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Abstract: Feedback linearization is worked out for nonlinear time-delay systems and it is shown
that even if the problem can not be solved for all time, it may still be solved over some time
windows. The solution then reduces to a discontinuous state feedback. It is foreseen that such
piecewise feedback linearization can be instrumental for stabilization by a discontinuous control,
although it is not the scope of this paper. The approach used herein may be used to address
other classical control problems. It takes advantage of the delays as delays duplicate somehow
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1. INTRODUCTION

Time–delay systems have now become a topic of major
importance in the control system community due to the
large number of applications which can be described by
such mathematical models Borri et al. (2017), Driver
(1977), Gu et al. (2003), Hespanha et al. (2007), Marshall
(1979). Many theoretical advances have been obtained
either in the comprehension of the structural properties
of this class of systems or in the stabilization techniques (
see for example Hovelaque et al. (1997), Ito el al. (2013),
Krstic (2009), Sename (2014), Sename et al. (2010),
Zheng et al. (2010), Zheng et al. (2010b), Bartosiewicz et
al. (2020), Zheng et al. (2011) and the references therein).

More in detail with reference to the class of systems
affected by constant commensurate delays several results
have been obtained by using a differential representation
of the system in order to better understand to what extent
some classical problems such as the feedback linearization
problem or the equivalence to the input–output injection
linear observable canonical form, could be addressed and
solved, Califano et al. (2011), Califano et al. (2013),
Germani et al. (1996), Kaldmae et al. (2015), Marquez-
Martinez (2000).

In the present paper we show how some results can be
achieved, at least on a time window, by weakening the
structure of the control law, and using the delay structure
of the system. While the proposed approach can be applied
to several control problems, we illustrate the idea and the
result to the linear feedback equivalence one.
Example 1. For instance consider the dynamics with com-
mensurate delays, so that it can be written as involving
one single delay τ :

ẋ1(t) = (2 + sinx2(t− τ))u(t)

ẋ2(t) = u(t− τ) (1)

It is immediately clear that such a system cannot be
linearized for all time t via a continuous static state
feedback law of the form

u(t) = α(x(t), · · ·x(t− jτ)) + β((t), · · ·x(t− jτ))v(t)

with j an appropriate finite integer. However, consider now
the following discontinuous static feedback

u(t) = v(t), t ∈ [(2k − 1)τ, 2kτ)

u(t) =
1

2 + sinx2(t− τ)
v(t), t ∈ [2kτ, (2k + 1)τ) (2)

with k = 0, 1, 2, · · · Then one immediately verifies that the
previous feedback yields a linear time-delay closed loop
system for t ∈ [2kτ, (2k + 1)τ), k = 0, 1, · · · , since on such
intervals the dynamics reads

ẋ1(t) = v(t)
t ∈ [2kτ, (2k + 1)τ), k = 0, 1, · · · (3)

ẋ2(t) = v(t− τ)

Although it is not possible to achieve linearization for all t,
the problem is solved on time intervals [2kτ, (2k + 1)τ) as
the inputs u(t) and u(t−τ) are independent, whereas time
intervals [(2k−1)τ, 2kτ) redefine the ”initial condition” for
the next time interval.

Towards a high-gain piecewise stabilization

An obvious application of this piecewise feedback lineariza-
tion is stabilization, using a linear time-delay stabilization
methodology. This is tractable only when the stabilization
is fast enough during the ”linearized dynamics windows”
so that future uncontrolled windows do not destabilize in
a significant manner. A general result in that perspective
is out of the scope of this paper and requires further
assumptions on the class of systems under consideration.
Nevertheless, this stabilization process is easily illustrated
on Example 1.
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(1) For t ∈ [−2τ,−τ), set u(t) = 0.
(2) For t ∈ [−τ, 0), set u(t) = −k2x2(t) where k2 =

1
τ . The closed loop system then yields a nonlinear
dynamics for x1 and ẋ2 = 0.

(3) For t ∈ [0, τ), set u(t) = − k1x1(t)
2+sin x2(t−τ) so that the

closed loop system becomes{
ẋ1(t) = −k1x1(t)
ẋ2(t) = −k2x2(t− τ) = −k2x2(0)

whose solution is{
x1(t) = x1(0) exp (−k1t)
x2(t) = x2(0)(1− k2t)

Since k2 = τ one gets x2(τ) = 0 and k1 can be chosen to
get x1(τ) arbitrarily close to the origin.

The paper is organized as follows. In Section 2 the math-
ematical setting and tools are recalled, while in Section 3
the feedback linearization problem is addressed and solved
by weakening the class of feedback laws and coordinates
change considered and generalizing the conditions recov-
ered in Califano and Moog (2011). In Section 4 the main
results are stated. Some conclusions are given in Section 5.

2. RECALLS AND NOTATIONS

Let us now consider a multi-input nonlinear time delay
system affected by constant commensurate delays. With-
out loss of generality such a system is represented by the
differential equation

ẋ(t) = F (x(t), x(t− τ), ..., .x(t− sτ)) +

+
m∑
j=1

l∑
i=0

Gij(x(t), x(t− τ), ..., .x(t− sτ))uj(t− iτ) (4)

where τ is a constant delay, s, l ≥ 0 are integers and the
functions Gij(·), i ∈ [0, l], j ∈ [1,m] and F (·) are analytic
in their arguments. The notations used throughout the
paper, issued from Califano and Moog (2017), are recalled
hereafter.

• x[s] = (xT (t), ..., xT (t − sτ)) ∈ R(s+1)n, denotes the
vector consisting of the first (s + 1)n components
of the state of the infinite dimensional system (4).
x[0] = [x1,[0], ..., xn,[0]]

T ∈ Rn will denote the values
of the state variable at time t.

• x[s](−i) = (xT (t− iτ), ..., xT (t− sτ − iτ)) ∈ R(s+1)n.
Accordingly, xj,[0](−i) := xj(t − iτ) denotes the j-th
component of the instantaneous values of the state
variable delayed by D = iτ . When no confusion is
possible the subindex can be dropped so that x will
stand for x[s].

• K denotes the field of casual meromorphic functions
f(x[s], u[j]), with s, j ∈ N (meromorphic functions
are single-valued, that is analytic in all but possibly
a discrete subset of their domain).

• Given a function f(x[s], u[j]), we will denote by
f(−l) = f(x[s](−l), u[j](−l)).

• d is the standard differential operator.
• δ represents the backward time-shift operator: for
a(.), f(.) ∈ K : δ[a df ] = a(−1)δdf = a(−1)df(−1).
Denoting by ε the vector space spanned by the
differentials dx(t− i); i ∈ N over the field K, the
elements of ε are called one-forms. The shift operator
is applied to the vector space ε in this way: if ω is

the one-form ω =
∑n

i=1

∑k
j=0 aidxi(t− j) then δω is

given by δω =
∑n

i=1

∑k
j=0 δ(ai)dxi(t− j − 1).

• K(δ] is the (left) ring of polynomials in δ with
coefficients in K. Every element of K(δ] may be
rewritten as α(δ] =

∑rα
j=0 αj(.)δ

j with αj(.) ∈ K and

rα = deg(α(δ]) the polynomial degree in δ.
• u[i] will stand for (u, u̇, · · · , u(i)), with u[−1] the
empty set.

• Given a right submodule

∆(δ] = spanK(δ]{τ1(x, δ), · · · τj(x, δ)}
of rank j, ∆c(δ] is the right closure of ∆(δ] that is the
largest right submodule of rank j containing ∆(δ].

With the notations introduced so far, system (4) can be
rewritten as

ẋ[0] = F (x[s]) +

m∑
k=1

l∑
i=0

Gik(x[s])uk,[0](−i). (5)

As in Bartosiewicz et al. (2020), the approach in this paper
starts by considering the differential representation of the
given dynamics. Thus one gets that, using the notation just
introduced, such an infinitesimal representation is given by

dẋ[0] = f(x[s], u[s], δ)dx[0] +

m∑
k=0

g1,k(x[s], δ)duk,[0] (6)

where f(x[s], u[s], δ) is a n × n matrix representing the
differential with respect to the state variable and is given
by

f(x[s], u[s], δ) =

s∑
j=0

∂F (x[s])

∂x[s](−j)
δj

+

s∑
j=0

m∑
k=1

l∑
i=0

uk,[0](−i)
∂Gik(x[s])

∂x[s](−j)
δj , (7)

while g1,k(x[s], δ) =
∑l

i=0 g
i
1,k(x)δ

i, for k ∈ [1,m], is a n×1
vector representing the differential of the dynamics with
respect to the control uk, and given by

g1,k(x[s], δ) =

l∑
i=0

Gi,k(x[s])δ
i =

l∑
i=0

gi1,k(x)δ
i. (8)

Let us now recall that in the delay–free case the feedback
linearization problem can be easily solved by using geo-
metric arguments and tools. More precisely the necessary
an sufficient conditions are stated in terms of the existence
of appropriate functions which can be taken as linearizing
outputs. To this end the conditions reduce to requiring
that the system is controllable and that the distributions
defined by the controllability directions are locally of con-
stant dimension and involutive.

In order to solve the problem in the delay context these
conditions need to be generalized. We thus end this section
by recalling the notions of accessibility matrix and the con-
cept of polynomial Lie bracket and involutivity introduced
in Califano and Moog (2017) and which are necessary to
face the problem in this context.

First of all starting from (8), one defines the accessibility
directions iteratively, for i ≥ 1 as
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(1) For t ∈ [−2τ,−τ), set u(t) = 0.
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1
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Since k2 = τ one gets x2(τ) = 0 and k1 can be chosen to
get x1(τ) arbitrarily close to the origin.

The paper is organized as follows. In Section 2 the math-
ematical setting and tools are recalled, while in Section 3
the feedback linearization problem is addressed and solved
by weakening the class of feedback laws and coordinates
change considered and generalizing the conditions recov-
ered in Califano and Moog (2011). In Section 4 the main
results are stated. Some conclusions are given in Section 5.
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functions Gij(·), i ∈ [0, l], j ∈ [1,m] and F (·) are analytic
in their arguments. The notations used throughout the
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• x[s] = (xT (t), ..., xT (t − sτ)) ∈ R(s+1)n, denotes the
vector consisting of the first (s + 1)n components
of the state of the infinite dimensional system (4).
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T ∈ Rn will denote the values
of the state variable at time t.

• x[s](−i) = (xT (t− iτ), ..., xT (t− sτ − iτ)) ∈ R(s+1)n.
Accordingly, xj,[0](−i) := xj(t − iτ) denotes the j-th
component of the instantaneous values of the state
variable delayed by D = iτ . When no confusion is
possible the subindex can be dropped so that x will
stand for x[s].

• K denotes the field of casual meromorphic functions
f(x[s], u[j]), with s, j ∈ N (meromorphic functions
are single-valued, that is analytic in all but possibly
a discrete subset of their domain).

• Given a function f(x[s], u[j]), we will denote by
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• d is the standard differential operator.
• δ represents the backward time-shift operator: for
a(.), f(.) ∈ K : δ[a df ] = a(−1)δdf = a(−1)df(−1).
Denoting by ε the vector space spanned by the
differentials dx(t− i); i ∈ N over the field K, the
elements of ε are called one-forms. The shift operator
is applied to the vector space ε in this way: if ω is

the one-form ω =
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given by δω =
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coefficients in K. Every element of K(δ] may be
rewritten as α(δ] =
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j with αj(.) ∈ K and

rα = deg(α(δ]) the polynomial degree in δ.
• u[i] will stand for (u, u̇, · · · , u(i)), with u[−1] the
empty set.

• Given a right submodule

∆(δ] = spanK(δ]{τ1(x, δ), · · · τj(x, δ)}
of rank j, ∆c(δ] is the right closure of ∆(δ] that is the
largest right submodule of rank j containing ∆(δ].

With the notations introduced so far, system (4) can be
rewritten as

ẋ[0] = F (x[s]) +

m∑
k=1

l∑
i=0

Gik(x[s])uk,[0](−i). (5)

As in Bartosiewicz et al. (2020), the approach in this paper
starts by considering the differential representation of the
given dynamics. Thus one gets that, using the notation just
introduced, such an infinitesimal representation is given by

dẋ[0] = f(x[s], u[s], δ)dx[0] +

m∑
k=0

g1,k(x[s], δ)duk,[0] (6)

where f(x[s], u[s], δ) is a n × n matrix representing the
differential with respect to the state variable and is given
by

f(x[s], u[s], δ) =

s∑
j=0
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δj

+
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uk,[0](−i)
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δj , (7)
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∑l

i=0 g
i
1,k(x)δ

i, for k ∈ [1,m], is a n×1
vector representing the differential of the dynamics with
respect to the control uk, and given by

g1,k(x[s], δ) =

l∑
i=0

Gi,k(x[s])δ
i =

l∑
i=0

gi1,k(x)δ
i. (8)

Let us now recall that in the delay–free case the feedback
linearization problem can be easily solved by using geo-
metric arguments and tools. More precisely the necessary
an sufficient conditions are stated in terms of the existence
of appropriate functions which can be taken as linearizing
outputs. To this end the conditions reduce to requiring
that the system is controllable and that the distributions
defined by the controllability directions are locally of con-
stant dimension and involutive.

In order to solve the problem in the delay context these
conditions need to be generalized. We thus end this section
by recalling the notions of accessibility matrix and the con-
cept of polynomial Lie bracket and involutivity introduced
in Califano and Moog (2017) and which are necessary to
face the problem in this context.

First of all starting from (8), one defines the accessibility
directions iteratively, for i ≥ 1 as

gi+1,k(x,u
[i−1]δ) = ġi,k − f(x,u, δ)gi,k(x,u

[i−2]δ), (9)

and consistently, setting

gi(x,u
[i−2]δ) = gi,1(x,u

[i−2]δ), · · · , gi,m(x,u[i−2]δ),

the accessibility matrix

Rn = (g1(x, δ), g2(x,u, δ), · · · , gn(x,u[n−2], δ)).

Given r(x, δ) =
∑s

j=0 r
j(x)δj , we consider its action on

a function ε(t), and we denote its image by R(x, ε) :=∑s
j=0 r

j
1(x)ε(−j). Then the Polynomial Lie Bracket for

causal terms is defined as follows:
Definition 1. Given ri(x[s], δ) ∈ Kn(δ], i = 1, 2, the
Polynomial Lie Bracket for causal terms [R1(x, ε), r2(x, δ)]
is defined as

[R1(x, ε), r2(x, δ)] := adR1(x[s],ε)r2(x[s], δ) =

ṙ2(x, δ)|ẋ[0]=R1(x,ε) −
s∑

k=0

∂R1(x[s], ε)

∂x[0](−k)
δkr2(x, δ).

Accordingly we have the following definition of involutivity
of a submodule of causal terms
Definition 2. The submodule of causal elements

M = spanK(δ]{r1(x, δ), · · · rj(x, δ)}
is involutive, if for any two indices i, k ∈ [1, j] the
polynomial Lie bracket

[Ri(x, ε), rk(x, δ)] ∈ Mc ∀ε
where Mc is the right closure of M.

The first result was stated in Califano and Moog (2017)
and concerns accessibility, a fundamental property in this
context.
Theorem 1. System (4) is locally accessible if and only if
the accessibility matrix

Rn = (g1(x, δ), g2(x,u, δ), · · · , gn(x,u[n−2], δ)}))
has rank n over K(δ] for some u[n−2].

The second one concerns feedback linearization under
regular bicausal static state feedback for single input
systems taken form Califano and Moog (2011) and which
is here restated using the framework in Califano and Moog
(2021).

Theorem 2. The single input system described by (4) with
m = 1 is locally feedback equivalent to a linear accessible
system with delays if and only if the following conditions
are satisfied

i) The accessibility matrix Rn has rank n over K(δ]
ii) The submodule

M = spanK(δ]{g1(x, δ), · · · gn−1(x, δ)}
is involutive

iii ) There exist matrices Q1(δ) unimodular and lower tri-
angular, Q2(δ) = diag(1, c2(δ), , c2(δ)cn(δ)), T (x, δ)
unimodular and Φ1(x) lower triangular, such that
denoting by λ(x) a function with relative degree n
and closed, the following conditions are satisfied
a) 


dλ(x)
dλ(x)
...

dλ(n−1)(x)


 = Φ1(x)

−1Q1(δ)Q2(δ)T (x, δ)dx[0]

where

Φ1(x) =




ϕ1(λ) 0 · · · 0
ϕ̇1(λ) ϕ1(λ) · · · 0

...
. . .

ϕ
(n−1)
1

(
n− 1

1

)
ϕ
(n−2)
1 (λ) · · · ϕ1(λ)




with ϕ1(λ) =
∂ϕ(λ)
∂λ

b) Setting dλ(n) = a(x,u, δ)dx[0] + b(x,u, δ)du[0],
one must have

b(x,u, δ) = b(x, 0, δ) = ϕ−1
1 (λ)b̃(δ)β(x)

and

ϕ1(λ)a(x, 0, δ) + Φn+1(x)Φ1(x)
−1Q1(δ)Q2(δ)T (x, δ)

= (ã(δ) + b̃(δ)Γ(x, 0, δ))T (x, δ)

with

Φn+1(x) =

((
n

0

)
ϕ
(n)
1 (λ) · · ·

(
n

n− 1

)
ϕ̇1(λ)

)

3. MIMO FEEDBACK LINEARIZATION

In the present section necessary and sufficient conditions
for achieving feedback linearization in the case on multi–
input time delay systems are given, by weakening some
requirements on the feedback law and on the change of
coordinates. More precisely

• In the delay context it is common to ensure that the
change of coordinates considered is bicausal, that is:
it is causal and has a causal polynomial inverse in
δ of finite degree. This limitation leads in the single
input case to the strong condition represented by iii)
a) in Theorem 2, since the fictitious output function
λ, which has actually relative degree n, defines with
its derivatives a matrix which has rank n over K(δ]
but not in general unimodular.

In the present context following also some new
trends in the literature (see for example Haidar et
al. (2020)), such a requirement is not necessarily
fulfilled. It is in fact required that the change of
coordinates is defined by a full rank matrix on K(δ],
which ensures the existences of an inverse map not
necessarily associated to a causal polynomial of finite
degree

• Similarly for the feedback law used, instead of en-
suring the existence of a polynomial inverse, which
in the single input case leads to condition iii) b) in
Theorem 2, an hybrid control scheme proposed first
in Marquez-Martinez et al. (2002) and independently
in the sampled-data context in Monaco et al. (2017)
is considered, which allows its implementation. More
precisely, the control

v(t) = λ(x(t), · · · , x(t− s), u(t), u(t− s)),
∂λ

∂u(t)
�= 0

is implemented through the hybrid scheme

ξ1(t+ 1) = u(t)

ξ2(t+ 1) = ξ1(t)

... (10)

ξs(t+ 1) = ξs−1(t)

u(t) = ϕ(x, ξ(t), v(t))
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where ϕ(x, ξ(t), v(t)) satisfies

λ(x(t), · · · , x(t− s), ϕ(x, ξ(t), v(t)), ξ) = v(t). (11)

We are now ready to state our first result.

Theorem 3. The nonlinear time delay system (4) is acces-
sible and feedback linearizable through the hybrid control
scheme (10) if and only if the following conditions are
satisfied

i) Rn has constant dimension n locally around x0 for
δ = 0

ii) spanK(δ]{g1(x, δ), · · · , gi(x, δ)} is involutive for i =
1, · · · , n − 1 and of constant dimension ki locally
around x0 for δ = 0.

Proof. Assume that condition i) and ii) are satisfied. Then
condition i) guarantees the accessibility of the system for
δ = 0. Condition ii) instead guarantees the existence of m
independent functions λ1, · · ·λm such that

(dλT
1 , · · · , d(λ

(r1−1)
1 )T , · · · , dλT

m, · · · , d(λ(rm−1)
m )T )T

are independent differentials with r1 + · · ·+ rm = n, and




dλ
(r1)
1
...

dλ(rm)
m


 = Γ(x,u, δ)dx[0] + U(x, δ)du[0] (12)

with rank(U(x, 0)) = m. Let now for i = 1, · · · ,m, si be
the maximum degree of δ in the i-th column of U(x, δ).
Let si1 , si2 , sij be all the indices such that sil ≥ 1 for
l ∈ [1, j]. Then set

ξl1(t+ 1) = ul(t)

ξl2(t+ 1) = ξl1(t)

... l ∈ [1, j] (13)

ξlsil (t+ 1) = ξl,sil−1(t)

and accordingly, one can chose

u(t) = ϕ(x, ξ(t), v(t))

such that λ
(ri)
i = vi(t), for i ∈ [1,m]. In fact, with (13),

one immediately gets from (12) that




λ
(r1)
1
...

λ(rm)
m


 = γ0(x, ξ) + U(x, 0)u(t) (14)

and since by assumption U(x, 0) has full rank one can
compute a feedback law u(t) = ϕ(x, ξ(t), v(t)) such that
(14) holds true.

In the coordinates

z11 = λ1, · · · , z1,r1 = λ
(r1−1)
1

...

zm1 = λm, · · · , zm,rm = λ(rm−1)
m

the closed loop system is then linear and delay free.

Conversely. Assume that there exists a change of coordi-
nates z = φ(x), not necessarily bicausal, and a feedback

law u = α(x, v, u(−1), · · · , u(−s)) such that in the new
coordinates the closed loop system reads

ż(t) =

j∑
l=0

Ajz(t− j) +

m∑
i=1

p∑
k=0

Bkivi(t− k) (15)

with

dim(B(δ), A(δ)B(δ) · · ·An−1(δ)B(δ)) = n,

then there exist m output functions λi = Ciz with relative
degree ri and such that r1 + r2 + · · · + rm = n. In the x
coordinates such functions will continue to have relative
degree ri for i ∈ [1,m] and will have the expression
λi(x) = Ciφ(x). Being exact differentials they imply the
involutivity of the distributions

(g1(x, δ), · · · , gi(x, δ)) i ∈ [1, n]

thus proving the result. �

4. FEEDBACK LINEARIZATION OVER A TIME
WINDOW

When feedback linearization cannot be achieved via a
regular static state feedback, one may argue if it is possible
to use the delay which affects the system to obtain that at
least on a time window such a result can be obtained. This
is the case of system (1) in Example 1 where implementing
the control (2) allows to achieve feedback linearization on
the time window [2kτ, (2k + 1)τ).

The main idea behind next result is that the presence
of a delay allows the appearence of the control and its
delays, which at least on some time interval are considered
as independent inputs. Once they are fixed on a time
window in order to achieve a given goal, in this case
feedback linearization, one has to wait that they become
independent again to ensure that the linearization goal can
be fulfilled again. Note that Example 1 does not fulfil the
conditions of Theorem 3.

For simplicity consider the single input dynamics

ẋ(t) = F (x(t), ..., .x(t− sτ)) +

+

l∑
i=0

Gi(x(t), x(t− τ), ..., .x(t− sτ))u(t− iτ) (16)

and suppose that it does not satisfy the conditions of
Theorem 2 nor of Theorem 3, that is it is not static
state feedback linearizable neither with a bicausal change
of coordinates and a bicausal feedback, nor with the
hybrid controller of the form (10) which requires weaker
conditions.

4.1 Feedback linearization over the [2kτ, (2k + 1)τ) time
windows

Let us now consider u(t) and u(t − τ) independent over
a window of width τ . Setting u(t) = u1(t) and u(t −
τ) = u2(t), and l̄ = �(l + 1)/2�, where �∗� denotes the
integer part of ∗. One gets that u(t − 2kτ) = u1(t − 2kτ)
while u(t−(2k+1)τ) = u2(t−2kτ) the dynamics (16) will
read
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where ϕ(x, ξ(t), v(t)) satisfies
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sible and feedback linearizable through the hybrid control
scheme (10) if and only if the following conditions are
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δ = 0
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and since by assumption U(x, 0) has full rank one can
compute a feedback law u(t) = ϕ(x, ξ(t), v(t)) such that
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...
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the closed loop system is then linear and delay free.

Conversely. Assume that there exists a change of coordi-
nates z = φ(x), not necessarily bicausal, and a feedback

law u = α(x, v, u(−1), · · · , u(−s)) such that in the new
coordinates the closed loop system reads

ż(t) =

j∑
l=0

Ajz(t− j) +
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p∑
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Bkivi(t− k) (15)

with

dim(B(δ), A(δ)B(δ) · · ·An−1(δ)B(δ)) = n,

then there exist m output functions λi = Ciz with relative
degree ri and such that r1 + r2 + · · · + rm = n. In the x
coordinates such functions will continue to have relative
degree ri for i ∈ [1,m] and will have the expression
λi(x) = Ciφ(x). Being exact differentials they imply the
involutivity of the distributions

(g1(x, δ), · · · , gi(x, δ)) i ∈ [1, n]
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4. FEEDBACK LINEARIZATION OVER A TIME
WINDOW

When feedback linearization cannot be achieved via a
regular static state feedback, one may argue if it is possible
to use the delay which affects the system to obtain that at
least on a time window such a result can be obtained. This
is the case of system (1) in Example 1 where implementing
the control (2) allows to achieve feedback linearization on
the time window [2kτ, (2k + 1)τ).

The main idea behind next result is that the presence
of a delay allows the appearence of the control and its
delays, which at least on some time interval are considered
as independent inputs. Once they are fixed on a time
window in order to achieve a given goal, in this case
feedback linearization, one has to wait that they become
independent again to ensure that the linearization goal can
be fulfilled again. Note that Example 1 does not fulfil the
conditions of Theorem 3.

For simplicity consider the single input dynamics

ẋ(t) = F (x(t), ..., .x(t− sτ)) +

+

l∑
i=0

Gi(x(t), x(t− τ), ..., .x(t− sτ))u(t− iτ) (16)

and suppose that it does not satisfy the conditions of
Theorem 2 nor of Theorem 3, that is it is not static
state feedback linearizable neither with a bicausal change
of coordinates and a bicausal feedback, nor with the
hybrid controller of the form (10) which requires weaker
conditions.

4.1 Feedback linearization over the [2kτ, (2k + 1)τ) time
windows

Let us now consider u(t) and u(t − τ) independent over
a window of width τ . Setting u(t) = u1(t) and u(t −
τ) = u2(t), and l̄ = �(l + 1)/2�, where �∗� denotes the
integer part of ∗. One gets that u(t − 2kτ) = u1(t − 2kτ)
while u(t−(2k+1)τ) = u2(t−2kτ) the dynamics (16) will
read

ẋ(t) = F (x(t), x(t− τ), ..., .x(t− sτ)) +

+

l̄∑
i=0

G2i,1(x(t), x(t− τ), ..., .x(t− sτ))u1(t− 2iτ) (17)

+

l̄∑
i=0

G2i+1,2(x(t), x(t− τ), ..., .x(t− sτ))u2(t− 2iτ)

Accordingly, one gets the differential representation

dẋ(t) = f(x,u, δ)dx+ g1(x, δ)du1,0 + g2(x, δ)du2,0(18)

Since u1,0 and u2,0 are not independent the result of
Theorem 3 cannot be applied, even if the conditions are
satisfied. In fact one has to consider the fact that u1,0 and
u2,0 are linked through the relation

u2,0(t) = u1,0(t− τ).

However by using a discontinuous control which switches
every 2τ , the following result can be stated.

Theorem 4. The nonlinear time delay system (16) is ac-
cessible and feedback linearizable on each time window
[2kτ, (2k + 1)τ) if and only if the dynamics (18) satisfies
the conditions of Theorem 3.

Proof. Let the controller

ξ11(t+ 1) = u1(t)

ξ21(t+ 1) = ξ11(t)

...

ξs1,1(t+ 1) = ξs1−1,1(t)

ξ12(t+ 1) = u2(t)

ξ22(t+ 1) = ξ12(t)

...

ξs2,2(t+ 1) = ξs2−1,2(t)(
u1,[0]
u2,[0]

)
= α(x, ξ) + β(x)v[0]

together with the change of coordinates

z = φ(x)

transform the dynamics (17) into a linear two input
system. Then the controller

χ11(t+ 2) = u(t) = u1(t)

χ21(t+ 2) = χ11(t) = u(t− 2)

...

χs̄1,1(t+ 2) = χs̄1−1,1(t) = u(t− 2(s1 − 1))

χ12(t+ 2) = u(t− 1) = u2(t)

χ22(t+ 2) = χ12(t) = u(t− 3)

...

χs̄2,2(t+ 2) = χs̄2−1,2(t) = u(t− 2(s2 − 1)− 1)

with the feedback(
u(µ)

u(µ− 1)

)
=

(
u1,[0](µ)
u2,[0](µ)

)
= α(x, χ) + β(x)v[0](µ)

where µ ∈ [t + 2kτ, t + (2k + 1)τ), k = 0, 1, 2, · · · ,
together with the change of coordinates

z = φ(x)

transforms the single input dynamics (16) into a two input
linear system over the time interval [t+2iτ, t+(2i+1)τ).
�

4.2 Feedback linearization over the [3kτ, (3k + 1)τ) time
windows

Whenever the given dynamics is affected by u(t), u(t− τ)
and u(t − 2τ), and the conditions of Theorem 4 are not
fulfilled, then the process can be further investigated over
three successive time intervals considering u(t), u(t − τ)
and u(t− 2τ) independent.

Set u(t) = u1(t), u(t − τ) = u2(t), u(t − 2τ) = u3(t) and

l̂ = �(l + 1)/3�, so that u(t − 3kτ) = u1(t − 3kτ), u(t −
(3k+1)τ) = u2(t−3kτ) and u(t−(3k+2)τ) = u3(t−3kτ).
The dynamics (16) will read

ẋ(t) = F (x(t), x(t− τ), ..., .x(t− sτ)) +

+

l̂∑
i=0

G3i,1(x(t), x(t− τ), ..., .x(t− sτ))u1(t− 3iτ) (19)

+

l̂∑
i=0

G3i+1,2(x(t), x(t− τ), ..., .x(t− sτ))u2(t− 3iτ)

+

l̂∑
i=0

G3i+2,3(x(t), x(t− τ), ..., .x(t− sτ))u3(t− 3iτ)

Accordingly, one gets the differential representation

dẋ(t) = f(x,u, δ)dx+ g1(x, δ)du1,0 + g2(x, δ)du2,0 +

+g3(x, δ)du3,0 (20)

Theorem 4 is then naturally extended as follows.

Theorem 5. The nonlinear time delay system (16) is ac-
cessible and feedback linearizable on each time window
[3kτ, (3k + 1)τ) if and only if the dynamics (20) satisfies
the conditions of Theorem 3.

4.3 Feedback linearization over some time window

When the previous conditions are not fulfilled, then the
process can be continued up to the consideration of (l +
1) successive time intervals. The ultimate result which
incorporates all previous ones is stated next.

First, define

ẋ(t) = F (x(t), x(t− τ), ..., x(t− sτ)) +

+
1∑

i=0

G(l+1)i,1(x(t), ..., x(t− sτ))u1(t− (l + 1)iτ)

... (21)

+
1∑

i=0

G(l+1)i+l,l+1(x(t), ..., x(t− sτ))ul+1(t− (l + 1)iτ)

Accordingly, one gets the differential representation
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dẋ(t) = f(x,u, δ)dx+ g1(x, δ)du1,0 + g2(x, δ)du2,0 +

+...+ gl+1(x, δ)dul+1,0 (22)

Theorem 6. The nonlinear time delay system (16) is ac-
cessible and feedback linearizable on some time window if
and only if the dynamics (22) satisfies the conditions of
Theorem 3.

The conditions of Theorem 6 are the weakest possible, but
the linearization is effective eventually on one time interval
over l + 1, where l denotes the number of delays. When
the conditions of Theorem 6 are not fulfilled there is no
static state feedback able to solve the linearization problem
on any time window. The broader class of dynamic state
feedbacks deserves to be investigated in this case.

5. CONCLUSIONS

Static state feedback linearization has been considered for
non linear time delays systems in a very general problem
statement. A full solution has been provided for single
input systems. The generalization to multi input systems
is essentially a matter of notations which become a bit
more involved. If the weakest conditions in Theorem 6 are
not fulfilled, then it is interesting to check whether a single
input time delay system may be linearized on some time
window by a dynamic state feedback. This would be a
significant difference with respect to delay free nonlinear
systems.
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