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1. INTRODUCTION

Path following control deals with the confinement of the
evolutions of a nonholonomic mechanical system to a pre-
scribed geometric path. The assignment of time require-
ments on the way the system moves along the path repre-
sent an extra constraint which can be handled separately
from the geometric requirement, allowing for better per-
formances compared to trajectory tracking design (Aguiar
et al. (2008)).

Several approaches solving path following problems are
discussed in the continuous-time literature. Among others,
let us mention the work relying on energy shaping through
Immersion and Invariance by Yi et al. (2020), sliding
mode path following by Dagci et al. (2003), smooth time-
varying feedback and input scaling by De Luca et al. (2001)
and, more relevant to this work, Transverse Feedback Lin-
earization (TFL) by Banaszuk and Hauser (1995); Altafini
(2002); Nielsen and Maggiore (2008).

Among these, the latter one aims to stabilize a general set
which is made the zero dynamics sub-manifold associated
with a suitable output function with well-defined relative
degree. Accordingly, static (or possibly dynamic) feedback
linearization is applied to stretch the trajectories onto the
target set (Nielsen and Maggiore (2006)). In this sense,
path following admits a solution via TFL when the path
can be implicitly represented by the equations which spec-
ify the zero-dynamics sub-manifold (Akhtar et al. (2015)).
When approaching these problems in a digital context, one
has to face well-known limitations due to the sampling
process as, for instance, the loss of the relative degree
and the rise of the unstable sampling zero-dynamics (see
Astrom et al. (1984); Monaco et al. (1986)) so directly
affecting TFL in general. For those reasons, a first single
rate solution preserving TFL in an approximate sense was
proposed in Elobaid et al. (2020) providing, under suitable
assumptions, a solution to the path following problem as
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well. For instance, when dealing with the car-like robot
approximate TFL under sampling is preserved for the kine-
matic model under a preliminary continuous-time dynamic
extension (Akhtar et al. (2015)). Beyond TFL, a multi-
rate technique has been proposed in Di Giamberardino
et al. (1996) to solve steering problems for mobile robots,
when assuming a preliminary continuous-time feedback
making the dynamics finitely discretizable. In the method
we propose, both these demands are weakened.

In this work, following Monaco and Normand-Cyrot
(1992), we propose a solution which circumvents the need
for the dynamic extension, making use of a multi-rate
sampled-data control strategy. Simulation results validate
the proposed design approach in a comparative way with
respect to the continuous-time solution and its direct im-
plementation through Zero Order Holding (ZOH) referred
to as emulation as well as the design approach previously
recalled (Elobaid et al. (2020)). The proposed multi-rate
solution provides efficient and improving results with re-
spect to the preliminary ones.

The paper is organized as follows: Section II provides
some background material and states the problem. The
proposed control solution is developed in Section III in a
constructive way. Simulations are discussed in Section IV.
Concluding remarks end the manuscript.

Notations: S' denotes the unit disk, i.e. St = {z € C :
|z2] < 1}. Z>( denotes the set of non-negative integers.

Given a pair of matrices (A, B), col(4, B) = (A—r BT)T
while diag(A, B) is the block diagonal matrix with blocks
A, B. The couple (A,, By,) with

O I,— 0
A, = (n—1)x1 n—1 B, = (n—1)x1
( 0 Oixn-1)/)’ 1

is said to be in Brunovsky’s canonical form with I,,_; being
the identity matrix of dimension n — 1 and 0,,x, the zero
matrix of dimension m x n. Given a manifold M and a
closed connected set N C M, N is said to be invariant
under the dynamics ¢ = f(¢) + g(q)u if for all ¢(0) € N
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and any control u(-), q(t) € N, Vt. N is controlled invariant
if there exists a feedback u* making N invariant for the
closed loop system. The point-to-set distance is denoted
llgollar = infllg — qoll,¢ € M. Ly denotes the operator
Ly = Y0, fi(: )8q , LyLy their composition. Given a
real valued function h(-) on R™, e“fh(q)| ) denotes the

application of the Lie series operator e/ to the function
h(q) evaluated at the state g(k). A continuous function
R(z,9) is of order O(6P) with p > 1 if, whenever it is
defined, it can be written as R(x,d) = P~ 'R(z,d) and
there exists a function 3(§) of class ke and 6* > 0 such
that V§ < ¢*,|R(x,d)| < B(9).

2. PRELIMINARIES AND PROBLEM STATEMENT
2.1 Path following for a car-like robot in continuous time

Consider the kinematic model of a car-like robot (Siciliano
et al. (2010))

q=g1(q)v + g2(q)w

T
p=(zy)
with (see Figure 1)

(1)

cos 6
sin @ 8
frng 1 frng
91(q) Ztane |’ 92(q) 0
¢ 1
0
q=(q1 2 g3 Q4)T =(xyd qb)T € R*, v € R, the forward

linear velocity, w € R, the angular velocity and ¢ the
distance between the wheels. The position on the plane
p="h(q) :=(q1 ¢2)" € R? is the output of the system.

The desired path is given by a regular parameterized curve
0 : D +— R? with no self-intersections. Following Nielsen
and Maggiore (2004); Akhtar et al. (2015), we refer to
for a precise characterization, let the path o(ID) be an
embedded sub-manifold of R? of dimension 1; i.e., there
exists a function s(-) : R? — R such that 0 is a regular
value of s and o(D) = {w € R? s.t. s(w) = 0}.

The path following problem for a car-like robot asks for the
design of a feedback control law maneuvering the output
of system (1) to approach and move along a given curve
in a desired way. The problem is formally stated below.

Problem 2.1. Given a regular parameterized curve C =
Im{o(D)}, find if possible, a smooth feedback law for
system (1) such that for a set of some initial conditions
X, with C C X the following holds true.

(1) Invariance: if p(0) = h(q(0)) € C then V& > 0

Ip(®)llc = 0.

(2) Attractivity: system (1) under feedback is s.t V¢ > 0,
Ipllc — 0 as t — oo.

(3) Motion on the curve: system (1) traverses the curve
C with a given desired velocity or acceleration profile

(e (1), ftres (£))-

It is known (Altafini (2002); Nielsen and Maggiore (2006))
that TFL is a natural tool to handle path following
problems. To see this, denote the n* = 3 dimensional
sub-manifold T*C{q € R* : ¢ = (s o h)71(0)} as the
control invariant subset for (1); i.e., the set of all initial

Fig. 1. Kinematics of a car-like robot

conditions gy € R* under which the car-like robot is forced
to remain on the curve (i.e., p(t) € C for all ¢ > 0) under
a suitably designed feedback. Consequently, I'* is referred
to as the path following sub-manifold associated with the
curve. With this in mind, Problem 2.1 is equivalent in
the context of TFL to the problems of stabilizing I'*
and zero dynamics assignment. The problem has been
solved in Akhtar et al. (2015) making use of continuous-
time TFL through dynamic control defining the function
B:R* — R2

Bla) = (olq) m(a)" (2)
with a(q) = (so h)(q) € R the transverse output function
(i.e., the curve implicit function) and 7(q) = arctan(g—f)
is the tangent output function. Under the control dynamic
extension
N2 = Uy
w = U

771 =12,
v="m,
the feedback system

f( §) + 1(q)u1 + §2(§)us
.
f(@) = ( 1cos6 ny sin 6 Ytanqb 0 o 0) (4)
71(9) = (000001) (000100)

(3)

a92( )

with ¢ = (¢ m ng)T € R™, 7 = 6 possesses strong vector
relative degree r = (7 —n* n*) = (3 3) with respect to
the output function (2). Accordingly, the following result
is recalled.

Theorem 2.1. (Akhtar et al. (2015)). Given aregular, three
times differentiable curve C in the plane with I'* the
path following sub-manifold associated with C. Consider
the dummy output function (2), then the Path-Following
Problem 2.1 is solved by the feedback (3) with

u="(qv)=A""(q)(v - B(Q) (5)

with v = (u,u2) 7,
- (LaL%alq) Lg,L3a(q) - (Ljala)
AD =\ ok ,B@) = | 4
anLm(a) Lg, Lim(q) +(q)
and v = (11, o) are respectively the transverse and
tangential external stabilizing controls.

In the continuous-time case, dynamic extension is neces-
sary for guaranteeing a well-defined relative degree n —n*
and, thus, TFL with respect to I'* via the input w € R".

Remark 2.1. Setting the feedback ( ), and the coordi-

nates change ¢(q) = ($1(q) ¢2(d )) with § = ¢1(¢) =
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(a(q) Lo(q) L3a(@) T, 2 = ¢2(q) = (w(q) L7 (@) L3m())
the extended system (4) takes the form

é = Agf + B3I/1 (6&)
%z = A3z + Bsus (Gb)

where Az € R3*3, B3 € R3. From the result above, £ € R3
is the transverse component to I'* while z describes the
motion when the dynamics is restricted to I'* i.e. I'* =
{(¢€ 2)T : € = 0}. Tt is intuitively understood that I'* is
precisely the zero dynamics sub-manifold of the system (4)
with output «(q).

Remark 2.2. Theorem 2.1 states that, under TFL with
dynamics extension, (1) and (2) in Problem 2.1 are solved
by v1 = —K¢ so to make (6a) asymptotically stable.
Denoting z = (z; 22 23) |, requirement (3) is solved setting

va = = fa(zs — fref (1)) = f1(22 = Trres (1)) + Treg(t)
with f1, fa > 0 over the tangential dynamics (6b).

2.2 Path following for the car-like robot under sampling

In the sequel, we provide a solution to the path following
problem for the car-like robot under sampled-data control
and digital transverse feedback linearization as set in the
following problem.

Problem 2.2. Design a digital control (v(k) w(k)) =
v3°(q(k),v(k)) with external inputs v solving the Path
Following Problem 2.1 for the car-like robot (1) at all
sampling instants ¢ = kd, £k > 0 and § > 0 the sampling
period.

In the present context, digital control design refers to
design over the sampled-data equivalent model for which
measures of the states are available at periodic sampling
instants ¢ = kd, k € Z>o, where § is the sampling period,
and controls kept constant over ¢. A first solution to
Problem 2.2 can be carried out over the extended model
(4) with inputs (u1, uz) by directly applying the results in
Elobaid et al. (2020). More in detail, let u;(t),i = 1,2 be
constant over the sampling period, i.e. u;(t) = u;(kd) =
u; (k) for t € [kd, (k + 1)d[. Then the sampled-data model
equivalent to (4) takes he form

q(k +1) = F°(G(k), u(k)) (7)
with
F(S (q*7 u) :eé(Lf+u1L§1 +u2L§2)qv

i 59 -
=q + Z F(LJ; + Ungl + UngQ)jq

with the function F 9(-,u) defined by its series expansion
in powers of 4, Monaco and Normand-Cyrot (1997).

At this point, it is easily verified that the relative degree
of the sampled-data model (7) with the output (2) falls to
(11) for all 6 > 0 (Monaco and Normand-Cyrot (1987)).
As a matter of facts, one gets that

da(q(k+1)) g rAent—1 s fimn*+1
o) = oyt tr T @l O
or(g(k +1)) o

_ s A1
Ou; (k) = wrlals (@) 54y + O™ )

for n—n* =3 j = 1,2 are non-zero (at least not simultane-
ously) by definition of the continuous-time relative degree.

T Thus, the path following sub-manifold I'* is no longer the

zero dynamics sub-manifold for the sampled-data model
(7) with output a(g). In fact, the (typically unstable) zero
dynamics of the sampled-data equivalent model evolves
over a sub-manifold containing I'* C R? that is given by

Zsp={q:a(q) =0} CR’
Zsp D T*={¢: a(q) = Lya(q) = La(q) = 0}.
Accordingly, transverse feedback linearization is lost for

the sampled-data model (7) with respect to the output
function (2).

In Elobaid et al. (2020) TFL under sampling is achieved,
up to a prescribed approximation order, by means of a
0-dependent dummy output computed from (2) as
62
- gLfga(q) +0(8%)
52
7 (q) = 7(@) + 6L (@) — % L2n(d) + O(5°).
The vector relative degree (3 3) is preserved under the dy-
namics (7) together with the zero dynamics sub-manifold
I'* in O(6*), so that a digital solution can be computed
to approximately solve the TFL problem under single-
rate sampling. In fact, consider the coordinates change
g (€ 2), with &€ = Ty(0)en(@), 2 = Ts(0)éa(d),
where ¢1(-), ¢2(-) are as in Remark 2.1, and T5(d) as in
Elobaid et al. (2020). This coordinates change, together
with the piecewise continuous feedback for ¢ € [k, (k+1)J]

1(t) = Aan(t) + Bauy (k) (9a)

u(k) = AHq(k) (v (k) — B(q(k))) (9b)
recovers the TFL normal form in an approximate sense,
with (v,w) piecewise continuous. The control 1? =
—K9col(£%, 2%), K? : o(I3+6(A3+ B3 K?®)) C S! stabilizes
the system to the path following sub-manifold and allows
for solving Problem 2.2 in an approximate sense.

(8a)

(8b)

a’(q) = (@) + 6L a(q)

In the following we present an exact (and fully digital)
solution for Problem 2.2 based on multi-rate sampling with
no need of a preliminary continuous-time dynamic exten-
sion. Namely, we design a digital control (v(k) w(k)) =
3% (q(k),v(k)) for solving path following based on the
sampled-data equivalent model to the kinematic car-like
robot in (1); i.e., one gets for w(t) = w(k) and v(t) = v(k)
for t € [ko, (k+1)d] the sampled-data equivalent kinemat-
ics

gl + 1) = F3(q(k), (k) w(k)) (10)
with

59 _
F(q,v,w) =e*hatelalg — g 43 " —(vLy, +wLy,)’q.
S

3. EXACT PATH FOLLOWING FOR A CAR-LIKE
ROBOT UNDER MULTI-RATE SAMPLING

As shown in the previous section, dynamic extension is
used over system (1) to guarantee v2Lg,L2 a(q) # 0,
that is relative degree 3 with respect to the dummy
output component in (2) associated with IT'* (i.e., a(q)).
However, the relative degree can also be guaranteed for the
kinematic model (1) under multi-rate sampling without
dynamic extension, as shown in Monaco and Normand-

Cyrot (1992). To this end, we set in (10) a multi-rate of
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order n — n* = 3 over the input w that is § = g and
w(t) = w;(k) for t € [kd + (i — 1)0,kd + i with i =1,2,3
and v(t) = v(k) for t € [k, (k + 1)d[. Accordingly, the
multi-rate model of (1) gets the form

q(k +1) =F3 (q(k), v(k), w(k)) (11)
with
Fg(q, v,w) :Fg(-, v,ws3) © FS(',U,UJQ) o Fg(q, v,w1)
B Z Sirtia+is
J1,J2,J820
o (vLg, +waLy,)? o (vL,, + wsly,)q.

- J
PATATAI e

In this respect, with reference to Problem 2.2, we seek for
a digital piecewise constant control that preserves TFL
with respect to I'* for the multi-rate equivalent model (11)
based on the dummy output (2).

The problem is set for (11) based on the augmented output
vector (Monaco and Normand-Cyrot (1992))

H(q) = (alq) &(a) éq)" (12)
ensuring that the multi-rate model (11) possesses vector
relative degree (1, 1,1) so that transverse feedback lineariz-
ability under sampling is guaranteed. Accordingly, require-
ments (1),(2) of Problem 2.1 at all sampling instants are

satisfied by a digital feedback w = w’(q) solution to the
equality

H(F2(q,v,w)) = A* H(q(k)) + B¥ 1 (k)

(13)
with A3 = €3SA3, B3 = 035€TA333dT, As, Bs as in (6a)
and vy the external stabilizing transverse control. More
in detail, the TFL feedback solution to (13) is the one
making the H(q) — v; link in (11) linear. The following

result asserts the existence of such feedback.

Proposition 3.1. Consider the kinematic model of the car-
like robot (1), and a regular parameterized curve o :
D — R2 under the hypotheses of Theorem 2.1. Then,
requirement (1) of Problem 2.1 is guaranteed, at all t = k¢

with k > 0, by the feedback w = w’(q,v,v1) of the form

- 5
gé(q7vayl) :Qo(q7v7yl)+zmgi(qavayl) (14>
i>0 ’

defined as the unique solution to (13). In addition, require-
ment (2) of Problem 2.1 is guaranteed, at all t = ké with
k > 0, setting

vi(k) = —K°H(q(k))
with K? such that o(A4% — B¥K%) c S!.

(15)

Proof: Rewriting (13) as a formal series equality in powers
of § so getting

Sk Ly Fwr(k)Lgs) | o
(W) Loy +wi(k)Lgy) o
e&(v(k))Lglerl(k)LgQ) ... e
= A3 H(q(k)) + B%vy (k)

The equations (16) rewrite as S%(¢,w, v, 1) = 0 with

§(v(k)Lgy +ws(k)Lg, )a(q)
(k)Lgl +w3(k)Lg2)d(q)

5(v
B0 (k) Lo, 03 (W)L i) (16)

Ss(q7£,ﬂ,1/1) (17)
= (Sgsf(Q7ﬂ7U7V1) SZSS(Q7Q7U7V1) Ssg(QaQavayl))T

and
54—iSl§ — eé(ngl-‘rwngz) 6...0 eé(ngl-l-nggz)a(i—l) (q)

2 arxe

34—1'5‘4—1'
TCY Q) -

L 4—0)!

Accordingly, because v(k) constant over the sampling
interval, denoting f(q) = g1(g)v, one looks for w satisfying
(17), where each term can be written as S;(¢q,w, v, 1) =
20500781, (¢;w, v, v1) with i = 1,2,3 and

Sio(gw,v,v1) = Ay (Lg,Lia(q)w + 1L3a(q) — v (k)
where 1 = (111)7, A =col(A3z Ay A;), and

Aj = % G -G G- =G -2 )

—ali(g) - v

with j = 1,2,3. Following Monaco and Normand-Cyrot
(1997) , it results that the matrix

a _
%Sé(q,v,g)b_m - AngL?‘O‘(Q)
is full rank because L, L}a(gq) # 0 and A is invertible.
Hence, by the Implicit Function Theorem, the existence

of w® unique solution to (13) of the form (14) can be
deduced (Mattioni et al., 2017, Proposition 4.1). Under
the coordinates transformation (¢ 2)T := ¢ = ¢(q) =

(H(q) w(q))T, the controlled dynamics reads
§(k +1) = A¢(k) + B (k)
Z(k +1) = ¢(&(k), 2(k), v(k), 11(F))

where (&, Z,v,11) = arctan ZTE];E;

on the curve by definition and hence the result follows. <«

|(5 2HT=¢—1(q) bounded

From the statement above, denoting 7ycf(k) = 7rer(kd)
and 7yer(k) = 7rer(kd), requirement (3) at all t = kd is
fulfilled by the discrete-time feedback

2

)
v(k + 1) =v(k) + da(k) + 51/2(16) (18a)
a(k +1) =a(k) + v (k) (18Db)
over the tangential component with v(k),a(k) are the

linear velocity and acceleration over the path respectively
and

1 1
(b = (5~ af = 1) olal +af =) et (19)
+ ftpef(k+ 1) — ftpeyp(k)
so to guarantee, asymptotically,

_ ”(k) — e (k)
d“—(am—hiw)%o

for aj, aj given by

ad = e~ M0 a0
5 “M6 oAb
aj = —(e7M10+e7 720, A, A2 > 0.

Those arguments, together with Proposition 3.1, consti-
tute the proof of the result below.

Theorem 3.1. Consider the kinematic model of the car-like
robot (1), and a regular parameterized curve o : D — R?
under the hypotheses of Theorem 2.1. Then, Problem 2.2
admits a solution under multi-rate control that is given
by the feedback (v,w) with: (i) w = w®(q,v,v1) defined
as in Proposition 3.1 with transverse control (15); (it) v
generated by the discrete dynamics (18) with tangential
control (19).
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Remark 3.1. Tt is important to stress the fact that, in the
digital context, TFL is achieved working directly on the
kinematic model of the car-like robot with no preliminary
dynamic extension, contrarily to the continuous-time case.

The above discussion ascertains the intuitive expectation
that whenever the path following problem is solvable in
continuous time using TFL, a digital multi-rate feedback
solution under sampling exists. As noted, the feedback
component w = w’(g,v,v;) soltion to (13) comes in the
form of a series expansion in powers of §. All terms of such
an expansion (14) are computable through an iterative
and constructive procedure solving, at each step, a linear
equality in the corresponding unknown. For the first terms,
one gets

Lia(g) —n
f
W, (qava 1/1):160(117’0,1/1), w(‘]avvyl)zi
0 LQQL?O‘(q>
(20a)
15 15 87
Ql(qava Vl) = (4 _? 4> w(q7vvlj1) (QOb)

when denoting f(q) = g1(¢)v and w(q,v,v1) = (vLg +
W(q,’U,l/l)Lg2)UJ(q,’l), Vl)'

Remark 3.2. From the expression below, it is clear that
the digital feedback w = w’(q,v,v) solution to (13) is
an expansion around the continuous-time (static) TFL
solution when no velocity and acceleration requirements
on the path are enforced (i.e., when only (1) and (2) in
Problem 2.1 are given).

Because a closed-form of (14) cannot be computed, only
approximations can be implemented in practice as the
truncation of the series at a finite order p > 0, i.e.,
0 .
— 51
5
w ,[p] (Q7 v, Vl) :QO(Q7 v, Vl)"—iz:; mﬂz<qa v, V1)~ (21)
Such approximate controllers (21) with (18)-(19) solve
Problem 2.2 in a practical sense with trajectories of
the closed-loop system converging to a neighbourhood of
target set I'™* in O(6PT1), Mattioni et al. (2017).

4. SIMULATIONS

Consider the case where the car-like robot is required to
follow a circle of radius r = 2. In this case; o : D —
R?, X — (rcosqs rsings)', satisfies the hypotheses
of Theorem 2.1. Consequently, one has a(q) = ¢3 +
g5 — r%. Suppose we are given a constant reference on
the linear velocity 7rrer(q) = 2 with zero acceleration
(i.e., ref(q) = 0). To follow the path, let v(k) be as
in (18)-(19), with A, = 5,4 = 1,2, and the first order
approximate feedback be as in (21) with p = 1. In
addition, for the transverse dynamics, let v1(k) be as
in (15) with K° placing the poles of (A% + B3 K?) in
(6703170 o(~134+1.160)8)  ((~1.34-1.160)0)) for § = 35.

Simulation compare, for different initial conditions and
increasing values of §, the proposed multi-rate controller
(21) with p = 1 (MR Sampling) with both the emulation-
based (ZOH emulation) and the one proposed in Elobaid
et al. (2020) (Approx Sampling), based on the continuous-
time preliminary dynamic extension. For completeness, the
results under continuous-time control are reported as well.

In Figures 2 and 3, the initial condition is fixed as ¢y =
(117 0)7 with increasing values of 6. The former one high-
lights that, albeit all controllers ensure convergence to the
circle, the results under multi-rate control are slightly bet-
ter compared to the other controllers. The latter one shows
that as § increases one notices deteriorated performances
by both the approximate feedback in Elobaid et al. (2020)
as well as emulation based control with higher peak values
for the control effort. In all cases, the multi-rate control
ensures satisfactory performances with improved control
effort even with respect to the continuous time control law.
In Figure 4, the initial condition is fixed as go = (3 2 7 0)
and 0 = 0.3235s. Whereas similar comments hold true in
this case for the emulation and the approximate single-rate
controllers (which strongly rely on the continuous-time
design), for such initialization (outside the circle) both
the aforementioned controllers are significantly sensible to
variations of §, with no guarantee for convergence to the
path under emulation. In this case, the multi-rate solution
provides still notable performances with a desired velocity
profile and limited control effort.
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Fig. 2. From top to bottom: position on the plane, path-
following error, control effort for § = 0.1s

5. CONCLUSIONS

Existence of a multi-rate digital feedback solution to the
path following problem for a car-like robot via transverse
feedback linearization was studied assuming a continuous
time solution to the problem exists. In addition, this multi-
rate solution was shown, through simulations, to provide
better performances, both in terms of path-following po-
sition error and the required magnitude of input velocities
to the robot. Perspectives concern the extension to the
case of general nonlinear systems being transverse feed-
back linearizable in continuous time and the consequent
application to further case studies.
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—— Continuous-time

e ZOH emulation
Approx sampling

——— MR sampling

4
6 8
4 T =
B _A\ == .
227 =
0 2 4 6 8
Time (s)
6 — ,
T2 Al = =
3 2 Z— [ ] ! L_.ll ‘ ]
0 2 4 6 8
Time (s)

Fig. 4. From top to bottom: position on the plane, path-
following error, linear velocity tracking, control effort
for 6 = 0.3235s
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