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Abstract—This article presents a method for solving the
polarizability of a dielectric prolate half ellipse as a function
of its relative electric permittivity. The considered geometry
consists of two conjoined half ellipses with different permittivities.
The polarizability depends on the excitation field direction,
therefore can be presented in the form of dyadic consisting of
two components that are series and parallel polarizabilities. The
method is based on analytical series expansions with coefficients
obtained as a numerical solution of a matrix equation.

Index Terms—Elliptic coordinates, Polarizability, Matrix rep-
resentation

I. INTRODUCTION

Study of electrostatic responses of different shaped particles
is crucial especially for designing artificial materials [1], [2].
Single-particle response is informative to know the response
of composite medium made up of these particles embedded
in free space [3]. The quantity that measures the electrical
response of any object is its polarizability α that characterizes
the magnitude of polarization in presence of a static field.
It is defined as the ratio of the dipole moment and the
magnitude of the incident field. Several articles have been
published that study the polarizabilities of many different
geometries like spheres [4], [5], circular cylinders or 2D disk
[6], [7], hemisphere [8], half-disk [9] and anisotropic elliptic
inclusions [11] as well. However, polarizability of dielectric
half ellipse, which is also the topic of present study has not
been considered yet. Due to their manageable mathematics,
elliptic coordinates/geometries have been analyzed widely in
different areas of electromagnetics [11], [12], [13], [14], [15],
[16].

In this paper, we focus on the computation of the polariz-
ability of a dielectric prolate half ellipse placed in a homo-
geneous background medium. For this geometry normalized
polarizability can be expressed as a dyadic [8]

p = αEe (1)

where
α = α∥uxux + α⊥uyuy (2)

where the α∥ and α⊥ are are parallel and orthogonal compo-
nents, respectively of the normalized polarizability.

The elliptic system of coordinates has been shown in Fig. 1.
For different chosen values of η, the coordinate curves in Fig.
1 take the shape of confocal ellipses. The two foci (−a, 0)

Fig. 1. System of elliptic coordinates. The ψ coordinates are confocal
hyperbolae symmetrical about the x-axis with focal points at x = a and
x = −a. The η coordinates are confocal ellipses centered on the origin.

and (0, a) are generally taken to be fixed at −a and +a,
respectively on the x-axis of the cartesian coordinate system.

In this paper, we introduce a semianalytical method for
solving the polarizability components of a prolate half ellipse.
We begin with writing the potential function as a series
expansion, and by applying the boundary conditions, we are
able to construct a matrix equation, whose solution gives the
unknown coefficients.

II. METHODOLOGY

A. Series solution for the electrostatic potential in a semi-
elliptical region

Let us first consider a general situation where the object
consists of two half ellipses with different permittivities. Thus,
the 2D space must now be divided into three regions and
we can write the electrostatic potential as a series expansion
in each region. Depending on the orientation of the external
electric field, a pair of two conjoined half ellipses is referred
as a series and a parallel [9]. For the series and parallel cases,
the external electric field Ee is x and y-directed respectively, as
shown in Fig. 2. If the permittivity of one half of the ellipse is
the same as of the surrounding environment, we are left with
a single half ellipse.
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Fig. 2. A double half-ellipse with elliptic coordinate curve η=ηo in external
electric field. The series configuration (left) and the parallel configuration
(right) are presented.

1) Half-ellipses in series: First we consider series case. The
excitation field is Ee = Eeux and the corresponding potential
will be ϕe = −Vo cosh η cosψ, where Vo = Eea. The required
potential as series expansion can be written as

ϕo ≈
N∑

n=1

Bne
−nη cos(nψ)− Vo cosh(η) cos(ψ), η ≥ ηo

(3)

ϕr ≈
N∑

n=0

Cn cosh(nη) cos(nψ), η ≤ ηo
−π
2

≤ ψ ≤ π

2

(4)

ϕl ≈
N∑

n=0

Dn cosh(nη) cos(nψ), η ≤ ηo
π

2
≤ ψ ≤ 3π

2

(5)

where subscripts r and l refer to the right and the left half
of double half-ellipse as presented in Fig. 1 and subscript o
refers to the space outside the elliptic region. The unknown
coefficients Bn, Cn, and Dn are solved by applying the
boundary conditions. The continuity of the potential and the
continuity of its normal component are required. Considering
these conditions on the boundary between the half-ellipses, we
obtain

Cn = ηnDn, ηn =

{
1, n = even

ε2
ε1
, n = odd

(6)

where ε1 and ε2 are the dimensionless relative permittivity
values of the right and left half-ellipses, respectively.

Since it is not possible to have closed form of solution to
solve the coefficients, we have constructed a set of N linearly
independent equations that can be written as a N ×N matrix
equation. Each matrix element would then have a closed-form
analytic expression but it has to be solved numerically. Follow-
ing procedure has been adopted. By considering the boundary
conditions on the outer contours, at η = ηo, we obtain four
equations. These equations are then multiplied by cosmψ,
0 ≤ m ≤ N , and integrated w.r.t ψ. Equations related to the
right half are integrated over the interval −π/2 ≤ ψ ≤ π/2

and the equations related to the left half over the interval
π/2 ≤ ψ ≤ 3π/2. This means we have to encounter following
integrals

Um,n =

∫ π/2

−π/2

cosmψ cosnψdψ (7)

and

Im,n =

∫ 3π/2

π/2

cosmψ cosnψdψ (8)

These integrals can be computed analytically as shown

Um,n =


π, m = n = 0
π
2 , m = n ̸= 0
0, m+ n = even, m, n ̸= 0,m ̸= n

(−1)
1
2 (m+n−1)( 2n

n2−m2 ),m = even, n = odd

(−1)
1
2 (m+n−1)( 2m

n2−m2 ), n = even,m = odd
(9)

and

Im,n = (−1)m+nUm,n (10)

After applying condition in Eq. (4) and some algebra, we have
obtain following set of equations to solve coefficients Bn.

N∑
n=1

[ηm{mε1 tanh(mηo) + n}+

(−1)m+n{mε2 tanh(mηo) + n}]e−nηoBnUm,n

= [ηm{mε1 cosh ηo tanh(mηo)− sinh ηo}+
(−1)m+1{mε2 cosh ηo tanh(mηo)− sinh ηo}]VoUm,1

(11)

and by considering the values of ηn and Um,n we can also
write

N∑
n=1,3..

(ε1 − ε2)e
−nηoUm,nBn+

(ε1 + ε2 + 2 coth(mηo))e
−mηo

π

2
Bm

= (ε1 − ε2) cosh ηoUm,1Vo m = 2, 4, ...N

(12)

and

N∑
n=2,4..

n(ε2 − ε1)e
−nηoUm,nBn+

m(2ε1ε2 tanh(mηo) + ε1 + ε2)e
−mηo

π

2
Bm

= (2ε2ε1 tanh(mηo) cosh ηo − ε2 sinh ηo−

ε1 sinh ηo)
π

2
δm,1Vo m = 1, 3, ...N

(13)

The above equation system can be written as N ×N matrix
equation and solved numerically.
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2) Half-ellipses in parallel: For parallel case, the excitation
field is y-directed such that Ee = Eeuy and the corresponding
potential will be ϕe = −Vo sinh η sinψ, where Vo = Eea. The
required potential as series expansion can be written as

ϕo ≈
N∑

n=1

Fne
−nη sin(nψ)− Vo sinh η sinψ, η ≥ ηo (14)

ϕr ≈
N∑

n=1

Gn sinh(nη) sin(nψ), η ≤ ηo
−π
2

≤ ψ ≤ π

2

(15)

ϕl ≈
N∑

n=1

Hn sinh(nη) sin(nψ), η ≤ ηo
π

2
≤ ψ ≤ 3π

2

(16)

The coefficients have been obtained here as in case of series,
but the relation between Gn and Hn becomes

Gn = ηnHn, ηn =

{
1, n = odd

ε2
ε1
, n = even

(17)

Here again four equations have been obtained corresponding
to the boundary conditions at outer contours. These equations
are multiplied by sinmψ for this case and integrated with
respect to ψ. We need to evaluate these following integrals

Vm,n =

∫ π/2

−π/2

sinmψ sinnψdψ (18)

and

Wm,n =

∫ 3π/2

π/2

sinmψ sinnψdψ (19)

Performing few calculations we get

Vm,n =


0, m = n = 0
Um,n, m = n ̸= 0
0, m+ n = even, m, n ̸= 0, m ̸= n
m
n Um,n, m = even, n = odd
n
mUm,n, n = even, m = odd

(20)
and

Wm,n = (−1)m+nVm,n (21)

We must have
N∑

n=1,3..

(ε2 − ε1)e
−nηoUm,nFn+

(ε1 + ε2 + 2ε1ε2 tanh(mηo))e
−mηo

π

2
Fm

= (ε1 − ε2)coshηoUm,1Vo m = 2, 4, ...N

(22)

and
N∑

n=2,4..

n(ε1 − ε2)e
−nηo tanh(mηo)Um,nFn+

m[(ε1 + ε2) tanh(mηo) + 2]e−mηo
π

2
Fm

= [(ε1 + ε2) tanh(mηo) sinh ηo − 2 cosh ηo]δm,1Vo

m = 1, 3, ...N

(23)

B. Polarizability of dielectric half ellipse

If the observation point is far enough, or with large values
of η, ellipse starts to resemble a circle. For that, the polarized
ellipse must be approximated by a 2D dipole. If ε2 = 1, only
one half ellipse is left. The normalized polarizability dyadic
in Eq. 2 for the this case becomes

α = αsuxux + αpuyuy (24)

where αs and αp are series and parallel polarizabilities respec-
tively.

The potential produced by the dipole with dipole moment
p along x-axis is

ϕd(ρ, φ) =
p cosφ

2πεeρ
(25)

ϕd has been expressed in polar coordinates. The connection
between polar and elliptic coordinates is

ρ ≈ aeη

2
(26)

φ ≈ ψ (27)

Using above connection Eq. 25 can be transformed into elliptic
coordinates. The corresponding term in Eq. 3 is

ϕd(η, ψ) = B1e
−η cosψ (28)

When we combine Eqs. 1, 25-28 , we are left with

αs = 2
B1

Vo
(29)

Similarly for y-directed dipole, we end up finding parallel
polarizability that is

αp = 2
F1

Vo
(30)

C. Numerical simulations and discussion

Fig. 3 presents the normalized polarizability component αs

of half ellipse and normalized polarizability component of a
homogeneous ellipse with x-directed external excitation com-
puted analytically using results of [11] and then substituting
εt = εn = εr as a function of relative permittivity εr computed
with matrix size N = 100. Similarly Fig. 4 presents the
normalized polarizability component αp of half ellipse and
normalized polarizability component of a homogeneous ellipse
of when external excitation is y-directed as a function of εr
computed with matrix size N = 100.
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Fig. 3. The normalized polarizability component αs of a half ellipse with N
= 100 compared with corresponding normalized polarizability component of
a homogeneous ellipse as a function of εr .
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Fig. 4. The normalized polarizability component αp of a half ellipse with N
= 100 compared with corresponding normalized polarizability component of
a homogeneous ellipse as a function of εr .

It can be seen that the magnitude of the series and parallel
polarizabilities of half ellipse is greater than the corresponding
polarizabilities of whole ellipse, in both cases. Fig. 5 presents
the comparison between circular disk, average normalized
polarizability of a homogeneous ellipse and the average polar-
izability of half ellipse. These observations seems reasonable
and in agreement with the results in [18], [19]. As sphere is
the object with minimum polarizability and any other geomet-
rically different object from sphere has increased polarizability
depending on its deviation from sphere. Therefore, in 2D any
deviation from circular geometry results in an increase in
magnitude of polarizability.
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Fig. 5. The normalized polarizability of a homogeneous disk, the average
polarizability of a homogeneous ellipse and the average polarizability of a
half ellipse as a function of εr .

III. CONCLUSION

In this article, we considered the polarizability of dielectric
prolate half ellipse. The polarizability consisted of two compo-
nents, the series polarizability αs and the parallel polarizability
αp. Based on analytical approach, we presented a method
in which the electrostatic potential function has been written
as a series expansion. We have splitted series into even and
odd values of indices, as they have shown different results
corresponding to even and odd indices. However, it is not
possible to solve the coefficient of expansions separately. We
must have to consider an equation system of N equations
and write it in matrix form. With this method, we calculated
approximate formulas for normalized polarizability of a half
ellipse as a function of its relative permittivity. Normalized
polarizability consists of two orthogonal components, that
are series and parallel one. This work still needs numerical
treatment for complete validation, so we will be working on
it and soon results will be published.
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