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Featured Application: QSAR model for the determination of gut permeability of 228 pharmaco-
logical drugs at different pH conditions.

Abstract: The present study aims at developing a quantitative structure–activity relationship (QSAR)
model for the determination of gut permeability of 228 pharmacological drugs at different pH con-
ditions (3, 5, 7.4, 9, intrinsic). As a consequence, five different datasets (according to the diverse
permeability shown by the compounds at the different pH values) were handled, with the aim of
discriminating compounds as low-permeable or high-permeable. In order to achieve this goal, molecular
descriptors for all the investigated compounds were computed and then classification models calcu-
lated by means of partial least squares discriminant analysis (PLS-DA). A high predictive capability
was achieved for all models, providing correct classification rates in external validation between
80% and 96%. In order to test whether a reduction in the molecular descriptors would improve
predictions and provide information about the most relevant variables, a feature selection approach,
covariance selection, was used to select the most relevant subsets of predictors. This led to a slight
improvement in the predictive accuracies, and it has indicated that the most relevant descriptors for
the discrimination of the investigated compounds into low- and high-permeable were associated
with the 2D and 3D structures.

Keywords: quantitative structure–activity relationships (QSAR); parallel artificial membrane permeability
assay (PAMPA); partial least squares discriminant analysis (PLS-DA); molecular descriptors; drugs;
drug permeability; gastrointestinal adsorption

1. Introduction

The gastrointestinal adsorption of oral administered drugs is an essential parameter
worth being investigated, as it influences the bioavailability and the effects that several
medicines explicate on the body. Furthermore, among the ADME (absorption, distribution,
metabolism, excretion) molecular properties, adsorption drives drug design significantly
since bioavailability has proven to be one of the leading causes of drug discard during
preclinical and phase I trials [1]. However, studying the permeability of drugs in real
systems is a complex process, and not without practical obstacles and ethical problems. In
this regard, Food and Drug Administration (FDA) guidelines include in vivo, in situ, and
in vitro (tissues and cells such as Caco-2 cell) methods to assess drug permeability [2]. In
this context, the parallel artificial membrane permeability assay (PAMPA) [3] has proven to
be particularly advantageous in identifying promising candidates in the early stages of drug
development, to the extent that it has been included in the Tier I ADME assay at the National
Center for Advancing Translational Sciences (NCATS), together with rat liver microsomal
(RLM) stability, and kinetic aqueous solubility [4]. Indeed, PAMPA is an inexpensive
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and easily reproducible non-cell permeability assay able to model passive transcellular
permeation mechanisms, which are predominant in the gastrointestinal tract. Thus, even
if PAMPA fails in simulating active and efflux transport, its outcomes correlate well with
in vitro Caco-2 cell and in vivo human intestinal absorption, mainly because approximately
90% of Active pharmaceutical ingredients (APIs) are absorbed via passive diffusion [5].

Studies combining PAMPA and quantitative structure–activity relationship (QSAR)
modeling are particularly topical, mainly due to the opportunity to predict gastrointestinal
tract (GIT) adsorption and to interpret bioavailability in terms of molecular descriptors
directly related to structural characteristics. Consequently, it is understandable how these
studies represent a valuable contribution to drug development and risk assessment. Focus-
ing attention on systems designed to simulate gastrointestinal tract absorption, most studies
in this field apply regression methods (mainly multiple linear regression or partial least
squares) on datasets derived from different PAMPA systems and specific to a certain class
of bioactive compounds [6–8]. Otherwise, a very recent study concerning PAMPA–QSAR
models, used to classify many pharmaceuticals into highly or poorly permeable classes,
using random forest and graph convolutional neural networks as classification methods,
has been proposed [4].

Surprisingly, most of these papers do not report a systematic study of pH; indeed,
among the various parameters that can modify the permeability within the gastrointestinal
tract, pH is certainly one of the most important [9,10]. Medicaments can have a different
ionic form (and consequently, a different capacity to be absorbed) as the pH varies. This
chemical–physical criterion is not constant within the intestine, and it varies from lower
(5.6 in the duodenum) to higher values (up to 8.5 in the colon). As a result, since drugs
permeate the diverse intestinal tract differently, the entire range of intestinal pH should be
tested for a reliable in vivo prediction.

Oja et al. [11] presented a well-designed dataset of acidic, basic, ampholytic, and
neutral compounds which were analyzed over an extensive range of pH. This specific work
aimed at developing a QSAR model, by applying best multilinear regression, to predict
the pH permeability profiles of drug candidates. In addition, they recently reprocessed the
dataset mentioned above to classify high- and low-permeable drug substances according
to the Biopharmaceutical Classification System framework [2]. Firstly, a logistic regression
method was applied to the different datasets, which are the outcomes of the different pH
measurements. Then, decision trees were used to analyze the predictions of all the previous
models and to assign drug substances into BCS permeability classes. The calculations made
by means of decision trees on the theoretical molecular descriptor led to an accuracy of
0.91, indicating the suitability of the proposed approach.

Based on these considerations, the present work considers a sub-set of molecules
reported in the public database produced by Oja et al., to apply an alternative classification
approach based on the use of a linear model, namely, partial least squares discriminant
analysis (PLS-DA). Moreover, with respect to the original study by Oja et al. [2], where only
1D and 2D descriptors were considered, together with hydrophobicity descriptors, here, a
wider range of molecular descriptors (from 0D to 3D) was calculated. Although the results
are not directly comparable, as different validation methods were chosen, the presented
approach turns out to be a simple, reliable, and easily interpretable method to distinguish
and classify different classes of compounds in terms of their permeability characteristics.

2. Materials and Methods

The investigated data were a sub-set of those described in [2]. Two hundred and
twenty-eight different compounds of pharmaceutical interest have been taken into con-
sideration (a complete list of them is reported in Table 1). The GIT permeability of the
molecules at four different pH conditions (pH = 3, 5, 7.4, and 9) was assessed by parallel
artificial membrane permeability assay (PAMPA), as described in [2,11]. The molecules’
structures (as SMILES files) and their permeability capability were downloaded from the
QSAR Data Bank repository [12], where the authors made the data available [2,13].
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Table 1. List of the 228 investigated compounds.

Compound Name Compound Name

8-hydroxyquinoline Fluvoxamine
Acebutolol Furosemide
Acetanilide Gemfibrozil
Acrivastine Guanabenz
Alfuzosin Haloperidol
Alosetron Hydralazine

Aminosalicylic acid Hydrochlorothiazide
Amodiaquine Hydroxychloroquine

Bendroflumethiazide Imipramine
Benzocaine Indomethacin

Brimonidine Iopromide
Capecitabine Irbesartan

Chloropyramine Isoniazid
Chlorzoxazone Isradipine
Chlorthalidone Ketoconazole

Ciclopirox Ketoprofen
Coumarin Ketotifen

Cyclobenzaprine Labetalol
Cyproheptadine Lamivudine

Deferiprone Lamotrigine
Dipyridamole Lidocaine

Donepezil Linezolid
Flupirtine Lomefloxacin

Galantamine Marbofloxacin
Granisetron Mazipredone
Hesperetin Medroxyprogesterone acetate

Hydrocortisone Methylprednisolone
Isoxepac Metoclopramide

Levofloxacin Metoprolol
Levosimendan Metyrapone

Loxapine Midazolam
Melatonin Nafcillin
Menadione Naloxone

Mepivacaine Naproxen
Mycophenolate mofetil Naratriptan

Oxybuprocaine Nevirapine
Phenazopyridine Nicotinamide

Phenol Nicotine
Physostigmine Norfloxacin

Prilocaine Ofloxacin
Primaquine Omeprazole

Procainamide Ondansetron
Procarbazine Orbifloxacin
Proparacaine Oxacillin
Protionamide Oxcarbazepine

Pyridoxal Oxprenolol
Salicylamide Pantoprazole

Succinylsulfathiazole Papaverine
Sulpiride Paroxetine

Zolmitriptan Pentamidine
Tamsulosin Pentoxifylline

Tolmetin Perphenazine
Trichlormethiazide Pheniramine

Tripelennamine Phenylbutazone
Vardenafil Pindolol
Yohimbine Pitofenone
Aciclovir Prednisolone
Acitretin Prednisone
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Table 1. Cont.

Compound Name Compound Name

Allopurinol Procaine
Ambroxol Promethazine

Aminophenazone Propafenone
Amitriptyline Propofol
Amoxapine Propranolol
Antipyrine Pyrazinamide
Astemizole Quetiapine
Azelastine Quinine

Beclomethasone dipropionate Rabeprazole
Benzbromarone Salicylic acid

Benzoic acid Sarafloxacin
Betahistine Sulfacetamide
Betaxolol Sulfachloropyridazine

Bicalutamide Sulfadiazine
Bisacodyl Sulfadimethoxine
Bisoprolol Sulfadoxine

Budesonide Sulfaguanidine
Caffeine Sulfamerazine

Carbamazepine Sulfamethazine
Carvedilol Sulfamethizole
Cefadroxil Sulfamethoxazole

Chlormadinone acetate Sulfamethoxypyridazine
Chloroquine Sulfamonomethoxine

Chlorphenamine Sulfamoxole
Chlorpromazine Sulfanilamide

Cinoxacin Sulfapyridine
Ciprofloxacin Sulfaquinoxaline
Citalopram Sulfathiazole

Clomipramine Sulfisoxazole
Clonidine Sulindac
Clozapine Zalcitabine

Cromoglicic acid Zaleplon
Danofloxacin Tacrine

Dapsone Tenidap
Desipramine Theobromine

Dexamethasone Theophylline
Diclofenac Thiabendazole

Dicloxacillin Thiamphenicol
Difloxacin Thiethylperazine
Diflunisal Thioridazine

Dihydroergotamine Tiagabine
Diltiazem Timolol

Dimetindene Tizanidine
Disopyramide Tofisopam

Dolasetron Tolbutamide
Domperidone Tolperisone

Doxazosin Tolterodine
Doxepin Tramadol
Enoxacin Trazodone

Enrofloxacin Triamcinolone
Ethinyl estradiol Trimethoprim

Etoricoxib Tropisetron
Famotidine Valsartan
Fenoterol Warfarin

Fluconazole Verapamil
Flumequine
Fluorescein
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Given the heterogeneous nature of the analyzed compounds, their permeating capa-
bility changes as the pH varies. According to the literature [11], the inspected molecules
were labelled as high-permeable (logPe ≥ −6.2) or low-permeable (logPe < 6.2). This collection
of empirical data led to the organization of four different datasets, one for each pH level.
Eventually, a last set of information was obtained by evaluating the intrinsic permeability
(IP) of the compounds [2], leading to a total of five diverse datasets.

The distribution of the molecules into the two classes according to the diverse pH
levels, together with IP-based outcome, is shown in Figure 1. In the plot, red and blue
bars represent low- and high-permeability, respectively. As expected, (and in agreement
with the literature), a general increase in permeability can be observed as the pH moves to
higher values.

Figure 1. Distribution of the molecules into the two classes according to the different pHs, together
with IP-based outcome. Legend: red—low permeability; blue—high permeability.

2.1. Molecular Descriptors

Molecular structures were optimized using the MacroModel 7.1 molecular modelling
program package [14].

The MM2 force field was used to search the global energy minimum of each molecule.
Molecular descriptors were calculated with Dragon Software 6.0 [15].

The total number of descriptors obtained was 4885, classified as zero- (0D), one-
(1D), two- (2D) and three-dimensional (3D) descriptors, depending on whether they are
estimated from the chemical formula, the substructure list representation, the graph, or the
geometrical representation of the molecule, respectively. Constant and highly correlated
variables (r > 0.95) were removed, and a total of 1499 molecular descriptors were retained
and used for the analysis.

2.2. Chemometric Modelling

Classification models relating the molecular descriptors to the GIT permeability at the
different pH were built using partial least squares discriminant analysis (PLS-DA) [16,17].

This technique represents a generalization of the PLS regression algorithm [18] to
discrimination problems and allows the calculation of reliable and stable classification
models in the presence of a high number of (even highly correlated) descriptors, when
more traditional approaches, such as linear discriminant analysis (LDA [19]), would not
be applicable due to ill-conditioning issues hindering the invertibility of the within-class
variance/covariance matrix.
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However, by transforming a classification problem into a regression one, PLS-DA
exploits all the advantages of the PLS algorithm to deal with such ill-conditioning through
bilinear modeling. This possibility is mediated by the introduction of a (binary) dummy
response y that encodes the class membership of the molecules. In particular, in the
present study, such a dependent variable is given the value of one if the molecule has high
permeability, and zero if it has low permeability. A regression model is then built to relate
the matrix of molecular descriptors X and the dummy response y by means of the PLS
algorithm, according to:

y = Xb (1)

where b is the vector of regression coefficients.
PLS can deal with ill-conditioned descriptor matrices since it operates by projecting

the data onto a relevant low-dimensional subspace of orthogonal component scores (T)
having maximum covariance with the response:

T = XR (2)

with R being the projection weights. The scores are then the actual predictors for the response:

y = Tq (3)

through the set of coefficients q (inner relation), so that Equation (1) is in fact the result of
the combination of the relations in (2) and (3), with:

b = Rq (4)

Once the model is built on the training data, the regression coefficients b can be used

to predict the response for new molecules
ˆ
ynew, based on the value of their molecular

descriptors Xnew:
ˆ
ynew = Xnewb (5)

However, differently from their target counterparts, the predicted values of the re-
sponse will not be binary but real-valued; therefore, there is the need of defining a classifica-

tion criterion to predict the class-membership of the molecules based on the values of
ˆ
ynew.

In the case of a two-class problem, such as the one addressed in the present paper, this

translates to identifying a threshold value
ˆ
ythreshold for the predicted response, so that if

ˆ
ynew >

ˆ
ythreshold the molecule is predicted as high-permeable, whereas if

ˆ
ynew <

ˆ
ythreshold its

permeability is predicted to be low. To establish such a threshold value, different strategies
have been proposed in the literature. In the present study, the probabilistic approach
suggested by Perez et al. [20] has been applied.

3. Results and Discussion

As described above, a total of five different datasets were available, four associated
with different pH conditions (3, 5, 7.4 and 9) and one with the IP.

Each distinctive dataset was individually processed; consequently, five different classi-
fication models have been developed. In order to perform the external validation of the
models, prior to their creation, each dataset was divided into a training and a test set. It
is trivial that, given the different distribution of the samples in the two classes as the pH
varies, the training and the test sets of the different models do not correspond.

In order to ensure the representativeness of the populations of the two sub-sets, the
molecules were split into calibration and validation sets by the Duplex algorithm [21].

A summary diagram of the distribution of the samples into the two classes at the
different pH levels is shown in Table 2.
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Table 2. Distribution of the samples into the two classes at the different pH levels for the training and
the test set.

pH
Training Set Test Set

Class
High-Permeable

Class
Low-Permeable Total Class

High-Permeable
Class

Low-Permeable Total

Dataset 1 3 35 118 153 23 52 75
Dataset 2 5 54 99 153 27 48 75
Dataset 3 7.4 82 71 153 51 24 75
Dataset 4 9 87 65 152 40 36 76
Dataset 5 IP 106 47 153 57 18 75

As mentioned above, five different PLS-DA models were calculated, one per each
auto-scaled dataset. In particular, the training data were used to build the corresponding
classification models, the optimal complexity of which (in terms of number of latent
variables (LVs)) was defined as the one leading to the lowest classification error (%CECV)
in a five-fold cross-validation procedure.

For each dataset, once the classification model was built on the training set with the
selected optimal complexity, it was then applied to the test set to be validated. The overall
accuracy and the correct classification rate (CCR%) for each category are reported in Table 3.

Table 3. PLS-DA: number of latent variables (LVs), overall accuracy and correct classification rate
(CCR%) for the individual categories on the training set (in calibration, and cross-validation (CV))
and the test set (prediction).

pH LVs Accuracy
CCR (%)

Class High Class Low

3
Calibration

16
100.00 100.00 100.00

CV 92.16 77.14 96.61
Prediction 82.67 65.22 90.38

5
Calibration

10
100.00 100.00 100.00

CV 89.54 85.19 91.92
Prediction 89.33 81.48 93.75

7.4
Calibration

7
100.00 100.00 100.00

CV 91.50 93.90 88.73
Prediction 89.33 84.31 100.00

9
Calibration

7
100.00 100.00 100.00

CV 90.13 93.10 86.15
Prediction 88.16 77.50 100.00

IP
Calibration

11
100.00 100.00 100.00

CV 96.08 96.23 95.74
Prediction 93.33 91.23 100.00

As can be observed, from the prediction point of view, there is a general improvement
with the increase in the pH. This is probably due to a higher stability of the system, and a
greater balance of compounds between the classes.

In agreement with this observation, it can be noticed that the less accurate model, i.e.,
the one that led to the lowest CCR, is built on the data collected at pH 3; however, this
provided a completely acceptable result, successfully predicting the permeability category
of 83% of all the test samples, completely in agreement with the individual classification
models discussed by Oja et al., whose predictive accuracies ranged between 81% and 88%.

However, the highest accuracy was provided by the model built on the IP dataset,
which achieved an overall correct classification rate of ~93% on the external test set.
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A graphical representation of the results can be seen in Figure 2, where calibration
(empty symbols) and validation molecules (filled symbols) have been projected onto the
space spanned by the first two latent variables (LVs). From the plot, it is possible to notice a
clear grouping tendency among observations belonging to the two classes. In particular,
the greatest part of the compounds presenting low permeability (red diamonds) falls at the
positive values of both LV1 and LV2; however, high-permeating molecules (blue triangles)
spread along LV1, but mainly present negative scores for LV2. This representation does not
completely reflect the accuracy of the achieved results (a total accuracy of 93.33%), which
corresponds to the misclassification of only five test samples (over 75), all belonging to class
high-permeable. Nevertheless, this is due to the fact that the displayed scores plot provides a
substandard representation of the results, because it takes into account only the variability
modelled by two (over eleven) components.

Figure 2. PLS-DA: model on the IP-based categorization. Projection of the training and test molecules
onto the first two latent variables.

Eventually, in order to investigate which molecular descriptors contribute the most
to the prediction of the permeability characteristics of the investigated molecules, and,
at the same time, to verify whether retaining only the most relevant predictors could
improve the classification models, a variable selection strategy based on the covariance
selection (CovSel) algorithm [22] was adopted. In particular, for each dataset, models
including an increasing number of descriptors (selected by CovSel, up to a maximum of 50)
were built and cross-validated (using five cancelation groups). Eventually, the number of
variables (nVar) leading to the lowest classification error in cross-validation was selected,
and the optimal one and the corresponding descriptors were used to build the final PLS-DA
classification model, which was then validated on the test molecules. In all cases, the
selected descriptors can be considered as the ones being more relevant in determining the
discrimination between high- and low-permeable substances, providing the basis for a
molecular interpretation of the permeation process.

The number of selected molecular descriptors and the classification results of the
PLS-DA models built on the reduced sets of variables (both in cross-validation on the
training data and in prediction on the external test sets) are summarized in Table 4.
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Table 4. PLS-DA of the five investigated datasets after variable selection by CovSel: Number of
selected descriptors (nVar), number of latent variables (LVs), overall accuracy and correct classification
rate (CCR%) on the training data in cross-validation (CV) and on the test set in prediction.

pH nVar LVs Accuracy
CCR (%)

Class High Class Low

3
CV

41 12
96.73 91.43 98.30

Prediction 80.00 65.22 86.54

5
CV

23 6
96.73 94.44 97.98

Prediction 84.49 81.48 87.50

7.4
CV

47 6
97.38 97.56 97.18

Prediction 96.08 92.16 100.00

9
CV

47 7
98.68 98.85 98.46

Prediction 92.36 87.50 97.22

IP
CV

34 5
99.35 99.06 100.00

Prediction 93.86 100.00 87.72

In general, variable selection of the variables has led to an improvement from the
point of view of prediction. Indeed, except for the model built on the dataset associated
with pH 3, the predictive accuracy of all the PLS-DA models built on the selected variables
was higher than that obtained on the full set of descriptors (Table 3). Looking at the table,
it is also possible to observe how (and in the case of the reduced datasets) the prediction
accuracy of the PLS-DA models follows the same trend with respect to the increase in
pH as already registered for the full set of descriptors, whereas models predicting the
categorization observed at higher pH appear to be more accurate. When moving to the
interpretation of the PLS-DA models, further support is provided by the inspection of
the regression coefficients associated with the selected molecular descriptors, which are
graphically represented in Appendix A. When looking at the selected variables and at the
values of the associated coefficients, it can be affirmed that, irrespectively of the pH at
which the permeability is measured/defined, the most significant molecular descriptors for
classification purposes are those associated with 2D and 3D structures (see Figures A1–A5
for more details).

4. Conclusions

The aim of the present work was to develop a QSAR model suitable for the classifi-
cation of 228 pharmaceutical drugs according to their GIT permeability at different pH
levels. The starting point of this study was a previous paper published by Oja et al., where
the same aim was achieved by logistic regression followed by decision trees. The present
research represents an equally efficient solution for the same purpose, requiring a less
substantial computational effort. In general, the predictive capability obtained is equal to or
greater than that achieved by Oja et al. Furthermore, the application of a variable selection
method has allowed highlighting which molecular descriptors are the most relevant for the
classification of compounds. In particular, this further step has indicated that the predictors
associated with the 2D and 3D structures of the investigated compounds are the most
significative features for discriminating drugs into low- and high-permeable.
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Appendix A

Additional figures and table reporting details about the selected descriptors.

Figure A1. Regression coefficients associated to the descriptors selected by CovSel for the PLS-DA
model based on the reduced dataset collected at pH 3.

Figure A2. Regression coefficients associated to the descriptors selected by CovSel for the PLS-DA
model based on the reduced dataset collected at pH 5.
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Figure A3. Regression coefficients associated to the descriptors selected by CovSel for the PLS-DA
model based on the reduced dataset collected at pH 7.4.

Figure A4. Regression coefficients associated to the descriptors selected by CovSel for the PLS-DA
model based on the reduced dataset collected at pH 9.
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Figure A5. Regression coefficients associated to the descriptors selected by CovSel for the PLS-DA
model based on the IP-based dataset.

Table A1. Comprehensive list of the descriptors selected in the final models.

Descriptor Block

ALOGP Molecular properties Other
AROM Geometrical descriptors 3D
BEHm1 Burden eigenvalues 2D
BELv1 Burden eigenvalues 2D
BIC2 Information indices 2D
BIC4 Information indices 2D
BIC5 Information indices 2D

BLTD48 Molecular properties Other
C-003 Atom-centered fragments 1D
C-012 Atom-centered fragments 1D
C-016 Atom-centered fragments 1D
C-025 Atom-centered fragments 1D
C-027 Atom-centered fragments 1D
C-028 Atom-centered fragments 1D
C-030 Atom-centered fragments 1D
C-033 Atom-centered fragments 1D
C-035 Atom-centered fragments 1D
C-037 Atom-centered fragments 1D
C-040 Atom-centered fragments 1D
C-044 Atom-centered fragments 1D

D/Dr03 Ring descriptors 2D
D/Dr04 Ring descriptors 2D

Depressant-50 Drug-like indices Other
Ds WHIM descriptors 3D

E1m WHIM descriptors 3D
E1u WHIM descriptors 3D
E3m WHIM descriptors 3D

EEig12d Edge adjacency indices 2D
EEig14d Edge adjacency indices 2D

F-081 Atom-centered fragments 1D
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Table A1. Cont.

Descriptor Block

G(Cl . . . Cl) 3D atom pairs 3D
G(N—Br) 3D atom pairs 3D

G(O . . . O) 3D atom pairs 3D
G(S . . . S) 3D atom pairs 3D

G1u WHIM descriptors 3D
G2e WHIM descriptors 3D
G2m WHIM descriptors 3D
G2p WHIM descriptors 3D
G2v WHIM descriptors 3D

GATS1m 2D autocorrelations 2D
GATS1v 2D autocorrelations 2D
GATS3e 2D autocorrelations 2D
GATS3v 2D autocorrelations 2D
GATS6e 2D autocorrelations 2D
GATS7m 2D autocorrelations 2D
GETS2e 2D autocorrelations 2D

GVWAI-50 Drug-like indices Other
H-049 Atom-centered fragments 1D
H-052 Atom-centered fragments 1D
H0u GETAWAY descriptors 3D
H8m GETAWAY descriptors 3D

HATS6u GETAWAY descriptors 3D
HATS7u GETAWAY descriptors 3D

HTm GETAWAY descriptors 3D
Hypnotic-50 Drug-like indices Other

ISH GETAWAY descriptors 3D
J3D 2D autocorrelations 2D

JGI10 2D autocorrelations 2D
JGI2 2D autocorrelations 2D
JGI6 2D autocorrelations 2D
JGI7 2D autocorrelations 2D
JGI8 2D autocorrelations 2D

MAT1p 2D autocorrelations 2D
MATS1m 2D autocorrelations 2D
MATS2m 2D autocorrelations 2D
MATS4m 2D autocorrelations 2D
MATS4p 2D autocorrelations 2D
MATS6m 2D autocorrelations 2D
MATS7u 2D autocorrelations 2D
MATS8m 2D autocorrelations 2D
MATS8p 2D autocorrelations 2D
MATS8v 2D autocorrelations 2D
Mor08e 3D-MoRSE descriptors 3D
Mor08p 3D-MoRSE descriptors 3D
Mor09p 3D-MoRSE descriptors 3D
Mor09p 2D autocorrelations 2D
Mor11p 3D-MoRSE descriptors 3D
Mor13e 3D-MoRSE descriptors 1D
Mor13p 3D-MoRSE descriptors 3D
Mor16e 3D-MoRSE descriptors 3D
Mor24m 2D autocorrelations 2D
Mor24u 2D autocorrelations 2D
Mor26u 3D-MoRSE descriptors 3D
Mor27m 3D-MoRSE descriptors 3D
Mor28m 3D-MoRSE descriptors 3D
Mor32u 3D-MoRSE descriptors 3D

Ms Topological descriptors 2D
N-067 Atom-centered fragments 1D
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Table A1. Cont.

Descriptor Block

N-069 Atom-centered fragments 1D
N-070 Atom-centered fragments 1D
N-074 Atom-centered fragments 1D

nArC=N Functional group counts 1D
nArCN Functional group counts 1D

nArCONR2 Functional group counts 1D
nArCOOH Functional group counts 1D
nArCOOR Functional group counts 1D
nArNH2 Functional group counts 1D

nArOCON Functional group counts 1D
nArOH Functional group counts 1D
nArX Functional group counts 1D

nC(=N)N2 Functional group counts 1D
nC=N-N< Functional group counts 1D

nCconj Functional group counts 1D
nCONN Functional group counts 1D
nCRX3 Functional group counts 1D

Neoplastic-50 Drug-like indices Other
Neoplastic-80 Drug-like indices Other

nHBonds Functional group counts 1D
nHDON Functional group counts 1D

nlsoxazoles Functional group counts 1D
nN(CO)2 Functional group counts 1D

nN-N Functional group counts 1D
nOxolanes Functional group counts 1D
nPyrazines Functional group counts 1D
nPyridines Functional group counts 1D

nR=Cp Functional group counts 1D
nR=Ct Functional group counts 1D
nR08 Ring descriptors 2D
nR08 Ring descriptors 2D

nRNHR Functional group counts 1D
nRNR2 Functional group counts 1D

nROCON Functional group counts 1D
nROR Functional group counts 1D

nS(=O)2 Functional group counts 1D
nTB Constitutional indices 0D
P2e WHIM descriptors 3D

PCWTe Charge descriptors Other
PJI2 Topological indices 2D

Psicotic-80 Drug-like indices Other
Psychotic-50 Drug-like indices Other

PW3 Topological indices 2D
qpmax Charge descriptors Other

R3e GETAWAY descriptors 3D
R3v+ GETAWAY descriptors 3D
R5v+ GETAWAY descriptors 3D
R7p+ GETAWAY descriptors 3D
RCI Ring descriptors 2D

RDF090p RDF descriptors 3D
RDF120e RDF descriptors 3D
RDF120m RDF descriptors 3D
RDF150m RDF descriptors 3D
RDF155m RDF descriptors 3D

SRW03 Walk and path counts 2D
SRW09 Walk and path counts 2D

T(O . . . Br) 2D atomic pairs 2D
T(O . . . O) 2D atom pairs 2D
T(S . . . F) 2D atom pairs 2D



Appl. Sci. 2022, 12, 1326 15 of 15

References
1. Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.;

Wang, J.; et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov.
2015, 14, 475–486. [CrossRef] [PubMed]

2. Oja, M.; Sild, S.; Maran, U. Logistic Classification Models for pH-Permeability Profile: Predicting Permeability Classes for the
Biopharmaceutical Classification System. J. Chem. Inf. Model. 2019, 59, 2442–2455. [CrossRef] [PubMed]

3. Kansy, M.; Senner, F.; Gubernator, K. Physicochemical High Throughput Screening: Parallel Artificial Membrane Permeation
Assay in the Description of Passive Absorption Processes. J. Med. Chem. 1998, 41, 1007–1010. [CrossRef] [PubMed]

4. Siramshetty, V.; Williams, J.; Nguyễn, Ð.T.; Neyra, J.; Southall, N.; Mathé, E.; Xu, X.; Shah, P. Validating ADME QSAR Models
Using Marketed Drugs. SLAS Discov. 2021, 26, 1326–1336. [CrossRef] [PubMed]

5. Diukendjieva, A.; Tsakovska, I.; Alov, P.; Pencheva, T.; Pajeva, I.; Worth, A.P.; Madden, J.C.; Cronin, M.T.D. Advances in the
prediction of gastrointestinal absorption: Quantitative Structure-Activity Relationship (QSAR) modelling of PAMPA permeability.
Comput. Toxicol. 2019, 10, 51–59. [CrossRef]

6. Chi, C.T.; Lee, M.H.; Weng, C.F.; Leong, M.K. In silico prediction of PAMPA effective permeability using a two-QSAR approach.
Int. J. Mol. Sci. 2019, 20, 3170. [CrossRef] [PubMed]

7. Diukendjieva, A.; Alov, P.; Tsakovska, I.; Pencheva, T.; Richarz, A.; Kren, V.; Cronin, M.T.D.; Pajeva, I. In vitro and in silico studies
of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. Phytomedicine 2019,
53, 79–85. [CrossRef] [PubMed]
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