

�
ψ ¼ 0; ð35Þ

½2iℏhiD ·∇g�ψ ¼ 0; ð36Þ
�
−

ℏ2

2M
ð∇2

g þ g · ∇gÞ þMV − ℏ2∇2
m

þ UmþW−1PþWWkPk

�
Ψ ¼ 0; ð37Þ

h
2iℏhiD ·∇g − ð∂iϕÞ∇m

þ P∂iTþPk∂iXk
i
Ψ ¼ 0: ð38Þ

The zeroth order is OðMÞ, where one obtains

1

2
ð∇gS0Þ2 þ V ¼ 0; ð39aÞ

−2hD ·∇gS0 ¼ 0 ð39bÞ

corresponding to the Hamilton-Jacobi equation for gravity,
i.e., in vacuum, and to the diffeomorphism invariance
for S0.
At the next order OðM0Þ, the equations give

−iℏ∇2
gS0 þ 2ð∇gS0Þð∇gS1Þ þ iℏg · ∇gS0 ¼ 0; ð40aÞ

−2hiD ·∇gS1 ¼ 0; ð40bÞ

− iℏ∇2
gS0 þ 2ð∇gS0Þð∇gS1Þ þ iℏg ·∇gS0

− 2iℏ∇2
mQ1 þ Um −W−1 δQ1

δT

−WWk δQ1

δXk ¼ 0; ð40cÞ

− 2hiD · ∇gS1 −
i
ℏ
ð∂iϕÞ∇mQ1 − ð∂iTÞ

δQ1

δT

− ð∂iXkÞ δQ1

δXk ¼ 0: ð40dÞ

Here, the gravitational constraints simplify Eqs. (40c)
and (40d). Remembering that, at this order, the quantum
matter wave function is

χ0 ¼ e
i
ℏQ1 ; ð41Þ

Eqs. (40c) and (40d) can be combined in the following:

Hmχ0 ¼
Z

d3xðNHm þ NiHm
i Þ

¼
Z

d3x

�
N

�
W−1 δ

δT
þWWk δ

δXk

�

þNi

�
ð∂iTÞ

δ

δT
þ ð∂iXkÞ δ

δXk

��
χ0

¼ iℏ
δ

δτ
χ0; ð42Þ

which is a functional equation, with the same form as the
Schrödinger one, when one defines the quantum clock of the
theory with the time derivative as above. We remark that
definition (42) is a generalization of the time derivative
implemented in the Kuchař-Torre model when choosing the
time parameter as exactly the Gaussian time (15). However,
here we maintain the Gaussian coordinates as functions of the
generalized parameters; thus, we do not need to implement a
specific coordinate choice with this definition. We also point
out that it is possible to implement a simplified form of the
time derivative by using the supermomentum constraint (23),
since it takes away a term from the right-hand side.
Going up to the next order OðM−1Þ one finds

− iℏ∇2
gS1 þ ð∇gS1Þ2 þ 2ð∇gS0Þð∇gS2Þ

þ iℏg · ∇gS1 ¼ 0; ð43aÞ

−2hiD ·∇gS2 ¼ 0; ð43bÞ

−
iℏ
2
∇2

gS1 þ
1

2
ðð∇gS1Þ2 þ 2ð∇gS0Þð∇gS2Þ

þ 2Mð∇gS0Þð∇gQ1ÞÞ þ
iℏ
2
g ·∇gS1

− iℏ∇2
mQ2 þ 2ð∇mQ1Þð∇mQ2Þ

−W−1 δQ2

δT
−WWk δQ2

δXk ¼ 0; ð43cÞ

− 2hiD · ð∇gS2 þM∇gQ1Þ −
i
ℏ
ð∂iϕÞ∇mQ2

− ð∂iTÞ
δQ2

δT
− ð∂iXkÞ δQ2

δXk ¼ 0: ð43dÞ

Here again, the first terms in (43c) and (43d) disappear
due to the gravitational constraints, leaving terms that
contain the functions Q2 and Q1. However, noting that
the quantum matter wave function at OðM−1Þ is
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χ1 ¼ e
i
ℏðQ1þ 1

MQ2Þ; ð44Þ

and making use of the adiabatic condition (31), we can sum
Eqs. (43c) and (43d) (of order M−1) with those found at the
previous order forQ1 (of orderM0). Therefore, we find from
the super-Hamiltonian constraints,

ð∇gS0Þð∇gQ1Þ − iℏ

�
∇2

mQ1 þ
1

M
∇2

mQ2

�

þ ð∇mQ1Þ2 þ
2

M
ð∇mQ1Þð∇mQ2Þ þ Um

−
�
W−1 δ

δT
þWWk δ

δXk

��
Q1 þ

1

M
Q2

�
¼ 0; ð45Þ

where we obtain the matter super-Hamiltonian Hm (26)
applied to χ1 plus an extra term, and the terms with
the functional derivatives with respect to the Gaussian
coordinates.
From the supermomentum constraint, with the same

procedure, one finds

− 2hiD ·∇gQ1 −
i
ℏ
ð∂iϕÞ

�
∇mQ1 þ

1

M
∇mQ2

�

− ð∂iTÞ
�
δQ1

δT
þ 1

M
δQ2

δT

�

− ð∂iXkÞ
�
δQ1

δXk þ
1

M
δQ2

δXk

�
¼ 0; ð46Þ

which again reconstructs the matter supermomentum Hm
i

(27), plus an extra term and the ones with the functional
derivatives.
Now, in order to reobtain the time derivative defined in

(42), we multiply (45) by N and (46) by Ni, summing them
and integrating over the spatial hypersurfaces Σ:

iℏ
δ

δτ
χ1 ¼

Z
d3x

�
N
�
W−1 δ

δT
þWWk δ

δXk

�

þNi

�
ð∂iTÞ

δ

δT
þ ð∂iXkÞ δ

δXk

��
χ1

¼ Hmχ1 þ
Z

d3x½Nð−iℏ∇gS0 ·∇gÞ

þ Nið2iℏhiD · ∇gÞ�χ1: ð47Þ

It is evident that the quantum matter dynamics at
OðM−1Þ is modified by the terms in (47), which are due
to the slow quantum gravitational background; therefore,
they are quantum gravity contributions.
It is important to stress that these corrective terms are

isomorphic to the ones found with the kinematical action
procedure in [35]. In that work, it was also shown that they
are indeed unitary; thus, the nonunitarity problem is over-
come with this approach. The kinematical action can be

then thought of as a reference frame, which (once fixed)
emerges in the formalism as a fluid with the properties
discussed above.
Another important point is the correspondence between

the incoherent dust case and the kinematical action homo-
geneous case. In fact, if one takes F i ¼ 0 (i.e., a fluid with
null heat conductivity, as seen before), the equations greatly
simplify (for details, see Ref. [12]). The remarkable result is
that the remaining corrective terms in (47) exactly mimic
the ones found in [35] by adding the kinematical action
for the gravity-matter system in the homogeneous setting
(which, in that formalism, corresponds to the condition
Ni ¼ 0 and the supermomentum constraints are identically
satisfied). This property can be justified with the fact that
there is a correlation between the two approaches, since the
kinematical action was added exactly to play the role of a
reference system in the previous work.

IV. MINI-SUPER-SPACE DYNAMICS WITH g00 = 1

In this section, we show a simple cosmological appli-
cation of the procedure previously analyzed, choosing a
model for the Universe with suitable characteristics in order
to mimic a slow-roll inflation period. We select an isotropic
universe, with a free inflaton field and a cosmological
constant that accounts for the almost constant inflaton
potential. Evidently, due to the requirement of an isotropic
model, the spatial term of the Gaussian coordinates
vanishes identically and the reference time coincides with
Gaussian time.
In order to deal with a gravity-matter Lagrangian as

restricted to a reference frame having g00 ¼ 1, we must
suitably add a corresponding constraint to the total action.
If we denote by T the time variable associated with the
fixed reference system (i.e., the Gaussian fluid), the
constraint to be imposed covariantly reads

gμν∂μT∂νT − 1 ¼ 0; ð48Þ

where we set to unity the speed of light and μ,
ν ¼ 0; 1; 2; 3. Thus, the total action reads as follows [12]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ
ðRþ 2ΛÞ þ 1

2
gμν∂μϕ∂νϕ

þF
2
ðgμν∂μT∂νT − 1Þ

	
; ð49Þ

where R denotes the Ricci scalar, while κ is the Einstein
constant. As explained before, F is a Lagrangian multi-
plier, and its variation leads to the vanishing behavior of the
last Lagrangian term (responsible for the reference frame
fixing).
Let us now consider a flat Robertson-Walker (isotropic)

universe; i.e., we deal with the ADM line element [7]
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ds2 ¼ NðtÞ2dt2 − aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð50Þ

where N is the lapse function and a the cosmic scale factor
(we use c ¼ 1). The associated Ricci scalar is

R ¼ 6

�
ä
a
þ _a2

a2

�
: ð51Þ

Taking equal to unity the fiducial volume over which
the spatial integration is performed, and observing that the
homogeneity of the model implies ϕ ¼ ϕðtÞ, T ¼ TðtÞ, and
F ¼ F ðtÞ, the action [(49)] reads as

SRW ¼
Z

dt

�
−
6

κ

�
a _a2

2N
þ NΛa3

6

�
þ a3 _ϕ2

2N

þMa3

2

�
_T2

N
− N

�	
; ð52Þ

where the dot denotes differentiation with respect to
the time variable t. The spatial component Ni, and so the
supermomentum functions Hi, are not present since
the supermomentum constraint is automatically satisfied
due to symmetry of the model.
Since the Lagrangian term corresponding to the reference

frame fixing vanishes identically, its Hamiltonian contribu-
tion is only pT

_T, pT being the conjugate momentum to the
variable T (coinciding with the synchronous time variable).
Furthermore, the momentum pT results to be defined as

pT ¼ Fa3
_T
N
: ð53Þ

Hence, to ensure the right relation _T ¼ N, we have to
require pT ¼ Fa3.
Finally, it is easy to check that the total action (52)

rewrites in the Hamiltonian formulation as

SRW ¼
Z

dtfpa _aþ pϕ
_ϕþ pT

_T − NHg ð54Þ

with

H ≡ −
κ

12

p2
a

a
þ Λ

κ
a3 þ p2

ϕ

2a3
þ pT; ð55Þ

where pa and pϕ denote the conjugate momenta to a and ϕ,
respectively (in the mini-super-space, the functional
dependence and derivatives reduce to the simple functions
and partial derivatives only).
Using the definition (28) to explicitly show the expansion

parameter, the Wheeler-DeWitt constraint (12) with the
obtained Hamiltonian [which coincides with NH, where
H is (55), up to the fiducial volume set to unit] clearly
translates to

�
ℏ2

48Ma
∂2
a þ 4MΛa3 −

ℏ2

2a3
∂2
ϕ − iℏ∂T

�
Ψ ¼ 0: ð56Þ

Here, we have chosen without loss of generality, the natural
operator ordering by setting g · ∇g ¼ 0; we have also
specified the gradients using the notation ∂a ¼ ∂

∂a for
derivatives.
Following the same WKB expansion implemented in the

previous section, we separate and expand the total wave
function of the isotropic universe as in (30), identifying the
functions SnðaÞ for the isotropic background and the
functions QnðT;ϕ; aÞ for the matter components (scalar
field and Gaussian fluid time).
We also require the conditions (32) and (31) together

with the Wheeler-DeWitt constraint for the gravitational
sector, which in this case reads

HgψðaÞ ¼
�

ℏ2

48aM
∂2
a þ 4MΛa3

�
e

i
ℏðMS0þS1þ 1

MS2Þ ¼ 0: ð57Þ

The total super-Hamiltonian constraint, taking contribu-
tions from the matter components, is explicitly

ðHg þHf þHϕÞΨðϕ; T; aÞ

¼
�

ℏ2

48aM
∂2
a þ 4MΛa3 −

ℏ2

2a3
∂2
ϕiℏ∂T

�

× e
i
ℏðMS0þS1þQ1þ 1

MðS2þQ2ÞÞ ¼ 0: ð58Þ

Proceeding order by order, we first obtain the Hamilton-
Jacobi equation for the gravitational background atOðM1Þ:

−ð∂aS0Þ2 þ 192Λa4 ¼ 0; ð59Þ

which gives the solution for the classical action S0.
At OðM0Þ, we obtain

iℏ∂2
aS0 − 2∂aS0∂aS1 ¼ 0; ð60Þ

iℏ
48a

∂2
aS0 −

1

24a
∂aS0∂aS1 −

iℏ
2a3

∂2
ϕQ1

þ 1

2a3
ð∂ϕQ1Þ2 ¼ −∂TQ1; ð61Þ

which can be rewritten by inserting the first equation into
the second one and labeling as χ0 ¼ e

i
ℏQ1 the matter wave

function at this order, as the following:

−
ℏ2

2a3
∂2
ϕχ0 ¼ Hmχ0 ¼ iℏ∂Tχ0: ð62Þ

At OðM−1Þ, one obtains

iℏ∂2
aS1 − ð∂aS1Þ2 − 2∂aS0∂aS2 ¼ 0; ð63Þ
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iℏ
48a

∂2
aS1 −

1

48a
ðð∂aS1Þ2 þ 2∂aS0∂aS2

þ 2M∂aS0∂aQ1Þ −
iℏ
2a3

∂2
ϕQ2

þ 1

a3
∂ϕQ1∂ϕQ2 ¼ −∂TQ2: ð64Þ

Here again, the solution S2 from the first equation
simplifies the form of the second one, leaving

−
M
24a

∂aS0∂aQ1 −
iℏ
2a3

∂2
ϕQ2 þ

1

a3
∂ϕQ1∂ϕQ2 ¼ −∂TQ2:

ð65Þ

Remembering that the matter wave function at this
order is

χ1 ¼ e
i
ℏðQ1þ 1

MQ2Þ; ð66Þ

and that by hypothesis (31), the term containing ∂aQ2 is of
higher order in the expansion, we can write summing (65)
with (62):

�
−

ℏ2

2a3
∂2
ϕ − iℏ

M
24a

ð∂aS0Þ∂a

�
χ1 ¼ iℏ∂Tχ1: ð67Þ

We observe that the additional term in the action is
isomorphic to the implementation of the so-called kinemati-
cal action discussed in [35]. In fact, in the mini-super-space
we have that the normal to the spatial hypersurfaces can be
taken as nμ ¼ ð1; 0⃗Þ and ∂tyμ → _T, therefore obtaining the
same expressions of (67) for the matter dynamics.
As discussed in [12], the emerging fluid violates the so-

called energy condition and actually its energy is not positive
definite. We have seen in the previous section that, if we
interpret this contribution as a “fast variable” in the sense of a
Born-Oppenheimer approximation, this nonphysical char-
acter of the emerging synchronous fluid is overcome, since it
behaves like a quantum matter component, so it can play the
role of a clock for the scalar field quantum dynamics.

A. Solution of the perturbative scheme

We now compute an explicit solution of the mini-
super-space application discussed above.
Starting from the gravitational solutions, at OðM1Þ

Eq. (59) gives

S0ðaÞ ¼ −
8

ffiffiffi
3

p

3

ffiffiffiffi
Λ

p
ða3 − a30Þ; ð68Þ

where a0 is the value of the cosmic scale factor at a
reference time (e.g., the start of the slow-roll phase); the
negative solution has been selected to correspond to an
expanding universe. At OðM0Þ, we obtain from (60),

S1ðaÞ ¼ iℏ log

�
a
a0

�
: ð69Þ

Finally, at OðM−1Þ we get from (63)

S2ðaÞ ¼ −
ℏ2

24
ffiffiffi
3

p ffiffiffiffi
Λ

p ða−3 − a−30 Þ: ð70Þ

We now focus on the fast matter solution. For the
computation of these functions, it is useful to work in
Fourier space, using the previous notation for the conjugated
momenta pϕ and pa, so that the general solution takes
the form

χ1ða;ϕ; TÞ ¼
Z

dpϕ

Z
dpa χ̃ðpϕ; pa; TÞfðpϕ; paÞ; ð71Þ

where f is a generic weight function that we will take in
Gaussian form in what follows.
AtOðM0Þ, the dynamics is described by (62), so that the

solution corresponds to the natural plane wave for quantum
matter on a (classical) curved background:

χ̃0 ¼ e−iℏ
p2
ϕ

2a3
T: ð72Þ

The quantum gravity effects emerge at the next order,
where the matter dynamics is described by Eq. (67). To
solve it, it is convenient to use a rescaled time parameter

dτ ¼ dT
a3

: ð73Þ

In this way, the dynamics for the fast matter function χ1 is

iℏ∂τχ̃1 ¼
ℏ2p2

ϕ

2
χ̃1 þ

ℏpað−τÞ7=3
3ð3ΛÞ1=6 χ̃1; ð74Þ

which is solved by the corrected plane wave

χ̃1 ¼ exp

�
−iℏ

p2
ϕ

2
τ þ i

pað−τÞ7=3
7ð3ΛÞ1=6

�
: ð75Þ

To understand the effects of the quantum gravity
corrections, here we provide some plots for the modified
wave function at OðM−1Þ which we computed. In order to
deal, in principle, with a localized probability density, we
consider a starting Gaussian wave packet:

fðpa; pϕÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ1=2σa
p exp

�
−
ðpa − p0;aÞ2

4σ2a

�

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ1=2σϕ
q exp

�
−
ðpϕ − p0;ϕÞ2

4σ2ϕ

�
; ð76Þ
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where the free parameters p0;a and p0;ϕ are the mean values
of the Gaussian packet, and σa, σϕ are their standard
deviations.
We stress that, to satisfy the adiabatic condition (31), we

must consider

−
1

M
< pa <

1

M
; ð77Þ

so we integrate the wave packet only in this interval with a
proper normalization.
Implementing the dynamics computed above, we find

that the probability amplitude for the fast quantum matter is
modified as shown in Fig. 1. We observe that the obtained
amplitudes are almost flat (i.e., a very weak dependence) in
the scale factor a, since the hypothesis (31) requires (77);
hence, the quantum gravity effects on the system are of very
small intensity as predicted by the perturbative approach.
We observe that the major modification to the probability
amplitude takes place as lnðaÞ approaches zero. However,
we remark that a deformation of the energy spectrum takes
place, as described by the following formula:

E ¼ E0 þ
ℏpað−τÞ7=3
3ð3ΛÞ1=6 : ð78Þ

Clearly, also this corrective term lives at orderOðM−1Þwith
respect to the standard quantum field theory spectrum.

V. DISCUSSION AND CONCLUSIONS

We have constructed a general paradigm to determine
quantum gravity corrections to standard quantum field
theory (treated in the functional representation), which
adopted as a time variable the coordinates of the reference
fluid emerging when the synchronous reference frame is
a priori fixed in the gravity-matter action.
The key point of the present formulation is in the Born-

Oppenheimer separation of the quantum dynamics into a
“slow component” corresponding to the gravitational degrees
of freedom only and a fast quantum subset, whose variables
are identified with the matter and reference fluid degrees of
freedom. Since the gravitational quantum dynamics is WKB
expanded in the Planckian parameter of the theory, the
request that the reference fluid belongs to the fast component

FIG. 1. Here we show the probability amplitude for different values of the rescaled time τ. The graphics on top correspond to the
modified wave function (75) solving the dynamics with quantum gravity corrections, while the bottom graphics show the amplitude
without such quantum gravity terms for comparison. Here we have used for computation a bigger value ofM (M ¼ 100 in Planck units)
with respect to the one prescribed by the theory in order to enhance the small quantum gravity effects.
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implies that its presence in the Hamilton-Jacobi equation is
removed; in this way, the violation of the strong energy
conditions, which was originally investigated in [12] and
which led us to rule out the reference fluid from the
perspective of a viable time variable, no longer takes place.
In our analysis, the reference fluid plays the role of a

clock in the quantum dynamics of matter only, and it is, in
this respect, a physical clock for the quantum subsystem.
The main result of the proposed paradigm consisted of
restoring the unitary character of the modified matter fields
dynamics differently from the analyses in [30,37]. In this
respect, however, it is worth discussing an important
phenomenological difference between our approach and
previous approaches to this same problem.
In fact, in [29–31,34,37,46], the identification of a time

variable is always related to the natural label time via the
(de facto) classical dependence of the quantum matter wave
functional on the classical gravitational degrees of freedom,
in turn expressed via such a label time. Thus, apart from the
nontrivial question of the nonunitarity, these studies con-
struct a quantum field theory with a label time dependence
and a modified Hamiltonian operator, although dealing
with quantum gravity corrections.
Our model is instead intrinsically different: The time

variable is identified among the fast coordinates, and real
quantum gravity effects enter the quantum field dynamics,
in the specific sense that the matter wave functional is also
depending on the gravitational degrees of freedom, which
are in principle quantum variables, never reduced, even
in the WKB approximation, to pure classical functions of
the space-time slicing coordinates. This conclusion is
completely coherent with the idea that the gravitational
background is nearly classical but never a pure classical
setting and the expression “quantum gravity corrections”
can be phenomenologically translated only by the depend-
ence of the quantum matter evolution on an additional
(weakly) quantum set of degrees of freedom. However, a
subtle question arises here: Which is the phenomenology
we can infer from such a quantum gravity dependence of
the quantum field theory? The question is highly non-
trivial from a conceptual point of view, as it happens in
almost any implementation of quantum physics to the
gravitational dynamics, and especially of cosmology
[6,7,47]. However, for the cosmological model discussed
here, we can make some heuristic considerations, eluci-
dating the qualitative point of view we are proposing to
interpret our results.
Actually, we can think that, from a phenomenological

point of view, we are somehow averaging on the quantum
gravity corrections to the standard quantum field theory
functional. More specifically, we propose that, in the
present scenario, we can reconstruct a posteriori a modified
wave functional for the matter field instead of a modified

Hamiltonian. The simple way to express this phenomeno-
logical perspective corresponds to averaging the matter
wave function onto the quantum gravity contributions. In
the present cosmological implementation, we can average
the field wave functional on the semiclassical probability
density for the scale factor a, as it emerges from the WKB
approximation of the Wheeler-DeWitt. Thus, the quantum
matter wave functional would read as

χ̄ðT;ϕÞ≡
Z

dajAj2ðaÞχðT;ϕ; aÞ; ð79Þ

where by A we denoted the first order quantum gravity
wave function living at the next order with respect to the
classical Hamilton-Jacobi function (A ¼ eS1 in the previous
notation). The dependence of the wave function χ̄ on the
fluid variable T can now be interpreted as direct depend-
ence on the synchronous time, and it can be linked via the
lapse function to a generic label time t.
Actually, in the cosmological setting, we have provided a

complete implementation of the proposed scheme, up to the
first order corrections to the standard quantum field theory
in the expansion with respect to the chosen Planckian
parameter M defined in (28). We have analyzed the
quantum dynamics of a homogeneous free massless scalar
field living on a quasiclassical (WKB-expanded) isotropic
universe. We have been able to explicitly calculate the
modified wave function for the quantum scalar field
dynamics. This offers a natural scheme to pursue the study
of the quantum gravity correction to the spectrum of
primordial density fluctuations due to the inflationary phase
of the Universe. In this respect, the cosmological constant
term well mimics the slow-rolling phase of the primordial
Universe, and the only required ingredient to determine the
spectral deformation (due to quantum gravity effects)
consists of the natural intrinsic inhomogeneous dependence
of the scalar field.
This generalization of the present analysis is certainly the

most relevant phenomenological issue of the proposed
theory, as it could also be the impact of the quantum
gravity corrections on the Hawking temperature of a black
hole. However, here we were interested in focusing
attention on the morphology of the emerging quantum
field theory; the cosmological analysis mainly had the role
of elucidating the structure of the approximation scheme
and how it must be addressed.
We conclude by observing how the obtained modified

quantum field theory coincides with the one derived in [35],
where the kinematical action has been adopted. As shown
in [36], also the kinematical action can be interpreted, on a
classical level, as a suitable fluid, not always verifying
the energy conditions. The equivalence of these two
approaches suggests the idea that the role of the reference
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frame is, in quantum gravity, properly interpreted only in
the spirit of a “materialized fluid” able to become a physical
clock when it is addressed as described by fast degrees of
freedom in a Born-Oppenheimer scheme.
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