
 
 

1 
 

  

[Anno] 

Doctoral Thesis 
in Aeronautics and Space Engineering 

Candidate: 

Marco Lucente 

Advisors: 

Prof. Luciano Iess (University of Rome “La Sapienza”) 
Dr. David M. Lucchesi (IAPS/INAF) 

Dr. Ing. Francesco Santoli (IAPS/INAF) 

 

GRAVITY GRADIOMETERS FOR PLANETARY GEODESY: 
REQUIREMENTS AND CONCEPT FOR A SPACE 

INSTRUMENT 
 

Department of Mechanical and Aerospace Engineering 

XXXII cycle - Academic Year 2018-2019 

 



 
 

2 
 

Table of contents 
1. Introduction ........................................................................................................................ 8 

2. The Gravity Field of Planetary Bodies ................................................................................ 10 

2.1 Scientific motivations ........................................................................................................... 10 

2.2 Theoretical foundation ......................................................................................................... 12 
2.2.1 Gravitation and orbits ............................................................................................................................... 12 
2.2.2 Spherical harmonics .................................................................................................................................. 16 

2.3 Planetary Interiors ............................................................................................................... 23 

2.4 The Gravity Field: State of the Art and Missions .................................................................... 25 
2.4.1 Mercury..................................................................................................................................................... 30 
2.4.2 Venus ........................................................................................................................................................ 34 
2.4.3 Earth .......................................................................................................................................................... 39 
2.4.4 Moon ......................................................................................................................................................... 48 
2.4.5 Mars .......................................................................................................................................................... 53 
2.4.6 Outer planets characteristics and gravity models .................................................................................... 58 
2.4.7 Small bodies gravity .................................................................................................................................. 62 

2.5 Science needs ...................................................................................................................... 64 

3. Measurement Techniques ................................................................................................. 71 

3.1 Introduction ......................................................................................................................... 71 

3.2 The classical concept ............................................................................................................ 72 
3.2.1 Radio-tracking ........................................................................................................................................... 72 
3.2.2 SST/ll (low-low) ......................................................................................................................................... 77 

3.3 Gravitational Gradiometry ................................................................................................... 78 
3.3.1 Principles of measurement ....................................................................................................................... 80 
3.3.2 Instruments State of the Art ..................................................................................................................... 84 
3.3.3 Review results ......................................................................................................................................... 109 

3.4 Scientific requirements vs Instruments state of the art ....................................................... 110 

4. Gravity mission needs ..................................................................................................... 116 

4.1 Design variables ................................................................................................................. 116 

4.2 Science requirements ......................................................................................................... 120 
4.2.1 Gravity gradients in different coordinates .............................................................................................. 120 
4.2.2 Gravity gradient computation................................................................................................................. 127 

4.3 Mission requirements ........................................................................................................ 133 

4.4 Spacecraft requirements .................................................................................................... 137 

4.5 Instrument requirements ................................................................................................... 138 

5. Angular Gravity Gradiometer .......................................................................................... 146 

5.1 Instrument concept ............................................................................................................ 146 

5.2 Instrument feasibility and characteristics ............................................................................ 154 

5.3 Signal detection and noise .................................................................................................. 158 

6. Conclusions ..................................................................................................................... 167 

APPENDIX ................................................................................................................................. 179 



 
 

3 
 

 
 

List of Figures  
 
Figure 2-1: Figure extract from “De mundi systemate” by Isaac Newton (1715), Vol. 3 of 
“Philosophiae Naturalis Principia Mathematica”, which depicts as the free-fall of objects and 
the planets orbit have the same origin ............................................................................... 15 
Figure 2-2: components of the gravitational acceleration in terms of sources and related 
order of magnitude (rielaboration from [136]) ..................................................................... 15 

Figure 2-3: spherical and rectangular coordinates (from 10) ............................................. 17 
Figure 2-4: Representation of the different types of spherical harmonic coefficients [17] .. 22 
Figure 2-5: Difference between geoid, ellipsoid and topography ....................................... 22 

Figure 2-6: The Solar System planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, 
and Neptune and the dwarf planet Pluto [31]. They are shown with their correct relative sizes 
and ordered according to their distance from the Sun. ...................................................... 26 
Figure 2-7: An enhanced-color view of Mercury, assembling images at various wavelengths 
captured by the MESSENGER spacecraft. The circular area on the center-top part is Caloris 
Basin (courtesy NASA / Johns Hopkins University Applied Physics Laboratory / Carnegie 
Institution of Washington) .................................................................................................. 30 
Figure 2-8: Launch of Mariner 10 on its Atlas-Centaur rocket on the left and flight spare of 
Mariner 10 at the National Air and Space Museum on the right (NASA courtesy). ............ 31 
Figure 2-9: The Mercury gravity spectrum as derived from HgM008 ([55], computed with 
data from [86]): gravity field, gravity field error and Kaula rule are shown respectively in blue, 
green and red colours ........................................................................................................ 33 

Figure 2-10: An image of Venus taken from Galileo spacecraft at a distance of about 3 ∙ 106 
km ...................................................................................................................................... 34 

Figure 2-11: The Venus gravity spectrum from MGNP180U (computed with data from [85]): 
gravity field, gravity field error and Kaula rule are shown respectively in blue, green and red
 ........................................................................................................................................... 38 
Figure 2-12: Spatial distribution of the degree strength on Venus as determined for the 
gravity model MGNP180U [64]: the contours are in harmonic degree and represent the 
degree for which the signal-to-noise ratio is 1 .................................................................... 39 

Figure 2-13: Schematic view of the flight configuration and ground support for the GRACE 
mission [130] ...................................................................................................................... 41 
Figure 2-14: layout of the components of one of the GRACE satellites [129] .................... 42 
Figure 2-15: GRACE-FO artistic image (from [TBW]) ........................................................ 43 
Figure 2-16: artistic view of GOCE spacecraft in orbit (from [133]) .................................... 44 

Figure 2-17: Top-down view of GOCE spacecraft showing instruments location. From the 
left: Coarse Earth-Sun Sensor (CESS), ion propulsion, magneto-torquers (MT), Xenon tank 
for the ion propulsion, gradiometer, star-tracker, Satellite-to-Satellite Tracking Instrument 
i.e. GPS (SSTI), nitrogen tank for cold-gas thrusters, command data management unit 
(CDM), laser retro-reflector (LRR) ([135][141]) .................................................................. 45 
Figure 2-18: view of the drag-free and attitude control units in GOCE spacecraft ([135]) .. 46 
Figure 2-19: Consortium of industries participating in GOCE ([135]) ................................. 47 

Figure 2-20: The near side of Earth's Moon from Lunar Reconnaissance Orbiter spacecraft 
(Nasa courtesy). ................................................................................................................ 48 
Figure 2-21: Top view of GRAIL spacecraft (NASA courtesy) ........................................... 50 
Figure 2-22: Top view of GRAIL spacecraft (from https://earth.esa.int/web/eoportal/satellite-
missions/g/grail) ................................................................................................................. 51 



 
 

4 
 

Figure 2-23: High-resolution images of the northern (left) and southern (right) Moon polar 
regions ([76]) ...................................................................................................................... 52 
Figure 2-24: The gravity spectrum of Moon from GL1500E (computed with data from [85]): 
gravity field, gravity field error and Kaula rule are shown respectively in blue, green and red 
colours ............................................................................................................................... 53 

Figure 2-25: An image of Mars taken from Hubble Space Telescope near the opposition of 
the red planet (NASA courtesy) ......................................................................................... 53 
Figure 2-26: The gravity spectrum for MRO120D (computed with data from [85]): gravity 
field, gravity field error and behaviour of the field according to Kaula rule are shown, 
respectively, in blue, green and red ................................................................................... 56 
Figure 2-27: The resolution of the Mars gravity field MRO120D from the covariance matrix 
of the solution [80]. ............................................................................................................ 57 
Figure 2-28: A group picture of the external planets Jupiter, Uranus and Neptune (from 
Voyager 2) and Saturn (Cassini), from [34] ........................................................................ 58 
Figure 2-29: Plot of the unnormalised harmonic zonal coefficients as derived from Juno 
measurements at Jupiter; circles show the measured values (solid for positive and empty 
for negative), while dashed line depicts the uncertainty (from [90]). .................................. 60 
Figure 2-30: Plot of the unnormalised harmonic zonal coefficients as derived from Cassini 
measurements during the “Grand Finale”; red diamonds (solid for positive e and empty for 
negative) depict the model of uniform rotation, while circles show the measured values (from 
[91]).................................................................................................................................... 61 
Figure 2-31: Timeline of the DART and Hera missions to be sent to the Didymos binary 
asteroid system (picture from ESA website) ...................................................................... 63 
Figure 3-1: radio-tracking scheme (example for the Bepicolombo mission)....................... 73 

Figure 3-2: Scheme of the precise orbit determination process (POD) to estimate the 
spacecraft orbit and a set of model parameters, i.e. the spherical harmonic coefficients. . 76 

Figure 3-3: Spectrum of frequency bands typically used for satellite communications and 
radio-tracking (ESA courtesy) ............................................................................................ 77 
Figure 3-4: Ideal behaviour of proof-masses in a gravitational field ................................... 81 

Figure 3-5: Configuration for a full-tensor gradiometer (from [6]) ....................................... 82 
Figure 3-6: Concept of configuration for an in-line component gradiometer [170] ............. 83 

Figure 3-7: Concept of configuration for an off-line (or cross-component) component 
gradiometer [170] ............................................................................................................... 83 
Figure 3-8: Left: a portrait of Baron Lorand von Eötvös by Gyula Eder (1941); Right: a 
scheme of the Eötvös’s torsion balance (from [143]) ......................................................... 84 

Figure 3-9: Schematic view of the operating principle of two basic types of gradiometer, 
founded on the approach used: differential-accelerometer and torsion-balance (adapted 
from [143]) ......................................................................................................................... 85 

Figure 3-10: Gravity gradiometry applications versus the required sensitivity; on the y-axis 
the spatial resolution achievable is shown, whereas on the x-axis the accuracy in terms of 
gravity gradient (in Eötvös) is reported (from [142]) ........................................................... 86 
Figure 3-11: sketch of the Rotating Gravity Gradiometer (RGG) by Hughes Research Lab 
and related breadboard model [143][6] .............................................................................. 89 
Figure 3-12: sketch of GGI by Bell Aerospace (left); the updated version of Lockheed Martin 
with doubled pairs of accelerometers (right) [6] ................................................................. 90 
Figure 3-13: disposition of three discs of GGI in “umbrella” configuration to obtain a full-
tensor gradiometer [6] ........................................................................................................ 91 
Figure 3-14: model VII of a single Bell accelerometer constituting the basic element of GGI 
[147] ................................................................................................................................... 91 



 
 

5 
 

Figure 3-15: the full tensor gradiometer by Bell Aerospace on an inertially stabilised platform 
(left, a)); the mounting in “umbrella configuration” (right, b)) [143] ..................................... 92 
Figure 3-16: geometry of the floated gradiometer of Draper Research Laboratory: single unit 
(left, a)); group of three units on a stabilised platform (right, b)) [6] ................................... 93 
Figure 3-17: angular accelerometer by Gedex (10.2 x 10.2 x 2.5 cm, left, a), schematic 
diagram of the sensor (b) and assembled prototype (c) [150] ............................................ 94 
Figure 3-18: The GOCE gradiometer core (left): the six tri-axial accelerometers orthogonally 
mounted are shown along with the developed special carbon-carbon structure. On the right: 
single gradiometer arm with two accelerometers [135] ...................................................... 96 
Figure 3-19: A single proof mass of the accelerometers employed in GOCE [135] ........... 97 
Figure 3-20: location of the GOCE six three-axis accelerometers in the gradiometer 
reference frame [137]. Solid and dashed arrows depict, respectively, ultra and less sensitive 
axes of proof masses ......................................................................................................... 97 

Figure 3-21: The whole assembly of the Electrostatic Gravity Gradiometer [135], along with 
its main characteristics ....................................................................................................... 98 
Figure 3-22: plot of an ideal transfer function for an accelerometer ISA-type: the amplitude 
at the resonance increases as Q increases; at frequencies higher than the resonance it 
attenuates at 40 dB per decade ....................................................................................... 100 

Figure 3-23: Details of a single ISA accelerometer used during tests at IAPS/INAF: pick-up 
plates (mounted), actuators, screws ................................................................................ 100 
Figure 3-24: Scheme of the superconducting accelerometer principle developed at 
University of Maryland (from [143]) .................................................................................. 102 

Figure 3-25: View of the single axis gravity gradiometer developed by the group of Paik at 
University of Maryland ([163]) .......................................................................................... 103 

Figure 3-26: SGG assembled at University of Maryland, comprising six linear 
accelerometers (from [177]) ............................................................................................. 103 

Figure 3-27: Perspective view of the SGG based on levitated test masses [173] ............ 104 
Figure 3-28: Sensing circuit of the SGG aimed at differencing (gravity gradient a) ) and 
summing (linear acceleration b) ) accelerometer signals [173] ........................................ 104 

Figure 3-29: Partial exploded view of the planned full-tensor SGG showing main 
components ([173]) .......................................................................................................... 105 

Figure 3-30: Two atom-interferometer accelerometers separated by a certain baseline, to 
illustrate the gravity gradiometry geometry. MOT1 and MOT2 are the magneto-optical traps 
which produce (red dots) trapped atom clouds ([177]) ..................................................... 106 
Figure 3-31: Design of a MEMS-based gravity gradiometer [178]. Top view on the left side
 ......................................................................................................................................... 107 
First researches to date on MEMS-based gravity gradiometers, potentially to be used in 
future space missions, began at the University of Twente in the Netherlands [180]. They 
studied a micro-gradiometer which would have in principle a level noise of 0.1 − 1 𝐸𝐻𝑧 and 
a weight below 1 kg. In particular, range into which design parameters of such a MEMS-
based gradiometer should fall was investigated by the research group. Apart the natural 
constraint on the (limited) size and mass, analysis was focused on temperature, spring 
constant and quality factor. They found out that to have a bandwith within the range 10 −
3 − 1 𝐻𝑧 for the measurements, a device with resonance frequency higher than 1 𝐻𝑧 would 
be necessary and a low spring constant would needs, at least in the order of 1 𝑁𝑚. However, 
this makes very difficult to manufacture and to test a weak constant spring. Simulations 
proved that such a spring would not be strong enough to tolerate gravity on-ground and 
hence additive masses (gold) should be added. Concerning the other parameters, a quality 
factor of 105 was assumed to reach a good sensitivity and a temperature of 77 𝐾 was 



 
 

6 
 

considered easily achievable in space. A conceptual design based on a whole wafer was 
developed and it is shown in Figure 3-32. ........................................................................ 108 
Figure 3-33: schematic of the gradiometer suspension described in the text (from [178])
 ......................................................................................................................................... 108 
Figure 3-34: prototype of the MEMS gradiometer developed by Liu et al. A British pound 
coin is shown for size comparison. .................................................................................. 109 

Figure 3-35: Estimate of Venus Γ𝑧𝑧 gravity gradient versus the degree 𝑙 for different orbital 
altitudes ........................................................................................................................... 113 

Figure 3-36: Estimate of Mars Γ𝑧𝑧 gravity gradient versus the degree 𝑙 for different orbital 
altitudes ........................................................................................................................... 113 
Figure 4-1: spatial and time scales of several geophysical processes on the Earth, as 
identified in [33]. Analogous and phenomena for planets, identified as unique bubble, are 
reported on the top (from [33]) ......................................................................................... 118 

Figure 4-2: transformation between the body-fixed reference frame (in the figure the Earth 
is considered as fixed body) and the inertial reference frame adapted to the Keplerian orbit 
(from [5]) .......................................................................................................................... 123 

Figure 4-3: geocentric cartesian coordinate system, orbital coordinate system and local 
orbital coordinate system (from [125]) ............................................................................. 126 

Figure 4-4: Gravitational gradient ZZ till degree 𝑙  = 70 for an orbit around Venus at an 
altitude h = 300 km .......................................................................................................... 129 

Figure 4-5: Gravitational gradient YY till degree 𝑙  = 70  for an orbit around Venus at an 
altitude h = 300 km .......................................................................................................... 129 

Figure 4-6: Gravitational gradient XX till degree 𝑙  = 70 for an orbit around Venus at an 
altitude h = 300 km .......................................................................................................... 130 

Figure 4-7: Gravitational gradient XZ till degree 𝑙  = 70 for an orbit around Venus at an 
altitude h = 300 km .......................................................................................................... 130 

Figure 4-8: Gravitational gradient ZZ till degree 𝑙  = 100 for an orbit around Mars at an 
altitude h = 255 km .......................................................................................................... 131 

Figure 4-9: Gravitational gradient YY till degree 𝑙  = 100 for an orbit around Mars at an 
altitude h = 255 km .......................................................................................................... 132 

Figure 4-10: Gravitational gradient XX till degree 𝑙  = 100 for an orbit around Mars at an 
altitude h = 255 km .......................................................................................................... 132 

Figure 4-11: Gravitational gradient XZ till degree 𝑙  = 100 for an orbit around Mars at an 
altitude h = 255 km .......................................................................................................... 133 
Figure 4-12: Attenuation factor of the gravity gradient versus the spatial resolution (planet 
Mars), for different orbital altitude. Different orbit heights are shown in colors: from left to 
right, 100 to 500 km (100 km step) and at last 1000 km .................................................. 136 
Figure 4-13: Attenuation factor versus the degree l for the gravity gradient. The same legend 
of previous figure is adopted. ........................................................................................... 137 

Figure 4-14: Scheme of typical capacitive detection for the sensing mass displacement 
(extract from [157]) .......................................................................................................... 141 
Figure 5-1: schematic view of the torsion-balance gradiometer around a planetary body; x 
axis is orthogonal to the orbital plane of the spacecraft hosting the instrument ............... 146 
Figure 5-2: Geometric configuration in orbit for the single rod with two masses subjected to 
the torque of the gravity gradient ..................................................................................... 147 
Figure 5-3: transfer function for the single bar - two masses ........................................... 149 
Figure 5-4: improvement of the initial system by adding a second bar orthogonal to the first 
one ................................................................................................................................... 150 
Figure 5-5: improvement in the transfer function for the two orthogonal bars with a couple of 
masses per each one, subjected to the torque of the gravity gradient ............................. 151 



 
 

7 
 

Figure 5-6: Modulation of the rotation angle 𝜃 induced by the gravity gradient torque when 
the crossed bars are rotated by the angular velocity 𝜔 .................................................... 152 

Figure 5-7: PSD of the modulated signal of previous figure. The peak is ~ 1.6 10 − 15 𝑟𝑎𝑑 
at ~ 3.2 10 − 4𝐻𝑧, double of the modulation frequency.................................................... 153 

Figure 5-8: Possible concept for the angular gradiometer envisaged for the gravity gradient 
measurement ................................................................................................................... 155 
Figure 5-9: Detail of the cross-shaped spring used  to realise the angular gradiometer 
described in the text ......................................................................................................... 156 
Figure 5-10: Modal frequency (2th) for the envisaged configuration ................................ 156 
Figure 5-11: Alternative configuration for the angular gradiometer .................................. 157 
Figure 5-12: Alternative configuration for the angular gradiometer .................................. 157 
Figure 5-13: Modulation of the relative angle between the two arms of the gradiometer when 
subjected to a gravity gradient (10-13 s-2), by rotating the overall system ......................... 158 

Figure 5-14: PSD of the previous modulated signal ......................................................... 159 
Figure 5-15: Modulation of the torque between the two arms of the gradiometer when 
subjected to a gravity gradient (10-13 s-2), by rotating the overall system ......................... 159 
Figure 5-16: PSD of the previous modulated signal ......................................................... 160 
Figure 5-17: Scheme of the possible signal detection system employed to detect the sensing 
masses displacement ...................................................................................................... 160 
Figure 5-18: Layout of the possible signal detection system employed to detect the sensing 
masses displacement, where the sensing masses are coupled to counterposed plates 
(details in the text) ........................................................................................................... 162 
Figure 5-19: Summary of the main characteristics of the two configurations for the angular 
gradiometer ...................................................................................................................... 162 
 



 
 

8 
 

1. Introduction 

The measurement of the gravitational field of Solar System bodies is becoming ever and 
ever crucial in the physical description of their composition, state and evolution. Indeed, 
many planetary processes at large scale are ruled by their internal structure, where surface 
and tectonic features are mainly the result of heat exchanges from the interior to the surface 
[30]. Gravity field measurements are one of the observational methods to investigate those 
processes and to place constraints on the structure of the planetary interiors and on the 
formation and geologic evolution of a planet ([40], [30]). The retrieval of the spherical 
harmonic coefficients used to describe the gravitational field of a body gives insights into 
e.g. its polar oblateness, moment of inertia and deviations from hydrostatic equilibrium. With 
geologic assumptions and other remote sensing data, significant geophysical parameters, 
related e.g. to crust and mantle density and thickness, core size and structure, mantle/core 
coupling can be obtained ( [30]). These parameters are used in planetary models to address 
topics such as planets differentiation, thermal evolution, characteristics and composition of 
the interiors. Moreover, the internal structure can be further investigated (wherever possible) 
through seismometers on the surface, exploiting the analysis of seismic waves travelling 
through the interior (as performed by Apollo missions EASEP and ALSEP packages and 
currently by Mars Insight) [1][2]. 
Until now, the Radio-Tracking technique (RT), part of the Radio Science (RS) observations, 
jointly with POD (Precise Orbit Determination), has been de-facto the main technique for 
gathering this type of information. It has been implemented in several deep-space missions, 
such as Magellan (Venus), MRO (Mars), Cassini (Saturn), Messenger (Mercury), Juno 
(Jupiter), and, in the forthcoming future, BepiColombo (Mercury) and JUICE (Jupiter and its 
moons).  
Concerning scientific targets of interest, it needs to be highlighted that gravity field models 
are available (section 2), besides the Earth and the Moon, just for few planetary bodies such 
as the terrestrial planets Mercury, Venus and Mars. However, often such models are 
restricted only to large spatial resolutions, about one or more hundreds of kilometers, not 
enough to understand the geophysical processes that have driven formation and evolution 
of those bodies [32]. The accuracy of these models is good enough as well but just for the 
lower part of the gravity field spectra, where a sufficient signal-to-noise ratio is achieved.  
Moreover, there is much more lack of data for the external planets, where only few gravity 
field parameters have been derived for some of the gaseous planets and their main moons 
([34], [90], [91]).  
Any improvement on those targets, with a special attention to Venus, Mars and Galilean 
moons, would be very helpful in understanding their interior and the geophysical and 
geological processes that operated on them. 
To answer the need for higher space resolution and accuracy in planetary gravity fields, two 
different approaches can be pursued: 

1. to improve the measurement performance of the instrumentation used for RS; in these 
experiments the gravity field to be studied is inferred by the orbit of a spacecraft (that can 
be considered a ‘proof mass’ falling in the overall external gravity field) and an 
accelerometer is used to measure the Non-Gravitational Perturbations (NGP) perturbing 
the spacecraft free-fall, i.e. its motion from a pure (in principle) geodesic of space-time. 
An improvement of the accelerometer performance and its integration within an enhanced 
tracking system used to measure the spacecraft position and velocity, are needed 
conditions to improve the performance of gravity field reconstruction. 

2. to introduce innovative measurement concepts, allowing to overcome some of the 
bottlenecks of the current methods (non-continuous monitoring, field attenuation with the 
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altitude, disturbances mitigation, etc., [18]). In a roadmap definition, one of the more 
promising is the gravity gradiometry technique, which would allow to directly sense the 
gravity field by measuring the gravity gradients, and not just indirectly, as for RT, through 
monitoring the spacecraft gravitational perturbations. Unlike the radio-tracking, space-
based gravity gradiometry has still to unfold its potentialities; indeed, the ESA’s GOCE 
mission is the first and unique till now that has flown a gravity gradiometer to explore 
Earth’s gravity in 2009-13 [136]. The planetary gradiometry still awaits achievements 
outside the Earth System.  

 
Satellite gradiometry refers to the measurement of acceleration differences, ideally in all 
three spatial directions, between the test-masses of an ensemble of accelerometers inside 
one satellite [18]. The differentiation of gravity accelerations allows to highlight small-scale 
surface and sub-surface features, making such a technique, differently wrt RT, inherently 
sensitive to medium and large degrees (i.e. high resolutions) of the spherical harmonic 
representation of the gravity field. Therefore, the use of gradiometry would allow to improve 
the gravity field knowledge by measuring medium and large degrees, filling the gap above 
depicted and fostering the investigation on the structure and evolution of the planets. 
 

The activity of this PhD Thesis starts from the definition of the planetary gravity field state of 
the art and the identification of the needs of the scientific community to improve the planetary 
bodies knowledge. Based on this result, a selection of targets of interest will be operated. A 
review of the gravity field measurement techniques will be carried out, identifying 
advantages and drawbacks, pointing out innovative techniques such as gradiometry. On the 
basis of these activities, a series of numerical simulations will be implemented to produce 
the time series of gradiometric signals foreseen in a set of case studies. The choice of the 
case studies will be based on the preliminary studies about the science needs. The main 
outcome will be a set of requirements to be matched by a typical gradiometric 
instrument/mission, aiming at fulfilling the scientific needs. An important requirement would 
be, for instance, the typical instrument sensitivity and spectral band, as well as the expected 
acceleration or gravity gradient amplitude of a signal sensed with a reasonable signal-to-
noise ratio. Different scenarios will be simulated on the basis of the science needs.  

In chapter 2 the gravity field is faced from the theoretical point of view and a snapshot of the 
current understanding of gravity field of planetary bodies is carried out. At last, science 
needs are identified and planetary bodies of interest are selected. 

In chapter 3 measurement techniques of the gravity field are described, focusing the 
attention on the gravitational gradiometry. Advantages and drawbacks are considered. 
Moreover, spaceborne, airborne and groundborne gradiometric instruments have been 
identified and analysed to identify the current state of the art.    

In chapter 4 gravity mission needs are identified in terms of science and mission 
requirements. Afterwards, a matlab code developed to compute the gravity gradient signal 
expected in some case studies is described and evaluated. At last, analysis of ways to 
increase the sensitivity of gradiometers is carried out.  

In chapter 5, based on analysis of previous chapters, an instrument concept is introduced 
and analysed to match the requirements identified. The basic performance are derived, 
discussed and compared to the signal that is expected to be measured according to the 
computation carried out with the matlab code. Future work foresees to further develop the 
concept and to further deep the analysis of the identified gradiometer configurations.       
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2. The Gravity Field of Planetary Bodies 

2.1 Scientific motivations 

The study of the origin and the evolution of the Solar System is a relatively recent domain in 
the modern science investigation. After the first studies in 1500-1600 with Tycho Brahe, 
Johannes Kepler and Galileo Galilei, followed by the discovery of the gravitational law by 
Isaac Newton, Solar system bodies were intensively studied by astronomers and physicists. 
A fundamental breakthrough in this direction was the beginning of the space era on the 4th 
of October 1957. That day, a small round-shaped object launched by the URSS, Sputnik 1, 
become the first artificial satellite orbiting the Earth. Since then, the run to conquer the space 
environment around Earth is increased, powerfully pushed by the struggle between USA 
and URSS during the Cold War. Moreover, the extraordinary technological developments 
achieved in the previous decades allowed to make conceivable the exploration of space well 
beyond the Earth’s closeness. The rush to space was extended to Moon at first, followed by 
Venus, Mars, Mercury. Each mission pushed some steps forward in the technological 
capability of sending an artificial probe to specific targets, routing it on the right path, and 
communicating and commanding it following the desiderata. At the same time, the capability 
of hosting on-board sensing instruments working at different wavelengths and able to study 
multiple aspects of the bodies increased more and more. Such probes allowed to study 
different aspects of planetary bodies such as atmosphere, surface and interiors through the 
use of on-board payloads devoted to sound with cameras, spectrometers, altimeters, radar 
at several wavelengths of the electromagnetic spectrum. At last, the spectacular 
achievement of landing human beings on the Moon in 1967, proved that the Solar System 
was not so far from us as before.           
The coming of space era on the 4th October 1957 with the launch of Sputnik gave a strong 
push to the study of the Solar System with the use of spacecrafts launched very close to 
their object of investigation. However, besides this wondering possibility, since from the first 
Sputnik was clear that the spacecraft itself could bring valuable science benefits simply 
observing its orbital motion. Actually, the orbit followed by a spacecraft around a central 
body (Earth or other) is ruled out by the Kepler laws which are loosely related to the Newton’s 
Law of Gravitation. The gravitational force affects the behaviour of the spacecraft which acts 
as a test mass plunged into the field generated by the central body. The characteristics of 
the orbit reflect peculiarities of the body mass distribution. The Kepler laws are exactly 
satisfied when we deal with bodies of spherical shape and homogeneous mass distribution. 
When the shape starts differing from it, deviations arise as much as the shape become more 
complex and variable. The capability of identifying those peculiarities are tightly loose to the 
ability to accurately follow the trajectory of the spacecraft.           
It needs to highlight that in this chapter just satellite methods to determine the gravity field 
will be addressed, whereas groundborne, shipborne and airborne techniques, essentially 
based on absolute and relative gravimetry, are not dealt with. 
Therefore, precise and detailed knowledge of the gravity filed of celestial bodies is essential 
for revealing and understanding their internal structure and composition, and also for 
applications such as mission operations.  
In this field, generally named planetary sciences, the science approach is necessarily 
interdisciplinary, involving knowledge of geology, geophysics, astronomy, astrophysics, 
science of atmosphere, biology, chemistry and a lot of other disciplines. Due to its natural 
pervasiveness and to the capability of attraction and modelling of macroscopic mass objects, 
the research and study of the gravity field is an integral part of planetary sciences. Indeed, 
origin, development and evolution of Solar System, both as whole and as its main 
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components such as Sun, planets, asteroids and comets, are deeply related to the gravity 
field interactions. Gravity field information constitute powerful constraints and indications for 
the reconstruction of planets history and evolution, from the formation till to the current 
imagine.   
It needs to highlight that in this thesis just satellite methods to determine the gravity field will 
be addressed, whereas groundborne, shipborne and airborne techniques, essentially based 
on absolute and relative gravimetry are not dealt with. 
 

Table 2-1 Milestones in the measurement of gravity field through satellite geodesy (adapted 
and elaborated from [48])   

Year Event Implications 
1958 Determination of the oblateness from 

tracking of Sputnik 
• Definitive determination of the 

Earth’s oblateness 

1959 Determination of the “pear shape” of the 
Earth (odd zonal harmonic) 

• First determination of a gravity 
term not associated with rotation 

• Showed that Earth has major 
density variations not 
associated with isostaic 
topographic compensation 

1963 Longitudinal variations from camera 
tracking included in gravity field 
determination 

• confirmed the “10−5 𝑙2⁄ ” rule for 
the decrease in magnitude of 
variations in gravity with degree 
l; ± 27 𝑚 rms error in the geoid 

1965 Doppler tracking from US Navy TRANET 
network included in gravity filed 
determination 

• significantly improved gravity 
filed accuracy to ± 12 𝑚 rms 
error in the geoid 

1968 Effetcive satellite-to-satellite tracking, i.e. 
Earth to lunar satellite 

• Mapped the front-side field of 
the Moon to better accuracy 
than contemporary 
measurements of the Earth 

1975 The first altimetric satellite Geodetic 
Satellite Mission (GEOS-3) 

• Measured sea-level height at 
the 1 m-level, an order of 
magnitude improvement in the 
ocean geoid 

1979 Incorporation of laser ranging data into 
gravity field solutions 

• Significantly reduced systematic 
error and improved accuracy of 
the geopotential field 

1979 Gravity field of Mars determined from 
Mariner orbiters  

• Showed a gravity field twice as 
great in its irregularities as 
predicted from Earth’s field 

1981 Gravity field of Venus determined from 
Pioneer orbiter 

• Showed a gravity field of much 
greater geoid:topography ratio 
that the Earth’s, implying depths 
of compensation greater than 
100 km 

1983 Generation of marine gravity field from 
Seasat data  

• Revealed major uncharted 
tectonic features of the ocean 
floor 

1983 Detection fo the change in Earth’s 
oblateness from high LAGEOS spacecraft 

• Implied an increasing spin rate 
consistent with the long-term 
post-glacial motion of matter 
toward the rotation axis 
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2.2 Theoretical foundation  

2.2.1 Gravitation and orbits 

 
The gravitation is a physical phenomenon so remarkably widespread and ubiquitous for the 
humankind that since the ancient ages it has been generally considered for granted and 
accepted without other significant speculations. Ancient populations, at first Chaldeans and 
Babylonians, conducted widespread observations and understanding of astronomical 
phenomena such as Moon, Sun and stars motion exploiting them especially for agriculture 
and religion concerns. Several Greek astronomers and mathematicians, among them 

1987 Incorporation of tidal variations in gravity 
field determination 

• Provided important constraints 
on ocean-tide solutions  

1987 Analysis of monthly gravity data from 
LAGEOS and complementary 
atmospheric pressure data 

• Linked seasonal variations of 
the geopotential with 
atmospheric pressure variations 

1993 Comprehensive solution incorporating 
altimetry, surface gravimetry, an GPS 
tracking (Joint Gravity Model – JGM3) 

• Determined the gravity field to 
the 70th degree, plus tides, to an 
estimated geoid accuracy of  
± 0.5 𝑚    

1995  Mass of asteroid 243 Ida determined from 
Galileo spacecraft Doppler tracking  

• Bulk desity consistent with 
“rubble-pile” model of asteroids 

1995 Inference of tidal Love number of Venus 
from Magellan Doppler Tracking 

• The high value (0.27) indicated 
that Venus has a completely 
fluid core, consistent with the 
absence of an energy source for 
a Venusian magnetic field  

1995 Geodesy satellite altimetry (ERS-1 
acquired; Geosat declassified) 

• Led to a global map of the 
oceanic gravity field with a 
resolution of 20 km  

1996 Measurement of the ellipsoidal fields of 
the Galilean satellites 

• Moment of inertia indicated big 
irone cores in Ganymede and 
Europa, a modest core in Io, and 
no core in Callisto 

2000 First satellite-to-satellite mission around 
Earth, in the high-low mode (CHAMP) 

• global magnetic and gravity 
fields mapping 

2002 First satellite-to-satellite mission around 
Earth, in the low-low mode (GRACE) 

• First systematic and continouos 
measure of the time-variable 
gravity field (monthly) 

2009 First space gradiometer mission around 
the Earth (GOCE) 

• measurement of the geoid with 
an accuracy 1-2 cm and gravity 
anomaly 1-2 mGal, till to degree 
and order l ~200 (~ 100 km) 

2011 First satellite-to-satellite mission around 
Moon (GRAIL) 

• measurement of the lunar 
gravity field to degree and order 
𝑙 = 1800  

2018 Extension of GRACE mission (GRACE-
FO), added inter-satellite laser link   

• continuity of the GRACE 
measures, improvement in the 
inter-satellite ranging 
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Eratosthenes, Hypparchus, Pytagoras and Ptolemaeus, faced many problems concerning 
geometry, mathematics along with Earth shape, stars motion and at last the ancient 
cosmogony, summarised in the “Almagest” by Ptolemaeus [11]. Ptolemaeus, also on the 
basis of previous speculations from Hipparchus, developed his theory for an Earth-centred 
Solar System, which allowed to explain the observed motion of Sun and planets, although 
with an increasing complexity. However, the time to face the physical cause of observed 
motions was far to come. The Greek philosopher Aristotle asserted that gravitation is a 
natural property of material things, causing them to fall or rise (in case of some gases), and 
the more material the greater this tendency [6]. Till to the arrival of the scientific method, no 
further explanation was needed. 
A first attempt to bridge the gap between ancient times and modern epoch was realised by 
Nicholas Copernicus (1473-1543). His work emerged in a period of significant 
transformations and innovations such as the discovery of the New World by Cristoforo 
Colombo, the invention of the telescope, with its reconstruction and the consequent 
applications by Galileo, and the development of the printing press by Johann Gutenberg. 
Copernicus devoted more than 31 years to understand the fundamental motions of the Solar 
System and summarised his work in the “De Revolutionibus Orbium Coelestium”. He 
proposed a planetary system Sun-centred, changing radically the traditional view by 
Ptolomaeus. Indeed, the theory of Copernicus showed off three differences with respect to 
Ptolemaic theory: the Sun at the centre, new numbers and data, details of planetary motion 
[1].             
In between 1500 and 1600 Galileo Galilei (1564-1642), the father of the experimental 
method, was the first one to face in depth the nature of gravitation through observations and 
investigations. His experiments on the falling bodies allowed to change the Aristotelian view 
and to separate the action of the gravitation from the mass of the falling object. Indeed, he 
proved the “Universality of Free-Fall” (UFF), i.e. different bodies fall with the same 
acceleration, disregarding the mass of the body. Galileo was the first to test the UFF, using 
two pendula of different composition to an accuracy of about 10-3 [7][8][9]. Today this has 
been verified with very high accuracy and it constitutes the bulk of Einstein Equivalence 
Principle in the weak version (Weak Equivalence Principle). Although this was a giant step 
from the philosophical speculation to the scientific evidence, Galileo experiments faced just 
locally the behaviour of bodies under the gravitation influence.         
A further step towards the understanding of gravitation happened at the beginning of 1600. 
Johannes Kepler (1571-1630), capitalising on the availability of several years of accurate 
observations of planets that Tycho Brahe had carried out to develop his model of the 
planetary system, tried fitting different geometrical curves to those data, in particular related 
to the position of Mars. After almost a year he found out the ellipse as possible fitting 
solution. After this first result, in 1609 Kepler published the first two laws of planetary motion, 
whereas the third one followed in 1919. The famous Kepler’s laws marked an historical 
breakthrough in astronomical and physical science because they explained for the first time 
the planets motion in a simpler manner with respect to Ptolemaeus theory. Such an 
extraordinary result needed to reject the hypothesis of Earth at the center and circular orbits: 
 

1. First Law: the orbit of each planet is an ellipse with the sun at one of its foci 
2. Second Law: each planet revolves so that the line joining the planet to the Sun 

sweeps out equal areas in equal time (Law of areas)   
3. Third Law: the square of the period of a planet (𝑇) is proportional to the cube of 

its mean distance from the Sun 
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The third law in the generalised form (i.e. 𝑚 not negligible with respect to 𝑀) is formulated 
often as in the following: 
 

𝑎3

𝑇2
=
𝐺(𝑀 +𝑚)

4𝜋2
 

 
where 𝑎 is the semi-major axis, 𝑇 is the orbital period, 𝑀 and 𝑚 are the masses of two 
orbiting bodies. For the Solar System, the condition 𝑀 ≫ 𝑚 is well satisfied with 𝑀 mass of 

the Sun and 𝑚 mass of the planet, hence the ratio 𝑎3 𝑇2⁄  can be considered a constant.      
However, these laws were just a cinematic description of the motion whereas an explanation 
of causes, of the dynamics, remained unsolved till to Newton. 
 
Isaac Newton (1642-1727) in 1665 was a student at the University of Cambridge when an 
outbreak of plague forced the University to close till the spring of 1667 [1][25]. The obligated 
“holidays” were the most creative period of Newton since he was able to produce the law of 
gravitation, the three laws of motion and developed the fundamentals of differential calculus 
[25]. However, the complex personality of the man prevented the publication of most of those 
results for more than twenty years. Edmund Halley (1656-1742), the discoverer of the comet, 
was the most important supporter of Newton work. At last Halley convinced Newton to 
complete and to publish all his work on planetary motion. Two years occurred to complete 
all the process in 1686. The publication, paid by Halley and published in 1687, is the famous 
and monumental “Philosophiae Naturalis Principia Mathematica” where, besides the laws of 
motion, the law of Universal Gravitation was stated by Newton. With his studies and on the 
basis of results of his pioneers Newton concluded that the motion of Moon and planets obeys 
the same law of falling objects on the Earth (the famous “apple”). Figure 2-1 shows the link 
between the two phenomena apparently disconnected. This intuition allowed to him to 
formulate the law of Universal Gravitation: both the fall of objects on the Earth and the motion 
of planets is attributed to an attractive force, the gravitation, and the law states that two 
bodies are attracted each other with a force 𝐹 proportional to the product of their masses, 
𝑀 and 𝑚, and to the universal gravitational constant, 𝐺, inversely proportional to the square 
of their relative distance 𝑟 and which acts along the line joining the body centres: 
    

𝐹⃗ = −𝐺
𝑀𝑚

𝑟2
𝑟̂ 

          
Newton concluded with his studies on the basis of Kepler observations and the three laws.  
The standard and known value of the gravity acceleration 𝑔⃗ is 9.8 𝑚/𝑠2. This value for the 
gravitational acceleration was for a long time assumed to be constant for the entire planet. 
However, the use of more and more sensitive tools allowed to verify that the force of gravity 
actually varies from place to place on the surface of the planet. The standard value refers to 
Earth as a homogeneous sphere, but actually this value ranges from a minimum of 
9.78 𝑚/𝑠2 at the Equator to a maximum of 9.83 𝑚/𝑠2 at the poles. 
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Figure 2-1: Figure extract from “De mundi systemate” by Isaac Newton (1715), Vol. 3 of 
“Philosophiae Naturalis Principia Mathematica”, which depicts as the free-fall of objects and the 

planets orbit have the same origin      

 
Indeed, the global gravity field of a planet is the result of the superposition of several 
contributions whose signals decrease as much as the spatial scale reduces. Figure 2-2 
shows different ssources of signal and the related order of magnitude with respect to the 
global signal  𝑔⃗. Effects of first order come from the spherical shape. For instance, 
considering the Earth, the contributions to the gravity acceleration 𝑔⃗ are the effects of a 
spherical Earth at order one. The most significant deviation from the standard value of g is 
a result of Earth’s rotation. As Earth spins, its shape is slightly flattened into an ellipsoid, 
followed by the flattening due to rotation.  Effetcs due to rotation and equatorial bulge are of 
order 10−3𝑔, mountains and ocean trenches are of order 10−4𝑔 and so on.   
 

 

Figure 2-2: components of the gravitational acceleration in terms of sources and related order 
of magnitude (rielaboration from [136])      
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2.2.2 Spherical harmonics 

 
The gravitational force is described by the Newton’s law which states that the force is 
proportional to the masses of the involved bodies and to a universal constant G, the 
universal gravitation constant (the first constant of physics), whereas at the same time 
scales as inverse of the squared distance between the bodies: 
 

𝐹⃗ = −𝐺
𝑀𝑚

𝑟2
𝑟̂ 

 
According to the classical theory, the gravitational field is a vector field which is generated 
by a mass 𝑀 following the expression: 
 

𝑔⃗ = −𝐺
𝑀

𝑟2
𝑟̂ 

     
derived from the previous equation and in which 𝑔⃗ is the usual gravitational acceleration. 
Being the gravitational force a conservative field, it can be expressed through a potential: 
 

𝑉 = −𝐺
𝑀

𝑟
 

 
i.e. for an extended body: 

𝑉(𝑥⃗) = 𝐺 ∫
𝜌(𝑥′⃗⃗⃗⃗ )

|𝑥⃗ − 𝑥′⃗⃗⃗⃗ |
𝑑𝑥′⃗⃗⃗⃗  

 

where 𝜌 is the mass density of the body located at 𝑥′⃗⃗⃗⃗ , 𝑥⃗ is the position where the potential 
is evaluated on all the volume supporting the mass distribution, such that: 
 

𝑀 = ∫𝜌(𝑥′⃗⃗⃗⃗ ) 𝑑𝑥′⃗⃗⃗⃗  

 
and the gravitational acceleration can be obtained from: 
 

𝑔⃗(𝑥⃗) = −∇𝑉(𝑥⃗) 
 
The gravitational acceleration satisfies the Laplace equation: 
 

∇ ∙ 𝑔⃗ = −4𝜋𝐺𝜌 
 
Combining the previous equations, we get: 
 

∇2𝑉 = −4𝜋𝐺𝜌 
 
which is the well-known Poisson’s equation [10][11]. If we apply the equation outside the 
attracting body, in empty space, the density is zero and the Poisson equation is reduced to 
the Laplace’s equation: 
 

∇2𝑉 = 0 
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or explicitly: 

𝜕2𝑉

𝜕𝑥2
+
𝜕2𝑉

𝜕𝑦2
+
𝜕2𝑉

𝜕𝑧2
= 0 

 
In general, any function 𝑉(𝑥, 𝑦, 𝑧) which is solution of the Laplace’s equation is a harmonic 
function. Moreover, it can be proved that every harmonic function is analytic, i.e. it is 
continuous and has continuous derivatives of any order [10]. Hence, the gravitational 
potential generated by an extended body is harmonic at all points where there are no 
attracting masses and hence also the outer potential of a planetary body. This result is very 
important since it opens the possibility to represent in advantageous way the gravitational 
potential of a body in space (hence the gravity field). To do this, it occurs to look for solutions 
of the Laplace’s equation.  
Solutions of the Laplace’s equation can be better determined by using spherical geocentric 
coordinates 𝑉 = 𝑉(𝑟, 𝜑, 𝜆) (Figure 2-3), where 𝑟 is the distance from the center, 𝜑 is the 
latitude [−𝜋 2⁄ ,+𝜋 2⁄ ] and 𝜆 is the longitude [0, 2𝜋].  
 

 
Figure 2-3: spherical and rectangular coordinates (from 10) 

 
Considering the transformations which relate spherical and cartesian coordinates: 
 

{
𝑥 = 𝑟 cos 𝜃 cos 𝜆
𝑦 = 𝑟 cos 𝜃 sin 𝜆
𝑧 = 𝑟 sin𝜑

 

 
the Laplace’s equation in spherical coordinates [11]. 
In general, the equation is not easy to solve, apart considering simple boundaries [6] [11]. 
This is the case when the gravitational potential has spherical symmetry around the origin, 
that is 𝑉(𝑟, 𝜑, 𝜆) = 𝑅(𝑟). In this condition, all the possible spherically symmetric harmonic 
functions are as the following [11]: 
 

𝑅(𝑟) =
𝑘

𝑟
+ 𝑐𝑜𝑛𝑠𝑡 

 
Choosing the constant equals to zero, it derives that the solution coincides with the 
gravitational potential of a point mass in the origin and with mass 𝑀 = 𝑘 𝐺⁄ . This implies that 
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the gravity field generated by two spherically symmetric planets with equal mass is the same 
outside both planets. In general, the same harmonic function can be generated by many 
different mass distributions [10]. It is therefore not possible to determine uniquely the mass 
distribution from the external potential; the inverse problem of the potential theory, i.e. the 
determination of the internal mass distribution of a planetary body from the measure of the 
gravitational field on or outside its surface, has no unique solution. Additional information is 
needed to determine uniquely the mass distribution, for instance, through the planet rotation, 
seismology, or magnetic field. In general, the problem of computing the harmonic function 
inside or outside a surface 𝑆 (not necessarily a sphere) from its boundary values on 𝑆 is 
known as Dirichlet’s problem [10].        
The most important harmonic functions are the spherical harmonics. Considering spherical 
shapes (approximation for the planet surface) and adopting spherical coordinates, we look 
for solutions by separating the variables in the shape 𝑉(𝑟, 𝜃, 𝜆) = 𝑓(𝑟)𝑌(𝜃, 𝜆). It can be 
proved [10][11] that solutions of the Laplace equation are the following functions: 
 

𝑉(𝑟, 𝜑, 𝜆) = 𝑟𝑙 𝑌(𝜑, 𝜆) 
 

𝑉(𝑟, 𝜑, 𝜆) =
𝑌(𝜑, 𝜆)

𝑟𝑙+1
 

 
with 𝑙 a suitable integer constant. These functions are known as solid spherical harmonics, 
whereas the angular parts are known as surface spherical harmonics [10]. The solutions 

with 𝑟𝑙 describe the gravity field inside a cavity surrounded by a mass distribution: they are 

internal harmonics. Those with 1 𝑟𝑙+1⁄  describe the gravity field outside the cavity including 
the mass distribution: they are external harmonics and are of interest for the gravity field 
representation.      
Approaching in the same way for functions 𝑌(𝜃, 𝜆) and looking for solutions in the shape 

𝑌(𝜃, 𝜆) = 𝑔(𝜃)ℎ(𝜆), it can be proved that solutions are as follows [10]: 
 

𝑌𝑙(𝜃, 𝜆) = 𝑃𝑙𝑚(sin𝜑) cos𝑚𝜆 
 

𝑌𝑙(𝜃, 𝜆) = 𝑃𝑙𝑚(sin𝜑) sin𝑚𝜆 
 
where 𝑙 and 𝑚 are integers, 𝑃𝑙𝑚(sin 𝜃) are the so-called Legendre functions which are used 
to derive these solutions [11]: 
 

𝑃𝑙𝑚(sin𝜑) = (1 − sin𝜑
2)𝑚 2⁄ ∑𝑇𝑙𝑚𝑗 sin𝜑

𝑙−𝑚−2𝑗

𝐿

𝑗=0

 

where 𝐿 is the integer part of 𝑙 − 𝑚 2⁄  and: 
 

𝑇𝑙𝑚𝑗 = −
(𝑙 − 𝑚 − 2𝑗 + 1)(𝑙 − 𝑚 − 2𝑗 + 2)

2𝑗(2𝑙 − 2𝑗 + 1)
𝑇𝑙𝑚𝑗−1 

 
The general solution of the Laplace’s equation will be a linear combination of all those 
solutions, i.e., limiting just to external harmonics, as in the following [11][12]: 
 

𝑉(𝑟, 𝜆, 𝜑) =
𝐺𝑀

𝑟
∑∑ (

𝑅

𝑟
)
𝑙

𝑃𝑙𝑚(sin𝜑)(𝐶𝑙𝑚 cos𝑚𝜆 + 𝑆𝑙𝑚 sin𝑚𝜆)

𝑙

𝑚=0

+∞

𝑙=0

 (2-1) 
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or, equivalently: 
 

𝑉(𝑟, 𝜆, 𝜑) =
𝐺𝑀

𝑅
∑∑ (

𝑅

𝑟
)
𝑙+1

𝑃𝑙𝑚(sin𝜑)(𝐶𝑙𝑚 cos𝑚𝜆 + 𝑆𝑙𝑚 sin𝑚𝜆)

𝑙

𝑚=0

+∞

𝑙=0

 (2-2) 

 
where 𝑅 is a reference radius (the equatorial radius, in general), 𝑃𝑙𝑚 are the fully normalised 
Legendre functions, 𝑙 and 𝑚 are respectively degree and order of spherical harmonics, 𝐶𝑙𝑚 
and 𝑆𝑙𝑚 are the coefficients of the spherical harmonics or Stokes’. This expression is 
provided in geocentric spherical coordinates 𝑟, 𝜆, 𝜑, respectively radius, longitude and 
latitude (see Appendix for a definition).  
The consequence is that the gravitational potential 𝑉 of a planetary body is a harmonic 
function in free space and at the same time every harmonic function can be represented as 
a Newtonian potential of a mass distribution. This result is very important and allows to 
represent the gravitational field in terms of potential 𝑉 generated by a body at any point  𝑃(𝑟,
𝜆, 𝜑) on and above its surface by summing up over degree and order of a spherical harmonic 
expansion.    
The harmonic coefficients (𝐶𝑙𝑚,  𝑆𝑙𝑚) constitute the spectrum of the harmonic expansion and 
are therefore sometimes named spectral coefficients. Known such coefficients of a specific 

degree 𝑙 over orders 𝑚 (𝑚 = 0,1,2… 𝑙), the power spectrum of the field 𝜎𝑙
2 (or 𝒄𝒍), also named 

signal degree variance, can be computed as [15][16][17][125]: 
 

𝜎𝑙
2 = ∑(𝐶𝑙𝑚

2 + 𝑆𝑙𝑚
2 )

𝑙

𝑚=0

 (2-3) 

 
The degree variance can be interpreted as the power spectral density of a function and it 
indicates the energy content of the signal per frequency 𝑙.  
Often, the square root of the power spectrum, the Root-Mean-Square value (RMS) per 
degree, also known as signal degree amplitude and somewhere indicated as 𝜎𝑙, is used in 
place of the power spectrum to evaluate the gravity signal amplitude: 
 

𝜎𝑙 ≡ √𝑐𝑙 = √∑(𝐶𝑙𝑚
2 + 𝑆𝑙𝑚

2 )

𝑙

𝑚=0

 (2-4) 

 

Moreover, the signal degree-order variances 𝜎𝑙𝑚
2  can be computed as well from the previous 

power spectrum when the power spectrum is averaged over all the m degrees: 
 

𝜎𝑙𝑚
2 =

𝜎𝑙
2

2𝑙 + 1
 (2-5) 

 
More often, the square root of the signal degree-order variances, 𝜎𝑙𝑚, is used. They are 
referred to as RMS power per coefficient per degree and represent the expected average 
(RMS) signal content per 𝑙, 𝑚: 

𝜎𝑙𝑚 ≡
𝜎𝑙

√2𝑙 + 1
= √

𝜎𝑙
2

2𝑙 + 1
 (2-6) 
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The degree and degree-order variances 𝜎𝑙
2, 𝜎𝑙𝑚

2 can be computed, beside in terms of unitless 
coefficients (i.e. by using the normalised spherical harmonic coefficients), also for a given 
gravity functional, such as geoid heights (𝑁, unit 𝑚, coefficient 𝑅), in terms of gravity 

anomalies (𝛥𝑔, unit 𝑚/𝑠2, coefficient (𝑙 − 1)𝐺𝑀 𝑅2⁄ ), and in terms of vertical gravitational 

gradient (double spatial derivative of radial gravitational potential Γ𝑟𝑟, unit 𝑠−2, coefficient 

(𝑙 + 1)(𝑙 + 2)𝐺𝑀 𝑅3⁄ ). 
The signal degree amplitude in terms of geoid height, gravity anomaly and vertical 
gravitational gradient are the following ones: 
 

𝜎𝑙(𝑁) = 𝑅 𝜎𝑙 
 

𝜎𝑙(𝛥𝑔) = (
𝐺𝑀

𝑅2
) (
𝑅

𝑟
)
𝑙+2

(𝑙 − 1) 𝜎𝑙 

 

𝜎𝑙(Γ𝑟𝑟) = (
𝐺𝑀

𝑅3
) (
𝑅

𝑟
)
𝑙+3

(𝑙 + 1)(𝑙 + 2) 𝜎𝑙 

(2-7) 

 
Typically, an estimate on the RMS of the gravity coefficients per degree is achieved by using 
a rule established by Kaula [13] in 1963. Kaula’s rule states that the RMS of Stokes 
coefficients follows a power law according to: 
 

𝜎𝑙𝑚 =
𝜎𝑙

√2𝑙 + 1
= √

∑ (𝐶𝑙𝑚
2 + 𝑆𝑙𝑚

2 )𝑙
𝑚=0

2𝑙 + 1
=
𝑘

𝑙2
 (2-8) 

 
where 𝑙 is the degree of the coefficient and 𝑘 is a constant whose value depends upon the 

planet: k ≅ 9 10−6 for Earth [53], k ≅ 1.2 10−5 for Venus [64], k ≅  8.5 10−5 for Mars [80], k ≅
3.6 10−4 for the Moon [131], c ≅ 4 10−5 for Mercury [54].  
This rule has been used as an a priori information bound on the gravity coefficients of other 
planetary bodies before their gravity fields are measured by spacecraft. 
In planetary geodesy, the science of the measurement and representation of the planets, 
the gravity field of a planet is analysed in terms of a “gravity field model”, i.e. a mathematical 
representation of the gravity field in the three-dimensional space through a spherical 
harmonic expansion [14]. The gravity field model is used to approximate the real gravity 
field. However, in order to model the real gravity field exactly, we would need infinite 
coefficients perfectly determined. This is not possible and just a limited number of 
coefficients can be determined and used to approximate the real field as accurately as 
possible. In this frame, a gravity field model foresees a maximum degree 𝑙𝑚𝑎𝑥 and includes 
(𝑙𝑚𝑎𝑥 + 1)

2 coefficients [12]. The model represents the planet’s gravity field with a spatial 
resolution depending on the maximum degree 𝑙𝑚𝑎𝑥. Its accuracy is established by two 
errors, namely omission and commission error [15].   
The omission is referred to the error occurring because of the truncation of the spherical 
harmonic series expansion at some degree (𝑙𝑚𝑎𝑥); indeed, the terms above the maximum 
degree (shorter wavelength than the resolution limit of the model) are omitted.  
The commission is related to the errors existing in the potential coefficients themselves, i.e. 
the accuracy of the Stokes coefficients (𝐶𝑙𝑚 and 𝑆𝑙𝑚). Since the coefficients cannot be 
determined perfectly, every single coefficient has an error component (formal or calibrated). 
Moreover, higher degree coefficients are subjected to larger errors. Indeed, the accuracy 
refers to a certain wavelength interval and it is different for different wavelength intervals. At 
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last, the commission error increases as the maximum degree, 𝑙𝑚𝑎𝑥, of the spherical 
harmonic expansion increases, whereas the omission error decreases.  
The representation of the gravity field through equation (2-1) with a maximum degree 𝑙𝑚𝑎𝑥 
corresponds to a low-pass filtering, where 𝑙𝑚𝑎𝑥 refers to the spatial resolution at the Earth 
surface [12]. An estimate of the smallest gravity field feature represented by the gravity 
model (the shortest half-wavelength 𝜓𝑚𝑖𝑛) is as follows [12]: 
   

𝜓𝑚𝑖𝑛 =
𝜋𝑅

𝑙𝑚𝑎𝑥
 (2-9) 

 
Where 𝑅 is the equatorial radius of the planet; such an estimate follows from the number of 
possible zeros along the equator. 
However, it can be proved that a more precise evaluation of the resolution is carried out by 
the following equation (in radians) [12]: 
 

𝜓𝑚𝑖𝑛 = 4 sin
−1 (

1

𝑙𝑚𝑎𝑥 + 1
) (2-10) 

 
The corresponding value in metric unit for the resolution is: 
 

Δ𝑠 = 𝜓𝑚𝑖𝑛𝑅 
(2-11) 

This value characterises the size of the smallest feature, half-wavelength, which can be 
produced by the (𝑙𝑚𝑎𝑥 + 1)

2parameters. 
Three different spherical harmonics coefficients are identified (), according to the terms: 
 

𝑃𝑙𝑚(sin𝜑)(cos𝑚𝜆) 
 

𝑃𝑙𝑚(sin𝜑)(sin𝑚𝜆) 
 
the zonal coefficients (𝑙 ≠ 0,𝑚 = 0), the sectorial coefficients (𝑙 = 𝑚 ≠ 0) and the tesseral 
coefficients (𝑙 ≠ 0, 𝑙 ≠ 𝑚 ≠ 0). Each one corresponds to a different mass distribution, as 
shown in Figure 2-4, along with a scheme of the coefficients structure [17].  
In these developments, the coefficients of the spherical harmonics have to be determined 
by the particular mass distribution for any given planet or body. If these coefficients can be 
inferred from some method, the expansion in spherical harmonics can be “inverted”, in 
principle, to find out the mass distribution inside the planet required to produce these 
coefficients. Indeed, the characteristics of the gravitational field outside a planet are 
completely established by its internal mass distribution. However, gravity information alone 
is not enough, as highlight above, to determine the internal mass distribution of a planet [11].  
 
The physical quantities that can be derived from the gravity field are typically named gravity 
field functionals [20][15]. For some of them, additionally, the knowledge of a reference 
system is necessary. There are functionals which are 3-D functions in the space outside the 
Earth, and there are functionals which are only dependent on latitude and longitude, 
therefore they are 2D functions. 
Such gravity functionals are introduced in order to translate the “raw” gravitational 
information derived from the measurement of spherical harmonics coefficients into 
geophysical and geodetic quantities useful to be processed and interpreted by the scientific 
community.  Such functionals are typically used in geophysics, geodesy and geology to infer 
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information about the surface and internal structures observed on a planet. It is worth here 
to mind that the geodesy is the discipline that deals with the measurement and 
representation of the Earth, the gravity field and geodynamic phenomena such as polar 
motion, Earth tides and crustal motion. On the other hand, geophysics uses gravity to learn 
about the density variations of the Earth’s interior, whereas classical geodesy uses gravity 
to define the geoid.  

 

 

Figure 2-4: Representation of the different types of spherical harmonic coefficients [17]  

 
Four main observables are typically used: geoid height (known also as geoid undulation or 
anomalies), gravity disturbances, gravity anomalies and gravity-gradients. The origin of 
these functionals is well understood considering that gravity of a planet is closely associated 
to three different surfaces: the topographic surface (the real planet surface), the ellipsoidal 
surface (geometrical model), i.e. a mathematical model of the surface, and the geoid 
(physical model), i.e. a surface as defined by the planet’s gravity. Figure 2-5 helps us to 
understand the differences between those surfaces.       
 

 
 

 
Figure 2-5: Difference between geoid, ellipsoid and topography  
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The equipotential surface of the Earth’s gravity field that coincides with the Mean Sea Level 
(MSL) in the absence of currents, air pressure variation, etc., is called the geoid. 
Most of the efforts in physical geodesy are concentrated on the geoid determination with 
steadily increasing accuracy (10). The geoid is important for understanding more about 
ocean currents and is also used as a reference for traditional height systems and monitoring 
sea-level change. However, as in the case of any other equipotential surface of the Earth’s 
gravity field, the geoidal surface is also an irregular surface and too complicated to serve as 
the computational surface. 
The mathematical surface that best fits the geoid is the reference ellipsoid. The relation 
between the geoid and the ellipsoid is shown in Figure 2-5. The ellipsoid lies below the 
geoidal surface in elevated regions and above the MSL over the oceans. The geometrical 
separation between the geoid and the reference ellipsoid is called the geoidal undulation, 
N, which generally varies globally between 110 m and 30 m (21).  
On a planet the gravity is the result of combining the gravitational acceleration and the 
centrifugal rotation due to the rotation. In geodesy, such a term is used to distinguish form 
gravitation, which is referred just to the gravitational field alone. 
Each one of these surfaces can be used as vertical datum, i.e. as zero surface to which 
heigths or elevations can be referred. Hence, different “heigth” can be considered, 
depending on the envisaged application. The height of a point of the topographic surface 
can be referred to the ellipsoid and defined as the vertical wrt the ellipsoid surface: h ellipsoid 
height. Alternatively, the height can be considered as the vertical wrt the geoid, i.e. the 
surface as defined Points on or near the Earth’s surface (the subject is the same for other 
terrestrial planets) are described through three coordinates, latitude, longitude and height. 

 

2.3 Planetary Interiors 

There are different ways through which is possible to study the surface and the interior of a 
planet [29], basically identified by four approaches: seismology, magnetic field studies, 
investigation of planetary rotation, gravity analysis.  
As well known for the Earth, one of the most powerful and direct methods to investigate the 
internal structure of a planet is the analysis of seismic waves travelling through the different 
layers of the body interior. However, the transfer, sic et simpliciter, of such a methodology 
to a planet or satellite different from Earth, poses several problems. The deployment of a 
network of seismometers, for instance, on the surface of Mars or Venus, or some galileian 
or saturnian satellite (in order to study the extremely interesting interior), would be costly, on 
long-term timing and very challenging from the technological point of view. Nonetheless, 
beside the first seismometers deployed on the Moon with Apollo missions, followed by Viking 
1 and 2 on Mars, a new small step in this direction is on-going through the InSight lander, 
launched towards Mars on Mid 2018 and landed on November 2018. The unique on-board 
SEIS seismometer (Seismic Experiment for Interior Structure) collecting waves from 
marsquakes, thumps of meteorites or magma churning in depth, will provide some insights 
on the planet interior.           
Magnetic field studies investigating the magnetic induction response to time-variable 
magnetic files can help in determining how the body’s electrical conductivity (related to the 
composition) changes with depth [30]. 
The measurement of the gravity field of a planet allows to infer fundamental information 
about its internal structure and its surface. Typically, gravity field models are recovered 
through a reconstruction of the coefficients of the spherical harmonics. Depending on the 
technique applied and its characteristics (see section 3), just a limited number of coefficients 
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are determined, on the basis of the maximum degree 𝑙 to which is possible to measure with 
sufficient accuracy. Such coefficients provide information on the contribution to the gravity 
physical information at different spatial scales depending on the consider degree 𝑙. 
Moreover, those coefficients are related to geodetic and geophysical properties of the body. 
Indeed, it is possible to prove ([1], [23]) that the Stokes coefficients are the normalised 
multipoles of the planet’s mass density distribution 𝜌(𝑟) ([1], [27]). In particular, the degrees 
two harmonic coefficients of the gravity field (𝐶20, 𝐶21, 𝑆21, 𝐶22, 𝑆22) are related to the inertia 
matrix of the planet ([1], [23]) and hence depends on the distribution of the mass in the 
interiors. They can be expressed in terms of the moments of inertia: 

 

𝐶20 = −𝐽2 =
1

𝑀𝑅2
(
𝐴 +  𝐵

2
− 𝐶) 

 

𝐶21 = −
1

𝑀𝑅2
𝐼13 

 

𝐶22 =
1

4𝑀𝑅2
(𝐵 − 𝐴) 

 

𝑆22 = −
𝐼12
2𝑀𝑅2

 

 

  𝑆21 = −
𝐼23
𝑀𝑅2

 

 
where 𝑀 and 𝑅 are the mass and the mean radius of the body, respectively, 𝐶 > 𝐵 > 𝐴 are 

the principle moments of inertia of the body (𝐶 is the axial moment of inertia), and the other 
terms are the products of inertia, following the inertia matrix 𝐼: 
 

𝐼 = (
𝐴 𝐼12 𝐼13
𝐼12 𝐵 𝐼23
𝐼13 𝐼23 𝐶

) 

 
Indeed, measurements of the degree two harmonic coefficients of a planet allow to infer 
information about interior structure through the estimates of its moments of inertia. From 
these data, different geophysical models of the interiors can be compared and constraints 
can be derived to explain the observations. 
However, since there are five Stokes coefficients versus six independent components of 𝐼, 
the determination of moments of inertia from the measurements of the harmonic coefficients 
is not unique [27]. Additional information need to be gathered, for instance through the 
monitoring of the rotation state of the body [27], or altimeter data. 
Actually, this is a more general issue in gravity field determination. As pointed out by the 
Gauss theorem, the flow of the gravitational field 𝑔⃗ generated by a point mass 𝑀 across an 
oriented (from inside to outside) surface 𝑆 (including 𝑀 into the volume 𝑉) is the following: 
 

Φ(𝑔⃗) = ∫ 𝑔⃗⃗⃗⃗ ∙ 𝑑𝑆⃗⃗⃗⃗⃗
𝑆

= ∫−
𝐺𝑀

𝑟2𝑆

𝑑𝑆 cos 𝜃 = 

 

−𝐺𝑀∫  
1

𝑟2𝑆

𝑑𝑆𝑛 = −𝐺𝑀∫ 𝑑Ω
𝑆

= −4𝜋𝐺𝑀 
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Φ(𝑔⃗) = −4𝜋𝐺𝑀 

 
i.e. the flow of 𝑔⃗ is not depending on the position of the mass 𝑀 inside the closed surface 𝑆 
but just on the 𝑀 value. Moreover, the flow is null if 𝑀 is outside the surface.   
The application of Gauss theorem to compute the gravitational field flow of an extended 
mass 𝑀, enclosed in a sphere of radius 𝑅 and with the constraint of spherical symmetry (i.e. 

the value of 𝑔⃗ depends just on the distance from the centre of mass, 𝑔⃗ = 𝑔⃗ (𝑟)), across a 
sphere of radius 𝑟 allows to derive the following result: 
 

𝑔⃗ (𝑟) = −
𝐺𝑀

𝑟2
𝑟̂ 

 
i.e. a spherically symmetric extended body generates outside the body the same gravity 
field as a point mass placed at the centre of mass. The result shows up the well-known and 
general inverse gravitational problem: an exact knowledge of the gravitational field outside 
a body does not allow to infer the mass distribution inside the body interior [1],[27]. In spite 
of this, the gravity investigation approach is unique in collecting direct information on the 
mass density field, even if the knowledge is integrated and it cannot be unequivocally 
inverted [29].    
Indeed, although additional information needs to be collected to determine uniquely the 
moments of inertia, gravity measurements are fundamental to put constraints on their values 
and hence helpful to constrain the geophysical models used to describe the observations.     
In general, moments of inertia of planets are derived combining measurements of the 
second-degree harmonic coefficients of the gravity field and of the precession of the spin 
axis due to external torques. However, the measurement of the spin axis precession is not 
an easy task [23] [50], indeed other information on the rotation state can be inferred through 
quantities such as the obliquity (i.e. the inclination of the rotation axis with respect to the 
normal to the orbit plane) and the librations in longitude (i.e. small periodic oscillations from 
a uniform rotation state). 
Another important effect to be considered in the understanding of planetary interiors is the 
tidal influence on the gravitational field of the planet. Indeed, the intrinsic gravity field is 
modified with respect to the pure spherical symmetry field because of the several 
irregularities that a planet owns at different size scales. The most relevant deviations are 
typically shown up by the second-order term 𝐽2 of the spherical harmonics expansion 
(quadrupole moment). To this term contributes both the planetary rotation and the tidal 
deformation exerted by an external body (Sun, satellite, other).         
 

2.4 The Gravity Field: State of the Art and Missions  

The study of the Solar System starts on its main constituents: Sun, planets/moons and minor 
bodies, such as dwarf planets, asteroids, comets, Kuiper belt objects. Apart our star, the 
study of all these components aims at achieving a deeper understanding of the Solar 
System, its birth, its history, its characteristics features and its evolution. At the same time, 
the study of planets, through the investigation of similarities and differences and by 
comparison with the Earth, helps in better understanding our planet too. This approach is 
useful as well in the relatively new field of exoplanets researches.          
Planets of Solar System are typically divided in terrestrial planets and giant planets, 
depending on their characteristics. Jupiter, Saturn, Uranus and Neptune are named giant 
planets; they include (Sun apart) most of the mass of Solar System and are characterised, 
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for comparison with the other class, by large distances from the Sun, large sizes and 
volumes, low density, extended atmospheres, low surface temperatures and a complex and 
rich moons system. Mercury, Venus, Earth and Mars constitute the terrestrial planets; they 
are much closer to the Sun, have small diameters and volumes, high density, thin 
atmosphere, solid surfaces, few moons or none.           
 

 

Figure 2-6: The Solar System planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, 
and Neptune and the dwarf planet Pluto [31]. They are shown with their correct relative sizes 

and ordered according to their distance from the Sun.     

 
The terrestrial planets [32] show off similarities in many aspects, although the different 
evolution produced significant differences as well. They have been formed from mass 
accretion in the solar nebula. The Earth seems the only planet to be characterised by active 
plate tectonics and large height difference between the old continental crust and the young 
oceanic crust. Mercury and the Moon have a lithosphere characterised by widespread 
volcanism and impact craters. A similar snapshot foresees Mars with a characteristic 
separation between a Northern hemisphere filled by plains and a Southern hemisphere 
densely cratered. The surface seems to have been modified in its early history by 
atmospheric influences and by flows of a liquid fluid, likely water. Venus, the most similar to 
the Earth as size and mass, underwent a very different evolution that covered it by a dense 
and aggressive atmosphere, increasing significantly the surface temperature (due to an 
impressive greenhouse effect), and produced an extended volcanism.         
The giant planets [34], because of their huge masses, played a crucial role in the formation 
of the Solar System, affecting significantly the motion of many objects in the system, 
hindering the grouping of small bodies to form a planet in the asteroid belt, contributing to 
the Kuiper belt and Oort cloud formation, preserving part of the gases (mostly hydrogen and 
helium) that were existing at the time of Sun and planets formation. All the giant planets 
show off a large flattening due to a rapid rotation and a composition dominated by hydrogen 
and helium that make them fluid envelopes with no liquid or solid surface. They possess 
extended atmospheric systems with large and long-lasting clouds, crossed by zonal wind 
patterns and with compositions dominated by ammonia for Jupiter/Saturn and by methane 
for Uranus/Neptune. Apart the dominant and common composition based on hydrogen and 
helium elements, Uranus and Neptune, smaller with respect to the other two, present a 
relatively different interior structure enriched by the so called planetary “ices”, a mixture of 
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compounds such as ammonia (NH3), methane (CH4) and water (H2O), so named because 
of their occurrence on the surfaces of the major planets’ icy satellites [34][31].             
The study of planets is based on manifold sources of information [32]: imaging and 
spectrometry of the surface, atmosphere sounding, magnetic field measurements, neutral 
and charged particles detection, orbit analysis from planetary fly-bys, as in the case of the 
outer planets (Uranus and Neptune) and of a number of planetary moons or asteroids or 
comets, or from orbits of planetary orbiters. The latter one allows to retrieve information on 
the gravity field and on the rotation parameters of the body. For some planets, detailed 
topographic information exists, based on measurements of altimeters. For some bodies, 
such as Mars and Moon, rock samples can be analysed in-situ or after being returned to the 
Earth, respectively. Gravity field information combined with images showing the 
characteristic surface features allow to correlate the gravity variations observed from the 
orbit with the topography associated to the reliefs.   
In the last two decades, significant advances have been achieved in the measurement, 
modelling and interpretation of the gravity field of several planetary bodies in the Solar 
System. Such an advancement has been motivated because gravity information allows to 
derive information and place constraints on the formation, interior structure and geologic 
evolution of a planet. The characteristics of the gravitational field outside a planet are 
completely established by its internal mass distribution. Combining gravity field data, 
topographic data and some geologic assumptions [30], the gravitational inverse problem 
can be faced more effectively and important geodetic and geophysical parameters can be 
estimated. They are used to formulate planetary models and to help in addressing questions 
concerning planetary differentiation, crust formation, thermal evolution, and magmatic 
processes. 
However, there is a great variability among the achieved gravity knowledge, although to 
collect gravity data has become central to understand planetary bodies. Obviously, a great 
and extraordinary effort was directed to the Earth gravity field, through a fleet of dedicated 
satellites which started to monitor the spatial variation of the gravity field with very high 
resolution and accuracy. Moreover, the GRACE mission [79] started to measure 
systematically the time variation of the gravity field, i.e. the possibility of tracking mass 
displacements and flows, mass redistribution associated to glacier sheets, etc. A significant 
effort has been pursued for the Moon as well, especially with the GRAIL mission [101] that 
allowed to improve considerably its gravity knowledge.       
Concerning other Solar System bodies, gravity field models are available, besides Earth and 
the Moon, just for few planetary bodies such as the terrestrial planets Mercury, Venus and 
Mars. However, such models are restricted only to large spatial resolutions, about one or 
few hundreds of kilometres, not enough to understand the geophysical processes who have 
driven formation and evolution of those bodies. Moreover, such models are affected in the 
solution by the spatial variations of the Earth-orbiter tracking geometry and by the limited 
range of orbit parameters of orbiters [32]. Indeed, the quality of gravity field varies 
significantly, since it depends on different items, such as the accuracy and type of 
observations, spacecraft orbital parameters, the space environment [44].   
There is much more lack of data for the external planets, where only few gravity field 
parameters have been derived for some of the gaseous planets (Jupiter and Saturn) and 
their main moons. Any improvement on those targets would be very helpful in understanding 
their interior and the geophysical and geological processes explaining the observations. 
Indeed, models of the interior structure of all planets can be constructed from a sufficiently 
detailed knowledge of their figures and their gravity fields.     
Gravity information from all the remaining planets and moons are derived just from fly-bys 
or orbit perturbations; they provide just the most elementary gravity-related information. 
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Concerning minor bodies in the Solar System such as asteroids and comets, since the 
beginning of 2000 the gravity models, and just for low degrees, have been determined for 
few bodies. In 2000, the radio-tracking of the NEAR (Near Earth Asteroid Rendez-vous)  
spacecraft around the Eros asteroid allowed to produce a gravity model till to degree and 
order 𝑙 = 10 [104]. In 2011-2012 the Dawn spacecraft, orbiting around Vesta asteroid in the 
main belt between Earth and Mars, has been tracked by ground stations allowing to recover 
the gravity field, till degree and order 𝑙 = 20, and the main orientation parameters [105]. In 
2014-2016 the Rosetta spacecraft during the orbit around the comet Churyumov-
Gerasimenko was tracked by ground stations but just a degree and order 2 was derived. 
Indeed, the radio-tracking technique has an accuracy decreasing with the mass of the 
tracked body (section 3.2.1), therefore where the involved masses are very reduced, as 
expected for the smaller asteroids, the technique is adequate just for the main lower degrees 
( 𝑙 = 2 or little more).   
A list of the missions who contributed the most to the measurement of the gravity field of 
targeted planets/moons/minor bodies has been reported in Table 2-2. In the following 
sections some details about the most significant missions in the Solar System for gravity 
field retrieval have been addressed.  
Some clarifications need to correctly understand the following sections in this chapter.  
As explained in section 2.2.2, the gravity field of a planet is represented in terms of a gravity 
field model, i.e. a mathematical representation based on a spherical harmonic expansion. 
The gravity field model is used to approximate the real gravity field, in terms of spherical 
harmonic coefficients till to a maximum degree 𝑙𝑚𝑎𝑥.   
From such an approximating gravity potential all related gravity field functionals can be 
computed, such as geoid height, gravity anomaly and gravity disturbance. The determination 
of a planet’s global gravity field is one of the main tasks of planetary geodesy. It is a 
reference for geodesy and it provides important information about planets, their interiors and 
their atmospheres for all the geosciences.   
One of the terms used in the following sections is the concept of degree strength or global 
resolution [64][84], intended as the degree of the gravity field model for which the signal-to-
noise ratio is 1 and hence it is considered the minimum gravity signal achievable for that 
model. Graphically, it is identified by the point where the RMS power per coefficient per 
degree of the gravity field, representing the expected average signal, intercepts the 
corresponding error curve. The degree strength achieved can be higher than this minimum 
value over specific areas of a planet due to the orbit characteristics of the spacecraft that 
carried out measurements.      
In the following the gravity field models of planetary bodies will be reported. Given the fully 
normalised Stokes coefficients of a specific degree 𝑙 over orders 𝑚, the behaviour of the 
gravity field model is represented in terms of RMS power per coefficient per degree 𝑙, i.e. 

the expected average signal content per 𝑙, 𝑚, according to the formula (as explained in 
section 2.2.2): 

 

𝜎𝑙𝑚 = √
∑ (𝐶𝑙𝑚

2 + 𝑆𝑙𝑚
2)𝑙

𝑚=0
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Table 2-2 Gravity field measurements in the Solar System   

 
 

 

Body Mission Type Technique Band Year 

Mercury Mariner 10 fly-by RT S, X 1974-75 

 MESSENGER orbiter RT X 2011-15 

 BepiColombo orbiter RT X, Ka 2025 

Venus Mariner 5 fly-by RT S 1967 

 Mariner 10 fly-by RT S, X 1974 

 Venera 9-10 orbiter RT S 1975-77 

 Pioneer VO orbiter RT S 1978-92 

 Magellan orbiter RT S, X 1990-94 

Earth CHAMP orbiter SST-HL L 2000-10 

 GRACE orbiter SST-LL Ka 2002-17 

 GOCE orbiter GG Laser/
GPS 

2009-13 

Moon Clementine  orbiter RT S 1994 

 Lunar 
Prospector 

orbiter RT S 1998-99 

 Kaguya orbiter, 
subsat 

RT/SST-LL S, X 2007-
2009 

 GRAIL orbiter SST-LL Ka 
(inter), 
S, X 

2012 

Mars Mariner 9 orbiter RT S 1971-72 

 Viking orbiter RT S 1976-80 

 Mars Express orbiter RT X 2003-on 
going 

 Mars Global 
Surveyor 

orbiter RT X v 

 Mars 
Reconnaissance 

Orbiter 

orbiter RT X 2005-on 
going 

Jupiter Pioneer 10 & 11 fly-by RT S 1973- 

 Voyager 1 & 2 fly-by RT S, X 1979-80 

 Galileo orbiter RT S, X 1995-
2003 

 Juno orbiter RT X, Ka 2016-on-
going 

Saturn Pioneer 10 & 11 fly-by RT S 1973/76 

 Voyager 1 & 2 fly-by RT S, X 1980-81 

 Cassini orbiter  X, Ka 2004-
2017 

Uranus Voyager 2 fly-by RT S, X 1986 

Neptune Voyager 2 fly-by RT S, X 1989 

Asteroids/Comets 

Eros NEAR orbiter RT X 2000 

Vesta Dawn orbiter RT X 2011-
2012 

Churyumov-
Gerasimenko 

Rosetta orbiter RT S, X 2014-
2016 
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2.4.1 Mercury 

 

 

Figure 2-7: An enhanced-color view of Mercury, assembling images at various wavelengths 
captured by the MESSENGER spacecraft. The circular area on the center-top part is Caloris 

Basin (courtesy NASA / Johns Hopkins University Applied Physics Laboratory / Carnegie 
Institution of Washington) 

 

2.4.1.1 Characteristics  

At present, Mercury is one the planet less explored since the beginning of the space era 
because of its proximity to the Sun and the harsh environment that envelopes its 
surrounding. Mercury is also the smallest and the less explored planet among the terrestrial 
planets. Mercury is the inner representative of the terrestrial planets class in the Solar 
System. Small, rocky, very close to the Sun, Mercury has always represented a challenge 
in the knowledge of the planets due to its excessive proximity to our star. 
Few information was available until the arrival of Messenger mission in 2011. The spacecraft 
completed its primary year long mission (2012), having taken nearly 100.000 images of the 
surface of Mercury. 
Among its initial discoveries was finding high concentrations of magnesium and calcium on 
Mercury’s night side, identifying a significant northward offset of Mercury’s magnetic field 
from the planet’s center, finding large amounts of water in Mercury’s exosphere, and 
revealing evidence of past volcanic activity on the surface. It was also during this first 
extended mission that the spacecraft found evidence of water ice at Mercury’s poles, frozen 
at locations that never see the sunlight (made possible by the fact that the tilt of Mercury’s 
rotational axis is almost zero). 
 

2.4.1.2 Missions  

Mercury has been observed by Mariner 10 [51] in March 1974 and March 1975 trhough 
three fly-bys and the pictures have revealed a geological surface covered by impacts, with 
an aspect similar to our Moon. In addition, ground-based radar measurements were 
collected to gather information on Mercury’s gravity and structure. After that, NASA’s 
MESSENGER mission reached the planet in 2011 and entered into orbit for the first time. 
The result was a four year mission with allowed to collect a first snapshot of this elusive 
planet. 
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Mercury is going to be observed by ESA/JAXA mission BepiColombo, currently on the cruise 
phase towards the planet, through six flybys before the final arrival to orbit the planet in 
2025.  
 

2.4.1.2.1 Mariner 10 

 
NASA’s Mariner 10 [51] was the first spacecraft sent to study Mercury and the seventh 
successful launch in the Mariner series. It was also the first spacecraft to use the 
gravitational pull of one planet (Venus) to reach another (Mercury), a technique largely used 
today to reach planets saving fuel known as gravity assist, and the first spacecraft mission 
to visit two planets. Indeed, an important contribution in this direction was from the Italian 
mathematician Giuseppe “Bepi” Colombo [58], whose studies were focused on Mercury as 
well. He was the first one to highlight that though suitable changes in the Mariner 10 
trajectory, the spacecraft could fly by Mercury three times, rather just one as foreseen in the 
original mission. Indeed, the spacecraft flew by Mercury three times in a retrograde 
heliocentric orbit and returned images and data on the planet. The Mariner 10 returned the 
first-ever close-up images of Venus and Mercury. Also for this reason, ESA decided to 
devote its first mission to Mercury to him: BepiColombo (section 2.4.1.2.3). The primary 
scientific objectives of the mission were to measure Mercury's environment, atmosphere, 
surface, and body characteristics and to make similar investigations of Venus. Secondary 
objectives were to perform experiments in the interplanetary medium and to obtain 
experience with a dual-planet gravity-assist mission.  
During three flybys of Mercury, Mariner 10 took images of almost half the planet's moon-like 
surface and transmitted several data indicating an unexpected magnetic field, a metallic 
core comprising about 80 percent of the planet's mass, and temperatures ranging from 187 
degrees Celsius on the dayside to -183 degrees Celsius on the nightside. 
 

 

Figure 2-8: Launch of Mariner 10 on its Atlas-Centaur rocket on the left and flight spare of 
Mariner 10 at the National Air and Space Museum on the right (NASA courtesy). 
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2.4.1.2.2 MESSENGER 

 
MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) [54] was 
the seventh Discovery-class mission by NASA and the first spacecraft to orbit Mercury. Its 
primary goal was to study the geology, magnetic field, and chemical composition of the 
planet. It was the first mission to Mercury after Mariner 10, more than 30 years before. 
Launched in 2004, the MESSENGER spacecraft reached Mercury after six-and-a-half-year 
cruise characterised by several gravity-assist maneuvers through the inner solar system, 
including one flyby of Earth (2005), two flybys of Venus (2006 and 2007), and three flybys 
of Mercury itself (January and October, 2008, 2009). 
MESSENGER finally entered orbit around Mercury on March 2011, on an orbit highly 
elliptical (9.300 × 200 km) with a 12-hour orbital period. 
By Christmas Day 2014, it was clear that the spacecraft’s propellants were running out and 
that MESSENGER would impact the planet in late March 2015. The spacecraft impacted 
the surface of Mercury by April 30, 2015, after it ran out of propellant. As expected, 
MESSENGER hit the planet’s surface at about 14.080 km/hour, creating a new crater on 
Mercury. 
 

2.4.1.2.3 BepiColombo 

 
ESA (European Space Agency) jointly with JAXA (Japan Aerospace Exploration Agency) 
developed BepiColombo, a cornerstone mission of the Cosmic Vision Programme, with the 
aim of a deeper and widespread investigation of the planet and of its surrounding 
environment [57][59]. Named after the Italian scientist Giuseppe “Bepi” Colombo, for his 
contribution to the study and to the exploration of Mercury, the mission foresees two orbiters, 
the MPO (Mercury Planet Orbiter) and the MMO (Mercury Magnetosferic Orbiter), to be 
placed in complementary low polar orbits around Mercury, after about a 7 years-journey and 
9 gravity-assists (one at Earth, two at Venus, six at Mercury). On the 19th of October 2018 
BepiColombo was successfully launched from the European spaceport in Kourou (French 
Guiana) and is currently on the cruise phase. 
The MPO hosts on-board a suite of advanced eleven scientific instruments to carry out 
several investigations such as imaging, IR-spectroscopy/radiometry, laser altimetry, UV/X-
ray/gamma-ray/neutron spectroscopy, radio-science experiments, magnetic field and 
particle measurements [57][59]. One of the main objective of the mission is the realization 
of Radio-Science Experiments (RSE). The RSE are a set of intertwined experiments aimed 
at 1) determining the gravity field of Mercury, 2) evaluating the rotation state of Mercury, 3) 
carrying out some Einstein’s General Relativity tests at Mercury, in order to determine with 
improved accuracy different post-Newtonian parameters, such as the Eddington parameters 
γ and β, related, respectively, to the space-time curvature generated by a mass and to the 
degree of non-linearity in the gravitational field, the Nordtvedt parameter η, related to 
possible violations of the Strong Equivalence Principle, and the parameters α1 and α2 related 
to preferred frame effects [60][61][62]. 
 

2.4.1.3 Gravity models  

The gravity field of Mercury has been measured very recently, in the period 2011-2015, 
through the mission MESSENGER (see section 2.4.1.2.2), which orbited the planet for the 
first time. Before MESSENGER, just three fly-bys were accomplished in the 1974-75 by 
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Mariner 10 which provided the first measurements of its gravity field, allowing to collect just 
basic information on the mass of the planet and on the coefficients related to the quadrupole 
field. Improvement of the current data from MESSENGER are expected from the 
BepiColombo mission, currently on the cruise phase towards Mercury and planned to arrive 
on 2025.      

 

 

Figure 2-9: The Mercury gravity spectrum as derived from HgM008 ([55], computed with data 
from [86]): gravity field, gravity field error and Kaula rule are shown respectively in blue, green 

and red colours 

The last gravity model of Mercury is named HgM008 [55] and updates previous models such 
as the HgM005 derived from Mazarico et al. [54]. Such a model is based on the whole 
MESSENGER dataset and shows effective improvements in the reconstruction of the 
Mercury’s gravity field. The model is based on an innovative technique for orbit 
determination in which simultaneous numerical integration of both the spacecraft and planet 
equations of motion has been carried out in order to determine parameters related to 
MESSENGER and Mercury orbital dynamics [55]. Previous solutions were retrieved by 
adopting pre-converged ephemeris of the planet.  
The HgM008 gravity field model allowed to achieve a spherical harmonic solution till to 
degree and order 100. Figure 2-9 depicts the gravity spectrum of Mercury derived from this 
solution. The maximum resolution achieved over the planet corresponds to the degree  
𝑙 ~ 35, where the averaged (over the planet) S/N = 1.  
This solution includes an accurate estimation of the gravitational tides Love number k2 and 
of the pole orientation as well. The gravitational potential Love number k2 in the HgM008 
solution is 0.5690±0.025, a value larger than previous estimates [54], indicating a warm and 
weak mantle or the presence of a solid FeS layer at the top of the core. The accurate 
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measurement of pole’s orientation enabled a more accurate computation of Mercury’s polar 
moment of inertia that supports the presence of a large solid inner core. 
However, the degree strength averaged over the planet, where the signal-to-noise ratio 
equals to 1, is achieved around 𝑙 = 35 at global level. Moreover, such a model shows off a 
better resolution for the northern hemisphere due to the lower altitude reached by 
MESSENGER spacecraft in that region. However, the physical significance is lower, till to 
𝑙 = 10 − 15, where the signal-to-noise ratio achieves a good value of 5-10.  
 

2.4.2 Venus 

 
 

 

Figure 2-10: An image of Venus taken from Galileo spacecraft at a distance of about 3 ∙ 106 km  

 

2.4.2.1 Characteristics  

Venus is the planet which mostly features characteristics similar to Earth in terms of size, 
mass and density. Its radius (6052 km) is only 320 km smaller than that of Earth. Its density 
is equal to 5.25 g/cm3 (vs 5.52 g/cm3 for the Earth) and can be explained by the lower 
pressures inside the planet if one takes the same elementary composition. Indeed, it is often 
considered the twin of our planet but indeed, apart those elements, Venus shows 
characteristics enough far from Earth. A very thick atmosphere CO2 – based, which 
produces a pressure of about 90 atm at the surface and a widespread clouds system, hides 
permanently the planet and induces a great greenhouse effect whose consequence is to 
increase the surface temperature till to 480°C [32][45]. Indeed, the two planets have followed 
significantly different geological and climate evolutions, probably started very early in their 
history. These differences likely reflect substantial diversities in the interior composition and 
in the rheology [65]. Gravity anomalies are smaller than those of Moon and Mars and they 
correlate better with topography than on Earth. This suggests at least partial isostatic 
compensation. 
Venus has no intrinsic magnetic field as found by Mariner and Pioneer Venus Orbiter 
missions [41]. Although the planet has a molten metallic core similar in size to Earth’s core, 
the absence of a magnetic field is not completely understood.  A possible explanation is that 
Venus has not cooled sufficiently for an inner core to have yet formed but enough that a 
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purely thermally-driven dynamo cannot operate [41]. This is consistent with Venus’ slightly 
smaller size compared with Earth. Schubert suggest that the planet had a magnetic field in 
the past until 1.5 billion of years ago [32]. 
Radar observations allowed to go through the dense atmosphere and to observe the surface 
[36][32][180]. Its surface is covered with volcanoes but no mission revealed signs of activity. 
Venus’ topography is dominated by two mountains named Aphrodite Terra (equator) and 
Ishtar Terra (northern latitudes). The topographic features are compensated and the gravity 
signal is very weak over these areas. The lack of features such as rift and trench typical on 
the Earth oceans allowed to conclude that Venus does not show signs of active plate 
tectonics: it is a one-plate planet [36]. However, there are features resembling major tectonic 
structures on the Earth such as rift valleys and plateaus (Beta Regio, Alta, Eistla and Bell 
Regiones [36]). Very characteristic features of Venus are coronae. These are quasi-circular 
topographic features with 100–2.600 km diameter. They consist of concentric ridges and 
interior plains, either topographic lows or highs. Coronae are often flanked by troughs [36]. 
McKenzie et al. (1992) and Schubert et al. (1994) argue that they resemble subduction 
zones [32]. Data from Venus Express (ESA), the last mission to visit the planet till now, has 
provided evidence of geologically recent volcanism [36]. Indeed, analysing the radiation 
emitted from the surface in the near-infrared and filtered by the atmosphere, Venus Express 
mapped the distribution of thermal emissivity over the surface, finding out anomalously high 
values of emissivity at three hotspots (Imdr, Themis, and Dione Regiones). Such anomalies 
have been interpreted to be associated with geologically young lava flows (younger than 2.5 
million years and probably much younger, about 250000 years or less) that have 
experienced relatively little surface weathering.  
 

2.4.2.2 Missions  

As highlighted above, Venus is the planet which is the most similar to the Earth and it is one 
of the terrestrial planets most targeted by space missions. Radar images allowed to go 
through the dense atmosphere and to observe the surface. First images were obtained by 
the Soviet Venera 15 and 16 and by Pioneer Venus Orbiter in the 80s. At last, the NASA 
Magellan mission between 1990 and 1994 carried out the most accurate survey of the Venus 
planet. Venus Express by ESA (2006-2014) was mainly dedicated to the planet’s 
atmosphere   
Concerning the future, at present no mission to Venus is planned. However, some 
proposals/studies are on-going.  
Within the frame of ESA Cosmic Vision Plan, as candidate for a medium-class opportunity, 
EnVision [42] mission (possible launch 2030s) would determine the nature and current state 
of geological activity on Venus and its relationship with the atmosphere, to better understand 
the different evolutionary pathways of the two planets. Among its objectives, the 
measurement of the gravity field is foreseen as well. 
The Indian Space Agency ISRO (Indian Space Research Organisation) recently issued a 
call for international proposals to participate in its mission to Venus to be launched in 2023 
[43]. The science goals of the mission include investigating Venus’ surface and subsurface, 
atmosphere, ionosphere, plasma environment, and the Sun-Venus interaction. 
The Russian Space Agency Roscosmos with NASA have recently published a Phase II 
report to define the science and architecture of a comprehensive mission to Venus, named 
Venera-D [43]. The baseline mission architecture would consist of an orbiter and a VEGA-
type lander with an attached Long-Lived, In-Situ Solar System Explorer with the aim of 
understanding Venus as a system, from the top of the atmosphere to the surface and interior. 
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2.4.2.2.1 Venera 

 
Venus was a major target of the Soviet Union’s planetary exploration program during the 
1960s, ’70s, and ’80s, which achieved several spectacular successes.  
Venera was a series of 16 flyby, orbital, and landed missions to Venus conducted by the 
Soviet Union from 1961 to 1983. After an early sequence of failed missions, in 1967 Soviet 
scientists launched Venera 4, comprising a flyby spacecraft as well as a probe that entered 
the planet’s atmosphere. Highlights of subsequent missions included the first successful soft 
landing on another planet (Venera 7 in 1970), the first images returned from the surface of 
another planet (Venera 9 and 10 landers in 1975), and the first spacecraft placed in orbit 
around Venus (Venera 9 and 10 orbiters). 
In terms of the advances they provided in the global understanding of Venus, the most 
important Soviet missions were Veneras 15 and 16 in 1983. The twin orbiters carried the 
first radar systems flown to another planet that were capable of producing high-quality 
images of the surface. They produced a map of the northern quarter of Venus with a 
resolution of 1–2 km (0.6–1.2 miles), and many types of geologic features now known to 
exist on the planet were either discovered or first observed in detail in the Venera 15 and 16 
data. Late the following year the Soviet Union launched two more spacecraft to Venus, 
Vegas 1 and 2. These delivered Venera-style landers and dropped off two balloons in the 
Venusian atmosphere, each of which survived for about two days and transmitted data from 
their float altitudes in the middle cloud layer. The Vega spacecraft themselves continued 
past Venus to conduct successful flybys of Halley’s Comet in 1986. 
 

2.4.2.2.2 Pioneer Venus Orbiter 

 
The Pioneer Venus mission by NASA consisted of two spacecraft to study Venus: the Orbiter 
and the Multiprobe. The latter separated into 5 separate vehicles near Venus. The Orbiter 
was launched on the 20 May 1978 from the Kennedy Space Center aboard an Atlas-Centaur 
rocket. It went into orbit around Venus on 4 December 1978. The main objective was to 
investigate the solar wind in the Venusian environment, map Venus' surface through a radar 
imaging system, and study the characteristics of the upper atmosphere and ionosphere. The 
Orbiter carried twelve instruments, most of them dedicated to plasma investigations of the 
Venusian upper atmosphere, as well as instruments for observing reflected sunlight from 
the cloud layers at a variety of wavelengths, and a surface radar mapper. There was, 
however, a gamma-ray burst detector experiment added on the satellite. The mission ended 
when the spacecraft entered the atmosphere on 8 October 1992. 
The Pioneer Venus Multiprobe was launched on 8 August 1978. It encountered Venus on 9 
December 1978. It consisted of 5 separate probes: the probe transporter (referred to as the 
Bus), a large atmospheric entry probe (called Sounder), and 3 identical small probes (called 
North, Day, and Night). The Sounder released from the Bus on 15 November 1978; the 3 
small probes released on 19 November 1978. All probes entered the Venusian atmosphere 
within 11 minutes of each other, and descended towards the surface over approximately an 
hour long period sending back data to the Earth. 
 

2.4.2.2.3 Magellan   

 
The NASA Magellan spacecraft, named after the sixteenth-century Portuguese explorer 
whose expedition first circumnavigated the Earth, was launched May 4, 1989, and arrived 

https://www.britannica.com/topic/Halleys-Comet
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at Venus on August 10, 1990. During the first 8-month mapping cycle around Venus, 
Magellan collected radar images of 84 percent of the planet's surface, with resolution 10 
times better than that of the earlier Soviet Venera 15 and 16 missions. Altimetry and 
radiometry data also measured the surface topography and electrical characteristics. During 
the extended mission, two further mapping cycles from May 15, 1991 to September 14, 1992 
brought mapping coverage to 98% of the planet, with a resolution of approximately 100 m. 
Precision radio tracking of the spacecraft measured Venus' gravitational field to show the 
planet's internal mass distribution and the forces that have created the surface features. 
Magellan's data permitted the first global geological understanding of Venus, the planet most 
like Earth in our solar system. 
 

2.4.2.3 Gravity models  

The first gravity information about Venus are dated to the first spacecrafts who visited the 
planet in the 60-70s years. In that period investigations were possible through the Mariner 
5 fly-by in 1967, the Mariner 10 fly-by in 1974 and at last with Venera 9 and 10 in 1975-77, 
the first orbiters around Venus [63]. Data from those missions allowed to establish upper 
limits for the low degree and order terms of the spherical harmonic expansion of Venus 
gravity field. In particular, very low values of the zonal term 𝐽2, about three order of 
magnitudes less with respect to Earth, were estimated, the main difference being driven by 
the very slow rotation of Venus on its axis (243 days vs 1). Indeed, Venus is the planet that 
is characterised by the longest sidereal rotation around its own axis, and in the opposite 
direction with respect to all the planets except for Uranus.     
In the following years, two other missions, Pioneer Venus Orbiter and Magellan, provided a 
nearly global gravity dataset for Venus. The first gravity models of this period were able to 
provide solutions till to degree and order 10-20, based on low-altitude data from Pioneer 
Venus Orbiter. Following combinations of low and high-altitude data allowed to push the 
gravity field solutions to degree and order 50 [64].  
The arrival of Magellan spacecraft in 1990 provided further data in X- and S-band that 
allowed to increase significantly the resolution achieved. The Magellan Doppler tracking 
data provide the best precision for spacecraft-based gravity measurements allowing to reach 
spherical harmonic degree and order 180 in specific equatorial regions [64]. The latest 
model for Venus is the MGNP180U [64], available at NASA’s Planetary Data System [46]. 
It is based on two-way Doppler tracking data of Pioneer Venus Orbiter (S-band) and 
Magellan (S- and X-band) collected from the Deep Space Network (DSN) at Goldstone 
(California), Madrid (Spain) and Canberra (Australia). The gravity model is depicted in Figure 

2-11 in terms of RMS power per coefficient per degree, that represents the expected average 
signal. As shown, the model is valid till to degree and order 180. However, the degree 
strength (the global resolution), i.e. the degree for which the signal-to-noise ratio is 1, is 
achieved at about 𝑙 = 70 (as shown in Figure 2-11). This means that a resolution of about 
270 km is achieved at the surface, although regionally this can reach about 100 km (𝑙 =
180).          
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Figure 2-11: The Venus gravity spectrum from MGNP180U (computed with data from [85]): 
gravity field, gravity field error and Kaula rule are shown respectively in blue, green and red  

 
Such a model shows important improvements with respect to previous solutions, with 
particular significance for degree and order higher of 80. However, in order to relax the 
computational effort, the MGNP180U was determined in three separate steps [64]. A first 
solution was established till to degree and order 120 with a complete unconstrained  
covariance matrix and a spatial a priori constraint based on the gravitational acceleration 
strength. In a second step this model was considered as nominal solution with the same a 
priori constraint and the solution for the coefficients from degrees 116 to 155 was derived. 
In a third and last step the coefficients were determined for degrees from 155 to 180 by 
constraining them through the Kaula’s rule. Due to the spatial constraint, the spatial 
resolution of MGNP180U depends strongly on the position on the surface. Figure 2-12 
shows the degree strength determined from the unconstrained degree and order 120 
covariance in the first step. Values close to contours are the harmonic degrees for which the 
sign-to-noise ratio is 1. This means that higher spectral resolutions can be achieved close 
to equatorial regions, whereas lower values are found in other regions (around 40 for 
instance in the picture) [30].  
From these data it follows that the current gravity field model of Venus, although seemingly 
is pushed to high spherical harmonic resolutions, the maximum resolution averaged over 
the planet does not exceed the degree and order 70 averaged and the equatorial regions 
are better covered.                          
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Figure 2-12: Spatial distribution of the degree strength on Venus as determined for the gravity 
model MGNP180U [64]: the contours are in harmonic degree and represent the degree for 

which the signal-to-noise ratio is 1 

The degree two is very small because the Venus’ rotation is very small. Therefore, a 
significant value of the moment of inertia cannot be determined. It would be very interesting 
to get higher degree variations to study the compensation of the numerous volcanoes that 
are present on Venus. However, the dense atmosphere prevents any spacecraft to orbit the 
planet at less than 300 km for long periods. 
 

2.4.3 Earth 

2.4.3.1 Missions 

The gravity field of the Earth has been studied significantlhy both from space and ground. 
In particular, from space the major improvement has been achieved in the last twenty years 
due to the development of three dedicated missions: CHAMP, GRACE and GOCE.     
Moreover, important improvements have been provided by LAGEOS satellite.      
 

2.4.3.1.1 LAGEOS 

 
LAGEOS (LAser GEOdynamics Satellite) is one of the first artificial satellites developed 
exclusively for geodynamic measurements using laser-ranging techniques [69]. LAGEOS 
was launched by NASA from the Western Test Range in California on May 4, 1976. The 
satellite is a sphere, 60 cm in diameter, having a mass of about 407 kg. The spherical 
aluminium outer portion of the satellite has a mass of 117 kg. Embedded within it are 422 
cube corner reflectors made of fused silica and four made of germanium. A cylindrical brass 
inner core of the satellite is 27.5 cm long and 31.76 cm in diameter and has a mass of 175 
kg.  LAGEOS was launched into a nearly circular orbit at high enough altitude (about 6000 
km) to reduce the effects of atmospheric drag and uncertainties in the orbit due to 
unmodeled short-wavelength gravity signals yet at low enough altitude to assure good signal 
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return to the tracking systems. Its spherical shape and high density minimise the sensitivity 
of the orbit to radiation pressure. 
When LAGEOS was first launched, the existing laser tracking systems and data analysis 
techniques permitted station coordinates to be derived at about the meter level of precision. 
Using special analyses for removing common biases on obser-vations at two sites separated 
by several hundred kilometers, it was possible to reduce the uncertainty in baseline distance 
changes to better than a decimeter and in some cases to a few centimeters. Advances over 
the years in laser tracking technology, modelling  techniques, and computer procedures 
have improved the accuracy of site determinations to a few centimeters in all coordinates. 
Contemporary measurements then are in the range where important geodynamic and 
geodetic observations can be made. 
 

2.4.3.1.2 CHAMP 

 
The German CHAMP mission (CHAllenging Micro-satellite Payload for geophysical 
research and application) [70] was dedicated to Earth’s observation: global magnetic and 
gravity fields mapping. The satellite has been launched on July 15th, 2000 from the 
cosmodrome Plesetsk by a Russian COSMOS rocket at an altitude of 454 km in a circular 
orbit with an inclination of 87.3°. CHAMP performed for the first time the combination of 
uninterrupted three dimensional high low tracking of its low orbit perturbations by the 
satellites of the GPS constellation and a high-precision three-axes measurement of the 
satellite surface forces: residual drag, solar and Earth radiation pressures and attitude 
manoeuvre thrusts are measured by the STAR (Space Three-axis Accelerometer for 
Research) accelerometer integrated at the centre of mass of the satellite. A by-product of 
the accelerometer measurements is the determination of the atmospheric density variations 
during the decade of the mission. 
STAR is a six-axis accelerometer providing the three linear accelerations along the 
instrument sensitive axes and the three angular accelerations about these axes. STAR 
presents a measurement range of  ±10−4𝑚 𝑠2⁄  and exhibits a resolution of better than 3 ∙
 10−9 𝑚/𝑠2 for the y and z axes and 3 ∙  10−8 𝑚/𝑠2 for the x axis within the measurement 

bandwidth from 10−4 − 10−1 𝐻𝑧. 
The measurements are integrated over 1 s before delivery to the satellite data bus. The 
configuration of the instrument is compatible with ground tests which demand specific 
characteristics of the less accurate x-axis for the operation under 1 g gravity field.  
 

2.4.3.1.3 GRACE  

 
Jointly implemented by NASA and DLR under the NASA Earth System Science Pathfinder 
Program, in March 2002 the Gravity Recovery and Climate Experiment (GRACE) mission, 
was successfully launched as the pioneering mission with the Satellite-To-Satellite Tracking 
approach in the Low-Low mode (SST-ll) configuration. The SST-ll mode was applied for the 
first time [71] in order to highlight the effect of small-scale features. Basically, in this 
approach two spacecrafts on the same orbit follows each other over a distance of some 
hundreds of kilometers (typically between 100-400 km). Since the greater an object's mass, 
the greater its gravitational pull, during the orbit spacecrafts accelerate very slightly as they 
approach an underlying massive feature and slow down as they move away. By monitoring 
with very high accuracy the inter-satellite range between spacecrafts, the velocity difference 
can be recovered. The gravity field can be reconstructed from that velocity difference which 
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is directly proportional to the gravitational potential differences at the satellite locations. The 
bulk of the Earth's gravitational field is mostly generated by the mass of Earth's interior. 
However, a small part is due to water on or near Earth's surface. The ocean, rivers, glaciers 
and underground water change much more rapidly than the Earth's interior does, reacting 
to changing seasons and to storms, droughts and other weather and climate effects. Due to 
its configuration, GRACE allowed to observe these changes from space through a dedicated 
gravity mission. 

 

 

Figure 2-13: Schematic view of the flight configuration and ground support for the GRACE 
mission [130]  

 
The primary science objective of the GRACE mission was to provide global gravity field of 
the Earth and its temporal variations with a spatial resolution in the range 400 km to 40.000 
km every thirty days. 
GRACE mission [71][72] consisted of two identical satellites that followed each other in the 
same near-circular orbits at ~500 km altitude and 89.5º inclination, at a distance of about 
220 ± 50 km. The relative motion between the two satellites and its temporal variations were 
measured with very high precision by a K-band Ranging System (KBR), with an accuracy 

better than 10 m and 1 m/s. Furthermore, each GRACE satellite was equipped with a high 
precision three-axis accelerometer at its centre of mass. Such sensors were employed to 
measure the effect of non-gravitational forces on the two spacecrafts, to be taken into 
account in the evaluation of the inter-satellite distance.   
In addition to the inter-satellite ranging system, each satellite also hosted on-board Global 
Positioning System (GPS) receivers and attitude sensors. The use of GPS allowed to create 
a SST-hl configuration (high-low), as in the CHAMP mission, in which the positioning 
provided by the GPS helped in the orbit determination. The satellite altitude decays naturally 
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(~30 m/day) so that the ground track does not have a fixed repeat pattern. The satellites are 
nominally held in a 3-axis stabilised, nearly Earth-pointed orientation, such that the K-Band 
antennas are pointed precisely at each other. Except for the K-Band ranging system, there 
was a considerable heritage in the satellite design from the CHAMP mission. Moreover, it 
hosts as well corner-cube reflectors.  
At last, the combination of SST-ll and SST-hl allowed to reach much higher accuracy in the 
determination of the relative position, velocity and acceleration of the geometrical 
configuration of the spacecraft. The fundamental observable is the line-of-sight (LOS) 
acceleration difference between a satellite pair. The SST-hl provides invaluable information 
for resolving the long and medium wavelengths (spherical harmonic degree l < 70) of the 
gravity field, whereas in the low–low configuration (SST-ll) short-wavelengths (l < 200) of 
the field can also be recovered. Moreover, such a configuration can be viewed as a huge 
synthetic one-component gradiometer with an arm length of 200-250 km, whose 
measurement precision is inversely proportional to the baseline length, i.e. the inter-satellite 
distance. From this point of view, GRACE can be considered potentially a precise one-
dimensional virtual gradiometer. 

 

Figure 2-14: layout of the components of one of the GRACE satellites [129]  

 

Figure 2-14 depicts the layout of a single GRACE satellite (both have the same design) 

[129]. Each satellite has a trapezoidal cross section, based on the FLEXBUS design of 

Astrium (length = 3122 mm, height = 720 mm, bottom width = 1942 mm, top width = 693 

mm), made of CFRP (Carbon Fiber Reinforced Plastic). Due to a very low coefficient of 

thermal expansion, CFRP provides the dimensional stability necessary for precise range 

change measurements between the two spacecrafts. 

Each Earth-pointing spacecraft is three-axis stabilised by AOCS (Attitude and Orbit Control 

System). Specifically, sensors are constituted by a Coarse Earth Sun Sensor (CESS) for 

omni-directional, coarse attitude measurement in the initial acquisition, survival and stand-

by modes of the satellite, a boom-mounted magnetometer used jointly with the CESS in safe 

mode and for the commanding of the torque rods in fine pointing mode, a high precision star 



 
 

43 
 

camera and GPS flight receiver, an IMU (Inertial Measurement Unit) and optical gyro 

providing 3-axis rate information in survival modes. 

The actuators include a cold gas system (with 12 attitude control thrusters and two orbit 

control thrusters, each rated at 40 mN) and three magnetorquers. 

The mass of each spacecraft is 432 kg (science payload = 40 kg, fuel = 34 kg), with a power 

of 150-210 W (science payload = 75 W). Solar panels are mounted on top and sides of each 

spacecraft.  

 

2.4.3.1.4 GRACE Follow-On 

 
Launched on May 2018, the GRACE Follow-On mission (Gravity Recovery and Climate 
Experiment-Follow-On/GRACE-FO), is a joint NASA-GFZ project to continue the objectives 
of the original GRACE (2002-2017) mission and provide continuity for the GRACE data set 
[132]. 
The main objective of GRACE-FO is to obtain precise global and high-resolution models for 
the static and the time variable components of the Earth's gravity field. By using the same 
approach pursued in GRACE, this objective is achieved by making accurate measurements 
of the inter-satellite range between two twin satellites flying on a low altitude polar orbit; the 
measurement is accomplished by using a K/Ka-Band microwave tracking system. Moreover, 
each satellite carries geodetic quality Global Navigation Satellite System (GNSS) receivers 
for precise positioning, a Laser Retro-Reflector (LRR) for independent ranging from ground, 
and high accuracy accelerometers to precisely measure the non-gravitational accelerations 
acting on the satellite. 
In addition, an experimental payload, the Laser Ranging Interferometer (LRI), is hosted on-
board as complementary instrument with respect to the microwave system to provide inter-
satellite range laser-based with much higher accuracy. 
 

 

Figure 2-15: GRACE-FO artistic image (from [TBW])  
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2.4.3.1.5 GOCE 

 
GOCE, acronym for Gravity field and steady-state Ocean Circulation Explorer mission, is 
the first and currently alone gravity mission employing an on-board gradiometer. 
Successfully launched on the 17th of March 2009 from Plesetsk cosmodrome in Northern 
Russia, it was the first mission of Earth exploration in the frame of the Living Planet Program 
by ESA [133] [136]. Its primary objective was to determine the Earth’s gravitational field with 

high accuracy and spatial resolution: better than 1 − 2  𝑚𝐺𝑎𝑙 (10−5  𝑚 𝑠2⁄ ) in terms of gravity 
anomaly and around 1 − 2 𝑐𝑚 in terms of geoid radial accuracy, both at a spatial scale of 

100 𝑘𝑚, i.e. at degree and order 𝑙 = 200 [136][134]. The mission ended on the 11th of 
November 2013 after a planned destructive re-entry into the atmosphere.  
 

Table 2-3 GOCE mission highlights   

GOCE   

Launch date 17 March 2009 

Launcher/location Rockot/Plesetsk cosmodrome 

Launch mass 1050 kg 

Orbit Sun-synchronous, dawn-dusk, 250-280 km 

Duration March 2009-November 2013 

 
In order to reach its ambitious objectives, design and development of mission and spacecraft 
were driven by the need of a very low orbit and an extremely quiet environment, free as 
much as possible from non-gravitational forces.      
As trade-off a dawn-dusk Sun-synchronous orbit (𝑖 = 96.7°) was chosen with altitudes in the 
range 250-280 km, allowing optimal Sun illumination and minimising thermal gradients. 
However, to accomplish the measure and to maintain such a low orbit, several advanced 
and novel technologies were implemented, making GOCE a “technological masterpiece”. 
These technologies include drag-free-control, electric propulsion, electrostatic gravity 
gradiometry, triple junction Gallium-Arsenide (GaAs) solar cells and the manufacturing of 
large, 3D carbon-carbon honeycomb structures [133]. 
 

 

Figure 2-16: artistic view of GOCE spacecraft in orbit (from [133])  
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Very low orbits imply the need to minimise atmospheric drag forces and torques, reducing 
as much as possible mechanical disturbances. As result, the futuristic spacecraft structure 
shown in Figure 2-16 is adopted. Indeed, the satellite is very slim with a cross-sectional area 
of 1.1 𝑚2, a length of 5.3 𝑚 and a launch mass of about 1050 𝑘𝑔. Such a shape is chosen 
to minimise the cross-section in the flight direction and hence to reduce the drag. The 
gradiometer is hosted in the centre of the structure, close as much as possible to the 
spacecraft centre of mass in order to minimise the angular accelerations and the non-inertial 
accelerations induced by lateral drag forces on the sensors [138].   
The main structure is an octagonal cylinder, made mostly by carbon-fibre reinforced plastic 
sandwich panels, divided in several compartments, hosting equipment and electronic units, 
as shown in Figure 2-17. Such a material guarantees lightness, robustness and stable 
thermal conditions. This “missile” configuration guarantees symmetry around the flight 
direction, whereas two winglets provide aerodynamic stability. The spacecraft is kept Sun 
and nadir-pointed through magneto-torquers; one side of the satellite faces ever the Sun 
and the other one is used as radiator. As depicted in Figure 2-16, two wing-mounted and 
four body-mounted solar panels allow to collect solar radiation. On each wing, one upwards 
(zenith) and one downwards (nadir), is mounted a S band antenna for communications. The 
upper part hosts two GPS antennas as well. Attitude measures are gathered through three 
star-trackers and by the gradiometer as well.  
The need to achieve high performance for the gradiometer established very stringent 
thermal stability requirements in the range of few milli-degrees Kelvin. To this respect, the 
thermal decoupling between gradiometer and spacecraft is achieved. Two layers can be 
identified: an external actively thermal controlled area is kept at a very stable temperature 
through heaters, whereas an internal passive area, hosting the accelerometers in a 
homogeneous environment, is separated by blankets. The temperature must be stable to 
within 10 milli-degrees Kelvin for a period of 200 seconds [138].   

   

Figure 2-17: Top-down view of GOCE spacecraft showing instruments location. From the left: 
Coarse Earth-Sun Sensor (CESS), ion propulsion, magneto-torquers (MT), Xenon tank for the 

ion propulsion, gradiometer, star-tracker, Satellite-to-Satellite Tracking Instrument i.e. GPS 
(SSTI), nitrogen tank for cold-gas thrusters, command data management unit (CDM), laser 

retro-reflector (LRR) ([135][141])  
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Because of the advanced performance achieved by GOCE, there is no neat division 
between payload and platform but all the spacecraft is built as one whole gravity instrument, 
in which all the components work together to accomplish an accurate measure of the gravity 
gradient. 
The real core of the payload is represented by the Electrostatic Gravity Gradiometer (EGG), 
which is devoted to measure the components of the gravity gradient in the three-dimensional 
space. Although the gradiometer itself is very accurate in the measure, it is more sensitive 
to the medium and short spatial scales. Therefore, to map the gravity field on all the spatial 
scales, a second payload is added, a state-of-the-art GPS receiver, which is part of the 
Satellite-to-Satellite Tracking Instrument (SSTI). It allows to recover the spacecraft 
positioning through the tracking of up to 12 GPS satellite signals, received by a pair of 
hemispherical antennas located on the zenithal spacecraft wing. Precise orbit determination 
is based on data from SSTI and provides information on the long wavelengths of the gravity 
field spectrum, (i.e. the low degree harmonics). SSTI data are used also for real-time on-
board navigation and attitude-reference- frame determination [136].  
A further secondary payload enriches the overall GOCE capability, the Laser Retro-Reflector 
(LRR). The LRR provides supplementary data for Satellite Laser Ranging (SLR) 
observations to be used as backup for precise orbit determination. It consists of an array of 
corner-cubes, mounted on a hemispherical frame, able to reflect laser pulses sent by a SLR 
ground network back along the incident light path [136].                     
A detailed description of the gradiometer is provided in section 3.3.2.2 related to instruments 
state of the art.  
The gravity gradients, the observable to be measured, are recovered through the principle 
of the differential accelerometry (see section 3.3). Measurements from two accelerometers 
belonging to the same arm and separated by 50 𝑐𝑚 are subtracted. Neither moving parts, 
nor liquid fuel were foreseen in the spacecraft to minimise internal disturbances and 
vibrations to the accelerometers.                               
In order to take away the (however small) non-gravitational accelerations acting on the  
spacecraft body,  a  drag-free  system  has  been  employed.   

 

Figure 2-18: view of the drag-free and attitude control units in GOCE spacecraft ([135])  
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Fundamental to accomplish the measurements is the Drag-Free and Attitude Control 
(DFAC) [139] [136], by  using  an  ion  engine  for  compensating  the along  track  non-
gravitational  forces  and  a  set  of  magnetic  torquers  for  attitude  control [140]. The drag-
free   control system aims at realising a virtual environment reducing the non-gravit ational 
linear accelerations below  a  threshold  compatible  with  the  accelerometer  dynamic  range  
and with  the  gradiometric  performance. For the same reason, the attitude control must  
constrain  the  angular accelerations and the angular rates [140]. 
Due to the intrinsic nature of the gradiometer, able to recover also attitude information 
through angular accelerations, the gradiometer operates as main sensor in the DFAC. 
GOCE was built by an all-European industrial consortium. The GOCE prime contractor was 
Thales Alenia Space Italy, whereas Astrium Friedrichshafen was responsible for the  
platform and Thales Alenia Space France along with ONERA for  the gradiometer. About 40 
other contractors were involved, as depicted in Figure 2-19. 
 

 

Figure 2-19: Consortium of industries participating in GOCE ([135])  

 
It should be highlighted that GOCE objectives are complementary to those of GRACE 
mission. While GOCE aims at achieving a maximum spatial resolution in the determination 
of the Earth’s static gravity field, providing a detailed map of spatial gravity and geoid 
variations, GRACE is mostly devoted to sense its temporal variations, caused by the 
transport and redistribution of masses in the Earth system [133].            
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2.4.4 Moon 

 

 

Figure 2-20: The near side of Earth's Moon from Lunar Reconnaissance Orbiter spacecraft 
(Nasa courtesy). 

 

2.4.4.1 Missions 

The Moon after the Apollo spacecrafts has started again to be a target of interest at the 
beginning of nineties. Hereafter only missions that allowed to obtain relevant gravity field 
data are reported.  
 

2.4.4.1.1 Lunar Prospector 

The mission Lunar Prospector (LP) is the first lunar mission NASA-supported after the Apollo 
fleet. It was launched on January 1998 and placed in a near circular orbit at an altitude of 
100 km.  
 

2.4.4.1.2 Kaguya 

The SELenological and ENgineering Explorer (SELENE), nicknamed Kaguya before the 
launch as the namesake of the princess of a famous Japanese tale following the Japanese 
tradition, was launched by the H-IIA rocket on September 14, 2007, being the Japan’s first 
large lunar mission after the technological demonstrator Hiten [73]. The major objectives of 
the mission were to understand the Moon’s origin and evolution, and to observe the moon 
in different ways in order to utilise it in the future.  
Kaguya investigated the Moon in order to obtain information on its elemental and 
mineralogical composition, its geography, its surface and sub-surface structure, the remnant 
of its magnetic field, and its gravity field. At the same time, the observation equipment 
installed on the orbiting satellite observed plasma, the electromagnetic field and high-energy 
particles. 
Kaguya was constituted by three spacecrafts: a three-axis stabilised main orbiter and two 
spin-stabilised subsatellites, one named "Okina" (Rstar), used as relay satellite, and a 
second one named "Ouna" (Vrad), used as satellite in the Very-Long Baseline Interferometry 
(VLBI). The main orbiter was injected into a peripolar orbit of the Moon at an altitude of 100 
km. Okina was placed in an elliptic orbit at an apolune altitude of 2400 km to relay 
communications between the main orbiter and the ground station for measuring, first time 
directly, the gravity field of the farside of the Moon. The Ouna satellite, which was in an 
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elliptic orbit at an apolune altitude of 800 km, played a role of measuring the gravity field 
around the Moon by sending radio waves. 
When Main is orbiting over the farside of the Moon, a tracking signal in the S-band 
frequency, transmitted from Usuda Deep Space Center (UDSC) of the Japan Aerospace 
Exploration Agency (JAXA), is relayed by Rstar to Main keeping the phase coherence. Then 
Main returns the coherent tracking signal to Rstar, and Rstar converts the S-band (2.2 GHz) 
signal into X-band (8.5 GHz) to downlink a coherent Doppler signal to UDSC, thus 
establishing tracking data of Main over the farside (four-way Doppler measurement) (12) 
(fig. S1). At the same time, conventional range and range rate measurements are carried 
out between Rstar and UDSC (two-way Doppler and range measurements) (fig. S1). 
The Kaguya was maneuvered to be dropped around 80.5 degrees east longitude and 65.5 
degrees south latitude onto the Moon on June 11, 2009. 
 

2.4.4.1.3 GRAIL 

Launched on September 2011 from Cape Canaveral, the GRAIL mission (Gravity Recovery 
And Interior Laboratory) by NASA was constituted by a couple of twin spacecrafts aimed at 
mapping the gravity field of the Moon with unprecedented accuracy and spatial resolution 
[101]. The twin orbiters, named Ebb and Flow, were placed into a polar orbit at the end of 
2011, and through a series of manoeuvres were settled into a precise formation to carry out 
two science phases: a primary mission (March-May 2012) at an average altitude of 55 km 
and an extended mission (August-December 2012) from a mean altitude of 23 km. Each 
orbiter hosts a Lunar Gravity Ranging System (LGRS) instrument that carries out dual-one-
way ranging to precisely measure the relative motion between the spacecrafts. These 
distance changes, related especially to the underlying mass distribution variation, are used 
to develop the lunar gravity field map. The science payload is a GRACE-heritage lunar 
gravity ranging system (LGRS, it is a modified version of an instrument used on the same 
spacecraft) that transmits and receives an inter-orbiter Ka-band signal to measure the 
relative velocity of the two orbiters and an S-band inter-orbiter signal for time correlation 
between the two orbiters. The science payload includes an Ultra-Stable Oscillator (USO) 
that provides a steady reference signal for all data, and a Radio Science Beacon to provide   
one-way X-band signal  to  the  ground  for  precision  orbit determination. The launch mass 
of each orbiter was 306 kg, including 106 kg of propellant.    
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Figure 2-21: Top view of GRAIL spacecraft (NASA courtesy) 

 
The mission configuration is equivalent to the GRACE mission around the Earth. The GRAIL 
mission was led by the Massachusetts Institute of Technology. The project was managed 
by the Jet Propulsion Laboratory (JPL), with Lockheed-Martin Space Systems Corporation 
(LMSSC) contracted to provide the spacecraft. GRAIL’s science instrument was developed 
by JPL. The Science Team contains representation from 15 academic institutions and NASA 
Centers. GRAIL’s twin spacecraft have heritage derived from an experimental U.S. Air Force 
satellite (XSS-11) and the Mars Reconnaissance Orbiter (MRO) mission, both developed by 
LMSSC.  
GRAIL is a satellite-to-satellite tracking mission that was developed to map the structure of 
the lunar interior by producing a detailed map of the gravity field. Actually, GRAIL was 
developed to map the structure of the lunar interior from crust to core. This objective was 
accomplished by producing detailed maps of the lunar gravity field at unprecedented 
resolution. These gravity maps will be interpreted in the context of other observations of the 
Moon’s interior and surface obtained by orbital remote sensing and surface samples, as well 
as experimental measurements of planetary materials. The resulting improved knowledge 
of the interior was used to understand the Moon’s thermal evolution, and by comparative 
planetological analysis, the evolution of other terrestrial planets. The GRAIL-A  (GR-A)  and  
GRAIL-B  (GR-B)  orbiters,  renamed  Ebb  and  Flow  after  insertion  into  the  lunar orbit, 
are nearly identical with heritage from past spacecraft built by Lockeed Martin. 
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Figure 2-22: Top view of GRAIL spacecraft (from https://earth.esa.int/web/eoportal/satellite-
missions/g/grail) 

 
The orbiters are three-axis stabilised with reaction wheels and hydrazine warm-gas thrusters 
for attitude control, and a star tracker and an inertial measurement unit (IMU) for attitude 
determination. The IMU propagates the attitude when the star tracker is off-line. Sun sensors 
provide attitude information in safe mode. A 22-N hydrazine main engine operating in blow-
down mode provides the thrust for all manoeuvres except the small orbit trim manoeuvres 
that are performed with the 1-N ACS thrusters.   
Accelerometers in the IMU are used for main engine burn cutoff and manoeuvre 
reconstruction. There are two low gain antennas (LGA), for communication to the ground.   
 

2.4.4.2 Gravity models 

Surprisingly, the global gravity of the Moon is presently known better than any other body  
in the Solar System, including our Earth [30]. Such a level of knowledge has been achieved 
in the last twenty-five years through the collection of large and ever and ever accurate gravity 
data in different missions, such as Lunar Prospector, Kaguya/Selene and, most of all, 
GRAIL. Especially the latter one allowed to greatly increase the details of the lunar 
gravitational field. 
The measurement of the Moon gravity field started since the dawn of the space programs. 
Luna 10 mission from URSS in 1966 allowed an accurate estimate of J2 spherical harmonic 
coefficient, whereas in 1966-1968 the five Lunar Orbiter from the US provided Doppler 
tracking data to map the gravity field from equatorial to polar orbital inclinations [67]. 
Moreover, subsatellites released from Apollo 15 and 16 in 1971 and 1972 were tracked at 
S-band by the Deep Space Network (DSN). However, although first analyses on this 
historical data reached at most degree 16 based on data from Apollo 8, 12, 15, 16 and Lunar 
Orbiter [66], new advances were provided through the use of faster computers, allowing to 
produce high resolution gravity fields to degree 60 [68]. Further improvements for the low 
spherical harmonic degrees were introduced through the Clementine mission in 1994 [68].         
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Figure 2-23: High-resolution images of the northern (left) and southern (right) Moon polar 
regions ([76])  

New significant advancements were added with Lunar Prospector (LP), which arrived to the 
Moon in 1998. Several models were derived from LP tracking data, which were collected at 
S-band for 1 year, 1 month and 6 months, respectively, on a 100 km, 40 km and 30 km 
altitude polar orbit [67]. A first model, LP75G, was completed to degree and order 75 and it 
was followed by higher-resolution models at degree 100 (LP100J) and 150 (LP150Q). The 
latter one revealed new mascons and increased the knowledge of not yet sampled nearside 
regions. Moreover, LP150Q was also used as nominal gravity field for following lunar 
missions, including GRAIL.   
A weakness of lunar gravity field models of those times was the lack of observations of the 
Moon farside, because the Earth-Moon spin-orbit resonance 1:1 hampered its direct 
observation through the direct tracking from Earth to a spacecraft. The Japanese mission 
Selenological and Engineering Explorer (SELENE, later Kaguya), launched in 2007, filled in 
this gap through the first direct measurement of the farside lunar gravity, allowing to produce 
a gravity model till to degree and order 100 (SGM100h) and to retrieve gravity information 
on the farside to about harmonic degree 70 [67].   
However, the arrival of the GRAIL mission in 2012 has completely overcome this weakness 
through a direct observation of the gravity field also on the dark side of the Moon.    
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Figure 2-24: The gravity spectrum of Moon from GL1500E (computed with data from [85]): 
gravity field, gravity field error and Kaula rule are shown respectively in blue, green and red 

colours 

 

2.4.5 Mars 

 

Figure 2-25: An image of Mars taken from Hubble Space Telescope near the opposition of the 
red planet (NASA courtesy)  
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2.4.5.1 Characteristics  

Mars is the archetype of the Solar System planets since ancient times. Due to its high 
brightness, after the Venus and Jupiter couple, and its fascinating red colour, Mars received 
a lot of attention by ancient cultures, including Greeks and Romans. The latter ones 
associated it to the god of war with the names Ares and Mars, respectively.  
Due to all these reasons, Mars is one of the planet most targeted by space missions.  
The surface of Mars is characterised by a wide variety of volcanic and tectonic structures 
[32]. Differently from the Earth, there are no indications of active plate tectonics, but crustal 
magnetisation indicates that plate tectonics may have occurred in early Mars evolution. The 
most evident characteristic of Mars is the hemispheric division of its surface between much 
younger lowland plains with relatively sparsely craters in the north and heavily cratered and 
rough highlands, formed in its early history in the south [32]. The boundary between 
emispheres is dominated by outflow channels and chaotic terrain extending along broad 
gradual slopes [36]. The Tharsis regions is situated close to the near-equatorial boundary 
between the northern and southern hemispheres and represents a giant volcanic dome 
established early in the planet’s history. Major volcanoes such as Olympus Mons and the 
Tharsis Montes were emplaced on top of the Tharsis area [36]. 
The Martian thermal history can be divided into a very active early phase with accretional 
eating, core formation, strong mantle convection, and high surface fluxes of heat and 
magma and a second phase – the last 3.5 billions of years – marked by slow cooling. Mantle 
plumes play a major role in heat exchange. Very likely its core is completely fluid and non-
convecting [32]. 
 

2.4.5.2 Missions 

Mars is one of the most explored planets in the Solar System. More missions have been 
attempted to Mars than to any other place in the Solar System except the Moon, and about 
half of the attempts have failed. Table 2-4 shows off a list of the successful missions to the 
Red Planet. 
Starting with Mariner 4, US and USSR dominated the rush to Mars starting with the Mariner 
series (Mariner 4, on 1964). 
From the point of view of gravity field data, the most important missions devoted to begin 
from 1996 on with the Mars Global Surveyor (MGS), Mars Odyssey (MO) and the Mars 
Reconnaissance Orbiter (MRO).          
    

Table 2-4 List of the successful missions to Mars (from [83])    

# Launch Name Country Reason 

1 1964 Mariner 4 US (flyby) Returned 21 images 

2 1969 Mariner 6 US (flyby) Returned 75 images 

3 1969 Mariner 7 US (flyby) Returned 126 images 

4 1971 Mars 3 
Orbiter/Lander 

USSR Orbiter obtained approximately 8 months 
of data and lander landed safely, but only 

20 seconds of data 

5 1971 Mariner 9 US Returned 7,329 images 

6 1973 Mars 5 USSR Returned 60 images; only lasted 9 days 

7 1973 Mars 6 
Orbiter/Lander 

USSR Occultation experiment produced data and 
Lander failure on descent 

8 1975 Viking 1 
Orbiter/Lander 

US Located landing site for Lander and first 
successful landing on Mars 
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9 1975 Viking 2 
Orbiter/Lander 

US Returned 16,000 images and extensive 
atmospheric data and soil experiments 

10 1996 Mars Global 
Surveyor 

US More images than all Mars Missions 

11 1996 Mars Pathfinder US Technology experiment lasting 5 times 
longer than warranty 

12 2001 Mars Odyssey US High resolution images of Mars 

13 2003 Mars Express 
Orbiter/Beagle 2 

Lander 

ESA Orbiter imaging Mars in detail and lander 
lost on arrival 

14 2003 Mars Exploration 
Rover - Spirit 

US Operating lifetime of more than 15 times 
original warranty 

15 2003 Mars Exploration 
Rover - Opportunity 

US Operating lifetime of more than 15 times 
original warranty 

16 2005 Mars 
Reconnaissance 

Orbiter 

US Returned more than 26 terabits of data 
(more than all other Mars missions 

combined) 

17 2007 Phoenix Mars 
Lander 

US Returned more than 25 gigabits of data 

18 
 

2011 Mars Science 
Laboratory 

US Exploring Mars' habitability 

19 2013 Mars Atmosphere 
and Volatile 
Evolution 

US Studying the Martian atmosphere 

20 2013 Mars Orbiter Mission 
(MOM) 

India Develop interplanetary technologies and 
explore Mars' surface features, mineralogy 

and atmosphere. 

21 2016 ExoMars 
Orbiter/Schiaparelli 
EDL Demo Lander 

ESA/Russia Orbiter studying Martian atmosphere and 
EDL demo lander lost on arrival 

22 2018 Mars InSight Lander US Spacecraft is now on its way to Mars and 
is scheduled to land on Mars around 3 
p.m. EST (noon PST) Nov. 26, 2018. 

 
 
 

2.4.5.2.1 Mars Reconnaissance Orbiter (MRO) 

 
NASA's Mars Reconnaissance Orbiter was launched from Cape Canaveral in 2005, on a 
search for evidence that water persisted on the surface of Mars for a long periods of time. 
While other Mars missions have shown that water flowed across the surface in Mars' history, 
it remains a mystery whether water was ever around long enough to provide a habitat for 
life. 
 

2.4.5.3 Gravity models   

Mars is one of the most explored planet in the Solar System and hence a lot of data are 
available from the several missions which orbited and currently orbit the red planet. A list of 
the successful missions to the red planet [83] is shown in Table 2-4. First gravity models of 
Mars were developed through the data of Mariner 9 in 1971-72 and later with Viking orbiters 
in 1975-1982 [76]. The best model was a complete gravity field to degree and order 50, Mars 
50c [81], based on a previous nominal field GMM-1 (Goddard Mars Model 1) developed by 
Smith et al. [82]. These previous models suffered from a not uniform resolution due to high 
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elliptical orbits and from the use of low frequency radio-tracking at S band (2-4 GHz, Figure 

3-3). 
The following missions to Mars allowed to build new and improved gravity field solutions. 
The use of higher frequency range (X-band, 8-12 GHz) and lower orbits (about 400 km for 
the periapse) started with Mars Global Surveyor (MGS) [76] and allowed to produce the first 
completely uniform gravity field model. The MGS95J is the last model of this mission and 
includes data from Mars Odyssey as well: the solutions were determined at degree and 
order 95 but the global resolution (or degree strength), i.e. the degree where the average 
coefficient magnitude equals the uncertainty [65], was limited to degree 70, corresponding 
to a spatial resolution of 152 km [84]. 
 

 

Figure 2-26: The gravity spectrum for MRO120D (computed with data from [85]): gravity field, 
gravity field error and behaviour of the field according to Kaula rule are shown, respectively, in 

blue, green and red  

With the arrival of Mars Reconnaissance Orbiter (MRO) in 2005 on a low polar orbit with 
periapse of 255 km, a significant improvement in the global resolution was achieved, 
increasing from harmonic degree 70 to 90. These data gave birth to the series of gravity 
solutions named MRO95A and following [76].     
The latest gravity model to date is the MRO120D developed by the group of Alex Konopliv 
at JPL [65]. This model combines radio-tracking data coming from several years of 
observations collected by different orbiters and landers, respectively: Mars Reconnaissance 
Orbiter (MRO), Mars Odyssey (MO), Mars Global Surveyor (MGS) and Mars Pathfinder, 
Viking lander, Mars Exploration Rover Opportunity (MER). This combination of different 
dataset provides information on gravity, tides and orientation.  
With respect to previous models, MRO120D improves the higher degree gravity coefficients 
(due to more MRO tracking data) and reduces the uncertainty in the Mars orientation 
parameters up to a factor of two with respect to previous models. The new field extends the 
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maximum spherical harmonic degree to 120 with a degree strength close to degree 95/100. 
Figure 2-26 shows off the gravity solution of MRO120D along with the corresponding error 
and the behaviour of the gravity field according to Kaula rule for Mars (Mars constant 𝑐 =
8.5 ∙ 10−5 from [76]). For MRO120D a Kaula power constraint is applied to harmonic degrees 
higher than 80.   
A picture of the spherical harmonic resolution of the gravity field distributed in space is shown 
in Figure 2-27. Such an image shows off the spatial distribution of the degree strength over 
the Mars surface [80]. For each longitude and latitude, the gravity error spectrum is 
computed and compared to the expected gravity coefficient magnitude versus degree. The 
point where the error in the spectrum equals the signal gives the resolution or degree 
strength. From this picture derives that a minimum global resolution is achieved at harmonic 
degree 90, whereas improvements till 120 are achieved over the south pole due to the lower 
MRO altitude.   
 

 

Figure 2-27: The resolution of the Mars gravity field MRO120D from the covariance matrix of 
the solution [80].   

 
Concerning information about the planet, Doppler radio-tracking data have provided basic 
information about the planet’s mass, spin-axis precession rate, degree-2 tidal potential Love 
number k2, and static and seasonal gravitational field [80]. The interior structure of Mars 
was initially modelled but these models suffered from poorly known values of its radius and 
Moment of Inertia (MoI). Improved measurements of the planet’s mass M, radius R, 
gravitational potential, and rotation rate by the Mariner, Viking, and Pathfinder spacecraft 
provided geodetic constraints required for models of the interior structure. The polar Moment 
of Inertia of Mars was derived from a combined analysis of low-degree gravitational field 
data and spin-axis precession estimates from MGS tracking and Mars Pathfinder and Viking 
Lander range and Doppler data. The values of the MoI factor of Mars are consistent with the 
model of a mostly hydrostatic planet with a non-hydrostatic contribution to the MoI factor 
entirely related to the axi-symmetric distribution of topographic loads about [36]. 
 
 
 
 
 



 
 

58 
 

2.4.6 Outer planets characteristics and gravity models  

 

 

Figure 2-28: A group picture of the external planets Jupiter, Uranus and Neptune (from 
Voyager 2) and Saturn (Cassini), from [34]  

All the four outer planets are characterised by large masses, which produce strong and 
extended gravity fields, and fast rotations, which induce evident pole flattening. Indeed, the 
gravitational field measured by the spacecrafts departs from a purely spherical function due 
to the planets’ rapid rotation. Because the giant planets are very close to hydrostatic 
equilibrium the coefficients of even order in the spherical harmonic expansion are the only 
ones that are not negligible [34]. Table 2-5 and Table 2-6 report some parameters of the 
external giant planets, such as mass, density, polar and equatorial radius, gravity harmonics 
coefficients (unnormalised) for Jupiter and Saturn, as obtained from the last measures of 
Juno (Jupiter) and Cassini (Saturn) missions [90][91], and spherical harmonic coefficients 
(normalised to the reference radius 𝑅𝑟𝑒𝑓) for Uranus and Neptune [34].    

 

Table 2-5 Characteristics of the giant planets gravity field (adapted from [90][91] and from [34])  

Data Jupiter Saturn References 

 Value Uncertainty Value Uncertainty  

𝑀 𝑥 10−26(𝑘𝑔) 18.986112 5.68463036    [34] 

𝑅𝑒𝑞 𝑥 10
−7(𝑚) 7.1492 - 6.0268 -  [34] 

𝑅𝑝𝑜𝑙 𝑥 10
−7(𝑚) 6.6854 - 5.4364 -  [34] 

𝑅̅ 𝑥 10−7(𝑚) 6.9894 - 5.8210 -  [34] 

𝜌̅ 𝑥 10−3(𝑘𝑔 𝑚−3) 1.3275 - 0.6880 -  [34] 

𝑅𝑟𝑒𝑓 𝑥 10
−7(𝑚) 7.1492 - 6.0330 -  [34] 

𝐽2 𝑥 10
−6 14696.572 0.014 16290.573 0.028 [90][91] 

𝐶21 𝑥 10
−6 − 0.013 0.015 - - [90][91] 

𝑆21 𝑥 10
−6 − 0.003 0.026 - - [90][91] 

𝐶22 𝑥 10
−6 0.000 0.008 - - [90][91] 

𝑆22 𝑥 10
−6 0.000 0.011 - - [90][91] 

𝐽3 𝑥 10
−6 − 0.042 0.010 0.059 0.023 [90][91] 

𝐽4 𝑥 10
−6 − 586.609 0.004 -935.314 0.037 [90][91] 

𝐽5 𝑥 10
−6 − 0.069 0.008 -0.224 0.054 [90][91] 

𝐽6 𝑥 10
−6 34.198 0.009 86.340 0.087 [90][91] 

𝐽7 𝑥 10
−6 0.124 0.017 0.108 0.122 [90][91] 

𝐽8 𝑥 10
−6 − 2.426 0.025 -14.624 0.205 [90][91] 

𝐽9 𝑥 10
−6 − 0.106 0.044 0.369 0.260 [90][91] 

𝐽10 𝑥 10
−6 0.172 0.069 4.672 0.420 [90][91] 
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𝐽11 𝑥 10
−6 0.033 0.112 -0.317 0.458 [90][91] 

𝐽12 𝑥 10
−6 0.047 0.178 -0.997 0.672 [90][91] 

      

 

Table 2-6 Characteristics of the icy giant planets gravity field (adapted from [34])  

Data Uranus Neptune 

𝑀 𝑥 10−26(𝑘𝑔) 0.8683205 1.0243548 

𝑅𝑒𝑞 𝑥 10
−7(𝑚) 2.5559 2.4766 

𝑅𝑝𝑜𝑙 𝑥 10
−7(𝑚) 2.4973 2.4342 

𝑅̅ 𝑥 10−7(𝑚) 2.5364 2.4625 

𝜌̅ 𝑥 10−3(𝑘𝑔 𝑚−3) 1.2704 1.6377 

𝑅𝑟𝑒𝑓 𝑥 10
−7(𝑚) 2.5559 2.5225 

𝐽2 𝑥 10
2 0.35160 0.34084 

𝐽4 𝑥 10
2 −0.354 −0.334 

𝑃𝜔 𝑥 10
−4(𝑠) 6.206 5.800 

𝑞 0.02951 0.02609 

𝐶 𝑀𝑅𝑒𝑞
2⁄  0.230 0.241 

 
From these data derive that these planets have low densities, from 0.688 g/cm3 for Saturn 
to 1.64 g/cm3 for Neptune, to be compared with densities of 3.9 to 5.5 g/cm3 for the terrestrial 
planets in the Solar System. Since the internal compression strongly increases with mass, 
the conclusion is that these planets contain an important proportion of light materials, 
including hydrogen and helium. At the same time, it implies that Uranus and Neptune, which 
are less massive, must contain a relatively larger proportion of heavy elements than Jupiter 
and Saturn. Indeed, Jupiter and Saturn are likely dominated in the composition by hydrogen 
and helium at 90 %, whereas in Uranus and Neptune the composition achieves no more 
than 15-20 % [35]. Therefore, outer planets are furtherly subdivided between gas giant 
planets Jupiter and Saturn, dominated by hydrogen-helium, and the “ice giants” or “sub 
giants” Uranus and Neptune. The latter name “ice giants” refers to the so named planetary 
ices, a mixture of condensed compounds constituted mainly by H2O, CH4, NH3, characteristic 
elements found on the surface of the icy satellites (Europa, Ganymede, Callisto, Titan, 
Triton), and likely included in the Uranus and Neptune bulk interiors at high-pressure [34].    
All the planets, with deviations more or less pronounced, show large flattening witnessed by 
the flattened poles, extended atmospheres characterised by zonal winds, large cyclonic 
formations and vortexes, variegate colours due to different minor species in the high 
atmosphere, widespread clouds with different compositions, ammonia for Jupiter and Saturn 
whereas methane for Uranus and Neptune.     
The planets are also relatively fast rotators, with periods of about 10 hours for Jupiter and 
Saturn, and about 17 hours for Uranus and Neptune [34]. This aspect is witnessed by the 
visual observation of the pole flattening and by the significant difference between the polar 
and equatorial radii. Moreover, this is also proved by the gravitational moments represented 
by the harmonic coefficients that differ significantly from a null value. However, the fluid 
nature of these planets implies that there is no unique rotation frame: atmospheric zonal 
winds imply that different latitudes rotate at different velocities, and the magnetic field 
provides another rotation period. Because the magnetic field is tied to the deeper levels of 
the planet, it is believed to be more relevant when interpreting the gravitational moments.  
The Jovian system has been studied deeply for the first time by the NASA mission Galileo 
between 1995 and 2000. One of the most important achievements is that the Galilean 
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satellites (Io, Europa, Ganymede and Callisto) are differentiated [180]. Models of the internal 
structure of these satellites have been developed in the last years based on interpretation 
of tectonics, magnetic field, and moment of inertia (J2). One of the main questions that 
forthcoming missions (the future JUICE and Europa Clipper) would have to address is the 
presence of an ocean within Europa and the determination of its depth thickness and may 
be composition.  
Other issues include the characteristics of the core and the existence of volcanism in the 
silicate core. Europa has an eccentricity which is maintained thanks to the 1,2,4 Lagrange 
resonance between Io, Europa and Ganymede. The H2O/silicate ratio of Europa is much 
smaller (density much larger) than that of the larger satellites Ganymede and Callisto. Also, 
Europa is quite close to Jupiter and models of tidal heating suggest that this is a major 
source of internal heating which may prevent the satellite from a complete freezing. Because 
Europa has an induced magnetic field and an active tectonics, it is supposed that it hides a 
deep ocean, whose depth is debated. Measures of Love numbers kS and k2, whose values 
are related to the presence of an ocean, to the thickness of the ocean, and to the viscosity 
of the ice shell, could help in solving this element [180].  
The most recent measurements of the Jupiter gravity field have been acquired by the on-
going Juno mission [90]. Data allowed to reconstruct the gravitational field till to degree 24 
with a degree strength of 𝑙 =  12; results are reported in Figure 2-29 [90]. 
 

 

Figure 2-29: Plot of the unnormalised harmonic zonal coefficients as derived from Juno 
measurements at Jupiter; circles show the measured values (solid for positive and empty for 

negative), while dashed line depicts the uncertainty (from [90]).   

 
Indeed, as depicted in [90] and [91], the mass distribution in a fluid and fastly rotating planet 
would imply a spherical expansion of the gravitational field with only even zonal harmonics. 
Any internal dynamics due to winds in the deep atmosphere would introduce signatures in 
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the ideal gravitational field as deviations in the uniform rotation on the even zonal harmonics 
and north-south asymmetries through non-zero values of the odd zonal harmonics. This 
expected behaviour has been confirmed at Jupiter with Juno measures, depicted in Figure 
2-29, where even harmonics are the dominant elements in the gravitational field, whereas 
the odd harmonics smaller although non-zero show an interior dynamics likely associated 
to zonal winds till to 2000-3000 km deep in the atmosphere.        
Saturn’s system has been deeply studied by the NASA/ESA Cassini-Huygens mission from 
October 2004 to September 2017.  
The measurements of last mission phase [91], collected through repeated passes closer 
and closer to the cloud tops, allowed to determine the gravitational field till to degree and 
order 20, with a degree strength of 𝑙 =  12 (twice the previous known values) (Figure 2-30).         

 

Figure 2-30: Plot of the unnormalised harmonic zonal coefficients as derived from Cassini 
measurements during the “Grand Finale”; red diamonds (solid for positive e and empty for 

negative) depict the model of uniform rotation, while circles show the measured values (from 
[91]).   

 
A comparison between the expected values for a uniform rotation of a fluid body and the 
observed values provided evidence of a differential rotation of the atmosphere extending in 
depth (about 9000 km). Such a behaviour derives from the rise of the observed values of 
𝐽6,  𝐽8,  𝐽10 with respect to the uniform rotation, as depicted from results in Figure 2-30.   
Concerning its large satellite Titan, the gravity field has been reconstructed till to degree and 
order 5 in terms of degree strength [92]. Such data were based on the analysis of 9 fly-bys 
dedicated to gravity measurements, in addition to a high-altitude pass (not previously 
sampled) during the last phase of Cassini mission. Such data allowed to confirm that Titan 
is differentiated and its interior state is compatible with hydrostatic equilibrium. Moreover, 
the moon is subjected to large tidal variations driven by the orbit eccentricity around Saturn.            
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2.4.6.1 Missions 

The external Solar System was explored for the first time by the Pioneers probes that flew 
by Jupiter (Pioneers 10 and 11) and Saturn (Pioneer 11) and later by the very successful 
Voyager I and II missions [31]. The latter ones took advantage of a rare geometric       
arrangement of the outer planets that occurs only once every 176 years. This configuration 
allowed a single spacecraft to swing by all four gas giants without the need for large on-
board propulsion systems; without these gravity assists, the flight time to Neptune would 
have been 30 years. Moreover, the Voyagers discovered rings at Jupiter and Uranus and 
explored the rich satellite systems and found the Galilean Io moon to be the most 
volcanically active body in the Solar System. The Voyagers for the first time allowed a 
detailed view of the rich phenomenology of icy satellite surfaces. The next step was the 
Galileo mission which put the first orbiter around Jupiter and after several years plunged into 
Jupiter’s crushing atmosphere in September 2003. The spacecraft was deliberately 
destroyed to protect the Jovian system, in particular Europa, from being polluted. Galileo 
made several discoveries, including the magnetic field of Ganymede and evidence for 
oceans underneath the ice crusts of the Galilean moons Europa, Ganymede, and Callisto. 
Moreover, on its route to Jupiter, Galileo discovered for the first time a moon (Dactyl) that is 
orbiting an asteroid (Ida) and observed comet Shoemaker–Levy crashing into Jupiter. 
Galileo observed the Jovian satellites at much improved resolution and discovered several 
new ones. Comparison with Voyager images of volcanic features on Io showed significant 
modifications that had occurred in the roughly 20 years between the two missions. 
An instrumented descent probe released from the Galileo orbiter entered the Jovian 
atmosphere in December 1995 and provided the first in situ measurements of the state and 
the chemistry of a giant planet atmosphere shroud.  
More recently, the NASA Juno mission has arrived to Jupiter (July 2016) and it is studying 
the planet’s gravity and magnetic fields, its atmosphere dynamics, and its composition. 
Moreover, the Jovian satellites Callisto and Europa will be the prime target of ESA’s JUICE 
(JUpiter ICy moons Explorer) mission in the 2022-23, with a special focus on Ganymede 
around which the spacecraft will enter into orbit for the first time (2033).  
The Saturn system shared with the Jupiter’s one the history of exploration by automatic 
probes with Pioneer 11 and Voyager 1 and 2. The first orbiter around Saturn was the 
successful and extraordinary NASA/ESA mission Cassini, launched in 1997 and arrived to 
Saturn in 2004. It is the longest mission after the Voyager era and the longest for an orbiter 
around a planet, lasting till the 15th of September 2017, when the probe was plunged into 
the planet to ensure the safety and the conservation of the Saturn's moons for future 
exploration—in particular, the ice-covered, ocean-bearing moon Enceladus, and also Titan, 
with its intriguing pre-biotic chemistry. 
The Cassini key discoveries included the global ocean with indications of hydrothermal 
activity within Enceladus, and liquid methane seas on Titan. 
 

2.4.7 Small bodies gravity 

 
Future missions to asteroids and outer planets will address the question of the internal 
structure of these bodies. Between Mars and Jupiter, several asteroids orbit around the Sun. 
Among those, Ceres and Vesta have been studied by the Dawn mission. Vesta is a dense 
asteroid and several meteorites (HED meteorites) are thought to come from this asteroid. 
Their study shows that they are differentiated. But this must be checked by future missions. 
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2.4.7.1 Missions 

Apart mission Dawn to Ceres and Vesta asteroid, or Hayabusa to Ryuku, or similar, 
hereafter the attention is directed to a new mission currently envisaged and in definition. 
Indeed, an interesting mission in the domain of small bodies is Hera. It is a candidate for an 
ESA small mission of opportunity within the Asteroid Impact & Deflection Assessment 
mission (AIDA), whose second component is the Double Asteroid Redirection Test (DART) 
by NASA [101]. The objective of the mission belongs basically to a planetary defence 
initiative, focused on the Near-Earth Asteroid (NEA) constituted by the binary system 
Didymos and Didymoon. It is constituted by two very small bodies, a 780 meter diameter 
primary and a 160 meter diameter secondary. Indeed, the NASA mission aims at performing 
a kinetic impact on Didymoon, whereas Hera will follow up with a detailed investigation of 
the modification induced on the moon after the crash. A timeline of the events is depicted in 
Figure 2-31.  
 

 
 

Figure 2-31: Timeline of the DART and Hera missions to be sent to the Didymos binary 
asteroid system (picture from ESA website)   

However, in addition to the main objective, manifold benefits can be derived in terms of 
science return and technology demonstration. The mission is underdefinition, however some 
elements have been already established. 
After the collision of DART with the small moon in 2022, the Didymoon orbit and orbital 
period will change. However, those changes will not be measured accurately by ground 
observatories and consequently the transferred momentum will not be measured directly 
because of the unknown Didymoon mass. Hera mission, to be launched in 2023 and to 
arrive in 2026, will perform such a measure along with a detailed investigation of the moon 
through a high-resolution visual and laser mapping, detailed observations of the produced 
crater and of the surface properties, radio-science measurements to reconstruct mass, 
dynamics and gravity field to infer information on the internal structure. The latter one will be 
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fostered through the use of JUVENTAS cubesat to establish an intersatellite link with Hera 
mothercraft. JUVENTAS will use also low frequency radar, three axis gravimeter, visible 
camera for interior and surface characterisation. A second cubesat APEX will characterise 
the crater and its surroundings through imager, spectrometer, ion mass analyse and 
magnetometer. At the end of the mission both cubesats will try to land on Didymoon and to 
accomplish further in-situ analyses for the following days.  
The relevant part of this mission is the capability of measuring the gravity filed of the small 
moon. Moreover,      
 

2.5 Science needs 

The retrieval of gravity field information is crucial to investigate scientific issues of interest 
and to answer to questions related to the formation, evolution and structure of planetary 
bodies. Planetary interiors maintain information on the processes at large scale that have 
driven the thermal and tectonic evolution; indeed, surface and tectonic features are mainly 
the result of heat exchanges from the interior to the surface. Gravity field measurements are 
one of the observational methods to investigate those processes and to place constraints 
on the structure of the planetary interiors, the formation and geologic evolution of a planet 
[40][30]. The retrieval of the spherical harmonic coefficients used to describe the 
gravitational field of a body gives insights into e.g. its polar oblateness, moment of inertia 
and deviations from hydrostatic equilibrium. With geologic assumptions and other remote 
sensing data, significant geophysical parameters, related e.g. to crust and mantle density 
and thickness, core size and structure, mantle/core coupling can be obtained [30]. These 
parameters are used in planetary models to address topics such as planets differentiation, 
thermal evolution, characteristics and composition of the interiors.   
The information collected in the previous sections offers an extremely diversified scenario 
on the current knowledge of the gravity field. As multiple fleet of spacecrafts have visited 
some planetary bodies for a deep exploration, such as Mars, Venus and obviously the Earth 
and the Moon, very few satellites or none have reached other bodies. In the latter case, just 
few satellites entered the orbit’s body, whereas others carried out single or multiple fly-bys. 
Moreover, apart the Earth and the Moon, the spatial resolution is limited to the major 
structures and features, achieving hundreds of kilometers, also for the most explored 
planets, Mars and Venus. The result is that the gravity field knowledge is very good for some 
objectives and very poor or lacking for others.  
A summary of the latest gravity field models of planets and moons (when available) is shown 
in Table 2-7. Some clarifications about the meaning of the items used in the table. The global 
resolution is the degree where the average coefficient magnitude equals the uncertainty (S/N 

= 1), hence the error in the spectrum equals the signal; it is also known as degree strength 
averaged over the whole planet [65][84]. The spectral resolution is the highest achievable 
harmonic degree 𝑙 of the spherical harmonic expansion, although just on particular areas. 

The spatial resolution is derived from the known formula ∆𝑟𝑒𝑠= 𝜋𝑅 𝑙⁄ , where 𝑙 is the 
maximum harmonics degree and 𝑅 is the equatorial radius of the body (see section 2.2.2).  
On the basis of the previous gravity field state of the art the following considerations in terms 

of scientific requirements can be drawn.  

Future missions for Earth and Moon should focus on higher accuracy and higher resolution 
in space and time. Gravity field models of Earth and Moon nowadays are well known up to 
very high degrees and orders. In the years several models for Earth gravity have been 
produced depending on the employed data and on the application to be used. Indeed, the 
combination of data of different origins allowed to reach very high degrees/spatial 
resolutions. One of the last models (as obtained from [47]) is the SGG-UGM-1 [77] which is 
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based on the model EGM2008 and on GOCE data. Such a global gravity model allows to 
compute the harmonics till to degree and order 2159, with a degree strength averaged over 
the planet of about 200 corresponding to a spatial resolution of about 9 km. The EGM2008 
is a spherical harmonic model of the Earth’s gravitational potential, obtained by merging 
terrestrial, altimetry-derived, and airborne gravity data, which first provided a very accurate 
and global gravity model for the Earth for a wide range of applications [78]. Time resolution 
is a characteristic introduced in some of the last models (when needed) since the arrival of 
GRACE mission; with this mission a systematic study of time variable Earth’s gravity field 
over a monthly range has started, previously limited to J2 and few other degrees. In this 
case, one of the first model produced is the GGM05S [79] estimated till to spherical harmonic 
degree 180 by using roughly ten years (2003-2013) of GRACE K-band range-rate, attitude, 
accelerometer and GPS tracking data. This dynamic field allows to reach a degree strength 
around 160, corresponding to a spatial resolution of about 125 km.   
 

Table 2-7 Latest gravity field models of planets and moons in Solar System 

Body Mission Model Resolution Referenc
e Spectral 

(𝒎𝒂𝒙 𝒍) 
Global 
(𝒎𝒂𝒙 𝒍, 
𝑺 𝑵⁄ = 𝟏) 

Spatial 
(𝝅𝑹 𝒍⁄ ,  
𝒌𝒎) 

Mercury Messenger HgM008a 50 41 ~190  [54] 

Venus Magellan/Pioneer  MGNP180U b 180 70 ~270 [64] 

Earth several 
space/ground-

borne 

SGG-UGM-1 

c 
(static field) 

2159 ~200 ~9 [77] 

GRACE GGM05S c 180 ~160 ~125 [79] 

Moon GRAIL GL1500E b 1500 ~900 ~6 [75][76] 

Mars MGS, Mars 
Odyssey, MRO 

MRO110Db 120 95/100 ~100 [82] 

Jupiter Juno/Galileo/Pion
eer/ 

Voyager 

- 12 ~10 ~22000 [90]  

Io Galileo  2-3 - - [93] 

Europa Galileo  2-3 - - [93] 

Ganymede Galileo  2-3 - - [93] 

Callisto Galileo  2 - - [94] 

Saturn Cassini/Huygens - 12 ~10 ~20000 [91] 

Titan Cassini/Huygens  5 5 ~1600 [92] 

Uranus Voyager 2 - 4 - - [34] 

Neptune Voyager 2 - 4 - - [34] 

Ceres Dawn - 18 16 8 [107] 

Vesta Dawn - - 20 42 [105] 

Eros NEAR - 15 10 5 [104] 

Churyumov
-

Gerasimenk
o 

Rosetta - - 2 3 [106] 

 

a https://pgda.gsfc.nasa.gov/products/71 
bavailable at NASA’s Planetary Data System (PDS Geosciences Node, http://pds-geosciences.wustl.edu/) 
cavailable at International Centre for Global Earth Models (ICGEM) (http://icgem.gfz-potsdam.de/home) 
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For the Moon, the knowledge is very accurate, better than for the Earth, and it is extended 
till very high degrees, especially through the contribution of GRAIL, which is a spin-off of 
GRACE mission, in terms of employed technique and payload-heritage, applied to the Moon. 
Gravity models allowed to arrive to a degree 1500 (GL1500E, [46]), whereas the degree 
strength achieved is the degree 900, corresponding to a spatial resolution of about 6 km. 
This was achieved also due the possibility to fly over the surface at very low altitudes, due 
to the lack of atmosphere.   
The approach is different  for the Solar System planets. Indeed, the knowledge of the gravity 
field is good just for some bodies, such as Mars and Venus, which were most intensively 
studied in the past decades with several fleet of spacecrafts. Other planetary bodies have 
data limited to few degrees of the spherical harmonic expansion or are lacking 
measurements.         
The Mercury gravity knowledge, very poor and based on three fly-bys by Mariner 10 on 
1974-75, was increased drastically with the Messenger mission at the beginning of 2011. 
Although the developed gravity model allows to determine the field till to 𝑙 = 50 (section 

2.4.1.3, spatial resolution of ~150 𝑘𝑚), the real significance in terms of signal-to-noise ratio 
(from 5 to 10) is for 𝑙 = 10 − 15 (~500 𝑘𝑚). The highly eccentric orbit of Messenger fostered 
the gravitational mapping at maximum resolution in the northern hemisphere with respect to 
the southern one [171]. The ESA/JAXA BepiColombo mission aims at increasing such a 
knowledge, extending it also at southern regions and at least till to 𝑙 = 25 with a signal-to-
noise ~ 10, when the mission will enter its nominal phase in 2026-2027 [53].  
The best gravity model for Venus is represented by the MGNP180U (section 2.4.2.3), valid 
till to degree and order 180. However, the physical significance is limited to the major 
structures not exceeding the degree 𝑙 = 70, corresponding to a spatial resolution of  
~270 𝑘𝑚, although for specific regions of the surface can reach a degree 𝑙 = 180 (100 km).   
At present no planned mission to Venus is foreseen, just studies such as EnVision mission 
[110] or VERITAS [112], one of the candidates as medium-class mission in the ESA Cosmic 
Vision plan.  
The latest gravity model of Mars is the MRO120D (section 2.4.5.3) which combines 
observations carried out by several orbiters and landers. MRO120D achieves the spherical 
harmonic degree 𝑙 = 120 (locally, corresponding to a spatial resolution of about 100 km) but 
the global significance is limited to a degree 𝑙 = 95/100, equals to the major structures not 
exceeding about 100 km in terms of spatial resolution.   
The Jupiter system is being explored by Juno mission. Collected data provided the last 
gravity field model of the planet till to 𝑙𝑚𝑎𝑥 = 24 with a maximum resolution averaged over 

the planet at 𝑙 =  12 [90]. Current results show that even harmonics are dominant, whereas 
the non-zero odd harmonics are related to an interior dynamics likely associated to zonal 
winds till to 2000-3000 km deep in the atmosphere.  
JUICE mission aims at sheding light on Ganymede by measuring gravity field up to 𝑙 = 30 
in the first half of 2030. At the same time, the Europa Clipper mission estimates to 
reconstruct the gravity field of the Jovian moon till to 𝑙 =  20 [95].           
The Saturnian system benefits from data collected mainly by the outstanding Cassini 
mission, which operated continuously at Saturn and its moons for fourteen years till to 2017, 
and the Voyagers’ swing-bys. The last phase of Cassini mission allowed to infer the 
gravitational field of Saturn till to degree and order 20, with a degree strength of 𝑙 =  12 [91]; 
such data provided evidence of a differential rotation deep in the atmosphere extending till  
9000 km from the cloud tops. An increased knowledge of the gravity of the most large moon 
Titan has been achieved (𝑙 =  5).   
Concerning the remaining outer planets, no spacecraft has been put in orbit around the icy 
giants till now and no clear plan to explore such planets is identified for the next years. Some 
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studies and proposals were carried out, such as the ODINUS mission concept [36], aimed 
at placing a set of twin spacecrafts, each one in orbit around one of the two ice giant planets, 
the Uranus Pathfinder [37], proposed to the European Space Agency’s M3 call for medium-
class missions in 2010 for the study of Uranus and its system, and the OSS [38], a proposal 
for an M-class mission ESA-NASA to explore the Neptune system along with Triton. In this 
frame, the gravity field of Uranus and Neptune is almost unknown apart the basic 
gravitational moments [34], as witnessed by the Table 2-7, and the determination of the 
gravity field would be one of the fundamental objectives of a future mission to these planets. 
Such an interest is also strictly related to the study of exoplanets in terms of formation and 
evolution, since most of the bodies till now identified out of the Solar System have a size 
intermediate between the Earth and Neptune [39].  
A different issue concerns the small bodies in the Solar System, which have drawn an 
increasing interest in the last years from the scientific community and the space agencies 
all over the world. The great success achieved by the Rosetta mission that reached the 
comet Churyumov-Gerasimenko in 2014, entered in orbit and followed it for one year and a 
half, followed by the Dawn mission to Vesta main belt asteroid in 2011-2012 and to Ceres 
dwarf planet in 2015-2018, has woken up a rush to explore asteroids and comets. Indeed, 
such objects maintain much of the pristine materials from which the Solar System was 
originated and hence their deep study would be very helpful in understanding the origin and 
the evolution of planetary bodies. Indeed, the recent selection (2017) by NASA Discovery 
program of Lucy, mission aimed at exploring six Trojans satellites of Jupiter, and Psyche, 
aimed at the namesake metallic asteroid of the main belt, depicts the current trend of Solar 
System exploration [109][110].  
Table 2-7 reports the gravity field models determined till now for some small bodies, such 
as Ceres, Vesta and Eros [107][105][104]. For the Churyumov-Gerasimenko comet just the 
basic gravitational parameters were determined [106]. From the above considerations, it 
derives that, from the point of view of the scientific community, the study of the gravity field 
of small bodies assumes a significant relevance in the frame of structures and evolution 
understanding. However, the scant masses in play for these bodies reduce the level of 
expected gravity signals and consequently requires very small orbiting distances and /or the 
use of techniques different with respect to the traditional radio-tracking (section 2.4).                                    
 
On the basis of the previous gravity fields state of the art it is possible to derive the following 
considerations: 
 

• The knowledge of the gravity fields of planetary bodies in the Solar System is 
extremely diversified, with a neat separation between terrestrial planets, the most 
explored by space missions, and giant/ice giants planets, little or not explored;   

• Within this frame, the gravity information in terms of degree strength averaged over 
the planet is more detailed for Mars (𝑙 ~ 100) and Venus (𝑙 ~ 70), whereas the 
Mercury knowledge has started very recently (𝑙 ~ 40); 

• Obviously, the Earth (𝑙 ~ 200) and especially the Moon (𝑙 ~ 900) are known at the 
best, due to the relatively “easiness” of being targeted (both) and the possibility to fly 
very close to the surface (the Moon), because of the lack of atmosphere;  

• Among the outer planets, the gravity field is very poorly characterised, achieving, in 
terms of degree strength averaged over the planet, just to 𝑙 =  10 both for Jupiter and  
Saturn, since the first one has been visited till now by two orbiters alone (Galileo, in 
the past, and Juno, orbiting at present) while the second one just by one orbiter 
(Cassini). Uranus and Neptune are almost completely unknown, from this point of 
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view, since the only information available, limited to the fundamental gravitational 
moments (𝑙 = 4), has been gathered by the Voyager 2 fly-bys; 

• In terms of spatial resolutions (as degree strength averaged over the planet), apart 
Earth and Moon for which the knowledge is very high, the current limits range from  
𝑙 ~ 10 (Jupiter) to 𝑙 ~ 100 (Mars), corresponding to average resolutions within 
𝜓 ~ 20.000 − 100 𝑘𝑚, altough locally, such values can increase due to a better 
gravity characterisation.       
 

Table 2-8  resumes the status of knowledge of gravity for the bodies investigated, dividing 
in four ranges the achieved level: poor (𝑙 ≤ 10), low (𝑙 ≤ 50), medium (50 < 𝑙 ≤150), high 
(𝑙 > 150). 

Table 2-8 Gravity field state of knowledge in terms of degree strength  

Body Current gravity knowledge (max resolution) 

Poor 
(𝒍 ≤ 𝟏𝟎) 

Low 
(𝒍 ≤ 𝟓𝟎) 

Medium 
(𝟓𝟎 < 𝒍 ≤150) 

High 
(𝒍 > 𝟏𝟓𝟎) 

Mercury  X   

Venus   X  

Earth    X 

Moon    X 

Mars   X  

Jupiter X    

Ganymede X    

Europa X    

Titan X    

Saturn X    

Uranus X    

Neptune X    

 
 
We focus our attention on the “medium” interval because, as we will show clearly later 
(section 3.3), the satellite gravity gradiometry is inherently sensitive to medium and large 
degrees (i.e. high resolutions) of the gravity field. As depicted in the table, the medium 
interval is covered by Venus and Mars. Such an approach obviously is valid also for the 
Earth and the Moon. However, in this thesis the focus is on the use of the gradiometry 
technique for planetary bodies outer to our system, hence Earth and Moon are not 
considered.    
 
As explained in the most recent National Research Council (NRC) Planetary Decadal 
Survey, “Visions and Voyages for Planetary Science in the Decade 2013–2022”, in which 
priority science questions to be addressed by NASA are reported [96] [97], understanding 
the formation and evolution of the inner planets within our solar system is critical to 
understanding how and why Earth evolved the way it did and for interpreting information 
about newly discovered exo-solar planets. Considering the inner planets, three science 
goals have been identified: 1. Understand the origin and diversity of terrestrial planets, 2. 
Understand how the evolution of terrestrial planets enables and limits the origin and 
evolution of life, and 3. Understand the processes that control climate on Earth-like planets.  
Within this frame, a list of science priorities at the same level has been identified by the 
Venus Exploration Analysis Group (VEXAG, 2016): (1) Understand atmospheric formation, 
evolution, and climate history on Venus, (2) Determine the evolution of the surface and 
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interior of Venus, and (3) Understand the nature of interior-surface-atmosphere interactions 
over time, including whether liquid water was ever present. The second objective has been 
further delved into assessing the evolution of volcanism, tectonism, and other geologic 
processes that construct and modify the crust [97].  
Similarly, within the frame of inner planets, science topics with priority for the science com 
munity can be identified for Mars as well [98].  
The Galilean moons in the last years are attracting a lot of attention, as witnessed by the 
future missions JUICE (in development, science phase in 2030-2033) and Europa Clipper 
(in development), because they reply a small Solar system around the central Jupiter.  
Ganymede and Europa are the moons more intriguing for the scientists because they are 
effectively planets (Ganymede is the largest moon in the Solar System and it is bigger than 
Mercury) and because several clues support the presence of oceans beneath their surfaces.  
Moreover, Ganymede is the only moon in the Solar System generating a magnetic field.         
Limiting the unsolved science questions to those related to the gravity knowledge, a 
summary of them is reported in Table 2-9.   
 

Table 2-9 Science topics in Solar System planetary bodies   

Science 
Target 

Science 
Theme 

Science 
Questions  

Objective Note 

Venus Surface and 
interior 

How does Venus 
lose its heat? 

Gravity – topography 
on a global scale 
Surface geology 

[96] [97] 

  How volcanically 
and 

tectonically active 
has Venus 

been over the last 
billion 
years 

Surface geology, 
topography, and 

gravity, 
Seismicity 

- 

  Has Venus always 
been in a 

stagnant lid regime 
or was a 

plate tectonics 
regime 

present in the 
past? 

Surface geology, 
topography, and 

gravity 

- 

Mars Interior What is the size of 
the core and what 
are the rheological 
properties of the 

mantle? 

Tides [98] 

 Surface, Crust 
and Mantle 

How did local 
geological regions 

form? 

Gravity – topography 
on a global scale 

- 

  What is the elastic 
thickness, and how 

does it correlate 
with the flexural 

signal? 

 - 

 Polar caps What is the amount 
of CO2 that is 

Mass (gravity), 
thickness (altimetry), 

- 
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exchanged 
between the polar 

caps and the 
atmosphere? 

and extent (imaging) 
of seasonal deposits 

Ganymede  Has Ganymede a 
subsurface ocean? 

Gravity, subsurface 
ocean, magnetic field 

 

Europa  Has Europa a 
subsurface ocean? 

Gravity, subsurface 
ocean 

 

Titan  How are distributed 
the liquid 

hydrocarbon on the 
surface and sub-

surface? 

Gravity, subsurface 
ocean 

 

Mercury  How is the interior 
mass distribution at 

Mercury? 

Gravity, magnetic 
field, interior structure 

 

 
 

From the point of view of the science needs from the international community and from the 
current knowlegde depicted in the previous sections, it is possible to state that: 
 

• Primary interests are demonstrated for Venus, which was explored last from Venus 
Express (2006-2014) and whose main focus was the atmosphere. Several studies 
have been and are being carried out for it (as EnVision and VERITAS). Interests are 
related to the different thermal, geological and atmospheric evolution, although 
Venus is the planet more similar to Earth as size. The lack of magnetic field and plate 
tectonics along with the unknown Moment of Inertia of the planet (difficult to measure 
because of the very slow rotation) makes difficult to infer deeper information on the 
interior structure, leaving many parameters free in the models     

• At the same time, Mars keeps alive the interest in it, being the planet most targeted 
in terms of dedicated missions till now and for the future as well. The first seismometer 
out of the Earth and Moon (Apollo missions) is currently operating on Mars with Mars 
Insight. However, several questions related to the interior structure are still open.      

• Comparison of the planetary bodies gravity field state of the art with the scientific 
needs allows to infer that the most interesting objectives, especially from the point of 
view of a gradiometric mission, are represented by Venus and Mars, in addition to 
specific targets among the Galilean and Saturnian moons, such as Ganymede, 
Europa, Titan.   
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3. Measurement Techniques  

3.1 Introduction 

This chapter is devoted to depict the different techniques employed to measure the 
gravitational field of planetary bodies with focus on planets other than Earth. Techniques are 
limited to space-borne techniques.    
The simplest method to measure the gravity field of a body is to measure the orbital period 
and the semi-major axis of a small natural moon or a small satellite orbiting it; from the 
Kepler’s third law the mass of the central body can be determined (section 2.2.1). In case of 
spherically symmetric mass distribution this allows to have a complete gravity field 
knowledge. However, this is a not so realistic condition and can be applied just for specific 
cases, such for instance for mass estimates in binary stars. In general, the gravity field will 
be described in terms of a spherical harmonics expansion because the mass distribution will 
have variations more or less pronounced with respect to the spherical symmetry. In this 
case, the orbit followed by the natural moon or by the satellite will not be pure Keplerian but 
will show off deviations reflecting the mass distributions on the primary body. Such 
deviations can be monitored establishing a radio-link with the satellite which allows to 
measure position and velocity, to determine the real orbit and from that to infer information 
on the gravity field determining that orbit.                         
Such satellite-based methods to study the gravity field date to the early space era.  
It is worth to highlight that some measurement techniques are not considered in the following 
sections because they are currently not applicable for planetary bodies different from Earth, 
which are the focus of this thesis. However, a general overview is provided hereafter.     
 
Laser-ranging  
Laser ranging in space began with ranging to retroreflectors on the Moon placed by the 
Apollo [Faller et al., 1969] and Luna missions. Pulses fired by a powerful, earthbased laser 
are reflected back to the transmitting site, where time-of-flight measurements are made 
using standardised clocks, timers and detectors. Such measurements routinely achieve 
decimeter precision using very short pulses and single-photon detectors. Laser ranges 
require only small corrections for atmospheric transmission and provide precise constraints 
on the dynamics of the Earth-Moon system. With retroreflectors, the number of photons 
available for timing decreases with the fourth power of the distance, making distances much 
beyond the Moon’s orbit impractical. A transponder, on the other hand, receives pulses and 
sends pulses back in a coherent fashion so that the photon counting decreases only by the 
square of distance in both directions, making ranging possible at far greater distances. 
Satellite laser ranging fundamentally relies on the (rate)(time) = distance relationship to 
ultimately estimate tracking site positions which can then be used to monitor changes in a 
variety of Earth processes (e.g., tectonic motion, polar motion, earth rotation, tidal and 
gravitational forces). The raw SLR "range" is a time interval measurement. The actual range 
is defined as one half the product of the speed of light and the elapsed time between the 
emission of a laser pulse and its reception at the same tracking site after having been 
reflected by the satellite. These are known as full-rate data. Conversely, their average on a 
suitable time span (120 s in the case of LAGEOS) is called Normal Points. Normal points 
have a precision (RMS) down to 1 mm. When a large number of these temporally and 
geographically distributed range measurements are ordered by time and location, each 
range can be considered a constraint in the solution of the numerically integrated equations 
of motion describing the satellite trajectory. The misclosures between the a priori predicted 
and observed ranges are used to form the linear least squares equations which best satisfy 
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all of the range information simultaneously. The resulting system of equations is then solved 
to yield the time-averaged three-dimensional coordinates of the tracking stations.  
 

3.2 The classical concept 

Apart the Earth and the Moon, the classical technique used to gather gravity field data of 
planetary bodies is the radio-tracking of a spacecraft. Indeed, this technique is the more 
common approach to acquire gravity field information by exploiting the several spacecrafts 
spread over the Solar System flying by or orbiting planets, asteroids or comets. The reason 
is that any spacecraft needs to be tracked from the ground-stations on the Earth (when in 
the window visibility) to establish a communication link [117]. Moreover, such a tracking 
allows to carry out navigation in space by measuring position and velocity of the spacecraft 
while orbiting a planetary body or on the cruise towards some destination. Being the 
spacecraft in free-fall in the gravitational field of the central body (a planetary body or the 
Sun in general), it acts as a “proof mass” able to sense the field along the orbit. Indeed, the 
followed orbit is the result of the characteristics of the field, apart any non-gravitational effect.  
In the following the radio-tracking concept will be analysed according to two configurations: 
radio-tracking between a ground-station and a spacecraft, and radio-tracking between 
spacecrafts.          

3.2.1 Radio-tracking 

The basic technique used to retrieve information on the gravitational field of a planetary body 
is the monitoring of a spacecraft orbiting the body through the radio-tracking. By measuring 
accurately position and velocity of the spacecraft which is sensitive to the gravitational field 
along its path it is possible to reconstruct the followed orbit and at the same time to estimate 
the gravitational field. This approach relies on the establishment of a radio-link between an 
observer on the Earth (ground-station) and a spacecraft on its path, i.e. an exchange of 
electromagnetic waves belonging to the radio spectrum. The uplink aims at controlling the 
spacecraft and/or the on-board instruments through telecommands, whereas the downlink 
retrieves the telemetry to monitor the general health status and science data during the 
mission. However, such a link allows two other functionalities: navigation capability, to 
determine spacecraft position and velocity in space, and radio-science, i.e. the capitalisation 
of the radio-link to afford experiments with a science return.  
The radio-science is a topic covering different research areas [117][118], including 
determination of planetary masses and mass distributions, planetary geodesy, study of 
planetary atmospheres and ionospheres, planetary rings, solar plasma and magnetic fields, 
tests of Fundamental Physics and hence test of General Relativity as well. The 
determination of the gravitational field of a planetary body by radio-tracking belongs to the 
radio-science investigations.  



 
 

73 
 

 
 

Figure 3-1: radio-tracking scheme (example for the Bepicolombo mission)    

 
Depending on the investigated phenomenon, radio-science observations rely on the 
measurement and study of specific observables such as amplitude, phase and polarisation 
of the electromagnetic waves exchanged between spacecraft and Earth over various 
timescales. Typically, these observables are used to infer other quantities more directly 
referred to the problem.  
In the gravitational field measurement, relative distances and velocities between a 
spacecraft and the Earth constitute those observables, often indicated as range and range-
rate (or Doppler). They are used as input in the so-called Precise Orbit Determination 
process (POD) [22]. Orbit determination for celestial bodies has been a topic faced by 
astronomers and mathematicians since ancient times, although just since the beginning of 
scientific method in between 1500-1600 several scientists have devoted to find out and 
develop much of the fundamental mathematics and physics in use today.  
The classical orbit determination problem, characterised by the assumption that the bodies 
move under the influence of a central (or point mass) force, faces the process by which it is 
possible to obtain the knowledge of a spacecraft's motion relative to the center of mass of a 
central celestial body in a specified coordinate system [22].  
The general orbit determination problem states that if at a certain time 𝑡0 the state of a 
spacecraft is known and the motion equations are known as well, then they can be integrated 
to determine the state of the spacecraft at any time. However, since the initial state is never 
known exactly and since some constants and some forces are difficult to model or to 
estimate in the problem, then the derived state of the spacecraft is ever affected by errors 
and there will be a deviation between the predicted and the actual motion. By using 
observations of the spacecraft motion is possible to determine a better estimate of the state 
and hence of the motion, deriving at the same time an estimate of the orbit.  
The observations are the measurements carried out by the ground-stations, i.e. the 
observables range and range-rate or other data (azimuth, elevation, etc.). The state 
variables of the spacecraft are constituted by a set of parameters used  to predict the motion; 
it includes at least position and velocity of the spacecraft. However, the state vector can be 
expanded to include also parameters of the dynamical model, i.e. related to the equations 
of motion, and parameters of the observation model, i.e. related to the observation-state 
relationship, which establishes the link between observables and state vector. Indeed, any 
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observable which affects directly the spacecraft motion or the observation-state relationship 
can be introduced in the general state vector of the spacecraft in order to be estimated 
through the observations.  
This is the case when a measure of the gravitational field of planetary body needs to be 
carried out. The state vector is increased to include, beside position and velocity of the 
spacecraft, also the coefficients of the spherical harmonic expansion 𝐶𝑙𝑚 and 𝑆𝑙𝑚 (section 
2.2.2), which can be estimated in the orbit determination process.  
The orbit determination process is a problem of state estimation, i.e. determine the best  
estimate of  the  state  of  a  spacecraft, whose initial state is unknown, from observations 
influenced by random and systematic errors, using a mathematical model that is not exact. 
When an estimate of the state vector has been made (trajectory, harmonic coefficients, etc.), 
the corresponding motion and observations can be predicted. However, the predicted values 
will differ from the true values due to several effects, such as approximations involved in the 
method of orbit improvement and in the mathematical model, errors in the observations, 
errors in the computational procedure, errors in the numerical integration procedure. For this 
reason, the overall process of observation and estimation must be repeated as much as 
possible, compatible with the mission constraints, while the motion goes on.   
In the general orbit determination problem, both the dynamics and the measurements 
involve significant non-linear relationships. For the general case, such relations are 
described by the non-linear expressions [22]: 
 

𝑿̇ = 𝐹(𝑿, 𝑡) 
 

𝑿(𝑡𝑘) = 𝑿𝑘 
 

𝒀𝑖 = 𝐺(𝑿𝑖, 𝑡𝑖) + 𝝐𝑖                 𝑖 = 1,… , 𝑙 

(3-1) 

 
where 𝑿𝑘 is the unknown n-dimensional state vector at the time 𝑡𝑘, and 𝒀𝒊  for  𝑖 = 1,… , 𝑙, is 
a p-dimensional set of observations that are to be used to obtain a best estimate of the 
unknown value of  𝑿𝑘. Such relations are typically affected by a number of observations (p) 
lower than the state vector components (n), non-linear behaviour, errors in the observations 
(𝝐𝑖). To simplify the problem, both the dynamical and observation equations are linearised 

in terms of a Taylor’s series around a reference solution 𝑿∗ and suppressing higher order 
terms. Such an approach allows to obtain a set of linear differential equations with time-
dependent coefficients for the state deviations, 𝛿𝒙 = 𝑿 − 𝑿∗, translating the non-linear orbit 
determination problem aimed at determining the complete state vector into a linear orbit 
determination problem in which the deviation from a reference solution is to be determined: 
 
   

𝛿𝒙̇(𝑡) = 𝐴(𝑡) 𝛿𝒙(𝑡) 
 

𝒚𝑖 = 𝐻̃𝑖  𝒙𝒊 +  𝝐𝑖           𝑖 = 1,… , 𝑙 
(3-2) 

 
with: 

𝐴(𝑡) = [
𝜕𝐹(𝑡)

𝜕𝑿(𝑡)
]
∗

         𝐻̃𝑖 = [
𝜕𝐺

𝜕𝑿
]
𝑖

∗

 

 
 

𝛿𝒙 = 𝑿(𝒕) − 𝑿∗(𝑡) 
 

(3-3) 
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𝛿𝒙𝑖 = 𝑿(𝑡𝑖) − 𝑿
∗(𝑡𝑖) 

 
𝑦𝑖 = 𝒀𝑖 − 𝐺(𝑿𝒊

∗, 𝑡𝑖)                 𝑖 = 1,… , 𝑙 

 
The general solution can be expressed through a state transition matrix Φ(𝑡, 𝑡𝑘) as: 
 

𝛿𝒙(𝑡) = Φ(𝑡, 𝑡𝑘)𝛿𝒙𝑘 
(3-4) 

At last, the orbit determination procedure through the radio-tracking of a spacecraft provides 
a mean to estimate the gravitational field of the orbited body. It is worth to highlight that such 
a technique works well for large bodies, whereas its accuracy decreases as much as smaller 
the body mass, because of a smaller tracking signal, effects due to typical irregular body 
shapes and uncertainty due to the solar radiation pressure [26] (section 2.4).       
The process is depicted in Figure 3-2. The observed observables collected at the ground 
station are compared with the computed observables, which provide a reference solution.  
The computed observables are derived by integrating numerically the equation of motion 
and by using the observation model which relates observations with the state variables. 
Residuals resulting from the comparison between computed and observed observables are 
evaluated with a least-squares fit. Such residuals are computed iteratively and differential 
corrections to the parameters to be estimated, i.e. the spacecraft state (position and velocity) 
and the chosen model parameters (spherical harmonic coefficients), are implemented 
progressively in a loop (Figure 3-2) till to achieve a minimum in the residuals. Since both the 
dynamic model and the observation-state relationship are typically non-linear functions, the 
estimate of the parameters is based on a non-linear least squares approach.                          
At last, the accurate tracking of a spacecraft orbiting a planetary body allows to reconstruct 
its orbit and at the same time to derive precious information on the gravitational field through 
procedures of orbit determination (POD, Precise Orbit Determination).          
The range-rate observable constitutes the rate of change of distance separating transmitter 
and receiver and it is proportional to the Doppler shift of the microwave link. Conceptually it 
measures the relative velocity of a spacecraft with respect to the Earth comparing the 
frequency between the transmitted and received signal, showing a frequency shift due to 
the relative motion. Three types of configurations are currently envisaged for the tracking 
with radio-links [117][22], depending on the source of the reference signal and on the 
number of the involved ground-stations. The measurement is said “one-way” when the 
signal is transmitted by the spacecraft to the ground-station (downlink) and it is generated 
by an on-board oscillator. The measurement “two-way” refers to a signal generated by the 
ground-station, using a local frequency reference, transmitted to the spacecraft and 
coherently retransmitted back to ground (same reference in Tx/Rx). At last, “three-way” is 
the two-way approach with two different ground stations for uplink and downlink.  
Quality of Doppler observables depends on the frequency stability achievable by the master 
reference frequency. With two-way Doppler links the frequency reference is located at the 
ground-station and allows to reach very high stability, with Allen deviations in the order of 

10−14 − 10−15 for integration times till to 1000 𝑠 [119].  
Apart this condition, the quality is limited also by thermal noise or plasma noise. Whereas 
Ultra-Stable Oscillators (USO) are able to reach high degree of stability in frequency, the 
quality of Doppler data is limited by plasma noise or thermal noise. This happens when the 
radio-signals cross plasma regions such as solar corona, interplanetary medium and 
ionosphere. A way to circumvent this phenomenon is to establish a multi-frequency link with 
the spacecraft [120][121]. Exploiting the different effect of plasma on the radio-propagation 
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according to the frequency, multiple frequency links allow to remove almost completely the 
plasma noise. This approach was firstly successfully validated with Cassini’s tracking data 
during the cruise phase radio-science experiments [122] and it will be used also in the 
BepiColombo mission to Mercury to reach very high performance [123]. Moreover, 
multifrequency measurements are widely used in GNSS (Global Navigation Satellite 
Systems) for removing the ionospheric range delay affecting pseudorange and phase 
observables [121].  
 

 

Figure 3-2: Scheme of the precise orbit determination process (POD) to estimate the 
spacecraft orbit and a set of model parameters, i.e. the spherical harmonic coefficients.     

 
Typically, electromagnetic waves employed for communication/navigation belong to the 
radio spectrum, specifically to the microwave region which covers the range from 1 GHz to 
300 GHz formally (EHF, Extremely High Frequency). Within this region different bands are 
identified with names often inherited from radar domain: L, S, C, X, Ku, K, Ka, Q, V, W. 
Historically, radio-links with spacecrafts has seen the use of microwave frequencies 
progressively increasing due to on one side to the technological progress in microwave 
equipment and Tx/Rx transponders and on the other side for the progress in counteract 
and/or to measure the disturbances introduced by the atmosphere, rain and clouds which 
rises with the use of higher and higher frequencies.        
Figure 3-3 depicts a spectrum of the main frequency ranges employed for satellite 
communications.     
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Figure 3-3: Spectrum of frequency bands typically used for satellite communications and radio-
tracking (ESA courtesy)    

 
Next to these observables different elements complement and enrich the radio-tracking 
process: radiometers, water vapour gauges, igrometers. 
 

3.2.2 SST/ll (low-low) 

 
The classical concept of radio-tracking between a ground-station and a spacecraft can be 
adapted to establish a radio-link between two spacecrafts following each other on the same 
orbit and separated by a proper distance, typically hundreds of kilometers. This type of 
configuration is known as Satellite-To-Satellite Tracking approach (SST) in the low-low 
mode (SST-ll) [6][17][18]. A further configuration, named high-low mode (SST-hl), is 
identified when spacecrafts belong to orbits at different altitudes. This is the case of the 
CHAMP mission in which the main spacecraft, in LEO orbit, receives signals from the MEO 
orbit of GPS constellation.    
The principle of SST/ll concept is to measure as accurately as possible the relative motion 
of two spacecrafts by measuring the inter-satellite distance and velocity through a radio-link. 
The change of this distance is directly referred mainly to the gravitational field beneath the 
spacecrafts orbit. Such a differential measure allows to highlight the effect of small-scale 
features. Hence, a precise measurement of the distance variation allows to infer information 
on the gravitational field producing that change. However, effects not related to the 
gravitational field and introduced by non-gravitational forces on the two spacecrafts need to 
be compensated for or be measured. The observable of interest is the relative motion of the 
centres of mass of the two satellites, which has to be derived from the inter-satellite link 
together with the measured acceleration and attitude data. The first approach of this type 
has been pursued by the US-German mission GRACE [72][71]. 
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3.3 Gravitational Gradiometry 

Classical techniques, essentially radio-tracking based, derive information on the 
gravitational field of planetary bodies through a precise tracking of a test mass in free fall, 
constituted by a spacecraft in orbital motion. From these data a carefully reconstruction of 
the orbit based on POD procedures is achieved. Once non-gravitational perturbations of 
different origin (if any) are taken into account in this process, deviations in the obtained orbit 
from the pure Keplerian orbit are interpreted as irregularities in the mass distribution at the 
planet surface and in its interior. Indeed, the gravitational field is recovered indirectly through 
the observation of deviations to the orbit of the satellite as Keplerian orbit.  
Radio-tracking techniques require ever and ever more challenging accuracies in the 
measurement of range and range-rate observables in order to improve the orbit 
determination and at last to improve the estimate of the spherical harmonic coefficients. 
Currently [116], typical precisions of radio tracking data are at the level of 0.02–0.1 mm/s at 
60-s integration time for range-rate measurements (X-band) and 0.5–5 m for range 
measurements; for Doppler measurements, the systematic errors are typically close to 
negligible. Conversely, systematic errors in range measurements can achieve large values, 
at the 1 m level (similar to the random noise). Propagation effects in the interplanetary 
medium affect mainly the radio tracking noise and depend strongly on the solar elongation 
angle. As previously anticipated (section 3.2.1), the combination of observations at multiple 
wavelengths provide a mean to remove the majority of these errors. X- and Ka-band 
combination was used for Cassini and is currently employed for Juno; the same will happen  
on the BepiColombo mission, currently on cruise, and JUICE. For those missions, the quality 
requirements of tracking data are 0.01 mm/s at 60-s integration time and 3 𝜇𝑚/𝑠 at 1000-s 
integration time. An additional advanced radio ranging system allows two-way range 
measurements with an accuracy around 20 𝑐𝑚 [116]. 
Although tracking techniques are nowadays a fundamental instrument to map the gravity 
field of several planets and satellite and even although improvement margins are possible 
[178], alternative and/or complementary techniques are mandatory to be considered to 
achieve increased spatial resolution and accuracy of the gravity models in the medium/long 
term future. Such approaches have to counteract and/or overcome (even partially) some of 
the limitations faced by tracking techniques.  
At first, satellites can be tracked from ground stations just for selected time windows, 
depending on the visibility conditions and on the number of engaged stations. Being the 
gravitational perturbations to the orbit due to the mass distribution at the surface and within 
the body, especially that lying under the spacecraft orbit, gravity is sensed more accurately 
when the planetary surface is visible in the line of sight of the ground-station as the planet 
rotates under the spacecraft [101]. While for the Earth such a condition is less demanding, 
a different scenario is found for planets or satellites around the Solar System. For instance, 
the Moon, being in synchronous rotation with the Earth due to the spin-orbit resonance 1: 1, 
shows up the same face to us, hence the far-side is never directly visible: gravity is sensed 
more accurately on the nearside than on the far-side by radio-tracking. Indeed, far-side lunar 
gravity was not directly measured till to 2008 with Kaguya mission (section 2.4.4.1.2). Later 
the GRAIL mission (section 2.4.4.2) allowed to improve the gravity measurements with a 
different approach. In the Kaguya mission, a sub-satellite, tracked by the main orbiter and 
not in line-of-sight with the Earth, was used to monitor the gravitational perturbations on the 
far-side. A similar condition, although depending on the visibility from the Earth, applies for 
several natural satellites around the Solar System that are tidally-locked with the respective 
planet, i.e. one side is always facing towards the planet. 
A further shortcoming to be considered is that the satellite motion is affected by non-
gravitational perturbations during its orbit as well. These effects introduce disturbances to 
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the tracking observables not generated by the gravitational field and impact negatively on 
the correct orbit determination process and hence on the estimate of the Stokes coefficients. 
Just measurements through an on-board high-sensitivity accelerometer or accurate 
modelling of these effects allow to reduce this error term. 
Another disadvantage is related to the accuracy achievable into the tracking observables 
which affects the model parameters estimate and hence the spherical harmonic coefficients. 
In a typical two-way Doppler link, the quality of data is related to the stability of the frequency 
reference, to the thermal noise generated by the on-board instruments involved in the 
tracking and to the plasma noise, as already explained in section 3.2.1. 
The state of the art performance for range and range-rate measurements are expected for 
the BepiColombo mission which foresees an accuracy of 3 𝜇𝑚/𝑠 at 1000 𝑠 integration time 

for range-rate and 20 𝑐𝑚 for range [123].                         
Another important limitation is related to the intrinsic characteristics of the gravitational field: 
the strength of the field decreases with the increase of the distance from the planet’s centre, 
as stated from the inverse squared Newton’s law. That means low orbits are preferred 
because they support stronger gravity signals with respect to higher ones. Such an 
attenuation is better understood looking at the spherical harmonic expansion, where the 
contribution to the global field by a term of degree 𝑙 decreases as much as increases 𝑙, as 

showed up by the factor (𝑅/𝑟)𝑙: for a specific orbit height, the signal contribution lowers as 
much as the degree 𝑙 is higher. In other terms, for a specific orbit height, the shorter 
wavelengths, related to structures of smaller size and hence higher spatial resolution, are 
attenuated more than longer wavelengths. This is very neat in the expression of the gravity 
field spherical harmonic expansion.   
A completely different approach with respect to the previous techniques is pursued through 
the gravitational gradiometry. In spite of observing indirect effects on the spacecraft orbit 
due to gravity, the gradiometry approach aims at investigating the characteristics of the 
gravitational field through the direct observation of the spatial variation of gravitational field. 
Indeed, the gravitational acceleration 𝑔⃗ experienced by a test mass at 𝑥⃗ position is the 

spatial gradient of the gravitational potential generated by the planet mass located at 𝑥′⃗⃗⃗⃗ , i.e. 
are valid the following (section 2.2.2): 
 

𝑉(𝑥⃗) = 𝐺∫
𝜌(𝑥′⃗⃗⃗⃗ )

|𝑥⃗ − 𝑥′⃗⃗⃗⃗ |
𝑑𝑊 

(3-5) 

 

𝑔⃗(𝑥⃗) = ∇V(𝑥⃗) 
(3-6) 

 

where 𝜌 is the mass density and 𝑊 is the space volume, occupied by the density mass, to 
which the integral is extended. The spatial gradient of the components of the gravitational 
acceleration 𝑔⃗ constitutes the gravitational gradient tensor: 
 

Γ(𝑥⃗) = ∇𝑔⃗(𝑥⃗) = ∇(∇V(𝑥⃗)) 
(3-7) 

 
i.e. the second derivatives of the gravitational potential 𝑉. The gravitational gradients 
constitute a second-order tensor field with 3 x 3 components, which is referred to as 
gravitational gradient tensor [137]. In an arbitray local Cartesian coordinates system the 
gravitational gradient is expressed as follows: 
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Γ𝑖𝑗 =
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= (

Γ𝑥𝑥 Γ𝑥𝑦 Γ𝑥𝑧
Γ𝑦𝑥 Γ𝑦𝑦 Γ𝑦𝑧
Γ𝑧𝑥 Γ𝑧𝑦 Γ𝑧𝑧

) 
(3-8) 

Among the nine components, just five are the independent ones. Indeed, due to the 
conservative nature of the field (𝛻 𝑋 𝑔⃗(𝑥⃗) = 0 and hence 𝑔⃗(𝑥⃗) = 𝛻V(𝑥⃗)) and to the Poisson 
equation (outer space), i.e. the Laplace equation:  
 

𝜕2𝑉

𝜕𝑥2
+
𝜕2𝑉

𝜕𝑦2
+
𝜕2𝑉

𝜕𝑧2
= 0 (3-9) 

the tensor is symmetric and just 5 components are independent (ZZ, XX, XY, XZ, YZ). The 
diagonal components, Γ𝑖𝑖, are known as inline-components, whereas the off-diagonal 
components, Γ𝑖𝑗  (𝑖 ≠ 𝑗), are named off-line components or cross-components.                                                                                                                                                                                                               

The gravitational gradient can be interpreted in two other ways [167]. It constitutes the tidal 
field generated by a celestial body at the location of the gradiometer instrument. This field 
would be exactly zero at centre of mass of the spacecraft. Moving from that position, the 
tidal force increases, as much as the distance from the centre of mass increases (roughly 1 
ppm of 𝑔⃗ at a distance of 1 𝑚) [167].  
From the point of view of General Relativity, the gravitational gradient has a geometrical 
interpretation. Γ𝑖𝑗 components express, at any point, the curvature structure of the central 

body’s gravitational field: the gravity gradient corresponds to the Riemann curvature tensor. 

3.3.1 Principles of measurement  

As stated by the Equivalence Principle of Einstein, it is not possible through a local 
measurement to discriminate the gravitational field from an acceleration of the reference 
frame [168]. To accomplish the measure and separate the two contributions it needs to 
resort to a second order measure, i.e. to the gravitational gradient [169]. In this case, a 
differential measurement between two proof masses allows (ideally) to remove the common 
underwent acceleration and to retrieve the gravity signal.         

As seen in section 2.2.1, an object orbiting a planet undergoes a continuous free-fall in the 
gravitational field where it is moving. Such an object constitutes a “proof-mass” able to 
explore and to probe the gravity field in different spatial positions. Indeed, if two proof-
masses are placed in different positions in a gravity field and on the same equipotential 
surface they will be subjected to different gravitational accelerations 𝑔𝐴⃗⃗ ⃗⃗ ⃗   and 𝑔𝐵⃗⃗ ⃗⃗ ⃗ (Figure 3-4). 
Each vector will be directed along the line of force going through the proof-mass and 
orthogonal to the equipotential surface to that point. If not fixed, the two masses 𝐴 and 𝐵  will 
begin falling towards the planet along the (converging) lines of force and the relative distance 
between them will decrease. The change in the relative distance is a measure of the 
difference in gravitational acceleration between the two points [125].  
If the two proof masses are located at different heights on the same line of force they will 
undergo again different gravitational accelerations, 𝑔𝐶⃗⃗ ⃗⃗⃗   and 𝑔𝐷⃗⃗ ⃗⃗ ⃗. However, the proof-mass in 
the position 𝐷, being closer to the planet, will be attracted more than the mass located in 𝐶.   
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Figure 3-4: Ideal behaviour of proof-masses in a gravitational field 

 
Consequently, if they were left free to move, they would begin falling and the relative 
distance between 𝐶 and 𝐷 would increase. Also in this case the change in the relative 
distance between the two proof-masses is a measure of the difference in gravitational 
acceleration between the two points.  
In both examples, the relative movement is generated by a differential gravitational 
acceleration at the masses position, i.e. by the gravity gradient at the two positions, also 
known as tidal force. From these examples it derives that by monitoring the relative motion 
of proof-masses in a gravitational field it is possible to gather information on the gravity 
gradient between their position and at last on the gravitational field.       
In a spacecraft orbiting a planet a proof-mass located into its centre of mass is effectively in 
free-fall in the gravity field along with all the spacecraft; they are at rest one to each other. If 
a second proof-mass is added within the spacecraft without any support, it will experience 
a relative movement with respect to the first one due to a difference of gravitational 
acceleration at the two locations, as previously explained. Such a difference reflects directly 
the mass distribution that generates the gravitational field of the body.  
This happens also for two proof masses moved with respect to the centre of mass: they will 
experience a relative movement due to the different gravitational acceleration with respect 
to the centre of mass. If these proof masses are part of two accelerometers, they are kept 
fixed with respect to the satellite through a suspension of different type (mechanical, 
electrostatic, etc.). In this case they measure the difference of gravitational accelerations at 
the proof masses positions, i.e. a physical observable proportional to the gravity gradient.   
The result is the technique known as differential accelerometry in which the gravity gradient 
Γ𝑖𝑗 is approximated by measuring the finite relative accelerations over the relative baseline. 

The approximation is equivalent to express as Taylor-series [167] the accelerations in two 
points A and B symmetric with respect to the centre of mass O: 
                

𝑎(𝐴) = 𝑎(𝑂) +  Γ(𝑂)(𝑥𝐴  −  𝑥0) + 𝑜
2 

 
𝑎(𝐵) = 𝑎(𝑂) +  Γ(𝑂)(𝑥𝐵  − 𝑥0) + 𝑜

2 
 

(3-10) 
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where higher terms contain higher derivatives of Γ. Subtracting the two terms we get: 
 

𝑎(𝐵) − 𝑎(𝐴) =  Γ(𝑂)(𝑥𝐵  −  𝑥𝐴) + 𝑜
3 

(3-11) 

 
where even terms cancel due to the symmetry and odd terms can be considered negligible.   
At last, the measure of gradient is translated into: 
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+ 𝑜3 
(3-12) 

Whereas an accelerometer senses the inertia of a single test mass to an applied force, two 
coupled accelerometers sense the difference of inertia from two test masses in reply to a 
differential force. Such a coupling constitutes a gravitational gradiometer. In general terms, 
one may envisage a gradiometer as the juxtaposition of two accelerometers and the sensed 
gradient as the ratio of the acceleration difference to the baseline length between them. As 
such, the gradiometer measures only an approximation of the gradient at a point, which is 
adequate for sufficiently small baselines.  
In general, instruments specifically devoted to measure the gravitational gradient are named 
gravitational gradiometers. The word “gradiometer” is in general referred to the measure of 
the second derivative of a physical observable, whatever it is, such as gravity, magnetic 
field, electromagnetic field. Moreover, following a distinction inherited from geodesy, the 
word “gravity” is referred to measurements carried out on the planet’s surface, where it is 
sum of the acceleration due to the mass attraction alone and the centrifugal acceleration 
due to planet’s rotation, whereas the word “gravitation” refers to the mass attraction effect 
alone. Hence, for a satellite mission, it is correct to say gravitational gradiometry.             
Theoretically, at least 12 accelerometers are needed to have a full-tensor gradiometer, i.e. 
all the components [6]. However, just 5 components are not dependent, hence a minimum 
of 5 accelerometer pairs are needed to measure all the independent component of the 
gradiometer. 

 

Figure 3-5: Configuration for a full-tensor gradiometer (from [6]) 
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Gravitational gradient can be measured as well through another approach, in which angular 
accelerometers are employed and angular accelerations are the sensed observables.  
In this case, the gradient at the position of two masses, separated by a certain baseline, 
generates a torque and hence a rotation (instead of a linear displacement). Such 
instruments are named torsion balance-based gradiometers and measure the differential 
torques exerted on two test masses over the related baseline; from a conceptual point of 
view the gradiometer is likely resembling a dumbbell.  
At last, referring to Figure 3-6, an in-line component (𝛤𝑖𝑖) gradiometer can be realised by 
differencing signals  between  two  linear  accelerometers (proof-masses A-B or C-D)  whose  
sensitive  axes  (arrows) are aligned  along  their  separation,  as  shown  in Figure 3-6.  
 

 

Figure 3-6: Concept of configuration for an in-line component gradiometer [170] 

 
On the other hand, an off-line (𝛤𝑖𝑗 (𝑖 ≠ 𝑗)) gradiometer (or cross-component) can be realised 

by differencing angular accelerations (Figure 3-7) between two concentric arms A-B and C-
D or by combining the linear accelerations on the four proof-masses. 

 

Figure 3-7: Concept of configuration for an off-line (or cross-component) component 
gradiometer [170] 

 
At last, a tensor gradiometer (𝛤𝑖𝑗) could be realised by combining 3 in-line gradiometers with 

3 cross-component gradiometers.  
 

The gradiometry approach allows to reduce some of the drawbacks experienced by radio-

tracking techniques. 
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The issue of line-of-sight constraints required by radio-tracking can be counteracted with 
this approach. Gradiometers would allow to ease this condition providing the complete 
coverage of a planet faster than tracking, because they not suffer from the visibility problems 
and ground stations schedule constraints experienced through radio-tracking. 
 
If, in an ideal case, all nine components of the symmetric gradient tensor were measured, it 
would be, in principle, possible to solve the attitude of the instrument from the 
measurements, at least if some additional information from star trackers is available. 
  

3.3.2 Instruments State of the Art 

Gravity gradiometry is a discipline over 120 years old, whose beginning can be identified 
with the introduction, by the Hungarian geophysicist Baron Lorand von Eötvös (1848 – 1919) 
[143][6], of the torsion balance, specifically designed to measure the gravity gradient for the 
first time (1890). Actually, the physical unit currently used for gravity gradients is named 
“Eötvös” (symbol “E” equals to 10−9𝑠−2, corresponding to measure an acceleration 

difference of 10−9𝑚 𝑠2⁄  over a 1 𝑚 baseline) after his name, because of its pioneering 
studies about the gradient of Earth’ gravity field carried out with this new instrument. Eötvös 
inherited the concept from the Coulomb’s torsion balance (1784), which was used to sense 
electrostatic forces, and capitalised on the instrument adapting to measure the gravity 
gradients. The Eötvös’s torsion balance is constituted by two test masses 𝑚 located at the 
ends of a horizontal beam of length 2𝑙 and hung to a platinum-iridium (or, tungsten) wire. A 
vertical offset between masses was introduced to be sensitive to horizontal gradients as 
well. A differential gravity force acting on the two masses, i.e. a gravity gradient, induces a 
torque on the beam that twists about the vertical axis. The gradient is counterbalanced by a 
restoring torque created by the torsional force of the wire. The rotation of the beam is read 
on a scale through a telescope aiming at a mirror (Figure 3-8). This apparatus allowed 
Eötvös to achieve an accuracy of 10−9𝑠−2. He developed also another version of the torsion 
balance to study the equivalence of inertial and gravitational mass, as postulated by the 
Equivalence principle of Einstein.                
 

 

Figure 3-8: Left: a portrait of Baron Lorand von Eötvös by Gyula Eder (1941); Right: a scheme 
of the Eötvös’s torsion balance (from [143])  
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The basic operation, reprocessed and adapted, is briefly described hereafter, as presented 
in [6]. Schematising the instrument as depicted in Figure 3-8, the beam is subjected to a 
torque 𝑀 as (neglecting the mass beam):   

𝑀⃗⃗⃗ = 𝑟𝐴⃗⃗⃗⃗  ×  𝑚𝑔𝐴⃗⃗ ⃗⃗ ⃗ +  𝑟𝐵⃗⃗ ⃗⃗ ⃗  ×  𝑚𝑔𝐵⃗⃗ ⃗⃗ ⃗ (3-13) 

where 𝑟𝐴 = (−𝑥, −𝑦, 0) and 𝑟𝐵 = (𝑥, 𝑦, ℎ) are the position vectors of proof masses with 
origin at the instrument centre within the north-east-down coordinate system, 𝑔𝐴 and 𝑔𝐵 are 
the corresponding gravity vectors. The vertical component of the torque would be: 

𝐿3 = 𝑚𝑥(𝑔2(𝑥, 𝑦, ℎ) − 𝑔2(−𝑥,−𝑦, 0)) + 𝑚𝑦(𝑔1(−𝑥,−𝑦, 0) − 𝑔1(𝑥, 𝑦, ℎ)) (3-14) 

The gravity components (first-order) are composed by: 
 

𝑔1 = Γ11𝑥 + Γ12𝑦 + Γ13𝑧 
 

𝑔2 = Γ21𝑥 + Γ22𝑦 + Γ23𝑧 
(3-15) 

and hence: 

𝐿3 = 2𝑚(𝑥
2 − 𝑦2)Γ12 + 2𝑚𝑥𝑦(Γ22 − Γ11) + 𝑚ℎ(𝑥Γ23 − 𝑦Γ13) (3-16) 

By using the azimuth with respect to the north and hence expressing 𝑥 = 𝑙 cos 𝛼 and 𝑦 =
𝑙 sin 𝛼, the equation (3-16 changes into: 

−𝜏(𝜃𝛼 − 𝜃0) = 𝑚𝑙
2((Γ22 − Γ11) sin 2𝛼 + 2Γ12 cos 2𝛼) + 𝑚𝑙ℎ(Γ23 cos 𝛼 − Γ13 sin 𝛼) (3-17) 

where 𝜏 is the torsional coefficient of the wire,  𝜃0 is rest position of the beam, 𝜃𝛼 is the angle 

of the beam relative to the 𝜃0 when the instrument is at azimuth 𝛼. Repeating the measures 
at several azimuths allows to determine the unknown quantities: 𝜃0,  Γ22 − Γ11,  Γ23, Γ13, Γ23. 
 

 
Figure 3-9: Schematic view of the operating principle of two basic types of gradiometer, founded on 
the approach used: differential-accelerometer and torsion-balance (adapted from [143]) 
 
In the early 1900s, the Eötvös instrument was largely used in Europe and in the US to help 
in the geophysical prospecting of oil and gas [6][148]. However, in 1930s the advent of 
gravimetry, for the measurement of the magnitude of the gravity, superseded gradiometry 
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instruments due to the greater efficiency and a similar accuracy. Just in 1970s gradiometry 
showed a new interest in military applications to measure the vertical deflection of the gravity 
vector. Indeed, different group at Hughes Aircraft Research Laboratories, Charles Stark 
Draper Laboratory of Cambridge and Bell Aerospace Laboratories developed gradiometers 
for ground and/or airborne applications, such as geophysics and geology through an 
intensive use in exploration and oilfield geophysics in search for mineral deposits. 
Since the first Eötvös’ torsion balance, several types of gradiometers have been proposed 
with different fields of application. Basically, gravity gradiometers can be grouped in two 
types, depending on the principle used to retrieve the gravity gradient (Figure 3-9): 
differential accelerometry and torsion-balance.  
Gradiometers based on a differential-accelerometer approach found the retrieval of the 
gravitational gradient on the linear difference of gravitational acceleration between two test 
masses over the relative baseline of separation. In this case, the gradient is derived from a 
difference of specific forces acting on the test masses and the basic components are two 
linear accelerometers.      
On the other hand, gradiometers based on a torsion-balance approach found their operating 
principle on the differential torques exerted on two test masses separated by a baseline. In 
this case, the different specific forces acting on the masses produce a net torque and induce 
a rotation; the basic components are two angular accelerometers and the gradiometer is 
likely resembling a dumbbell.  
A schematic view of two approaches is reported in Figure 3-9.  
Starting from these basic concepts, different types of gravity gradiometers can be 
envisaged, depending on, for instance, how the “elastic” element of the proof mass is 
realised, how the mass movement is detected, if by direct measure or by the feedback 
needed to keep fixed the mass, which technique is applied for sensing the linear or angular 
movement of test masses, etc. 

 

Figure 3-10: Gravity gradiometry applications versus the required sensitivity; on the y-axis the 
spatial resolution achievable is shown, whereas on the x-axis the accuracy in terms of gravity 

gradient (in Eötvös) is reported (from [142])  

Since the first Eötvös’ model to nowadays, the application field of gradiometers has been 
largely widespread, ranging from basic research devote to the verification of fundamental 
physics principles (inverse square of Newton’s law, equivalence of inertial and gravitational 
mass) to geodesy (Earth’s gravity mapping, ocean and climate studies), from geophysics 
and geology (mineral exploration, search for hydrocarbons) to autonomous navigation 
(underwater navigation, especially). 
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Figure 3-10 shows off a schematic view of main application fields in terms of spatial 
resolution and related needed accuracy [142].       
In the following sections a review of the main gradiometers developed, in development or in 
study is presented. Different designs can be identified but all of them are led back to the 
approaches above depicted: differential accelerometry and torsion-balance-type.    
Technologies employed as well are extremely diversified: mechanical superconducting, 
superconducting magnetically levitated, atom-interferometry, MEMS-type, etc.  
The state of the art was focused on the main type of gradiometers developed till now:  

• Airborne/terrestrial gradiometers  

• Electrostatically suspended gradiometers  

• Mechanically suspended gradiometers 

• Superconducting gradiometers 

• Atom-interferometry-based gradiometers  

• MEMS-based gradiometers 
 

Table 3-1 Stage of development (TRL, Technology Readiness Level) and performance (tested 
and/or expected) of main typologies of gravity gradiometers (DA: Differential Accelerometry, 

TB: Torsion Balance, F: with feedback) 

Gravity 
Gradiometer 

Technology Noise (𝑬 √𝑯𝒛⁄ )  Axes Type TRL 

GRADIO/ 
GOCE1  

Electrostatic 
accelerometer 

2 10−2 Full DA/F 9, 
flight-proven 

GRACE2 SST-ll - single DA 9, 
flight-proven 

GRACE-FO3 SST-ll - single DA 9 (7), 
in operation 

GRAIL4 SST-ll - single DA 9, 
flight-proven 

SGG5 Superconducting 
mechanical 

 

1  
 

single DA 3, 
prototype 

SGG5 Superconducting 
mechanical 
spring and 
levitation  

 10−2 (tested) 
 

three-
compo
nents 

TB& 
DA 

4, 
prototype 3-
components 
(diagonal) 

SGG5 Superconducting 
levitated  

 10−4/ 10−5 
(potential) 

two-
compo
nents 

TB& 
DA 

4, 
prototype 2-
components 

(diagonal and 
off-diagonal) 

NA 6 MEMS  10−1 − 1  
(potential) 

single TB 2, 
project/study 

Seesaw-
suspension7 

MEMS 10 single TB 2-3, 
partial prototype 

Absolute GG8 Atom-
interferometry 

1-4 single DA 4, 
on-ground tests 

QGG/AIGG9 
 

Atom-
interferometry 

30 (tested), 

 10−3(potential) 

single DA 3-4, 
on-ground 

tests/project 

RGG10 Rotating 
mechanical 
dumbbell 

1-5 single TB 4, 
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tested 
breadboard 

model  

GGI/FTG11 Rotating 
mechanical 

accelerometer 

2-30 Full DA/F 4-5, 
Airborne/ship/ 

on-ground 
operated 

Draper12  Floated 
gradiometer 

1 single/ 
three 

TB 4, 
laboratory 

tested 

ARKeX13 superconducting  2 single DA 5, 
Airborne/on-

ground operated 

Gedex14 superconducting 1 single/ 
three 

TB 5, 
Airborne/on-

ground operated 
1Alcatel/ONERA [137][136][139], 2NASA/DLR [129], 3NASA/DLR [REF], 4NASA/JPL/MIT [131], 5University of 

Maryland [173], 6University of Twente (Netherlands), 7Imperial College, 8Yale University, 9JPL/Caltech, 
10Hughes aircraft [6][143], 11Bell Aerospace/Lockheed Martin [146][6][143, 12Draper [143][6], 13ARKeX 

[142][147], 14Gedex [150][151]    

 
Considering that most of the gradiometers have as core an accelerometer, a summary of 
the accelerometer performance state of the art has been carried out on the space qualified 
accelerometers currently available (flight proven, in operation and in development). Results 
are reported in Table 3-2.   
 

Table 3-2 performance state of the art of space qualified accelerometers  

Accelerometer Type Mission Sensitivity 

(𝒎 𝒔𝟐⁄ √𝑯𝒛⁄ )  

Bandwidth 
(𝑯𝒛)  

Stage 

STAR1 Electrostatic CHAMP 3 ∙ 10−9 (y, z),  

3 ∙ 10−8 (x) 

10−4 − 10−1 Flight-proven 

SuperSTAR22 Electrostatic GRACE 10−10 10−4 − 10−1 Flight-proven 

MicroSTAR3 Electrostatic GRACE-FO < 10−10  In operation 

GRADIO4 Electrostatic GOCE 3 ∙ 10−12 5 ∙ 10−3

− 10−1 
Flight-proven 

T-SAGE5 Electrostatic MICROSCOPE 3 ∙ 10−10 10−3

− 2 10−2 
In operation 

ISA6 Electro-
Mechanical 

BepiColombo 10−8 3 ∙ 10−5

− 10−1 
In operation 

HAA7 Electro-
Mechanical 

JUICE 10−8 10−4 − 10−1 In 
development 

1ONERA [153], 2ONERA [153], 3ONERA, 4ONERA [152], 5ONERA, 6THALES ALENIA SPACE ITALY/INAF 

[154], 7 THALES ALENIA SPACE ITALY/INAF [158] 
 

3.3.2.1 Airborne/terrestrial gradiometers  

An interesting prospective can be envisaged for planetary bodies hosting a sufficiently thick 
atmosphere. For those targets, the possibility of using gradiometer on-board airplanes 
and/or balloons or in general flying mobile platforms can constitute an interesting alternative 
to gradiometer on-board an orbiter. Such an option is witnessed by different trends towards 



 
 

89 
 

the use of such flying platforms to explore and investigate closer aimed targets. Mars 2020 
rover’s mission, for instance, will include a small and autonomous helicopter to survey the 
planet and to access remote areas. A similar approach is considered for the mission 
Dragonfly, recently approved by NASA for the New Frontiers Program. This mission is based 
on a rotorcraft-lander to the largest Saturn’s moon, Titan, as the next mission in its New 
Frontiers program. Expected to be launched in 2026 and to arrive in 2034, Dragonfly will 
explore several locations across Titan, sampling and measuring the composition of Titan’s 
organic surface materials to characterise the habitability of Titan’s environment and 
investigate the progression of prebiotic chemistry.            
Apart this new trend in Solar System missions, whose effectiveness needs to be proved, 
several concepts have been developed and proved for terrestrial applications, especially in 
military applications and since seventies. Some of them have been also commercialised.    
 

3.3.2.1.1 Hughes Aircraft gradiometer  

 
The first prototype of a gravity gradiometer applied for moving platforms was invented by 
Robert Forward at the beginning of 1970s [143][144]. The Hughes Rotating Gravity 
Gradiometer (RGG) is depicted in Figure 3-11 [6]. Two dumbbells  with identical test masses 
at their ends are coupled to the base in a cross-shaped structure through a central pivot, 
which is constituted by a torsional spring. A gravity gradient on the structure moves each 
dumbbell in opposite direction creating a relative torque which at the same time cancel the 
common mode disturbances. Moreover, dumbbells are rotated at a half the mechanical 
resonance frequency of the pivot (35 Hz); in this way, the gradient signal results at the 
double of the rotation frequency, due to the system symmetry, allowing at the same time a 
discrimination in frequency and an amplification of the output due to the resonance. A 
breadboard model was developed by Hughes with a diameter of 14 cm and an accuracy of 
1 𝐸 for a 10 s of integration [6]. The development of the instrument was stopped in the early 
1980s when the US Department of Defense chose the Lockheed Martin (ex Bell Aerospace) 
gravity gradiometer for long-term development [143].              
 

 

Figure 3-11: sketch of the Rotating Gravity Gradiometer (RGG) by Hughes Research Lab and 
related breadboard model [143][6]  
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The capability of rotation is often used in sensors to help in discriminating between signal 
and noise sources, especially in dynamic environments. Indeed, many of error and noises 
are modulated at the rotation frequency or not modulated, such as 1 𝑓⁄  noise, whereas the 
gradient signal is modulated at doubled frequency due to the symmetry of the mass-baseline 
configuration.       

 

3.3.2.1.2 Lockheed Martin gradiometer  

 
The rotation is used also in the Gravity Gradient Instrument (GGI) which is the basic element 
of the Full-Tensor of Gravity Gradients (FTG), originally designed by Ernest Metzger at Bell 
Aerospace [143] [146]. A sketch of a single GGI is depicted in Figure 3-12. Two pairs of 
linear accelerometers are mounted on a disk in opposite positions within the same pair, with 
their sensing axes pointing in opposite directions and perpendiculars to the disk spin axis; 
the disk is rotated at angular velocity Ω. From equation (3-17) with ℎ = 0, using 𝛼 = Ω𝑡 and 
𝛼 = Ω𝑡 + 𝜋 2⁄  for a pair of accelerometers and 𝑀 = 𝑚𝑟(𝑎1 + 𝑎2) and 𝑀 = 𝑚𝑟(𝑎3 + 𝑎4) for 
the related torques, the measurement equation is [6]:     

𝑎1(𝑡) + 𝑎2(𝑡) − ( 𝑎3(𝑡) + 𝑎4(𝑡) ) = 2𝑟(Γ22 − Γ11) sin 2Ω𝑡 + 4𝑟Γ12 cos 2Ω𝑡 (3-18) 

 
The sum of signals from each pair yields the gravity gradient at the centre, nulling the 
common linear accelerations perpendicular to the spin axis; moreover, the difference of two 
sums from two orthogonally arranged accelerometers deletes also the rotational 
accelerations about the spin axis [146]. A single GGI allows to retrieve the difference of two 
diagonal elements and the related off-diagonal component (Γ12, Γ22 − Γ11 in the example). 
The rotation of the disk allows to modulate the gravity gradient at a doubled frequency with 
respect to the rotation Ω, because the same configuration repeats twice per rotation. 
Demodulation at the 2Ω frequency allows to recover the gravity gradient. However, other 
effects not inherent to the investigated signal and related to misalignments between 
accelerometers and/or mismatches between their scale factors are modulated at the same 
rotation frequency [146]. Indeed, demodulation of the unwanted signal at the rotation 
frequency provides information about those imperfections. Therefore, this output is used in 
feedback loop to move the proof mass in one of the accelerometers in each pair in order to 
null it.     

 

Figure 3-12: sketch of GGI by Bell Aerospace (left); the updated version of Lockheed Martin 
with doubled pairs of accelerometers (right) [6]  
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A complete instrument (FTG) is constituted by a set of three disks (GGI), orthogonally 
mounted, to obtain the full tensor gravity gradiometer. The adopted configuration is the so 
called “umbrella” mounting (Figure 3-13), which allows some advantages such as keeping 
the same orientation of each GGI with respect to the vertical, saving space in the 
arrangement and enhancing the gradiometers calibration since each disk senses similar 
signal levels.   

 

Figure 3-13: disposition of three discs of GGI in “umbrella” configuration to obtain a full-tensor 
gradiometer [6]  

Each GGI provides the difference of two in-line components and a corresponding off-line 
component; hence the use of three orthogonally oriented disks (Figure 3-13) allows to 
retrieve three differences of in-line components and three off-line components (six 
gradients), i.e. all together constitute a full-tensor gradiometer. Moreover, the sum of all the 
in-line differences would ideally return a null value.      
All the system is inertially stabilised by three gimbals controlled by two 2-degrees-of freedom 
gyroscopes and three orthogonal accelerometers [146]. Figure 3-15 shows off the complete 
gradiometer by Bell Aerospace.  
 

 

Figure 3-14: model VII of a single Bell accelerometer constituting the basic element of GGI 
[147]  

The basic element of a single GGI is the Bell Model VII pendulous force rebalance 
accelerometer [146] (depicted in Figure 3-14). A cylindrical proof mass is hung through a 
flexural spring which allows a deflection of the proof mass when an acceleration acts along 
the sensing axis. Two ring-shaped capacitive pick-off located on either side of the proof 
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mass detect such a displacement as signal. It is amplified, converted to a current and applied 
to a torquer that forces the proof mass in its zero output. The current measured and applied 
to the torquer is related to the underwent acceleration. In the first version of the instrument, 
two accelerometers on a GGI were separated by a 10 𝑐𝑚 baseline; hence, the detection of 

a few Eötvös gradient required accelerometers with a sensitivity about 10−10 𝑚/𝑠2 [146]. 
The first FTG by Bell Aerospace was employed for aircraft, land vehicle and ship 
applications; it has been employed for military and commercial applications. The 
gradiometer was chosen by the US Navy for the gravity compensation requirements in its 
inertial navigation systems. Moreover, the Air Force Geophysics Laboratory used the same 

system to regional airborne gravity survey system [146].  A performance of about 6 𝐸/√𝐻𝑧 
was achieved in the laboratory environment, whereas during the 1987 test flight, a level of 

about 30 𝐸/√𝐻𝑧 level [143]. After the first version, at the beginning of 1990s Bell Aerospace 
(later acquired by Lockheed Martin) proposed some improvements, such as increase in the 
baseline length (till to 30 𝑐𝑚) and doubling of the accelerometers (from 2 to 4 pairs, Figure 
3-12) to reinforce the signal, grow of the rotation frequency and filter cut-off frequency to 
enhance sampling and spatial resolution.  
 

 
 

Figure 3-15: the full tensor gradiometer by Bell Aerospace on an inertially stabilised platform 
(left, a)); the mounting in “umbrella configuration” (right, b)) [143]  

At the end of 1990s, further improvements and simplifications of the Bell Aerospace and 
Lockheed Martin FTG version allowed to commercialise the product, trademarked as 
Falcon, to be used for airborne applications. Since 1994, Bell Geospace gained the 
commercial rights to manufacture the FTG for marine and airborne surveys [142]. The 

performance achieved are about 2 − 3 𝐸/√𝐻𝑧.      
 

3.3.2.1.3 Draper Floated gradiometer  

 
Another instrument belonging to the class of rotating gradiometer was developed in the 
1970s and early 1980s by Milton Trageser of Charles Stark Draper Research Laboratory 
(Cambridge, USA), the  Floated Gravity Gradiometer (FGG) [143][6]. The sensor employed 
the ‘floated gyro’ technology developed at the Massachusetts Institute of Technology (MIT) 
(Trageser 1984). Similarly to the RGG, the FGG sensed gravity gradient-induced differential 
torques on its dumbbell-like proof masses. The sensor had two masses at different heights, 
as in the Eötvös’ torsion balance. The gravity gradient measure was achieved by suspending 
the proof masses in a buoyant, viscous and magnetic fluid, in order to isolate them from 
vibrations [6].  
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Figure 3-16: geometry of the floated gradiometer of Draper Research Laboratory: single unit 
(left, a)); group of three units on a stabilised platform (right, b)) [6]  

 
The orientation of the floated proof masses was maintained by torque feedback loops 
supplied by external gyroscopes, which were integrated into the system.  
Considering the equation (3-17), related to the Eötvös’s torsion balance, if, for example, 𝛼 =
−90°, is used (maintaining the north-east-down coordinate system and indicating that the 
first axis of the device points west, towards −𝑥2), then a deflection due to the gradients 
would be recovered by applying a moment 𝑀, with 𝑙 radius of the device: 

𝑀 = 𝜏(𝜃𝛼 − 𝜃0) = 2𝑚𝑙
2Γ12 −𝑚𝑙ℎΓ13 (3-19) 

Assuming the gradiometer on a stabilised platform with axes constrained to the local north-
east-down system, three instruments (Figure 3-16) would measure the moments: 
  

𝑀1 = 2𝑚𝑙
2Γ12 −𝑚𝑙ℎΓ13 

 
𝑀2 = 2𝑚𝑙

2Γ12 +𝑚𝑙ℎΓ13 
 

𝑀3 = −2𝑚𝑙
2Γ12 +𝑚𝑙ℎΓ23 

(3-20) 

 
Some of the good performance offered by the floated gradiometer were the following: 
 

• quick time response; 
• low level of self-noise; 
• relative insensitivity to angular vibration 
• low level of fluid unbalance; 
• reasonably low sensitivity to linear vibration, temperature and magnetic fields. 

 
The Draper gradiometer was also intended for satellite and aircraft applications. The 

achieved performance, tested in laboratory, was about 1 𝐸/√𝐻𝑧. Like the Hughes RGG, the 
Draper Laboratory gradiometers did not reach the production stage but did demonstrate very 
good performance in the laboratory (1980s). 
 

3.3.2.1.4 ARKeX Exploration gradiometer  

 
ARKeX Ltd, a UK company (Cambridge), commissioned by the European Space Agency 
(ESA), has developed a vertical cryogenic Exploration Gravity Gradiometer (EGG), 
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operating at a temperature of 4 K. This gradiometer was specially designed to measure the 
vertical gradient [142][147] and it was used by the company for geophysical operations. 
This gradiometer is based on the principle of superconductivity through the use of Meissner 
effect, that allows for contactless suspension of proof masses (levitation), and 
superconductivity itself, that allows for using a SQUID magnetometer to provide high-
accuracy and stable measurements of proof mass displacements. 
It is constituted by two vertically-spaced accelerometers, whose proof masses, with vertical 
sensing axes, have a H-shaped cross section (a hollow cylinder with a flange in the middle) 
and are suspended by levitation. Proof masses are made by Niobium (50 mm of diameter 
and length and 100 g in mass) and are separated by 15 cm. The gradiometer was installed 
inside a cryostat (4 K) and mounted on a gyrostabilised platform; the performance achieved 

were about 7 𝐸/√𝐻𝑧 [142]. 
After 2008, ARKeX established an agreement with Lockheed Martin to use the FTG 
technology. The result was an advanced eFTG (enhanced FTG) with higher accuracy and 
improved quality of shock absorption and thermal stabilisation, allowing to achieve noise 

levels of about 2 𝐸/√𝐻𝑧.  
 

3.3.2.1.5 Gedex Airborne gradiometer   

 
The Canadian company Gedex Inc. developed and patented a cryogenic High Definition 
Airborne Gravity Gradiometer (HD-AGG) composed by three orthogonally arranged pairs of  
angular accelerometers to measure the full tensor of gravity gradient [142][143][150]. The 
instrument used by Gedex has been developed at the University of Maryland (section 3.3.2.4 
and [151]). It is a cross-component gradiometer type (torsion-balance) composed by pairs 
of angular accelerometers that share a common rotation axis, each of which is constituted 
by elongated test masses (Figure 3-17). The two test-masses in each pair have their long 
axes mutually orthogonal and are supported within housings connected to each other, via 
bolting, to a central metering cube structure; the assembled prototype is shown in Figure 
3-17. When angular accelerations are sensed about the rotation axis of one of the test-mass 
pairs, each pair of accelerometers performs rotation in the same direction (“common-mode”) 
with respect to the body of the instrument, while accelerations induced by the local gravity 
gradient tensor impose to the two test-masses in each pair to rotate in opposite directions 
(differential-mode).      

 

Figure 3-17: angular accelerometer by Gedex (10.2 x 10.2 x 2.5 cm, left, a), schematic diagram 
of the sensor (b) and assembled prototype (c) [150]  

The angular accelerometers are carefully adjusted and calibrated to match as much as 
possible their characteristics. Any residual imbalance, misalignment of the sensitivity axes 
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and other technological imperfections are measured and taken into account in the 
gradiometer error model during the calculation of gravity gradients components [142]. 
The instrument is cooled down at cryogenic temperatures (< 5 K) with the aim of reducing 
the thermal noise and of making use of properties of superconducting materials. Indeed, 
proof mass, spring and housing are derived all from a single block of niobium (Nb).   

Laboratory tests indicate that noise levels of 1 𝐸/√𝐻𝑧 (RMS) in the range 10−2 − 10−1 𝐻𝑧 

can be achieved and < 1 𝐸/√𝐻𝑧 between 10−1 − 1 𝐻𝑧 [150]. Currently, it is going to be 
deployed at commercial level.  
 

3.3.2.2 Electrostatically-suspended gradiometers   

Gradiometry based on differential accelerometry, both in the linear and angular version, 
founds its principle on the accelerometers employed to accomplish the measure. A class of 
accelerometers largely employed in space missions relies on the electrostatically-
suspended proof-mass concept: they are electrostatic accelerometers [151][152][153]. The 
operating principle of an accelerometer foresees the measure of the proof-mass motion 
relative to its frame to derive the underwent acceleration. In this case, the displacement is 
measured and the proof-mass is hung through an elastic element (spring-like) to restore the 
rest position. In the electrostatic accelerometers, the proof-mass is not connected to the 
frame, avoiding any mechanical contact, instead it is suspended by means of an electrostatic 
field. In this case, while the proof-mass follows its free-fall along the orbit, the relative 
displacement between proof-mass and spacecraft is monitored through a capacitive 
transducer; a closed-loop actuator exerts an electrostatic feedback force on the proof-mass 
in order to keep it motionless with respect to the spacecraft [151].  
This type of accelerometers provide very high performance in terms of sensitivity due to the 
fact that the “spring” is provided through electrostatic suspension, guaranteeing an electrical 
stiffness very low and hence ensuring that also the frequency of the system is very low 
(section 3.3.2.3). The control loop ensures also that the displacements of the test mass with 
respect to its frame, rigidly connected to the spacecraft, is very small in the entire frequency 
band, determining the linearity of the system. Problems are connected to the on-ground 
calibrations where it is necessary to suspend the test mass against the Earth gravity.                  
Actually, this type of accelerometers, mainly produced by the ONERA French research 
centre (Office National d'Etudes et de Recherches Aérospatiales), has been employed in 
different space gravity missions, such as CHAMP, GRACE, GRACE-FO and GOCE. Each 
mission, in a sense, explores a different concept in measuring the gravitational field, CHAMP 
being the  simplest, followed (also  in  mission  complexity) by GRACE/GRACE-FO and then 
GOCE. However, the aim of accelerometers is different in those missions. In the first three 
missions the accelerometer provides the measurements of the satellite non-gravitational 
forces, in order to discriminate the position or velocity changes of the satellite due to the 
gravity field from those due to perturbations such as drag, solar radiation, albedo, etc. 
Instead, in GOCE, accelerometers constitute the core of the gradiometer and hence are the 
basic elements for the measurement of the gravity field through the gravity gradient.  
Indeed, GOCE hosts on-board the first ever gravity gradiometer, whose operation, based 
on differential accelerometry, is founded on high-sensitivity electrostatic accelerometers. 
The gradiometer is constituted by six tri-axial closed-loop capacitive accelerometers, 

characterised by an outstanding resolution of 3 ∙ 10−12𝑚/𝑠2/√𝐻𝑧  arranged orthogonally in 
pairs at a distance of 50 𝑐𝑚 on a very stable carbon-carbon honeycomb structure 
[135][136][137][138]. The centre of the three gradiometer axes is chosen as close as 
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possible to the satellite centre of mass. Figure 3-18 shows the gradiometer core assembly 
and a single pair of accelerometers.  
Each pair of accelerometers constitutes a gradiometer arm. As above anticipated, such 
accelerometers are based on the electrostatic principle of the proof mass suspension. The 
proof mass is floated in a small cage and is kept in the centre of the cage by electrostatic 
forces, generated by applying suitable voltages between the cage, equipped with eight pairs 
of electrodes, and the proof mass. Proof mass and cage constitute a capacitive system 
whose variation of capacitances depends on the variation of the gap between mass and 
electrodes. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-18: The GOCE gradiometer core (left): the six tri-axial accelerometers orthogonally 
mounted are shown along with the developed special carbon-carbon structure. On the right: 

single gradiometer arm with two accelerometers [135]     

 
The accelerations effectively measured are derived from the voltages applied to maintain 
the proof mass levitated and centred in the cage. The gravity gradients, the observable to 
be measured, are recovered through the principle of the differential accelerometry. 
Measurements from two accelerometers belonging to the same arm and separated by 50 𝑐𝑚 
are subtracted. This operation allows to remove noise and disturbing effects affecting both 
accelerometers, a process, named common mode rejection, which is fundamental to reach 
the sensitivity needed to detect the tiny gravity signals. The remaining signal is the difference 
in acceleration due to Earth’s gravity detected at two points separated by a baseline of 
50 𝑐𝑚, and it is an optimal approximation of the gravity gradient in this frame.  
Beside the difference, the average of two measures on the same arm provides the external 
forces acting on the spacecraft such as atmospheric drag and solar radiation pressure. Such 
an information is sent as command input to the electric propulsion engine to balance the 
atmospheric drag and to make the spacecraft drag-free [138].  
Geometrically, the proof masses have a parallelepiped shape with sizes of 4 𝑥 4 𝑥 1 𝑐𝑚, a 
320 𝑔 mass and are made by a platinum-rhodium alloy (Figure 3-19). Such a shape is 
chosen to allow the test of the accelerometers on-ground, levitating electrostatically against 
its weight the proof mass through the application of a high voltage on the electrodes on the 
larger side of the proof mass. However, this geometry implies that from one side it is not 
possible a complete verification on-ground of the accelerometers sensitivity. From the other 
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side, each accelerometer has two more sensitive axes (ultra-sensitive axes), whereas the 
third one is less sensitive (i.e. the axis orthogonal to the larger face).         
Due to this asymmetry in the sensitivity, the arrangement of the accelerometers has been 
chosen conveniently so that the in-line direction, being more important because related to 
the in-line components of the gravity gradient, has been covered by ultra-sensitive axes.     
 

 

Figure 3-19: A single proof mass of the accelerometers employed in GOCE [135]   

 
The other ultra-sensitive axes have been identified in order to guarantee higher precision in 
the measurement of the angular velocity and angular accelerations. Indeed, the three 
orthogonal one axis gradiometers are oriented roughly with the spacecraft axes: X-axis in 
flight direction, Y-axis orthogonal to the orbit plane and Z-axis radially downwards. The 
gradiometer spacecraft-fixed is nadir-pointed and rotates in space mainly around Y-axis. 
Hence, the remaining ultra-sensitive axes have been fixed to lie in the XZ plane in order to 
better record the main rotational motion of the gradiometer/spacecraft. Figure 3-20 depicts 
the arrangement of the six three-axis accelerometers according to this strategy.                 

 

Figure 3-20: location of the GOCE six three-axis accelerometers in the gradiometer reference 
frame [137]. Solid and dashed arrows depict, respectively, ultra and less sensitive axes of proof 

masses     

The  three  gradiometric  arms  are arranged at 90˚ to each other so that the gradients  are  
obtained  in  all  three dimensions.  The  result  of a  science measurement phase is a gravity 
gradient map  evenly  covering  our  planet  except for small areas around the poles.  
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Gradiometer Characteristics 

Mass 180 𝑘𝑔 

Power 100 𝑊 

Distance accelerometers 0.5 𝑚 

Bandwidth as AOCS 
sensor 

𝐷𝐶 𝑡𝑜 5 𝐻𝑧 

Measurement bandwidth 5 ∙ 10−3 − 10−1 𝐻𝑧  
Accelerometer sensitivity 3 ∙ 10−12  𝑚 𝑠2/√𝐻𝑧⁄  

Structure stability 0.2 𝑝𝑝𝑚/𝐾 

Temperature stability 0.01°𝐶 𝑜𝑣𝑒𝑟 200 𝑠  
 

Figure 3-21: The whole assembly of the Electrostatic Gravity Gradiometer [135], along with its 
main characteristics   

 

3.3.2.3 Mechanically-suspended gradiometers   

No gravity space missions with mechanically-suspended gradiometers have been realised 
so far. However, terrestrial gradiometers with such a kind of accelerometers have been 
realised, as witnessed with RMGG by Hughes (section 3.3.2.1.1), partially with GGI by Bell 
(section 3.3.2.1.2) and with the first versions of Paik superconducting gradiometers (section 
3.3.2.4) . Moreover, such a manufacturing technology for proof-masses is well employed in 
accelerometers for terrestrial and space use.  
For space use, the electro-mechanically accelerometer ISA (Italian Spring Accelerometer) 
has been realised for the BepiColombo mission to Mercury jointly by IAPS/INAF and Thales 
Alenia Space Milan [154][155][156]. An advanced model, implementing an improved and 
better radiation hardening to the accelerometers as well, is going to be designed and 
manufactured by the same team for the JUICE mission to Jupiter moons [158][159]. The 
advancement with respect to ISA is related both to the sensor and to the electronics due to 
the different environment conditions the accelerometers would have to deal with and to the 
general objective of monitoring the non-gravitational perturbations underwent by the 
spacecraft (not mainly the solar radiation as employed in BepiColombo). Indeed, the Jovian 
system is characterised by very strong radiation belts which concentrate high energy 
particles making the radiation dose to be tolerated higher with respect to Mercury 
environment.  
ISA accelerometer is part of the Radio-Science Experiments (RSE), a set of intertwined 
experiments aimed at determining the gravity field of Mercury, evaluating the rotation state 
of Mercury and carrying out some Einstein’s General Relativity tests at Mercury. In this 
frame, ISA aims at measuring with very high accuracy all the non-gravitational accelerations 
perturbing the BepiColombo spacecraft trajectory and changing its orbit around Mercury 
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planet, such as the direct solar radiation pressure and the indirect radiation coming from the 
planet surface (planetary albedo and infrared emission).  
The high sensitivity ISA accelerometer is a three-axis sensor able to work in space  
conditions on-board  of  a satellite  in  “free-fall”  and  therefore  not  subject  to  the  Earth  
gravity.  Apart from its high sensitivity and dynamics, one of its main features is the possibility 
to perform its calibration on ground, with Earth gravity, differently from other manufacturing 
technologies, such as the electrostatic one. Its fundamental peculiarity, which provides the 
name “ISA”, is that the proof mass of each individual sensing element is connected to its 
reference frame by means of a mechanical foil-shaped spring that allows its movement just 
along one direction (the so-called sensing axis), constraining it tightly in the other two 
directions. Every single axis of the accelerometer is constituted by three main parts:  
 

• the mechanical oscillator 
• the signal detector 
• the actuation and control 

The mechanical oscillator is constituted by a proof mass connected to the reference frame 
through a spring with low elastic constant. Accelerations, due to a change in the free-fall 
motion of the spacecraft, acting on its reference frame (fixed to the satellite) are seen as 
inertial accelerations acting on the proof mass. Relative displacements of the proof mass 
with respect to the frame need to be measured in order to recover the underwent 
accelerations. To this respect, two couples of plates face the central proof mass to form a 
capacitive transducer and a capacitive actuator. The coupling of these plates with the central 
proof mass realises four capacitors. The proof mass is electrically connected to the frame 
that is referred to the electrical ground. A 100 µ𝑚 gap between proof mass and plates is 
maintained by means of sixteen alumina washers (Al2O3), providing electrical insulation as 
well. Proof mass, plates and washers are assembled by screws and nuts, joining together 
both sensor sides, preventing the introduction of asymmetry effects. A couple of capacitors, 
named pick-up plates (the farthest from the spring) and used to gather the sensor response 
(capacitive transducer), detects any displacement of the proof-mass. These plates are 
included in a capacitance measurement bridge at equilibrium, whereas the other arms con- 
sist of known value fixed capacitors. The bridge is biased by a periodic signal coming from 
a generator and it is decoupled by an isolation transformer. Any sensing mass displacement 
causes a capacity variation of pick-up plates, hence an unbalancing of the bridge and a 
modulation of the output voltage. The remaining couple of capacitors forms the actuators, 
used to apply electrostatic forces to the proof mass. Their use is envisaged for different 
reasons: to calibrate the sensor on-flight applying a known acceleration, to set the rest 
position of the proof mass (operating point), to weaken the torsional spring constant 𝑘 of the 
sensor [20]. In particular, the last action affects the quality factor 𝑄 of the sensor, decreasing 
its value: this allows for tuning the accelerometer sensitivity by using the actuators. 
The system operates as a flexural harmonic oscillator, forced by an external acceleration 
and hence characterised by the following transfer function (Figure 3-22): 
 

𝐺(𝑠) =
1

𝑠2 +
𝜔0
𝑄 +𝜔02

 (3-21) 
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Figure 3-22: plot of an ideal transfer function for an accelerometer ISA-type: the amplitude at 
the resonance increases as Q increases; at frequencies higher than the resonance it 

attenuates at 40 dB per decade  

 
where 𝜔0 is the natural angular frequency of the accelerometer (𝜔0 = 2𝜋𝜈0) and 𝑄 its quality 

factor. The accelerometer returns a flat response for 𝜔 < 𝜔0, has a resonance peak at 𝜔0 
and decreases fastly for 𝜔 > 𝜔0. ISA has a very low resonance frequency, 𝜈0 ≅ 3.5 𝐻𝑧 and 

is realised to work in the frequency range 3 10−5 − 10−1𝐻𝑧 with an accuracy till to 

 10−8𝑚 𝑠2⁄ . In the operating frequency range, the transfer function between the sensed 
acceleration (𝑎) and the proof mass displacement (𝑥) is flat (within the accuracy required), 

hence frequency-independent: 𝑥(𝜔 ) ≈ 𝑎(𝜔 )/𝜔0
2. Hence, the use of very low frequencies 

allows for increasing the sensor response (𝑥) to detect the very small expected non-

gravitational accelerations (∼  10−7 −  10−6 𝑚 𝑠2⁄ ). Figure 3-23 shows some elements of a 
single EQM accelerometer (Engineering Qualification Model). 
 

 

Figure 3-23: Details of a single ISA accelerometer used during tests at IAPS/INAF: pick-up 
plates (mounted), actuators, screws 
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Both the structure of the instrument and its intrinsic features are related to the requirements 
coming from the RSE. The main requirement is the capability of measuring accelerations as 

small as 10−8𝑚/𝑠2 over a wide band (3 × 10−5  –  10−1 𝐻𝑧)  including  the  expected  
perturbations  frequency  content.  The measurement error budget includes the foreseen 
sources of error, such as intrinsic noise of the instrument, spurious signals due to inertial  
forces  and  gravity  gradients,  thermal  effects,  on-board  micro-vibrations,  various  types  
of calibrations performed. The calibration procedures in particular are very important. It is 
worth to notice that, due to its  working  (three  one-dimensional  sensing  elements  arranged  
in  order  to  measure  the  three components  of  the  acceleration  vector  acting  on  a  
reference  point,  each  of  them  basically  an  harmonic oscillator), the instrument is capable 
of an internal calibration; known acceleration signals can be given to the sensing elements, 
thereby enabling the calibration of the so-called transduction factors.  
 

3.3.2.4 Superconducting gradiometers   

Among the possible instruments, a very interesting type is constituted by the 
superconducting gravity gradiometers [163][164][165][143]. Such a kind of sensors 
capitalise on the property of superconductors to enhance the gradiometer performance in 
terms of sensitivity and stability. 
The pioneering work on the development of Superconducting Gravity Gradiometers (SGG) 
was carried out by the group of H.J. Paik at the University of Maryland and by the group of 
F. van Kann at the University of Western Australia in the 1980s. 
At the University of Maryland, several models of SGG were built with the support of NASA 
and other funding agencies [163][164][165][171]; this gradiometers were intended for space 
research in the field of geodesy and fundamental science [142]. These first versions were 
constituted by couples of accelerometers with mechanically suspended test masses to 
realise single and three-axis diagonal-component SGG.  
The basic element of Paik gradiometer is constituted by a couple of accelerometers, each 
one including a superconducting proof mass held by a mechanical spring within a box 
[143][163]. The principle of operation for such a superconducting accelerometer is depicted 
in Figure 3-24. A circuit including a sensing coil is placed close to a superconducting proof 
mass. When the box undergoes to an acceleration, the proof-mass responds with a relative 
displacement with respect to the coil. Because of the Meissner effect, this motion induces a 
modulation of the coil inductance. Since the magnetic flux through any circuit with a 
superconducting coil needs to be constant, a variation of inductance of the sensing coil due 
to the displacement introduces a corresponding modulation of the current flow into the 
circuit. A SQUID amplifier (Superconducting Quantum Interference Device), connected to 
the superconducting loop, detects such a variation and is used as dc current-to-voltage 
power amplifier to produce an output signal [143][163][167].  
In the first gradiometer, two superconducting accelerometers of this type, each with a proof 
mass, a suspension structure and sensing coils, are placed close to each other and the 
related circuits are linked together in such a way that the SQUID output provides the 
difference between the displacement of the two proof masses and hence the difference of 
gravitational acceleration at their position. A folded cantilever suspension constitutes the 
spring with a linear elastic constant, that is weak in the motion direction and relatively rigid 
in other directions [163]. The suspension is derived from a single piece of niobium (Nb) with 
the aim of obtaining mechanical precision and a high quality factor of resonance. 
Two accelerometers of this type are mounted on the opposite sides of a high precision 
titanium-made cube (Ti) on a baseline of 16 𝑐𝑚 to realise a single-axis gravity gradiometer.               
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Figure 3-24: Scheme of the superconducting accelerometer principle developed at University of 
Maryland (from [143])  

 
Figure 3-25 depicts a view of this configuration. The SGG is suspended in such a way to 
have a diagonal of the cube aligned to the vertical; with this approach, each gradiometer 
axis is equally biased with respect to the Earth’s gravitational acceleration (“umbrella 
angle”). Moreover, this configuration also allows the interchange of the gradiometer axes by 
a 120° rotation about the vertical. 
At last, the superconducting gradiometer is suspended by a Fiberglas rod inside a cryogenic 

vacuum space at 4 K. The instrument showed a performance level of about 1 𝐸/√𝐻𝑧 [163]. 
The intrinsic noise of the instrument derives from the Brownian noise of the proof masses, 
depending on the temperature, and from the intrinsic noise of the amplifier used to increase 
the signal level. By using cryogenic temperatures the thermal noise is maintained very low, 
whereas by using superconducting technology the signal coupling and amplification are 
made more efficient.  
Such a SSG was used to carry out a preliminary test of the Newton’s inverse-square law of 
gravitation [164]. Indeed, the sensing axis of the gradiometer was rotated into three 
orthogonal directions by rotating the whole experimental set-up by 120° around the vertical 
axis while the gradiometer was suspended in the umbrella angle; the projection of the  three 
diagonal components of the gravity gradient were measured with this approach. At last the 
outputs were summed in order to obtain the trace of tensor, whose value, constrained by 
the Poisson equation, would vanish. Such a condition was verified within the experimental 
uncertainty [163].     
An improved version of this SGG was developed combining three single-axis 
superconducting gravity gradiometers [166]. The three-axis gravity gradiometer was 
realised by mounting six accelerometers on the faces of a precision cube. The 
accelerometers on two opposite faces of the cube form one of three in-line gradiometers. 
The same configuration of previous SGG was adopted, maintaining each gradiometer tilted 
with respect to the vertical.   
This experimental set-up was used to set the best limit of Newton’s inverse-square law at 
1 𝑚, at the level of two parts in 104 [166][173].   
A further improvement of this first SGG was developed [165] by combining a softer 
mechanical spring with magnetic levitation. Figure 3-26 shows the in-line SGG assembled 
at the University of Maryland, including three couples of accelerometers.               
The instrument includes nine single-axis accelerometers. Three couples of linear 
accelerometers are mounted on the faces of a precisely machined titanium alloy (Ti) cube 
with the sensitive axes perpendicular to the faces of the cube. The proof masses of 
accelerometers on opposing faces are coupled together through superconducting circuits to   
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Figure 3-25: View of the single axis gravity gradiometer developed by the group of Paik at 

University of Maryland ([163]) 
 

realise three orthogonal gradiometers. A 19 𝑐𝑚 baseline divides each couple of 
accelerometers and the total mass of the SGG is 30 𝑘𝑔. Moreover, the SGG is cooled with 
liquid helium in a cryostat [165]. The operating principle is the same of the single-axis 
gradiometer previously described, however the spring is obtained combining mechanical 
flexures with magnetic levitation. In addition, in this SGG version, three superconducting 
angular accelerometers are mounted with their sensitive axes aligned with the three 
gradiometer axes. 

 

 

Figure 3-26: SGG assembled at University of Maryland, comprising six linear accelerometers 
(from [177])  

With this three-axis configuration, the differential linear accelerations provide the three 
diagonal components of the gravity gradient tensor. Any platform linear acceleration is 
detected as common acceleration of the gradiometer proof masses. These signals, along 
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with the angular acceleration, allow correction of dynamic errors in all six degrees of 
freedom.  
Such a three-axis diagonal component SGG demonstrated to reach a gradient sensitivity of  

0.02 𝐸/√𝐻𝑧 over a baseline of 20 𝑐𝑚 [165]. 
 

 
Figure 3-27: Perspective view of the SGG based on levitated test masses [173] 

 
An improvement by 2 to 3 order of magnitudes in sensitivity of such a configuration could be 
achieved by replacing the relatively stiff mechanical spring of the proof mass with a 
contactless “magnetic” spring based just on magnetic levitation. Indeed, the group of Griggs 
and colleagues at the University of Maryland [173] started the development of a single-axis 
SGG based on levitated test masses since 2012 with the support of NASA’s Earth Science 
Division. A prototype of SGG has been designed, built and tested to measure a diagonal 
and an off-diagonal component of gravity gradient (two components SGG) [173].  
Figure 3-27 depicts a schematic view of the instrument. Two Niobium (Nb) proof masses 
are levitated by a current along a single horizontal Nb tube. Each proof mass has two wings 
180° apart, which provide a moment arm about the tube axis (𝑥). A balancing screw is 
provided at the end of each wing to adjust the center-of-mass position and bring it to the 
rotation axis. The current flowing along the tube provides stiff suspension in the radial 
directions (𝑦 and 𝑧) but leaves the test masses to translate freely along the 𝑥 axis and rotate 
freely about the same axis. 
The translational motion (diagonal component) is detected by using pancake-shaped Nb 
coils placed near the disk faces of the test masses, whereas the rotational motion (off-
diagonal component) is detected by using pancake-shaped coils located near the 
rectangular surfaces of the test masses [173]. 
 

 
Figure 3-28: Sensing circuit of the SGG aimed at differencing (gravity gradient a) ) and summing 

(linear acceleration b) ) accelerometer signals [173] 
 
Figure 3-28 depicts the sensing circuit of the diagonal component. Persistent currents  𝐼1 and 
𝐼2 are generated into the superconducting circuits formed by the coils 𝐿11, 𝐿12, 𝐿21, 𝐿22. The 
acceleration signals sensed by the two test masses 𝑚1 and 𝑚2 are subtracted to obtain the 
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gravity gradient Γ𝑥𝑥 by means of a SQUID, whereas with a change of direction for 𝐼2 the 
acceleration signlas are added in the SQUID to obtain the common linear acceleration 𝑎𝑥. 
The ratio 𝐼1 𝐼2⁄ , ideally one for perfect masses and coils, is calibrated to maximise the 
rejection ratio for the common mode output (CMRR).       

This design gives a potential sensitivity of 1.4 10−4𝐸/√𝐻𝑧 in the frequency band 5 10−2 to 

1 𝐻𝑧 and better than 2 10−5𝐸/√𝐻𝑧 in the measurement band between 0.1 𝐻𝑧 and 10−3𝐻𝑧, 
over a baseline of 10 𝑐𝑚. Such sensitivities are achieved by a stable cooling at temperature 
lower than 6 𝐾.   
The objective of the group is to construct a full-tensor SGG through the assembly of six 
identical accelerometers with levitated test masses to be employed for Earth and planetary 
missions. Figure 3-29 depicts a partially exploded general view of the complete SGG 
assembly. Accelerometers will be mounted on a Titanium mounting cube for a total weight 
of the SGG assembly of 12 𝑘𝑔 and will fit within a sphere of 22 𝑐𝑚 in diameter [173].  
 

 

Figure 3-29: Partial exploded view of the planned full-tensor SGG showing main components 
([173])  

For the Earth and planetary science, it is envisaged by the group the development of a 
compact SGG with test masses of 100 𝑔 each one and a baseline of 13.5 𝑐𝑚 that could 

achieve a noise level of 1.4 10−4𝐸/√𝐻𝑧 on the diagonal components and 3.5 10−4𝐸/√𝐻𝑧 
for the off-diagonal, over the frequency range 10−3 − 5 10−2 𝐻𝑧. According to [174], a 
cryogenic superconducting gravity gradiometer of this kind could be employed in the 
investigation of Mars gravity field, allowing to reach a degree 𝑙 ~ 220 from a single spacecraft 
in a 100 days mission. Moreover, it would enable the mapping of the time-variable gravity 
on a regional scale (~ 400 𝑘𝑚).     
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3.3.2.5 Atom-interferometry-based gradiometers  

Advancements in laser cooling and manipulation of atoms allowed the development of a 
new class of gravity sensors: quantum gravity gradiometers based on atom interferometry 
[175][177][143]. The technologic approach of this new gravity measurements is extremely 
different from the classical satellite tracking. Basically, in these instruments atoms are used 
as drag-free test masses. At the same time, the quantum wave-particle nature of atoms is 
capitalised on to carry out interferometric measurements of local accelerations. Therefore, 
it is possible to realise an interferometer based on atom-waves, similarly as happens with 
laser interferometers. Because of the finite mass of the atom, matter-wave interferometers 
are intrinsically sensitive to the gravity. The breakthrough in making affordable and easier 
the development of these atom-based interferometers has been the advancement in laser 
cooling of atoms, atom optics and manipulation of atoms [176][177].     

 
Figure 3-30: Two atom-interferometer accelerometers separated by a certain baseline, to illustrate 
the gravity gradiometry geometry. MOT1 and MOT2 are the magneto-optical traps which produce 
(red dots) trapped atom clouds ([177]) 
 
Caesium atoms are collected and cooled by lasers in a small cloud in a magneto-optic trap 
(MOT). The MOT is based on a three-couples of counter-propagating laser beams along 
three orthogonal axes centered on a non-uniform magnetic field. After collection, atoms are 
further cooled by lasers, to reduce their speed at few cm/s. Cold atoms are then vertically 
launched creating a so-called “atomic fountain” and atom interferometry is executed in the 
following free-fall of atoms.  
The differential phase shift is related to the gravitational acceleration difference in the two 
locations. 
A study by the Chinese academy of Sciences aims at the deployment of a Gravity 
Gradiometry mission at Venus in order to reconstruct its gravitational filed beyond the 
current knowledge by using an Atom-Interferometer Gravity Gradiometer (AIGG) [179]. 
The spacecraft would host a AIGG constituted by three couples of atom-interferometer 
accelerometers in an orthogonal arrangement. The principle of operation is as follows. An 
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ensemble of Cesium atoms are cooled at cryogenic temperatures. For ultra-low 
temperatures, the speed of atoms is reduced to about 1 cm/s. The Cesium atoms with a 
slow movement are then placed in the gravitational field of Venus in free-fall motion. Through 
a laser system the gravitational acceleration is measured by observing the phase variation. 

 

3.3.2.6 MEMS-based gradiometers 

The technology of MEMS (Micro-machined Electro-Mechanical Systems) has been 
intensively studied since 1990s [143][181]. It is based on the trend in sensor technologies 
towards a progressive miniaturisation of components at micrometer and lower sizes (nano-
technology is the term often used to describe this trend). MEMS is a process technology 
used to create integrated devices or systems making use of electrical and mechanical 
components. Such devices have the capability to sense, control and actuate on the micro-
scale and to produce effects on the macro-scale [143]. This possibility is allowed because 
of manufacturing technology such as microelectronics, i.e. the production of electronic 
circuits on silicon chips, and micromachining, i.e. the techniques used to produce structures 
and moving parts of microdevices [182]. Actually, MEMS devices have an interdisciplinary 
nature since expertise in their design, engineering and manufacturing is derived from 
different areas, including integrated circuit fabrication technology, materials science, 
mechanical and electrical engineering, chemistry and chemical engineering, as well as fluid 
engineering, optics, instrumentation and packaging [181].  
The potentiality of MEMS is evidenced by the several fields of application. Nowadays, their 
use is widespread in many types of applications, including automotive (e.g. pressure and 
temperature sensors, air bag systems), telecommunications (e.g. mobile applications, 
smartphone), medical and electronic devices (health monitoring sensors, vibration 
monitoring, microvalves, biosensors, inkjet printer heads, computer disk drive read/write 
heads), defence applications [143][181]. 
 

 
 

Figure 3-31: Design of a MEMS-based gravity gradiometer [178]. Top view on the left side 
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First researches to date on MEMS-based gravity gradiometers, potentially to be used in 
future space missions, began at the University of Twente in the Netherlands [180]. They 

studied a micro-gradiometer which would have in principle a level noise of 0.1 − 1 𝐸 √𝐻𝑧⁄  
and a weight below 1 kg. In particular, range into which design parameters of such a MEMS-
based gradiometer should fall was investigated by the research group. Apart the natural 
constraint on the (limited) size and mass, analysis was focused on temperature, spring 
constant and quality factor. They found out that to have a bandwith within the range 10−3 −
1 𝐻𝑧 for the measurements, a device with resonance frequency higher than 1 𝐻𝑧 would be 
necessary and a low spring constant would needs, at least in the order of 1 𝑁 𝑚⁄ . However, 
this makes very difficult to manufacture and to test a weak constant spring. Simulations 
proved that such a spring would not be strong enough to tolerate gravity on-ground and 
hence additive masses (gold) should be added. Concerning the other parameters, a quality 

factor of 105 was assumed to reach a good sensitivity and a temperature of 77 𝐾 was 
considered easily achievable in space. A conceptual design based on a whole wafer was 
developed and it is shown in Figure 3-32. 
Concerning the read-out system, Flokstra group employs a capacitive design to sense the 
displacement of the sensing mass.  
More recently, a group of the Optical and Semiconductor Devices from Imperial College of 
London carried out researches on a MEMS-based gravity gradiometer with a torsional spring 
[183], capable of operating over a range from 0 to 1 g, focusing its research on the proof-
mass suspension system. Design, fabrication and characterisation of a seesaw-lever 
suspension for a silicon gravity-gradient sensor was carried out. Figure 3-33 shows off a 
schematic of the gradiometer suspension developed.   

 

 

Figure 3-33: schematic of the gradiometer suspension described in the text (from [178])  

 
Two square proof masses with a side length of a are linked to a central pivot with radius r 
and are surrounded by four flexural arms with length L and width w, creating a gap between 
frame and pivot. A gravity gradient between the proof masses induces a torque around the 
pivot aligned to Z axis balanced by the suspension force and the induced rotation can be 
sensed through a capacitive transducer. A gradiometer prototype with a proof-mass side-
length of about 15 mm, 0.55 g in weight, connected to a 1 mm pivot radius and suspended 
by four 26 µm wide and 14 m long was built (shown in Figure 3-34). Such a system proved 
a fundamental frequency of 6.6 Hz for in-plane rotation and a good rejection of all cross-axis 
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modes, offering a rejection factor spurious mode/fundamental frequency of about 14. The 
suspension was manufactured using through-wafer deep reactive-ion etching, a technique 
derived from silicon micromachining [183][184]. On the basis of analysis carried out, it was 
highlighted that the limit to the total noise of such a system, independently on the adopted 
configuration, is represented by the thermal noise. Actually, a MEMS-based gravity 
gradiometer based on this kind of suspension would reach a total noise floor around 

10  𝐸 √𝐻𝑧⁄ , based on some assumptions on the Q achievable in vacuum (105) , on the 
negligible electronic noise assuming an electronics for the transducer inherited from NASA 
InSigh seismometer.       
 

 
 

Figure 3-34: prototype of the MEMS gradiometer developed by Liu et al. A British pound coin is 
shown for size comparison.  

 
 

At last, the MEMS technology seems very promising for gravity gradiometer theoretically, 
since it offers important advantages such as reduced masses and volumes. However, the 
current maturity is far from the needs of the expected scientific challenges.   
 

3.3.3 Review results  

 
Analysing the instruments review of section 3.3.2, some conclusions can be drawn. At first, 
just one space gradiometer, GRADIO, has been developed and flight-proved till now within 
the GOCE mission. Its outstanding performance were achieved because of the high-
performance accelerometers, used as basic elements of the gradiometer, and of the state-
of-the-art subsystems built around it. Indeed, such a mission is very peculiar since there is 
no neat division between spacecraft and payload: all the system works as one whole gravity 
instrument.        
All the other systems, as reported in Table 3-1, have been developed just as prototypes, at 
test level or are simply under study. They employ different sensing technologies (mechanical 
superconducting, magnetically levitated, MEMS-type) to get the gravity gradient but the 
principle of measurement is led back to the two basic approaches: differential accelerometry 
and torsion balance.  
Moreover, the achievable performance is often potential and have been tested in a limited 
approach, verifying just some elements. The most complete system is represented by the 
Paik group’s gradiometer, both in the superconducting mechanical and levitated version.       
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3.4 Scientific requirements vs Instruments state of the art  

Analysis carried out in section 2.5 identified as output some targets potentially interesting to 
be studied. On the basis of the scientific community needs and on the gravity field knowledge 
state of the art, planetary bodies of interest have been identified in Mars, Venus, Ganymede, 
Europa and Titan. 
As explained in section 3.3, gravity gradiometry is inherently more sensitive to the medium-
high degrees of the gravity field. This is because the differentiation operation of the gravity 
acceleration, carried out to obtain the gravity gradient, allows to highlight the small features 
in the signal. Consequently, the small-scale elements in the gravity field, identified by the 
larger degrees 𝑙, are intrinsically enhanced when the observable is the gravity gradient. This 
characteristic is pointed out in the multiplicative factor (𝑙 + 1)(𝑙 + 2) in front of the gravity 
gradient expression, that fosters and increases the power contents for higher degrees of the 
field, considering the same conditions of field strength and altitude. Moreover, this multiplier 

allows to counteract in part the attenuation factor (𝑅 𝑟⁄ )𝑙+3 due to the altitude as well. This 
is one of the reasons that makes satellite gradiometry attractive for the reconstruction of the 
gravity field with high accuracy and resolution with respect to other techniques.    
Taking into account the inherent enhanced sensitivity of gravity gradiometry towards 
medium-high degrees and the result of gravity field survey for the Solar System bodies as 
per Table 2-8, it derives that the most interesting science objectives suitable for a 
gradiometry mission would be Mars and Venus planets.            
 
A preliminary evaluation of the expected values of gravity gradients was performed for these 
bodies, including at this stage as comparison also the other targets. Table 3-3 shows off the 
results.  
In general, the contribution [103] as expected average (RMS) signal 𝜎𝑙𝑚 (root mean square 
of power per degree 𝑙), at a particular 𝑙, with for 𝑙 ≫ 1 generated by a body (terrestrial body) 
along the radial direction (𝑟𝑟), can be computed by the following equations (by using Kaula 
rule), for the gravitational acceleration and the gravitational gradient (the radial one), 
respectively (see also section 2.2.2 and equation (2-7) and (2-8), [17]): 
 

𝜎𝑙𝑚(∆𝑔𝑧𝑧) = (
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where 𝑟 = 𝑅 + ℎ, with  𝑅 body radius and ℎ height of the spacecraft with respect to the planet 

surface, 𝑀 mass of body and 𝑘 is a constant depending on the considered body.  
Moreover, by using the approximation suggested by [113] and [125], we can compute the 
power of the various gradients as the following: 
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where Γ𝑖𝑗 refers to the 𝑖𝑗 component amplitude of the gravity gradient for the degree 𝑙. 
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These estimates, assuming a spacecraft orbiting the chosen body at a certain altitude (ℎ), a 
maximum field degree investigated (𝑙) and a corresponding half-wavelength resolution 
(∆s, evaluated by Δs = 𝜋𝑅 𝑙⁄  where 𝑅 is the mean radius of the planet), allow to compute the 
radial gravitational acceleration 𝒂𝒓 at ℎ and the radial gravity gradient Γ𝑟𝑟 at the same altitude 

(in 𝑠−2 and Eotvos where 1 𝐸 = 10−9  𝑚 𝑠2⁄ ) through the Kaula’s rule; the Kaula constant 
applied (𝑘) is also specified. In Table 3-3 all these elements are reported.   
As explained in section 2.2.2, the constant 𝑘 in the Kaula’s rule has a value depending upon 

the planet: k ≅ 9 10−6 for Earth [53], k ≅ 1.2 10−5 for Venus [64], k ≅  8.5 10−5 for Mars [80], 

k ≅ 36 10−4 for the Moon [131], 𝑘 ≅ 4 10−5 for Mercury [54].  
 

Table 3-3 Estimates of gravity gradient (radial component) and radial acceleration for several 
planetary bodies. For each body, different altitudes ℎ and degrees 𝑙 are considered, with the 

corresponding spatial resolutions ∆𝒔 (half-wavelength) 

Venus 
𝒉 

(km) 
lmax 

∆𝒔 
(km) 

𝒂𝒓  

(m/s2) 

Γ𝑟𝑟  

(m/s2 over m) 

Γ𝑟𝑟  

(E = 10-9 m/s2) 

Notes 

 200 100 190 3.90e-8 6.36e-13 6.36e-4 k = 1.2e-5, [64] 

 200 150 127 5.10e-9 1.24e-13 1.24e-4 - 

 200 200 95 7.51e-10 2.43e-14 2.43e-5 - 

 200 250 76 1.18e-10 4.76e-15 4.76e-6 - 

 300 100 190 7.73e-9 1.24e-13 1.24e-4 - 

 300 150 127 4.57e-10 1.10e-14 1.10e-5 - 

 300 200 95 3.04e-11 9.68e-16 9.68e-7 - 

 300 250 76 2.16e-12 8.59e-17 8.59e-8 - 

 350 100 190 3.47e-9 5.53e-14 5.53e-5  

 350 150 127 1.39e-10 3.29e-15 3.29e-6  

 350 200 95 6.24e-12 1.97e-16 1.97e-7 - 

 350 250 76 3.00e-13 1.18e-17 1.18e-8 - 

Mars 200 100 107 9.24e-9 2.63e-13 2.63e-4 k = 8.5 10-5, [80] 

 200 150 71 3.50e-10 1.48e-14 1.48e-5 - 

 200 200 53 1.49e-11 8.38e-16 8.38e-7 - 

 200 250 43 6.78e-13 4.76e-17 4.76e-8 - 

 200 300 36 3.21e-14 2.70e-18 2.70e-9 - 

 300 100 107 5.61e-10 1.55e-14 1.55e-5  

 300 150 71 5.37e-12 2.21e-16 2.21e-7 - 

 300 200 53 5.79e-14 3.17e-18 3.17e-9 - 

 300 250 43 6.67e-16 4.56e-20 4.56e-11 - 

 300 300 36 8.00e-18 6.55e-22 6.55e-13 - 

Ganymede 200 30 276 1.98e-6 1.37e-11 1.37e-2 k = 4.2 10-4 

 200 50 165 2.71e-7 4.98e-12 4.98e-3 - 

 200 100 83 3.44e-9 1.24e-13 1.24e-4 - 

 300 30 276 6.52e-7 7.12e-12 7.12e-3 - 

 300 50 165 4.46e-8 7.91e-13 7.91e-4 - 

 300 100 83 9.98e-11 3.47e-15 3.47e-6 - 

 400 30 276 2.23e-7 2.35e-12 2.35e-3 - 

 400 50 165 7.00e-8 1.34e-13 1.34e-4 - 

 400 100 83 3.26e-12 1.10e-16 1.10e-7 - 

 500 30 276 7.90e-8 8.07e-13 8.07e-4 - 

 500 50 165 1.44e-9 2.39e-14 2.39e-5 - 

 500 100 83 1.19e-13 3.87e-18 3.87e-9 - 

Titan 200 30 270 2.00e-6 2.31e-11 2.31e-2 k = 4.7 10-4 

 200 50 162 2.66e-7 4.98e-12 4.98e-3 - 

 200 100 81 3.12e-9 1.15e-13 1.15e-4 - 

 300 30 270 6.45e-7 7.18e-12 7.18e-3 - 

 300 50 162 4.21e-8 7.62e-13 7.62e-4 - 

 300 100 81 8.44e-11 3.00e-15 3.00e-6 - 

 400 30 270 2.16e-7 2.32e-12 2.32e-3 - 
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 400 50 162 7.12e-9 1.24e-13 1.24e-4 - 

 400 100 81 2.58e-12 8.85e-17 8.85e-8 - 

Europa 200 30 163 4.78e-7 8.68e-12 8.68e-3 k = 5 10-4 

 200 50 98 2.54e-8 7.50e-13 7.50e-4 - 

 200 100 49 3.00e-11 1.76e-15 1.76e-6 - 

 300 30 163 8.16e-8 1.40e-12 1.40e-3 - 

 300 50 98 1.44e-9 4.01e-14 4.01e-5  

 300 100 49 1.10e-13 5.94e-18 5.94e-9  

 400 30 163 1.53e-8 2.49e-13 2.49e-4 - 

 400 50 98 9.45e-11 2.51e-15 2.51e-6  

 400 100 49 5.20e-16 2.71e-20 2.71e-11  

 
 
In literature, the change of Kaula’s constant for a body follows a scaling law, depending on 
the relative gravity of each body in squared manner (or linear, sometimes [107][115]): 
 

𝑘𝑝𝑙𝑎𝑛𝑒𝑡

𝑘𝐸𝑎𝑟𝑡ℎ
= (

𝑔𝐸𝑎𝑟𝑡ℎ
𝑔𝑝𝑙𝑎𝑛𝑒𝑡

)

2

 (3-22) 

 
where 𝑔 are the gravitational accelerations of the bodies. The Kaula constant for bodies in 
Table 3-3 has been recovered from literature whenever available (list previous reported and 
for which references has been provided). Otherwise its value has been derived with the 
above reported approach.   
Some assumptions have been carried out  to fill in Table 3-3. The planetary bodies reported 
have been identified as being the most interesting from the point of view of the scientific 
community to improve their current understanding (section 2.5).  
The chosen altitudes are derived from typical values used in past and future missions (if 
any) to the corresponding target. Hence, they constitute a trade-off between the mission 
needs (e.g. attitude control, drag compensation, radiation damage, etc.) and objectives 
(gravity field measure, surface imaging and spectrometry, topography, etc.) versus the 
planetary environment characteristics (atmosphere, radiation belts, magnetic field, solar 
irradiance and so on). For instance, all past Venus orbiter missions have been put on highly 
elliptical orbits, affected mainly by the large amount of fuel required to circularise the orbit 
[97]. However, improved gravity models and high-resolution global topography benefit 
greatly from circular orbits. Aerobraking techniques, where successive orbits in the planet’s 
deep atmosphere are used to slow spacecrafts and make circular orbits, were applied in the 
past (Magellan, the first one). Spacecrafts devoted to Mars (especially) and Venus have 
been employed such a technique [97]. 
The maximum degree 𝑙𝑚𝑎𝑥 has been chosen on the basis of the current gravity knowledge, 
as derived from section 2.4.  
A more interesting evaluation of Table 3-3 is possible through Figure 3-35, Figure 3-36.  
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Figure 3-35: Estimate of Venus Γ𝑧𝑧 gravity gradient versus the degree 𝑙 for different orbital altitudes  

 

 
 

Figure 3-36: Estimate of Mars Γ𝑧𝑧 gravity gradient versus the degree 𝑙 for different orbital altitudes  

 
The rough estimates of the radial gravity gradient Γ𝑟𝑟 show off that the measure of the gravity 
gradients for planetary bodies is not an easy task. Indeed, the signal to be measured 
assumes at least a value around 10−4 𝐸. For instance, in case of a spacecraft around Venus, 
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at an altitude of 200 𝑘𝑚, the minimum value to be measured by a gravity gradiometer would 

be around 10−4 𝐸 (6.36 10−4𝐸) in order to retrieve the radial gradient at a degree 𝑙 = 100. 

Higher degrees, 𝑙 =  150 − 200, require signal levels around 1 10−4/2 10−5𝐸.  
In case of a spacecraft around Mars, the minimum value to be measured by a gravity 
gradiometer in order to improve the current gravity field knowledge (𝑙 ≥  100) would be 

around 10−4 𝐸 (2.63 10−4), for an orbit at 200 𝑘𝑚 of altitude and the retrieval of degrees till 

to 𝑙 =  100. Higher degrees, till to 𝑙 =  150/250, need signal levels at 10−5/10−7𝐸 

(1.48 10−5/8.38 10−7)  
In another example, for instance Europa, the hypothesis of a spacecraft orbiting directly 
Europa is not an easy accomplishment, because the radiation environment around it would 
make very hard the survival of any probe. Indeed, Europa Clipper, the NASA’s probe 
currently being realised, aims at exploring the Jupiter’s moon through an eccentric orbit 
around Jupiter, performing just repeated close flybys (~ 45) because of the strong radiations. 
However, in order to evaluate the performance to be achieved by a gravity gradiometer in 
such a hypothetic case a radiation-tolerant spacecraft with a limited lifetime could be 
envisaged. 
Moreover, such considerations are optimistic considering that the computed values were 
carried out for the radial gradient (Γ𝑧𝑧) that typically produces the stronger signal among the 
gravity gradient components.  
However, these preliminary results need to be compared to the current state of the art of 
gradiometers, as carried out in section 3.3.2.  
A comparison between the rough values estimated for different bodies in the Solar System 
(Table 3-3) and the performance achieved and theoretically achievable (Table 3-1) has been 
carried out. Signal estimates employed in the comparison table have been chosen among 
the more favourable cases. It is noticeable that the current and planned gradiometers do not 
achieve yet the needed accuracy to improve the current knowledge of the gravity field of 
these bodies. A comparison is shown in Table 3-4.  
Indeed, the best achieved performance are obviously by the GOCE’s gradiometer that 
reached ~10−2 𝐸. Named GRADIO, this is the first space gradiometer have been developed 
and flight-proved till now. This was possible by using high-performance accelerometers and 
state-of-the-art subsystems from the thermal and mechanical point of view. Moreover, the 
spacecraft was built around the instrument in order to maximise its performance.         
All the other gradiometers have been developed just as groundborne instruments and 
prototypes, at test level or are simply under study (TRL 2-5). The sensing technologies 
employed are widespread: mechanical superconducting, superconducting magnetically 
levitated, atom-interferometry, MEMS-type.  
An important element to be highlighted is that here the state of the art in the gravity field 
knowledge has been assumed as the degree at which the signal-to-noise ratio is equals to 
the unit, corresponding to the maximum achievable resolution averaged over the planet. 
Considering the intrinsic fostering of small/medium wavelengths of the gravitational field by 
using gradiometry, this implies that lower degrees could be measured as well if the measure 
would improve that ratio. Indeed, gradiometry can improve the gravity field measurements 
over degrees higher than the current knowledge but also over lower degrees if it is increased 
the signal-to-noise ratio.     
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Table 3-4 Comparison of instruments performance versus signal estimates of planets gravity field   

 
 
Another issue to be considered is which components of the gradient should be measured. 
Indeed, the gravity gradient tensor is constituted by five independent components and, 
ideally, the measure of all of them would be needed to reconstruct the overall gravity field. 
However, there is no neat correspondence between the measured components and the 
quality of the reconstructed field because several parameters intervene in the problem. 
GOCE for instance allows to measure 6 gravitational gradients and uses a full tensor 
gradiometer. GRACE, GRACE-FO and GRAIL, although deploy a sort of synthetic 
gradiometer (hence, not a physical instrument), measure just the Γ𝑥𝑥 component of the 
gradient, where x is the along track direction of the spacecraft. In general, a full tensor 
gradiometer offers the best results, whereas, when one or more components, in-line and/or 
off-line, are measured, the performance in terms of RMS error (error degree variance and 
error order-degree variance, section 2.2.2) of the recovered spherical harmonic coefficients 
need to be evaluated.    
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4. Gravity mission needs  

4.1 Design variables   

A satellite gravity mission, differently with respect to other remote sensing missions which 
observe a specific point at a specified location and time, provides information on the gravity 
signal integrated of the three-dimensional mass distribution seen from a specific location at 
a certain time. Objective of these missions is to measure gravity field observables such as 
gravity gradients, directly (GOCE) or indirectly (SST), or derive spherical harmonics of the 
gravity field through range and range-rate observables (radio-tracking) (section 3); the final 
scope is to derive the gravity field distribution. From those measurements other observables 
are derived such as gravity anomalies or geoid undulations with a given level of accuracy 
and a given spatial and temporal resolution.  
When a satellite orbits a planetary body, the achievable spatial resolution for the observable 
depends on the requirement on the frequency bandwidth (as shown in 4.3), whereas the 
achievable accuracy becomes a requirement integrated over the specified bandwidth. The 
accuracy refers to the quality of data, whereas the frequency range identifies the timescale 
of the measured signals over which guaranteeing that quality.        
At mission level, the parameters of interest are constituted at first by the accuracy, the spatial 
resolution and the time coverage; the time resolution and the spatial coverage are further 
elements to be considered. Those requirements are usually no independent on each other. 
Therefore, the definition of mission requirements implies a trade-off between them.  
The accuracy refers to the achievable gravity signal level to be able to investigate the gravity-
related processes of interest with a sufficient signal-to-noise ratio. The gravity signal 
depends on the altitude and on the investigated degree (section 2.2), hence low heights 
should be preferred for a gravity mission.   
The spatial resolution is related to the spatial scale of the gravitational phenomenon to be 
investigated, i.e. to the spatial size of the masses involved into the processes to be studied 
(section 2.2.2). However, as shown in section 2, the signal amplitude decreases with the 
spatial resolution, i.e. small spatial scales provide small contributions to the general field 
with respect to the bigger ones. This parameter is related to the spatial wavelength 𝜆, 
introduced by the spherical harmonic representation of the gravity field:  
 

𝜆 =
2𝜋𝑅

𝑙
 

 
Consequently, the contribution of the small wavelengths to the gravity field is embedded into 
the spherical harmonics of high degrees.   
The time resolution reflects the time scale of processes that show themselves through the 
mass transport and movement. Indeed, a time variable gravity field is added to the basic 
static gravity field due to the several processes modifying a planet on the surface and in the 
interior. From this perspective, the time resolution requirement should be sufficient to cover 
partially or the most the spectrum of processes to be studied. The time scale covers different 
ranges depending on where they happen. For instance, referring to the Earth processes for 
whicha better knowledge is available [100], mass transport in the atmosphere happens on 
a time span from several hours to one year, whereas the same process on the solid-Earth 
is slower, from few to hundreds years; in the hydrosphere, times range from hours (ocean 
tides) to very hundreds/thousands years (melting of ice sheets).     
However, apart the Earth, for which a systematic study of the time variable gravity field has 
started since the GRACE mission and is currently on-going with GRACE-FO, this aspect is 
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in a very embryonic phase to be investigated for other planets, due to the lack of measures 
in terms of number and (time) continuity. Just for Mars some analyses tried to study the 
gravity over time by monitoring the mass variation of polar ice caps [99]. However, for 
medium-long term missions this is a design element to be taken into consideration for the 
future.  
 
The time coverage refers to the whole mission lifetime. It depends on several factors often 
driven more by economic considerations rather than scientific objectives. However, this time 
is often driven by the need to study a periodic phenomenon which requires a specific 
revisitation period, i.e. the use of a repeat orbit, also known as repeat groundtrack. Repeat 
groundtrack orbits are characterised by the repeatition of groundtrack over a certain time 
interval and are employed usually in space missions that periodically revisit a certain point 
of a planet [5], such as a gravity mission. Its definition depends on the commensurability 
between the time interval it takes the satellite to make two consecutive equator crossings 
(nodal period, 𝛼) and the period of the Earth’s rotation with respect to the ascending node.          

A satellite on a 𝛽/𝛼 repeat orbit fulfils 𝛽 revolutions in 𝛼 nodal days, where 𝛽 and 𝛼 are 
relative primes. Thus, the repeat period of such a satellite is 𝑇𝑟𝑒𝑝 =  𝛼 (nodal days) with a 

revolution time of 𝑇𝑟𝑒𝑣  = 𝛼/𝛽 (nodal days) [128]. A trade-off on those parameters has to be 
found. Indeed, a short repeat period leads to sparse ground-track spacing, conversely, 
dense satellite coverage can only be attained at the cost of time resolution. 
The spatial coverage is referred to the areas where the satellite can gather measures. For 
a gravity mission, a quasi-polar orbit is typically used. This means that some pole areas are 
not covered during the spacecraft revolutions. 
At last, the achievable performance is the result of a trade-off among several factors, often 
mutually conflicting. The fundamental trade-off is on the temporal and spatial resolution, 
which depends on the altitude, on the sampling, on the mission lifetime.  
The accuracy is related to the minimum gravity signal detectable from the instrument. 
However, the gravity signal decrease in magnitude as the altitude increases and such an 
attenuation is faster for shorter wavelengths than for longer wavelengths. Hence, for higher 
orbits a more accurate system is needed to observe with a defined spatial resolution and 
accuracy. At the same time, benefits come from these orbits for the spacecraft requirements 
and for the mission lifetime. The latter one is a much appealing characteristic for 
measurements that can monitor gravity-related processes on time as long as possible. On 
the other hand, lower orbits benefit from a higher gravity signal and hence relaxed 
requirements on the accuracy on the measurement instrument. However, decreasing the 
orbit altitude imposes more stringent requirements on the spacecraft.           
Indeed, a low orbit requires some precautions. At first, the presence or less of atmosphere 
makes the mission more complicated. Lower orbits mean crossing through denser layers 
which offer significant drag and reduce progressively the altitude, as happens for Venus 
(especially) but Mars as well. Therefore, an orbit and attitude control system along track 
would be needed to counteract this effect. A potential approach is the use of a drag-free 
system, as per GOCE mission, i.e. to compensate for disturbances on the in-flight direction, 
detected as common mode accelerations on the gradiometer, by means of a dedicated 
thrusters firing. However, this means major propellant expenditure and consequently a major 
impact on the mission lifetime. Hence, at high level, the mission performance is limited by 
the flying altitude and the mission duration. For instance, GOCE employs electrical 
propulsion to counteract effects of atmospheric drag (along-track), whereas GRACE has no 
altitude control. This difference of approach is witnessed by the effective mission lifetime. 
GOCE was designed for a lifetime of 2 years, limited by the amount of propellant on board 
to keep the spacecraft at the nominal altitude (~ 250 𝑘𝑚) (section 2.4.3.1.5). This can be 
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compared with the GRACE mission (section 2.4.3.1.3), which started its measurements at 
~ 500 𝑘𝑚 and lasted for a 15 years activity (nominally 5 years). However, due to the 
extended solar minimum at the end of the past decade, GOCE performed 4 years and a 
half, beyond its mission lifetime.   
As example of how science themes to be faced by future gravimetry missions map in the 
corresponding spatial and time resolutions, Figure 4-1 is reported, as derived from [33]. The 
main focus of the bubble plots, each one aimed at a theme, is on the Earth phenomena; 
however, planets gravity field is also reported. The bubble on the top, reported as unique 
“science theme” due to the still primitive knowledge of involved phenomena, recalls results 
previous obtained on the science needs for planets gravity knowledge (section 2.5). It shows 
that the time resolution is currently limited to static fields, while the spatial resolution covers 
the range 𝜓 ~ 20.000 − 100 𝑘𝑚.        

 
Figure 4-1: spatial and time scales of several geophysical processes on the Earth, as identified in 
[33]. Analogous and phenomena for planets, identified as unique bubble, are reported on the top 

(from [33])   

 
 
On the basis of previous considerations, some elements can be identified in the design of a 
gravity mission. An overview is shown in Table 4-1. This table shows off some of the main 
elements to be considered in the design of a gravity mission. For general purpose, the SST 
technique is included as well, although it is not related to a real gradiometric instrument but 
rather to a synthetic one.       
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Table 4-1 Gravity mission design variables (modified from [127])   

 
Variables Values 

orbit altitude high low: drag measurement very low: drag 
compensation 

control none angular angular + linear 

proof masses free-floating/SST constrained/gradiometry  

Constrained/ 
gradiometry 

differential accelerometry rotating differential 
accelerometry 

rotating torsional 

Free-floating/ 
SST  
 

SST-hl SST-ll Floating inside SC 

arm length SST-hl SST-ll spacecraft size 
constrained 

gradiometric 
components 

full diagonal/off-diagonal one component 

temperature ambient low-temperature 
superconductivity 

high-temperature 
superconductivity 

 
The orbit altitude is an important design element to be considered. As often reported in 
previous sections, low altitudes for a gravity mission are preferred to increase the signal 
level, especially for high degrees 𝑙 of the field. However, if the planetary body hosts an 
atmosphere, when the altitude is too low the drag effect become not negligible with respect 
to the spacecraft dynamics. In this case, measurement (accelerometer) or compensation 
(orbit control) of the drag is needed to take into account or to reduce its effects on the orbit. 
This condition can be set roughly at 250 km for orbits around Venus and at 200 km for orbits 
around Mars. For comparison, on the Earth, altitudes around 250-300 km, as those 
employed by GOCE, need to be provided with drag control system. 
Proof masses, the sensing elements of the field, can be arranged according two 
approaches. They can be left free to move in the gravity field while the spacecraft case move 
in such a way to keep it into the centre (GRACE, GRACE-FO) or can be constrained 
mechanically or in other way (GOCE), as usually happens for a gradiometic instrument.   
The distance between the proof masses over which to sense the gravity field can be more 
or less extended. For a pure gradiometer this distance is clearly constrained by the size of 
the spacecraft (1-2 metres), while for a SST approach it can range on 100-400 km, being 
just constrained by the microwave link established between the two spacecrafts (section 
3.2.2); this length depends on the degree l of the field to be investigated.           
The independent components of the gravity gradient are five. However, depending on the 
configuration employed, an instrument can measure one or more in-line and/or off-line 
components of the tidal tensor (i.e. the gravity gradient). In general, the measurement of all 
the five components is desired but implies an instrument more complex and demanding in 
terms of performance and controlled environment conditions.  
At last, the operative temperature is another of the design variables for a gravity mission.        
Table 4.2 shows off the values of variable designs employed by the main gravity mission 
analysed in previous chapters. 
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 Table 4-2 Design variables chosen for the main gravity missions analysed in previous chapters   

  
GOCE GRACE GRACE-FO GRAIL CHAMP 

orbit altitude ≈250-280 km ≈500 km ≈500 km ≈50 km ≈450 km 

control Drag-free/ 
angular  

angular + 
linear 

angular + 
linear 

 angular + 
linear 

proof 
masses 

constrained free-
floating 

free-floating free-floating free-
floating 

constrained: 
gradiometry 

differential 
accelerometry 

- - -  

free-floating: 
SST  
 

- SST-ll SST-ll SST-ll SST-hl 

arm length 0.5 m ≈200-300 
km 

≈200-300 
km 

≈200 km - 

gradiometric 
components 

6 (5 + 1) one 
component 

one 
component 

one 
component 

- 

temperature ambient ambient ambient ambient ambient 

 
The science requirements form the starting point from which deriving the mission 
requirements and the spacecraft/instrument requirements. 
 

4.2  Science requirements    

The science objectives have been identified in measuring the gravity gradient of two targets, 
Venus and Mars (section 3.4). A preliminary evaluation of the expected signal has been 
carried out in section 3.4. Starting from these results, a more precise evaluation of the gravity 
gradients was investigated, in order to have a simulation tool able to evaluate correctly the 
gravity gradient in terms of all the independent components. The tool was thought to be 
used for any planetary body and for any orbit around it. Hereafter, the focus is limited to 
circular orbits (zero eccentricity) because this type of orbits is used in gravity missions. 
Future work foresees to extend the formulation to elliptical orbits as well.   
 

4.2.1 Gravity gradients in different coordinates   

The starting point is the gravitational potential in terms of series of spherical harmonics and 
expressed in planetocentric spherical coordinates (𝑟, 𝜆, 𝜃 – radius, longitude and co-latitude 
(section 2.2.2): 
 

𝑉(𝑟, 𝜆, 𝜃) =
𝐺𝑀

𝑅
∑∑ (

𝑅

𝑟
)
𝑙+1

𝑃𝑙𝑚(cos 𝜃)(𝐶𝑙𝑚 cos𝑚𝜆 + 𝑆𝑙𝑚 sin𝑚𝜆)

𝑙

𝑚=0

+∞

𝑙=0

 (4-1) 

 
Such an expression relates the spatial and the spectral domain of the gravitational potential 
through the coefficients of the spherical harmonics, 𝐶𝑙𝑚 and 𝑆𝑙𝑚.  
We are interested in the second-derivatives of the gravitational potential, i.e. the gravitational 
gradient. Following the work of Koop in [125], it is possible to calculate the first and second-
derivatives of the potential with respect to the chosen coordinate system.  
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Double diffrencing the previous equation, we get: 
 

Γ𝑧𝑧 ≡ Γ𝑟𝑟 =
𝜕2𝑉

𝜕𝑟2
 

 

=
𝐺𝑀

𝑅
∑
(𝑙 + 1)(𝑙 + 2)

𝑅2
(
𝑅

𝑟
)
𝑙+3

∑ 𝑃𝑙𝑚(𝑐𝑜𝑠 𝜃)(𝐶𝑙𝑚 𝑐𝑜𝑠𝑚𝜆 + 𝑆𝑙𝑚 𝑠𝑖𝑛𝑚𝜆)

𝑙

𝑚=0

+∞

𝑙=0

 

 

(4-2) 

Different coordinate systems can be used depending on the application to which the 
computation can be applied.  
The most common system is, of course, the cartesian coordinate system. Such a system is 
constituted by three mutual orthogonal axes 𝑋, 𝑌, 𝑍 intersecting in a common origin and 
coincident with the body’s centre: this is the planetocentric cartesian coordinate system.  
However, the geometrical symmetry of the problem suggests using spherical coordinates. 
In this case, the gravitational potential is expressed in terms of the planetocentric spherical 
coordinates 𝑟, 𝜆, 𝜃, respectively radius, i.e. radial distance from the origin, longitude and 
co-latitude, as in equation (4-1). Alternatively, the colatitude is substituted by the more 
common latitude 𝜑 (they are complementary angles). In this case, the Legendre polynomia 

are written in terms of  sin𝜑.      
The equation (4-1) can be written down by interchanging the summation over 𝑙 and 𝑚 [125]: 
  

𝑉(𝑟, 𝜆, 𝜃) = ∑ ∑
𝐺𝑀

𝑅
(
𝑅

𝑟
)
𝑙+1

𝑃𝑙𝑚(cos 𝜃)(𝐶𝑙𝑚 cos𝑚𝜆 + 𝑆𝑙𝑚 sin𝑚𝜆)

+∞

𝑙=𝑚

+∞

𝑚=0

 (4-3) 

 
The previous equation can be arranged by using the following coefficients:  

 
𝐾𝑙𝑚
𝐴 (𝑟, 𝜃) = 𝐻𝑙𝑚(𝑟, 𝜃) 𝐶𝑙𝑚 

 

𝐾𝑙𝑚
𝐵 (𝑟, 𝜃) = 𝐻𝑙𝑚(𝑟, 𝜃) 𝑆𝑙𝑚 

 

𝐻𝑙𝑚(𝑟, 𝜃) =
𝐺𝑀

𝑅
(
𝑅

𝑟
)
𝑙+1

𝑃𝑙𝑚(cos 𝜃)  

(4-4) 

𝑢𝑙 =
𝐺𝑀

𝑅
(
𝑅

𝑟
)
𝑙+1

 

 
i.e.: 

𝑉(𝑟, 𝜆, 𝜃) = ∑ ∑(𝐾𝑙𝑚
𝐴 (𝑟, 𝜃) cos𝑚𝜆 + 𝐾𝑙𝑚

𝐵 (𝑟, 𝜃) sin𝑚𝜆)

+∞

𝑙=𝑚

+∞

𝑚=0

 (4-5) 

 
By using the Koop approach reported in [125], the first- and second-derivatives of the 
gravitational potential in spherical coordinates with respect to 𝑟, 𝜆, 𝜃 can be computed by 
using the expressions shown in Table 4-3.  
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Table 4-3 First- and second-derivatives of the gravitational potential with respect to the 
spherical coordinates (from [125])  

Derivative 
wrt  

𝑯𝒍𝒎
…  𝑲𝒍𝒎

𝑨  𝑲𝒍𝒎
𝑩  

𝑟 −(𝑙 + 1)

𝑟
𝑢𝑙  𝑃𝑙𝑚(cos 𝜃) 

𝐻𝑙𝑚
𝑟  𝐶𝑙𝑚 𝐻𝑙𝑚

𝑟  𝑆𝑙𝑚 

𝜃 
𝑢𝑙
𝜕𝑃𝑙𝑚(cos 𝜃)

𝜕𝜃
 

𝐻𝑙𝑚
𝜃  𝐶𝑙𝑚 𝐻𝑙𝑚

𝜃  𝑆𝑙𝑚 

𝜆 𝑚𝑢𝑙𝑃𝑙𝑚(cos 𝜃) 𝐻𝑙𝑚
𝜆  𝑆𝑙𝑚 −𝐻𝑙𝑚

𝜆  𝐶𝑙𝑚 

𝑟𝑟 (𝑙 + 1)(𝑙 + 2)

𝑟2
𝑢𝑙  𝑃𝑙𝑚(cos 𝜃 

𝐻𝑙𝑚
𝑟𝑟  𝐶𝑙𝑚 𝐻𝑙𝑚

𝑟𝑟  𝑆𝑙𝑚 

𝑟𝜃 −(𝑙 + 1)

𝑟
𝑢𝑙
𝜕𝑃𝑙𝑚(cos 𝜃)

𝜕𝜃
 

𝐻𝑙𝑚
𝑟𝜃 𝐶𝑙𝑚 𝐻𝑙𝑚

𝑟𝜃 𝑆𝑙𝑚 

𝑟𝜆 −𝑚(𝑙 + 1)

𝑟
𝑢𝑙𝑃𝑙𝑚(cos 𝜃) 

𝐻𝑙𝑚
𝑟𝜆  𝑆𝑙𝑚 −𝐻𝑙𝑚

𝑟𝜆  𝐶𝑙𝑚 

𝜃𝜃 
𝑢𝑙
𝜕2𝑃𝑙𝑚(cos 𝜃)

𝜕𝜃2
 

𝐻𝑙𝑚
𝜃𝜃 𝐶𝑙𝑚 𝐻𝑙𝑚

𝜃𝜃 𝑆𝑙𝑚 

𝜃𝜆 
𝑚𝑢𝑙

𝜕𝑃𝑙𝑚(cos 𝜃)

𝜕𝜃
 

𝐻𝑙𝑚
𝜃𝜆 𝑆𝑙𝑚 −𝐻𝑙𝑚

𝜃𝜆 𝐶𝑙𝑚 

𝜆𝜆 −𝑚2𝑢𝑙  𝑃𝑙𝑚(cos 𝜃) 𝐻𝑙𝑚
𝜆𝜆 𝐶𝑙𝑚 𝐻𝑙𝑚

𝜆𝜆 𝑆𝑙𝑚 

 
 
Such an expression of the field is valid in a body-fixed reference frame, i.e. a reference co-
rotating with the underlying body. However, for analysis of gradients along a specified orbit 
a different frame should be chosen. Such a reference system should hence be inertial and 
related to the satellite’s track on a specific orbit. This is possible operating a transformation 
between the body-fixed reference frame (in general expressed in spherical coordinates 𝑟,
𝜆, 𝜃) and a reference system adapted to the Keplerian orbit, defined by the osculating orbital 
elements (𝑎, 𝑒, 𝑖, 𝛺, 𝜔,𝑀), respectively semimajor axis, eccentricity, inclination, right 
ascension of the ascending node, argument of pericentre and mean anomaly, as shown in 
Figure 4-2 for the Earth. The starting reference frame is the body-fixed frame with the x axis 
in the direction belonging to the plane defined by the reference meridian (Greenwhich in the 
case of Earth), the y axis rotated by 90 degrees on the planet’s equatorial plane and the z 
axis pointing towards the north pole. Such a frame is at first rotated on the planet’s equatorial 
plane by the angle Ω (RAAN, right ascension of the ascending node) so that the x axis is 
overlapped to that of the nodal line of the orbit, then is rotated around the line of nodes 
through the inclination 𝑖. At last it is followed by a counterclockwise rotation on the orbit 

plane from the node to the pericentre by the angle 𝜔 (pericentre argument).  
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Figure 4-2: transformation between the body-fixed reference frame (in the figure the Earth is 
considered as fixed body) and the inertial reference frame adapted to the Keplerian orbit (from [5])   

 
The application of such composite rotations transforms the gravitational potential 𝑉(𝑟, 𝜆, 𝜃) 
into a corresponding function, 𝑉′(𝑎, 𝑒, 𝑖, 𝛺, 𝜔,𝑀), depending on the orbital parameters; this 
is again a harmonic function (i.e. solution of the Laplace equation), being the Laplace 
operator invariant under rotation [11], and hence can be expanded in spherical harmonics.   
The gravitational potential in such a new shape is known as Kaula expansion [13][11][125]: 
   

𝑉 =
𝐺𝑀

𝑅
∑(

𝑅

𝑟
)
𝑙+1+∞

𝑙=0

∑∑𝐹𝑙𝑚𝑝(𝑖) {[
𝐶𝑙𝑚
−𝑆𝑙𝑚

]
𝑙−𝑚: 𝑜𝑑𝑑

𝑙−𝑚: 𝑒𝑣𝑒𝑛

cos𝜓𝑙𝑚𝑝

𝑙

𝑝=0

𝑙

𝑚=0

+[
𝑆𝑙𝑚
𝐶𝑙𝑚
]
𝑙−𝑚: 𝑜𝑑𝑑

𝑙−𝑚: 𝑒𝑣𝑒𝑛

sin𝜓𝑙𝑚𝑝} 

(4-6) 

 
where the new terms are represented by 𝐹𝑙𝑚𝑝(𝑖), the normalised inclination functions, and 

𝜓𝑙𝑚𝑝 = (𝑙 − 2𝑝)𝜔0 +𝑚𝜔𝑒, where 𝜔0 =  𝜔 +𝑀 and 𝜔𝑒 =  Ω − 𝜃𝑔, with 𝜃𝑔 as planet’s 

argument of longitude. Considering that 𝑘 =  𝑙 –  2𝑝, we have as well 𝜓𝑘𝑚 = 𝑘𝜔0 +𝑚𝜔𝑒. 
The inclination functions are expressed as trigonometric polynomial in sin 𝑖 and cos 𝑖 
following the formula: 
 

𝐹𝑙𝑚𝑝(𝑖) = ∑
(2𝑙 − 2𝑡)!

𝑡! (𝑙 − 𝑡)! (𝑙 − 𝑚 − 2𝑡)! 22𝑙−𝑡
sin 𝑖𝑙−𝑚−2𝑡

min (𝑝,𝑘)

𝑡=0

 

 

∙∑(
𝑚
𝑠
)

m

𝑠=0

cos 𝑖𝑠∑(
𝑙 −𝑚 − 2𝑡 + 𝑠

𝑐
) (

𝑚 − 𝑠
𝑝 − 𝑡 − 𝑐) (−1)

𝑐−𝑘

𝑐

 

 

(4-7) 
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where k is the integer part of (𝑙 − 𝑚)/2 and 𝑐 is summed over values making the binomial 
coefficients non-zero, that is with the lower index non-negative and not larger than the upper 
one [13][ 11]. 
Actually, the formula for the Kaula expansion in (4-6) is applicable just for an eccentricity 
𝑒 =  0, since the general formula as derived from Kaula [13][11] includes also the 
eccentricity functions 𝐺𝑙𝑝𝑞(𝑒):  

 

𝑉 =
𝐺𝑀

𝑅
∑(

𝑅

𝑟
)
𝑙+1+∞

𝑙=0

∑∑𝐹𝑙𝑚𝑝(𝑖) ∑ 𝐺𝑙𝑝𝑞(𝑒) {[
𝐶𝑙𝑚
−𝑆𝑙𝑚

]
𝑙−𝑚: 𝑜𝑑𝑑

𝑙−𝑚: 𝑒𝑣𝑒𝑛

cos𝜓𝑙𝑚𝑝𝑞

+∞

𝑞=−∞

𝑙

𝑝=0

𝑙

𝑚=0

+ [
𝑆𝑙𝑚
𝐶𝑙𝑚
]
𝑙−𝑚: 𝑜𝑑𝑑

𝑙−𝑚: 𝑒𝑣𝑒𝑛

sin𝜓𝑙𝑚𝑝𝑞} 

(4-8) 

 
With 𝐹𝑙𝑚𝑝(𝑖), the normalised inclination functions, 𝜓𝑙𝑚𝑝𝑞 = (𝑙 − 2𝑝)𝜔0 + (𝑙 − 2𝑝 + 𝑞)𝑙 + 𝑚𝜔𝑒 

and 𝐺𝑙𝑝𝑞(𝑒), the eccentricity functions (often named Hansen coefficients): 

 

𝐺𝑙𝑝𝑞(𝑒) =
1

(1 − 𝑒2)𝑙−1 2⁄
∑(

𝑙 − 1
2𝑑 + 𝑙 − 2𝑝′

) (
2𝑑 + 𝑙 − 2𝑝′

𝑑
) (
𝑒

2
)
2𝑑+𝑙−2𝑝′

𝑝′

𝑑=0

 (4-9) 

 
where 𝑞 =  2𝑝 –  𝑙, whereas 𝑝′ = 𝑝 if 𝑝 ≤ 𝑙 2⁄  and 𝑝′ = 𝑙 − 𝑝 if 𝑝 ≥ 𝑙 2⁄  [13][5]. 
 
Hereafter, the case with 𝑒 =  0 has been considered and hence the equation (4-6), since 
typically the gradiometry missions exploit circular orbit for gravity field measurements. This 
is for a simpler post-processing of data and better sampling of the field. In the future, it is 
foreseen to extend the analysis to elliptical orbits, in order to have a more extended space 
of orbits.     
By using the equation (4-6), the computation of the gravity field functionals can be carried 
out by evaluating the series expansion till to a maximum degree 𝑙, depending on the 
investigated spatial resolution, and by means of a set of spherical harmonic coefficients 
(𝐶𝑙𝑚, 𝑆𝑙𝑚) till to the same degree.  
Starting from the equation (4-6) and substituting: 
  

∑𝑥

𝑙

𝑝=0

   → ∑ 𝑥

𝑙

𝑘=𝑙[2]

 

 

𝐹𝑙𝑚𝑝(𝑖)    → 𝐹𝑙𝑚
𝑘 (𝑖)    

 
𝜓𝑙𝑚𝑝  →  𝜓𝑘𝑚 = 𝑘𝜔0 +𝑚𝜔𝑒 

 
In the case of interest, the gravity gradient expressions in terms of the Kaula expansion can 
be written as: 
 

Γ𝑧𝑧 =
𝐺𝑀

𝑅3
∑
(𝑙 + 1)(𝑙 + 2)

𝑅2
(
𝑅

𝑟
)
𝑙+3

∑ ∑ 𝐹𝑙𝑚
𝑘 (𝑖)

𝑙

𝑘=−𝑙[2]

( 𝛼𝑙𝑚 𝑐𝑜𝑠 𝜓𝑘𝑚 +  𝛽𝑙𝑚 𝑠𝑖𝑛𝜓𝑘𝑚)

𝑙

𝑚=0

+∞

𝑙=0

 (4-10) 

 
where the espression is referred to the ZZ component of the gravity gradient and: 
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 𝛼𝑙𝑚 = [
𝐶𝑙𝑚
−𝑆𝑙𝑚

]
𝑙−𝑚: 𝑜𝑑𝑑

𝑙−𝑚: 𝑒𝑣𝑒𝑛

 

 

 𝛽𝑙𝑚 = [
𝑆𝑙𝑚
𝐶𝑙𝑚
]
𝑙−𝑚: 𝑜𝑑𝑑

𝑙−𝑚: 𝑒𝑣𝑒𝑛

 

  
Applying some changes of notation, it is possible to write: 
 

Γ𝑧𝑧 = ∑ ∑ ∑ {𝐴𝑙𝑚𝑘
𝑧𝑧  cos𝜓𝑘𝑚 +𝐵𝑙𝑚𝑘

𝑧𝑧  sin𝜓𝑘𝑚}

𝑙

𝑘=−𝑙[2]

𝑙

𝑚=0

𝐿𝑚𝑎𝑥

𝑙=0

 (4-11) 

 
where again the espression is referred to the ZZ component of the gravity gradient and 
where are valid the following relations: 
 

𝐴𝑙𝑚𝑘
𝑧𝑧 = 𝐻𝑙𝑚𝑘

𝑧𝑧  𝛼𝑙𝑚 
 

𝐵𝑙𝑚𝑘
𝑧𝑧 = 𝐻𝑙𝑚𝑘

𝑧𝑧  𝛽𝑙𝑚 
(4-12) 

 

𝐻𝑙𝑚𝑘
𝑧𝑧 = (𝑙 + 1)(𝑙 + 2) 𝐹𝑙𝑚

𝑘 (𝑖)    
 

𝛾𝑙 =
𝐺𝑀

𝑅3
(
𝑅

𝑟
)
𝑙+3

 

 
The expression for the overall independent components are reported in Table 4-4 [125]. 
These components are referred to the local orbital coordinate system (see later the 
definition).      
 

Table 4-4 Gravity gradient compoonents with respect to the local orbital coordinate system 
(from [125])  

Derivative 
wrt  

𝑯𝒍𝒎𝒌
…  𝑨𝒍𝒎𝒌 𝑩𝒍𝒎𝒌 

𝑥𝑥 −(𝑙 + 1 + 𝑘2)𝛾𝑙𝐹𝑙𝑚
𝑘  𝛼𝑙𝑚 𝐻𝑙𝑚𝑘

𝑥𝑥   𝛽𝑙𝑚 𝐻𝑙𝑚𝑘
𝑥𝑥  

𝑥𝑦 −asin (𝜔0)𝛾𝑙𝐹𝑙𝑚
𝑘̇  𝐻𝑙𝑚

𝜃  𝐶𝑙𝑚 𝐻𝑙𝑚
𝜃  𝑆𝑙𝑚 

𝑥𝑧 −(𝑙 + 2)𝑘 𝛾𝑙𝐹𝑙𝑚
𝑘  𝛽𝑙𝑚 𝐻𝑙𝑚𝑘

𝑥𝑧   −𝛼𝑙𝑚 𝐻𝑙𝑚𝑘
𝑥𝑧  

𝑦𝑦 −((𝑙 + 1)2 − 𝑘2)𝛾𝑙𝐹𝑙𝑚
𝑘  𝛼𝑙𝑚 𝐻𝑙𝑚𝑘

𝑦𝑦
  𝛽𝑙𝑚 𝐻𝑙𝑚𝑘

𝑦𝑦
 

𝑦𝑧 −(𝑙 + 2)asin (𝜔0)𝛾𝑙𝐹𝑙𝑚
𝑘̇  𝛼𝑙𝑚 𝐻𝑙𝑚𝑘

𝑦𝑧
  𝛽𝑙𝑚 𝐻𝑙𝑚𝑘

𝑦𝑧
 

𝑧𝑧 (𝑙 + 1)(𝑙 + 2)𝛾𝑙𝐹𝑙𝑚
𝑘  𝛼𝑙𝑚 𝐻𝑙𝑚𝑘

𝑧𝑧   𝛽𝑙𝑚 𝐻𝑙𝑚𝑘
𝑧𝑧  

 
 
In case of lack of such coefficients a fictious field can be generated by using the constraint 
of the Kaula rule for the behaviour of the field amplitudes. At the end a set of computed 
gravity potential values with respect to a local coordinate system is generated.    
The temporal dependence of the equation (4-11) is introduced following the Koop’s 
approach [125]. The series can be considered as a time series if we consider successive 
measurement points along the orbit. In particular, the argument  𝜓𝑘𝑚 can be written down 
as following: 
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𝜓𝑘𝑚 = 𝑘𝜔0
0 +𝑚𝜔𝑒

0 + (𝑘𝜔0̇ + 𝑚𝜔𝑒)̇ (𝑡 − 𝑡0) 
  

where 𝜔0 = 𝜔0
0 + 𝜔0̇ (𝑡 − 𝑡0) and 𝜔𝑒 = 𝜔𝑒

0 + 𝜔𝑒̇(𝑡 − 𝑡0), and 2𝜋 𝜔𝑒̇⁄  is a nodal period whereas 

2𝜋 𝜔0̇⁄  is one revolution. Assuming 𝑡0 = 𝜔0
0 = 𝜔𝑒

0 = 0 and considering a time 𝑡 =  0, 1, … , 𝑇𝑔 

where 𝑇𝑔  is the mission duration, the argument can be written down as:  

  
𝜓𝑘𝑚 = (𝑘𝜔0̇ + 𝑚𝜔𝑒̇)𝑛Δ𝑡 

 
with 𝑛 =  0, 1, … ,𝑁𝑝 − 1 and 𝑁𝑝 = 𝑇𝑔 Δ𝑡⁄  is the number of measurements along the orbit. If 

during the mission period 𝑇𝑔, there are 𝑁𝑟 orbital revolutions and 𝑁𝑑 nodal periods (i.e. the 

time interval it takes the satellite to make two consecutive equator crossing), then: 
 

𝑇𝑔 = 𝑁𝑑
2𝜋  

𝜔𝑒̇
     𝜔𝑒̇ = 𝑁𝑑

2𝜋  

𝑇𝑔
=
𝑁𝑑  

Δ𝑡

2𝜋  

𝑁𝑝
 

 

𝑇𝑔 = 𝑁𝑟
2𝜋  

𝜔0̇
      𝜔𝑒̇ = 𝑁𝑟

2𝜋  

𝑇𝑔
=
𝑁𝑟  

Δ𝑡

2𝜋  

𝑁𝑝
 

 
and the argument 𝜓𝑘𝑚 is translated into: 
 

𝜓𝑘𝑚 =
2𝜋𝑛

𝑁𝑝
𝑁𝑟(𝑘 + 𝑚

𝑁𝑑  

𝑁𝑟
) 

 
If 𝑁𝑑 and 𝑁𝑟 are prime integers, the groundtrack repeats after 𝑁𝑑nodal periods and 𝑁𝑟 orbital 
revolutions [125].  

 
Figure 4-3: geocentric cartesian coordinate system, orbital coordinate system and local orbital 

coordinate system (from [125])   
 

Three reference frames have been considered. The geocentric cartesian coordinate system 
(X, Y, Z) is defined with X-axis pointing at a reference meridian (Greenwich for the Earth), 
the Z-axis to the north-pole and Y to complete the right-handed system. A second reference 
system is obtained by rotating of 𝜔𝑒 around Z in order to obtain X’ towards the ascending 
node and of 𝑖 around the X’ axis. This is named orbital Cartesian coordinate system. The 
third reference system is the local orbital coordinate system centred in a point on the 
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spacecrat’s orbit, the x-axis directed towards the along-track, the z axis directed radially 
towards the external and the y-axis directed across-track in order to have a right-handed 
system. This last frame is obtained form the first one, body-fixed, through successive 
rotations about 𝜔𝑒, 𝑖, 𝜔0 and a translation of 𝑟. This is also the frame in which are evaluated 
the gravity gradient components.  
 

4.2.2 Gravity gradient computation  

Based on the previous formulas, a matlab code has been developed to compute six gravity 
gradient components, Γzz, Γxx, Γxz, Γyz, Γxy (5 independent) and Γ𝑦𝑦 (one diagonal), for any 

body and any circular orbit. The software receives as input the spherical harmonic 
coefficients for a planetary body till a 𝑙𝑚𝑎𝑥 (𝐶𝑙𝑚, 𝑆𝑙𝑚), the main body characteristics (𝐺,𝑀, 𝑅) 

and the orbit characteristics (a,  e,  i,  Ω,ω,  M). Moreover, orbit sampling and mission duration 
need to be defined. With respect to the last item, it is assumed to have an orbital period that 
matches the planet’s rotational period. Such a condition guarantees to have a repeated 
ground track. Repeat groundtrack orbits are those which repeat their groundtrack over a 
certain time span [5]; they are typically employed by missions periodically revisiting a 
specific point on the planet, such as those devoted to study gravity. Moreover, it is 
considered that the mission duration equals one repeat period; in this way no ground-track 
repeat will happen during the mission. This condition is obtained when the number of orbit 
revolutions 𝑁𝑟 around the planet, during the mission period, and the number of nodal days 

𝑁𝑑 in it, being one nodal day the time interval it takes the satellite to make two consecutive 
equator crossing, have to be relative prime integers. 
The output provides the computation of the inclination functions 𝐹𝑙𝑚𝑝(𝑖)  and of the six gravity 

gradients 𝛤𝑧𝑧, 𝛤𝑥𝑥, 𝛤𝑥𝑧, 𝛤𝑦𝑧, 𝛤𝑥𝑦 ,  𝛤𝑦𝑦 for the chosen body and orbit. The inclination functions 

need to be early evaluated and then recalled from the main program. These functions have 
been initially computed by a dedicated routine. However, the need to reach very high 
degrees 𝑙 implied very deep and heavy computations in terms of computer resources, with 
the result that effective values could be evaluated correctly till degree and order 𝑙, 𝑚 =  55. 
Through researches in literature, the work of Gooding [124] has been found out as useful to 
accomplish the computations till very high degrees (𝑙 ~ 1000) by using an optimised routine.  
Routines developed have been reported in the appendix to the thesis with an explanation of 
the structure; moreover, comments are reported in the code as well.    
On the basis of previous elements, it is possible to define a scenario for a gradiometry 
mission around a planetary body and on a defined orbit and to evaluate for that scenario the 
time series of a set of gravity gradients. Values of gravity gradients have been computed for 
the two targets derived as more interesting from the scientific point of view and more suitable 
in the hypothesis of a gradiometry mission: Venus and Mars.  
Orbits have been chosen focusing on the mission objective, i.e. the retrieval of the 
gravitational field through the measure of the gravitational gradients. Specifically, circular 
orbits have been investigated.  
Circular (𝑒 = 0) and quasi-polar (𝑖 = 89°) orbits were chosen as typically representative of 
orbits employed in gravity field missions. However, different case can be considered in 
successive developments of the thesis. Heights were chosen compatible with Magellan 
(Venus) and MRO (Mars) missions.    
In the following results for the computed time series have been reported. Just the gradients 
of the main diagonal (𝛤𝑧𝑧, 𝛤𝑥𝑥, 𝛤𝑦𝑦) and one off-diagonal (𝛤𝑥𝑧) have been plotted.  
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For the Venus case, the plot is shown just for the first two orbits (about 3 hours). The 
gravitational field has been investigated till to the degree and order 𝑙 =  70 for a circular 
quasi-polar orbit at an altitude ℎ =  300 𝑘𝑚.  
Concerning the diagonal values, Figure 4-4, Figure 4-5, Figure 4-6 show the time variation 
along the orbit of the 𝛤𝑧𝑧, 𝛤𝑦𝑦,  𝛤𝑥𝑥 gradients. Table 4-5 depicts the main characteristics used 

to produce the time series. The variations are of the order of few Eotvos with respect to the 
dominant monopole value with a value around 2536 𝐸 and −1268 𝐸, respectively 𝛤𝑧𝑧 and 
𝛤𝑦𝑦,  𝛤𝑥𝑥. Figure 4-7 shows the off-diagonal gradient 𝛤𝑥𝑧; in this case no monopole value 

exists and the variations are lower, about tenth of Eotvos.  
For clarity of the behaviour of time series, graphs are shown only for 3 and 3.5 hours, 
although the simulation spans over one day.   
This approach, in which gravity gradients are computed in points of an equally-angular 
spaced grid located along the orbit, is named spherical harmonic synthesis [125]. In this 
case, it is required to have a set of known spherical harmonic coefficients. Alternatively, a 
fictious field can be computed. According to this approach, the gravity gradient synthesis 
allows to provide some information and understanding of the signals expected from a 
gradiometer mission. 
 

Table 4-5 Main parameters used for the computation of gravity gradients for a spacecraft 
orbiting Venus     

Planet Venus Unit 

Height 300 km 

Orbital period  1.550 h 

Orbital velocity  7152 m/s 

Inclination  89.00 degrees 

Argument of pericentre   0.00 degrees 

RAAN  67.80 degrees 

Argument of longitude 10.00 degrees 

Orbit sampling  4 s 

Number of orbit revolutions   15 - 

Maximum degree   70 - 

𝛤𝑧𝑧 (monopole) - average 2536.28 E 

𝛤𝑥𝑥 (monopole) - average -1268.14 E 

𝛤𝑦𝑦 (monopole) - average -1268.14 E 
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Figure 4-4: Gravitational gradient ZZ till degree 𝑙  = 70 for an orbit around Venus at an altitude h = 

300 km 
 

 
Figure 4-5: Gravitational gradient YY till degree 𝑙  = 70  for an orbit around Venus at an altitude h 

= 300 km 
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Figure 4-6: Gravitational gradient XX till degree 𝑙  = 70 for an orbit around Venus at an altitude h = 
300 km 
 

 
Figure 4-7: Gravitational gradient XZ till degree 𝑙  = 70 for an orbit around Venus at an altitude h = 
300 km 
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For the Mars case, the plot is shown for the first two orbits as well (about 3.5 hours). The 
gravitational field has been investigated till to the degree and order 𝑙 =  100 for a circular 
quasi-polar orbit at an altitude ℎ =  300 𝑘𝑚. The orbit characteristics are close to the MRO 
orbit.  
Concerning the diagonal values, the Figure 4-8, Figure 4-9, Figure 4-10 show the time 
variation along the specified orbit of the 𝛤𝑧𝑧, 𝛤𝑦𝑦,  𝛤𝑥𝑥 gradients. Table 4-6 depicts the main 

characteristics used to produce the time series. In this case the variations are larger, of the 
order of ~20 𝐸 for the 𝛤𝑧𝑧 component with respect to a monopole value around 1705 𝐸, ~6 𝐸 
for the 𝛤𝑦𝑦 component with respect to a monopole value around −850 𝐸 and ~15 𝐸 for the 

𝛤𝑥𝑥 component with respect to about −850 𝐸. Figure 4-7 shows the off-diagonal gradient 𝛤𝑥𝑧; 
in this case no monopole value exists and the variations are in the order of ~16 𝐸. 

Table 4-6 Main parameters used for the computation of gravity gradients for a spacecraft 
orbiting Mars     

Planet Mars Unit 

Height 255 km 

Orbital period  1.890 h 

Orbital velocity  3407 m/s 

Inclination  89.00 degrees 

Argument of pericentre   0.00 degrees 

RAAN  67.80 degrees 

Argument of longitude 10.00 degrees 

Orbit sampling  4 s 

Number of orbit revolutions   13 - 

Maximum degree   100 - 

𝛤𝑧𝑧 (monopole) 1704.84 E 

𝛤𝑥𝑥 (monopole) -852.42 E 

𝛤𝑦𝑦 (monopole) -852.42 E 

 

 
Figure 4-8: Gravitational gradient ZZ till degree 𝑙  = 100 for an orbit around Mars at an altitude h = 
255 km   
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Figure 4-9: Gravitational gradient YY till degree 𝑙  = 100 for an orbit around Mars at an altitude h = 
255 km   

 
 
Figure 4-10: Gravitational gradient XX till degree 𝑙  = 100 for an orbit around Mars at an altitude h = 
255 km   
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Figure 4-11: Gravitational gradient XZ till degree 𝑙  = 100 for an orbit around Mars at an altitude h = 
255 km   
 

4.3 Mission requirements   

From the science requirements (section 3.4 and section 4.2) hints for the definition of some 
mission requirements for a gravity mission at Mars or Venus are derived.  
A potential mission to Mars should foresee a spacecraft orbiting in a range 200-300 km of 
height and able to measure a gravity gradient  with signal levels around 10-13-10-14 s-2 for  
corresponding maximum degrees 𝑙 =  100 and around 10-18-10-22 s-2 for corresponding 
maximum degrees 𝑙 =  300.  In the conditions specified in the previous section, the time 
series of the gradients for a 300 km of altitude and till 𝑙 =  100, in an inertial frame body 
centred, would be represented by Figure 4-8, Figure 4-9, Figure 4-10 and Figure 4-11.  
At the same time, a potential mission to Venus should foresee a spacecraft orbiting at an 
altitude in the range 200-350 km and should be able to sense signal levels of 10-13-10-14 s-2 

for  degrees till to 𝑙 =  100 and 10-15-10-17 s-2 for degrees till to 𝑙 =  250. In the conditions 
specified in the previous section, the time series of the gradients for a 300 km orbit altitude 
and till 𝑙 =  70, in an inertial frame body centred, would be represented by Figure 4-4, Figure 
4-5, Figure 4-6 and Figure 4-7.  
Further science requirements impacting directly the mission can be derived with respect to 
the frequency band of the expected signal.  Indeed, from the point of view of the typical 
frequencies of the gravity signal to be investigated during such a mission, the following 
considerations can be carried out. The gravity signal associated with harmonics of degree l 
has a wavelength [125]: 

Δ𝑠 =
2𝜋𝑟

𝑙
 

 
(4-13) 
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where 𝑟 = 𝑅 + ℎ is the altitude ℎ of the spacecraft with respect to the body centre, with radius 
𝑅.   
According to the Nyquist theorem, at least a sampling frequency doubling the maximum 
frequency of the signal of interest is needed in order to prevent aliasing in the signal. This 
means that at least one data point along the orbit every Δ𝑠/2 is needed [125]; more data 
would be better as well. On the basis of such considerations, the typical timescale of the 
gravity signal would be: 

∆𝜏 =
Δ𝑠

2𝑣
=
2𝜋𝑟

2𝑙 𝑣
=
𝜋𝑟

𝑙 𝑣
=
𝜋𝑟

𝑙 
√
𝑟

𝜇
 

 
(4-14) 

where 𝑣 = √𝜇 𝑟⁄  is the spacecraft orbital velocity, 𝜇 = 𝐺𝑀 is the gravitational parameter and 

𝑙 is the degree investigated. From the science needs the gravity field needs start from the 
current knowledge, as reported in Table 2-7 (section 2.5). 
Different scenarios have been considered for each target by identifying a range of degrees 
𝑙 (l𝑚𝑖𝑛 and l𝑚𝑎𝑥) and a range of orbit heights ℎ.  
The range of chosen degrees was derived from the science needs of the Table 2-7. In 
particular the maximum degree l𝑚𝑎𝑥 is identified on the basis of this table, starting from the 
minimum value to be investigated in order to overcome the current knowledge to incremental 
values; on the other hand, l𝑚𝑖𝑛 is referred to the quadrupole signal (𝑙 =  2).  
The range of heights are the typical altitudes employed by past and present missions around 
those bodies (the same used for Table 3-3). For each scenario the corresponding frequency 
band of the expected gravity signal has been computed, following the previous 
considerations, and the minimum expected sampling frequency (twice the maximum signal 
frequency). Results are reported in Table 4-7.  
 

Table 4-7 Typical frequency range of the expected gravity signal for the science targets 
previously identified; 𝑙𝑚𝑖𝑛is referred to the quadrupole signal whereas 𝑙𝑚𝑎𝑥 is an incremental 

value starting from the current knowledge of the gravity field for that body     

Venus 
𝒉 

(km) 
𝐥𝒅𝒔 

(known) 
𝐥𝒎𝒊𝒏 𝐥𝒎𝒂𝒙 

∆𝒔 
(km) 

∆𝝂  
(Hz) 

Minimum 
sampling 
frequency  

(Hz) 

 200 70 2 100 190 7.3 10-4-3.7 10-2 7.4 10-2 

 200 70 2 150 127 7.3 10-4-5.5 10-2 1.1 10-1 

 200 70 2 200 95 7.3 10-4-7.3 10-2 1.5 10-1 

 200 70 2 250 76 7.3 10-4-9.2 10-2 1.9 10-1 

 300 70 2 100 190 7.2 10-4-3.6 10-2 7.2 10-2 

 300 70 2 150 127 7.2 10-4-5.4 10-2 1.1 10-1 

 300 70 2 200 95 7.2 10-4-7.2 10-2 1.4 10-1 

 300 70 2 250 76 7.2 10-4-8.9 10-2 1.8 10-1 

 350 70 2 100 190 7.1 10-4-3.5 10-2 7.0 10-2 

 350 70 2 150 127 7.1 10-4-5.3 10-2 1.1 10-1 

 350 70 2 200 95 7.1 10-4-7.1 10-2 1.4 10-1 

 350 70 2 250 76 7.1 10-4-8.9 10-2 1.8 10-1 

Mars 200 100 2 100 107 6.1 10-4-3.0 10-2 6.0 10-2 

 200 100 2 150 71 6.1 10-4-4.6 10-2 9.2 10-2 

 200 100 2 200 53 6.1 10-4-6.1 10-2 1.2 10-1 

 200 100 2 250 43 6.1 10-4-7.7 10-2 1.5 10-1 

 300 100 2 100 107 5.9 10-4-2.9 10-2 5.8 10-2 

 300 100 2 150 71 5.9 10-4-4.4 10-2 8.8 10-2 

 300 100 2 200 53 5.9 10-4-5.9 10-2 1.2 10-1 

 300 100 2 250 43 5.9 10-4-7.4 10-2 1.5 10-1 
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As shown the previous equation, the frequency of the gravity signal decreases with the orbit 
height increase (∆𝜏 increases), while it increases with the rise of the searched degree 𝑙.         
For Mars the maximum frequency range of the gravity signal of interest spans within the 
range 2.9 10-2 – 7.4 10-2 Hz, depending on the chosen altitude and the gravity signal degree 
investigated (Table 4-7); this means that the sampling frequency of the measurement should 
be equals, at least, or higher than twice these frequencies. Therefore, the sampling 
frequency spans from about 0.06 Hz for a 200-300 km orbit height and a maximum degree 
l =100 till to 0.15 Hz for the same altitudes and a degree l = 250. 
For Venus the maximum frequency of the signal would span in the range 3.5 10-2 – 9.2 10-2 
Hz; in this case the sampling frequency of the measurements along the orbit should be from 
a minimum of 0.07 Hz for a 200-300 km orbit height and a maximum degree l =100 till to a 
maximum of 0.18-0.19 Hz for a 200-350 km height and a maximum degree l =250. 
This means that the use of a gradiometer in the scenarios hypothesised requires a frequency 
band in those ranges. In particular, the upper limit is caused by the sampling rate used to 
collect the measurements along the spacecraft’s orbit. The lower limit is computed with the 
same procedure as well. However, such a lower limit is typically nominal, since the effective 
achievable lower frequency is affected by instrumental and environmental effects. Typically, 
the thermal stability performance of the gradiometer affects the measured signal at lower 
frequency. Moreover, environmental effects due to non-gravitational perturbations affect, as 
well, the lower frequency. Therefore, these effects at lower frequencies can degrade the 
measured signal, although belonging to the frequency band.                 
A summary of requirements derived is reported in Table 4-8.  
 

Table 4-8 Summary of mission requirements for a spacecraft with a gradiometer targeted at 
Mars and Venus     

Planet SC 
altitude 

(km) 

Degree 
(max) 

Signal level 
(m/s2) 

Frequency 
band 
(Hz) 

Sampling 
frequency 

(Hz) 
Mars 200 

100-300 
2x10-13 – 3x10-18 6x10-4-8x10-2 6.0 10-2 - 1.5 10-1  

300 2x10-14 – 7x10-22 6.1 10-4- 7.7 10-2 5.8 10-2 - 1.5 10-1 

Venus 200 

100-250 

6x10-13 – 5x10-15 7x10-4-1x10-1 7.4 10-2 –1.9 10-1 

300 1x10-13 – 9x10-17 7.2 10-4- 8.9 10-2 7.2 10-2 –1.8 10- 

350 6x10-14 – 1x10-17 7.1 10-4- 8.9 10-2 7.0 10-2 –1.8 10-1 

 
An intrinsic issue is the reduction of gravity signal intensity as much as the distance from 
the source increases. Moreover, the signal magnitude is related to the mass source size, 
i.e. to the spatial scale. Therefore, at any given height the short-wavelengths (small features) 
are attenuated more than the long-wavelengths (large features). This means the altitude 
acts as a low-pass filter, fostering the large spatial scales and hence the low harmonics 
degrees (long-wavelengths).  
Actually, considering the spherical harmonics expansion of the gravity gradient Γ𝑟𝑟 (radial 
component), which is a physical observable, this effect is well evidenced by the attenuation 
factor 𝐴 figuring in front of it: 
 

Γ𝑟𝑟(𝑟, 𝜆, 𝜑) =  −
𝐺𝑀

𝑅3
∑ ∑(𝑙 + 1)(𝑙 + 2) (

𝑅

𝑟
)
𝑙+3

𝑃𝑙𝑚(sin𝜑)

𝑙

𝑚=0

(𝐶𝑙𝑚 cos𝑚𝜆 + 𝐶𝑙𝑚 sin𝑚𝜆)

𝑙𝑚𝑎𝑥

𝑙=0

 

𝐴Γ𝑟𝑟 = 
𝐺𝑀

𝑅3
(𝑙 + 1)(𝑙 + 2) (

𝑅

𝑟
)
𝑙+3
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However, an important difference arises for the attenuation factor caused by the 
differentiation process with respect to the case of the gravitational potential (although not 
observable) or the gravity anomaly, respectively given by: 
 

𝐴 =  
𝐺𝑀

𝑅
(
𝑅

𝑟
)
𝑙+1

 

𝐴∆𝑔 = 
𝐺𝑀

𝑅2
(𝑙 − 1) (

𝑅

𝑟
)
𝑙+2

 

 
Indeed, the gravity gradient introduces a multiplier factor (𝑙 + 1)(𝑙 + 2) which allows in part 
to counteract the decrease of the field intensity due to the altitude and in part to amplify the 
components at high frequency, i.e. at high 𝑙 and hence with high spatial resolution, as shown 
in Figure 4-12 and Figure 4-13. Indeed, satellite gradiometry, being derived as double 
derivative of the gravitational potential, allows to highlight the small-scale effects described 
by the higher degrees in the field. The factor (𝑙 + 1)(𝑙 + 2) increases the power content for 
high degrees and at the same time counteracts partially the attenuation due to the altitude 

((𝑅 𝑟⁄ )𝑙+3).    
The following Figure 4-12 and Figure 4-13 depict the behaviour of this factor (normalised 
with respect to the constant factor 𝐺𝑀 𝑅⁄ ) versus the achieved spatial resolution, evaluated 
through Δ𝑆 = 𝜋𝑅 𝑙⁄ , and versus the degree 𝑙 of the field. Different orbit heights are 
considered (100 − 500 𝑘𝑚), with Mars as example of central body. The attenuation depends 
on the altitude and on the harmonic degree. For achieving any given spatial resolution, lower 
orbits should be preferred since they imply less attenuation and hence guarantee higher 
signal strength. For the same orbit, low degree harmonics (i.e. low resolutions) are fostered 
with respect to high degrees. Any gravity mission scenario aims at keeping the operative 
orbit as lower as possible to enhance the gravity signal. Moreover, such an approach is 
important as much as higher are the harmonics degrees to be investigated.  
 

 
Figure 4-12: Attenuation factor of the gravity gradient versus the spatial resolution (planet Mars), 

for different orbital altitude. Different orbit heights are shown in colors: from left to right, 100 to 500 
km (100 km step) and at last 1000 km 
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Figure 4-13: Attenuation factor versus the degree l for the gravity gradient. The same legend of 

previous figure is adopted.  

 

4.4 Spacecraft requirements   

In general, in the design of a gravity mission, errors related to gravity-sensing can be 
organised in three groups [185]: instruments-related, spacecraft-related and 
instrument/spacecraft coupling related. A list of main components is reported in Table 4-9. 
Instrument errors depend on the gravity sensing instrument. In case of a gradiometer, the 
most important is the instrument intrinsic noise. Basically, the intrinsic noise is generated by 
the combination of different sources such as thermal noise and electrical noise. Concerning 
intrinsic noise of the instrument, it is a combination of the Brownian noise of the test masses 
and intrinsic noise of the amplifier. To this respect, a proper low thermal sensitivity needs to 
be guaranteed by the gradiometer and a robust thermal control needs to be taken into 
account. However, other sources intervene in the overall budget. From the geometrical point 
of view, gradiometers based on accelerometers introduce errors in terms of misalignment of 
sensing axes and scale factor mismatch, i.e. the factor which translates the sensed 
acceleration into a voltage signal. Indeed, the differential approach allows to highlight the 
difference of sensed signals (differential mode), i.e. the gravitational gradient, and to (ideally) 
remove any disturbance with the same amplitude contemporary detected by the coupled 
accelerometers (common mode). Any geometrical asymmetry in terms of alignment and 
scale factor determines how well the common accelerations are rejected by carrying out the 
difference of outputs. 
The coupling errors depend on the performance of the instrument and the spacecraft 
together: coupling of the satellite external perturbations with the misalignments of the 
instrument, coupling of satellite micro-vibrations and temperature variations with instrument 
characteristics. The GOCE experience proved that improvement of performance was 
achieved by optimising the spacecraft characteristics so to minimise their impact on the 
gradiometer. However, this is a special condition since typically a trade-off needs to be 
achieved. 
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The spacecraft errors include attitude recovery and pointing errors, errors in the 
determination of the external accelerations, on-board generated, such as motion of 
appendages, and external generated, such as the surface forces (drag, solar radiation, etc.).  
 

Table 4-9 Some error sources in gradiometry [125]  

Subsystem  Type Error 

instrument geometrical misalignment of accelerometers 

  scale factor mismatch  

  non-orthogonality of accelerometer sensing axes  

  misalignment of accelerometers in gradiometer frame 

 physical accelerometers non-linearity 

  scale factor stability 

  calibration errors 

  instrument  noise 

  finite baseline of the instrument 

spacecraft attitude orientation 

  unmodelled rotations 

 non gravitational 
forces  

surface forces (solar radiation, drag) 

 environmental 
disturbances 

micro-vibrations 

  thermal variations 

 self-gravitation time varying components due sloshing and fuel 
consumption 

  dynamic appendages (solar arrays, antennas, etc) 

  reaction wheels noise 

 

4.5 Instrument requirements   

In order to derive some requirements for a gradiometric instrument needing to satisfy the 
mission requirements, the values adopted for ISA and JUICE accelerometer are the starting 
point.  
Elements addressed in this section will be used to identify and design a gradiometer 
configuration able to perform the gravity gradient measures whose requirements have been 
derived in previous chapters. Heritage derived from know-how and expertise at IAPS on 
accelerometers and gradiometres is maximised.      
The gradiometer is basically constituted by one or more couples of accelerometers. They 
can be linearly or angularly coupled, obtaining the configurations of linear gradiometer or 
angular gradiometer. 
We consider hereafter a linear gradiometer with one or more coupled linear accelerometers. 
In this case the basic element of the gradiometer is a couple of linear accelerometers 
separated by a finite distance.  Hoever, considerations hereinafter reported can be applied 
to an angular gradiometer as well. 
The starting point for ISA or HAA-like accelerometers is their performance that can be 
summarised in the following Table 4-10. 
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 Table 4-10 Main characteristics of ISA and HAA accelerometers on-board BepiColombo and 
JUICE missions, respectively 

Instrument ISA HAA 

Mission BepiColombo JUICE 

Status On flight  
(October 2018) 

Development  
(launch 2022) 

Measurement 
band (Hz) 

3 ∙ 10−5  − 10−1        10−4  − 10−1 

Accuracy  
(𝑚 ⁄ 𝑠2) 

10−8 10−8 

Noise floor 

(𝑚 ⁄ 𝑠2/√𝐻𝑧) 

3 ∙ 10−8@ 10−4𝐻𝑧,  
 

7 ∙ 10−9  > 7 ∙ 10−4𝐻𝑧 

3 ∙ 10−8@ 10−4𝐻𝑧,  
 

8 ∙ 10−9  > 8 ∙ 10−4𝐻𝑧 
Active thermal 
control 

1 mK 1 mK 

Weight (kg) ≈9 ≈14 

Power 
consumption 
(W) 

≈20 ≈30 

 
 
Taking into account such values, the following considerations can be carried out. 
As derived in section 4.3, the frequency band of the expected gravity signal should  belong 
to specific ranges. For a spacecraft orbiting Venus at an altitude between 200 − 350 𝑘𝑚, the 
frequency range of the gravity signal covering 𝑙 =  2 − 200 degrees  belongs to the range 

~ 7 10−4  − 9 10−2𝐻𝑧. In a similar approach, a spacecraft orbiting Mars at an altitude 
between 200 − 300 𝑘𝑚, the frequency range for a gravity signal within the degrees 𝑙 =  2 −
250 would cover the interval ~ 6 10−4  − 9 10−2𝐻𝑧.   
From these considerations, it derives that the frequency requirement for the instrument 
should cover the range ∆𝜈 ~ 10−4  − 10−1 𝐻𝑧. 
Concerning the signal level, a gradiometer with two coupled ISA- or HAA-like linear 
accelerometers placed at a distance of 1 𝑚  would achieve roughly a sensitivity: 
 

𝑆 =  
10−8

1
=  10−8 𝑠−2 =  10 𝐸 

 
This is a rough value assuming that the overall sensitivity of the gradiometer is equals to the 
sensitivity of its components,  i.e. the  accelerometers, here assumed ISA or HAA-like.  
It is obvious that such a sensitivity is not enough to achieve the required performance 
measurements shown in the previous chapters. Moreover, it is not possible to extend the 
baseline between the sensors to enhance the sensitivity, because 1 𝑚 or 2 𝑚 is already a 
limit distance for a single spacecraft. Therefore, the instrument sensitivity needs to be 
increased significantly to achieve a value comparable with the signal level to be measured. 
To increase the sensitivity of a gradiometer it needs to increase the sensitivity of the 
componing accelerometers. This can be achieved by acting on the factors limiting the 
sensitivity. These considerations can be applied both to linear and angular gradiometer. 
A first preliminary choice needs to be aimed at the measurement approach. An open-loop 
scheme foresees a measure of the acceleration through an accurate measure of the 
displacement of a suspended sensing mass (suspended by spring, electrostatic force, 
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magnetic induction, or other system, see section 3.3.2.3); this is the ISA/BepiColombo and 
HAA/JUICE case. On the other hand, in a closed-loop scheme the sensing mass 
displacement is compensated by a feedback force, usually of electrostatic-type, and this 
force is proportional to the acceleration input.    
On the basis of the ISA/HAA background the focus is herafter kept on the open-loop scheme. 
Indeed, the closed-loop scheme requires a different approach and especially a dedicated 
study on the feedback electronics and on the experimental operation and effectiveness of 
such a system. This is out of the scope of this work and could be dealt withas future activity 
in the group at IAPS. 
Considering the open-loop approach, the sensor sensitivity can be increased by acting on 
specific elements, some of them being:  

• transduction factor, depending on the transfer function (resonance frequency) and on 
the geometry of pick-up/actuator plates/sensor design 

• thermal sensitivity, due to the combination of intrinsic thermal sensitivity of the sensor 
and to the performance of the thermal control 

• sensor cooling 
 
Transduction factor  
Such a term is defined by the sensor output to the input acceleration ratio and it is directly 
related to the sensitivity. It depends on the transfer function of the sensor and its related 
resonance frequency, in addition to the geometry of pick-up plates and of the sensor in 
general.  
Concerning the transfer function, referring to the section “3.3.2.3 Mechanically-
suspended gradiometers”, the useful band of an accelerometer is identified by the flat part 
of the transfer function, characterised by a lower limit, typically constrained by thermal 
inputs, and an upper limit, fixed by the resonance frequency. These limits define the 
operative bandwidth and at the same time the achievable sensitivity.  
Indeed, the resonance frequency is directly related to the sensitivity since in the flat region 

(section 3.3.2.3) the relation 𝑥(𝜔 ) ≈ 𝑎(𝜔 )/𝜔0
2 applies, where the sensed acceleration (𝑎) and 

the proof mass displacement (𝑥) are linked through the resonance frequency 𝜔0 = 2𝜋𝜈0. 
This relation highligths that reducing the resonance frequency provides an increase of the 
sensor response through a higher displacement of the sensing mass (𝑥), with the same 
acceleration as input; hence, the sensitivity can be increased by reducing the resonance 
frequency. This is possible in different ways; for instance, by acting on the spring design 
and/or on the geometry of the sensor and /or by reducing the operating temperature of the 
system (point faced later). 
Concerning the spring, it can be realised with different shapes and thickness (and materials 
for the whole sensor), depending on the type of gradiometer, i.e. linear or angular one, 
because different type of oscillations will be mainly solicited: typically, flexural modes for a 
linear gradiometer, while torsional modes for an angular gradiometer. The shape and the 
size affect the resonance frequency, while the material affects especially the thermal 
sensitivity and the endurance of the spring to the strong solicitations (this is of particular 
importance, for instance, to sustain stresses at launch). Taking into account the physical 
description of an accelerometer as a mechanical oscillator forced and damped (see section 
3.3.2.3 and 5), the relation expressing the resonance frequency (𝜈0) in terms of the system 
charateristics is: 
 

𝜈0 =
1

2𝜋
√
𝑘𝑡
𝐼
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where 𝑘𝑡 is the spring constant while 𝐼 is the moment of inertia. Applying this relation for 
coupled accelerometers, it shows off that, in general, a low frequency can be obtained by 
increasing the moment of inertia, i.e. increasing the mass and/or its distance from the 
rotation centre, for instance making thin and long arms to hold the sensing mass, and 
reducing the elastic constant of the spring, i.e. shape, size and eventually material. Although, 
indeed, it is difficult to realise mechanical oscillators with a frequency below 1 Hz. The 
increase in sensitivity (and hence the change in the transduction factor) can be evaluated 

taking into account the relation 𝑥(𝜔 ) ≈ 𝑎(𝜔 )/𝜔0
2. 

For two different frequencies, 𝜔1and 𝜔2, and same input 𝑎, it holds: 
 

𝑥2 =
𝜔1

2

𝜔22
 𝑥1 

 
i.e. the increase in sensitivity is related to the squared ratio between the resonance 
frequencies. This implies that a change in the frequency allows to change significantly its 
sensitivity.      
As geometry of the sensor we mean the structure of the plates, their surfaces, the gap 
between plates. Indeed, the geometry of pick-up plates is another element on which to act. 
Tthe conversion of the sensing mass displacement into an electric signal can be carried out 
through different approaches. Referring to the ISA and HAA operations, as reported in 
section 3.3.2.3, a scheme based on a capacitive sensing can be adopted. A capacitive 
sensing translates a mechanical displacement of the sensing mass into a capacitance 
change between a couple of fixed plates and the sensing mass itself (mobile plate). Inserting 
this coupling within a capacitive bridge, including another couple of capacitances, allows to 
transform the capacitance change due to sensing mass displacement in a voltage change. 
Referring to [157] and Figure 4-14, it is possible to prove that : 

𝑉𝑜𝑢𝑡 ≡ 𝑉𝐴𝐵 = 𝑉𝑝(
1

1 +
𝐶𝑏
𝐶𝑎

−
1

1 +
𝐶2
𝐶1

) 

 
where the 𝑉𝑝 is the bias of the bridge, 𝐶𝑎  and  𝐶𝑏 fixed capacitances, whereas 𝐶1  and  𝐶2 

are the variable capacitances between sensing mass and fixed plates, depending on the 
mass position.  

 
Figure 4-14: Scheme of typical capacitive detection for the sensing mass displacement (extract 

from [157])    
 

Assuming  𝐶𝑎 = 𝐶𝑏 = 𝐶, the relation is simplified to: 
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𝑉𝑜𝑢𝑡 =
𝑉𝑝

2
(
 𝐶2 − 𝐶1
𝐶1 + 𝐶2

) 

 
meaning that a voltage signal from the bridge is generated only when the sensing mass is 
not in central position with respect to the plates, i.e. when an external acceleration moves 
the sensing mass inducing a capacitance unbalance. Capacitances are related to the 
geometry of the sensor, according to the basic relation: 
 

𝐶 = 𝜀0
𝑆

𝑑0
 

 
where 𝜀0  =  8.854 10

−12 [F/m] is the vacuum dielectric constant (assuming vacuum between 

plates), 𝑑0 is the nominal distance between the plates (or gap) and 𝑆 the surface of each 
plate.  
From those elements it derives that the sensitivity can be properly increased by reducing 
the plates gap and/or by raising the plates surface. Therefore, acting properly on these 
geometric parameters the sensitivity can be modified and improved.   
Two other plates form another pairs of capacitors ( 𝐶3 and  𝐶4) used to create an electrical 
field to force the position of the proof mass. They are used to allow the calibration of the 
system and to control some electromechanical parameters of the accelerometer (e.g. the 
mechanical Q factor).  
 
 
Thermal sensitivity 
One of the limiting factors of instrument accuracy is its sensitivity to temperature variations. 
For this reason, accelerometers are typically equipped with an active thermal control system 
that allows to stabilise the sensors temperature within fixed values; such a control is at less 
than 1 mK for ISA and HAA, a value at performance level for systems of this type. Although 
the use of such a control, a contribution from thermal variations comes into the overall 
budget error and hence to the final sensitivity. It is related to the intrinsic thermal sensitivity 
of the sensor, i.e. to the level of acceleration introduced per each change of temperature 
degree. The contribution of such a term to the overall budget can be reduced acting on the 
used materials and on the chosen geometries of the sensor (pick-up, actuators, spring-frame 
link). The basic driver is to reduce as much as possible internal temperature gradients and 
differential deformations.  
Supposing a thermal stability of the instrument environment of 10-2 °C/day and taking into 
account that the signals to be detected are in the range 10-4-10-1 Hz, we get that during the 
measure the temperature changes, as worst case, of: 
 

∆𝑇 =
10−2

86400
104 = 1.2 10−3 °𝐶 

 
This implies that a gradiometer with a sensitivity of the order of 10-4 E (as derived before) 
needs to have an intrinsic stability of at least: 
 

∆𝑇𝑠𝑡𝑎𝑏_𝑔𝑟𝑎𝑑 =
10−4

1.2 10−3
≈ 8 ∗ 10−2

𝐸

°𝐶
= 8 ∗ 10−11

𝑠−2

°𝐶
 

 
while the accelerometers components should have a stability of: 
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∆𝑇𝑠𝑡𝑎𝑏_𝑎𝑐𝑐 =
10−14

1.2 10−3
≈ 8 ∗ 10−12𝑚 𝑠2⁄ °𝐶⁄  

 
Such a level of stability is very demanding for a single accelerometer. It can be achieved 
through a combination of low intrinsic thermal sensitivity and of well performing thermal 
control system.  
The latter one can be tailored on the sensor by making a thermal control able to reduce 
thermal inputs by a suitable factor, for instance a factor 1000 (in case of ISA accelerometer) 
or better. 
On the other hand, the intrinsic thermal sensitivity needs to be reduced as much as possible, 
in agree with the technology used for making the sensor, in order to achieve the expected 
overall thermal performance.     
Different strategies can be pursued to improve the thermal behaviour of a sensor and hence 
its thermal sensitivity (i.e. variation of the pick-up and actuation capacitances as the thermal 
environment changes under operational measurement conditions), depending on the 
technology employed to make the sensor. Referring to the ISA and HAA technology (see 
section 3.3.2.3), some elements to be addressed in this perspective are the following:     

• Reduce as much as possible, wherever present, the use of materials withdifferent 
coefficients of thermal expansion (CTE), in order to mitigate thermoelastic distortion 
and stress within the system and to reduce the thermal sensitivity.  
Indeed, in the ISA and HAA design, the mechanical sensor is basically constituted by 
two couples of plates facing the central proof mass (capacitive sensor), separated by 
a gap. The gap and the electrical isolation between them is maintained by using 
alumina washers. During thermal variations, the different CTE of aluminium, alumina 
and steel of fasteners (about 24 ppm/°C, 6 ppm/°C and 8 ppm/°C, respectively), can 
induce non-uniform thermoelastic distortions, changing the capacitance between 
plates and sensing mass and hence making the structure more sensitive to thermal 
variations.  

• Mitigate the deformations induced on the plates by the temperature, affecting the 
flatness and hence the capacitance, by reviewing the mechanical design and the way 
in which plates and sensing mass are joined together.    

• Another element to address in order to reduce the thermal sensitivity is the reduction 
of the proper frequency. This action is strictly related to the sensitivity and hence to 
the transduction factor. Indeed, the reduction of the resonance frequency allows to 
improve the sensitivity of a certain factor (depending on the squared ratio of 
frequencies) by increasing the displacement of the sensing mass with the same input 
acceleration. At the same time, this implies an increase of the same factor of the 
detected signal over the signal induced by the thermal sensitivity. The final effect is 
a reduction of the sensitivity to thermoelastic deformations on the sensor structure by 
the same factor. 

• A more radical approach would be the change of the material used to make the 
sensor (Al7075 for ISA and HAA), aiming at looking for materials with a more robust 
thermal stability. This approach would be very interesting but would need to be deeply 
and carefully investigated because it would mean to identify the proper material not 
only in terms of thermal stability but also in terms of mechanical manufacturing, to 
review the whole design of the capacitive “sandwich” and its components (insulators, 
fasteners, etc.) and, especially, to test and to prove the improvement in the 
achievable performance.       
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At last, the fundamental sensitivity of any sensor is determined by the thermal noise 
limitation. In practice, this limit can never be reached, but many systems can approach it 
very closely.   
Because this basic limit is dependent upon energy considerations, its computation depends 
only upon very general parameters of the sensor, such as its temperature, mass, effective 
length, and time of integration. The results can then be applied to all sensors, regardless of 
their detailed design. The basic formula states that the signal-to-noise ratio is given by the 
ratio of the signal energy stored in the sensor to the thermal energy (kT) present in the 
sensor. It is reported here the relation as provided by [176]. Such a relation yields the 
minimum gradient that can be measured for a thermally limited sensor: 
 

Γ𝑚𝑖𝑛 =
(𝑆 𝑁⁄ )0.5

2 𝑑 𝜏
(
2𝑘𝑇

𝑚𝑡𝑜𝑡
)
0.5

  

 
where 𝑆 𝑁⁄  is the desired signal-to-noise ratio, 𝑑 is the distance between the sensing 
masses, 𝜏 is the time in which the measure needs to be integrated (integration time), 𝑘 is 
the Boltzmann constant, 𝑇 is the temperature of the instrument. 
 
 
Sensor cooling 
Since one of the limiting factors of the sensitivity is the temperature, the possibility of 
implementing a system to cool the sensor could be envisaged. Indeed, the use of a 
cryogenic system would allow to low the operating temperature. In these studies 
([171][172][174]) such an approach is pursued. Although in these cases the main reason for 
the use of cryogenics temperatures is the use of superconducting materials to exploit their 
characteristics (see section 3.3.2.4), in general a gain in sensitivity is achieved because 
lowering the temperature allows to reduce the Brownian noise. Indeed, the Brownian motion 
of the sensor structure causes a thermal noise whose amplitude needs to be taken into 
account and reduced.  
However, the drawback is to complicate significantly the instrument operation, increasing 
the mass of the instrument, including as well the cryogenic system and the related fluid. 
Moreover, being this cooling related to the availability of a cryogenics on-board, this affects 
deeply the mission lifetime, in addition to the overall mass budget.      
 
At last, the overall considerations and analyses previous carried out allow to summarise 
some of the instrument requirements to perform the proposed measurements inTable 4-11.  

Table 4-11 Summary of the main instrument requirements  

Variables Values 

 Venus  Mars 

orbit 
altitude 

(km) 

200-350 200-300 

Signal  

(s-2) 

10-13-10-14 
Spatial 

resolution 

l = 100 
(190 km) 

Signal (s-2) 

10-13-10-14 
Spatial 

resolution   

l = 100 
(107 km) 

10-15-10-17 
l = 250 
(76 km) 

10-18-10-22 
l = 300 
(36 km) 

Signal 
Frequency 

(Hz) 
~ 7 10−4  − 9 10−2 ~ 6 10−4  − 8 10−2 
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Minimum 
sample 

frequency 
(Hz) 

7.0 10-2 –1.9 10-1 6.0 10-2 - 1.5 10-1 

Length 
(m) 

< 2 m < 2 m 

Mass  
(kg) 

< 50 < 50 
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5. Angular Gravity Gradiometer  

In the following a preliminary model of a cross-component gradiometer is analysed and 
studied. The analysis starts from the use of IAPS technology heritage to envisage a sensor 
structure to be used as basic element of a torsion-balance gradiometer and aimed at the 
measurement of the gravity gradient cross-component. 
On the basis of previous analyses, an instrument concept, able to satisfy the identified 
requirements to accomplish the gravity gradient measures, is proposed for a gravity 
gradiometer to be used in a space mission scenario. The mission scenario is realised on the 
basis of the science needs previously identified:     
 

• On the basis of the simulation (matlab code), gravity gradient values were derived for 
Venus and Mars.  

• On the basis of IAPS-technology heritage and the review of literature studies on 
gravity gradiometers, a sensor structure has been envisaged to be used as basic 
element of an angular accelerometer aimed at the measurement of the gravity 
gradient cross-component.    

• The instrument has been designed taking into account the considerations on the 
increase of sensitivity carried out in section 4.5, in order to match the requirements. 

• The instrument is based on a torsion-balance approach to the gravity gradiometer. It 
is constituted by two couples of test masses joined through two rods each one to a 
common centre by a torsional spring with constant kt.  

• The system looks like a dumbbell or precisely a barbell, i.e. a dumbbell with a long 
bar. The axis of the torsional spring constitutes the rotation axis of the system as well. 
Masses are constrained to rotate around it.  

• Due to the intrinsic geometry, such a system is inherently sensitive to the ZY 
component of the gravity gradient, 𝛤𝑧𝑦, and to the difference 𝛤𝑧𝑧 − 𝛤𝑦𝑦.  

 

5.1 Instrument concept   

 
 

Figure 5-1: schematic view of the torsion-balance gradiometer around a planetary body; x axis is 
orthogonal to the orbital plane of the spacecraft hosting the instrument   
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Consider the system represented in Figure 5-1. The instrument is based on a torsion-
balance approach. It is constituted by two proof-masses of mass 𝑚 located at the ends of 
two rods of length 𝑙 joined to a common centre by a torsional spring with constant 𝑘𝑡. The 
system looks like a dumbbell or precisely a barbell, i.e. a dumbbell with a long bar, where 
the axis of the torsional spring constitutes the rotation axis of the system. Moreover, in this 
frame the mass of the rod is assumed negligible. Later the continuous case will be 
addressed.  
The gravity gradient of the central body acts on the masses at the ends of the joining arm 
and generates a torque on the system, inducing a rotation of the rod that is counteracted by 
the torsional force of the spring-mass system. Due to the intrinsic geometry and as proved 
later, such a system is inherently sensitive to the ZY component of the gravity gradient, Γ𝑍𝑌, 
and to the difference Γ𝑍𝑍 − Γ𝑌𝑌.    

 

 

Figure 5-2: Geometric configuration in orbit for the single rod with two masses subjected to 
the torque of the gravity gradient  

 
Define a local non-rotating orthogonal reference frame centred in the central point of the rod, 
where the spring is located and where the rotation axis goes through. Y and Z axis are 
assumed to be in the orbital plane, Z axis is aligned to the outward radial direction along the 
planet, and X axis is orthogonal outward the Z-Y plane. 
The gravity gradient at the centre of the rod is expressed in this frame by the relation: 

Γ𝑖𝑗 =
𝑑𝑟𝑖̈
𝑑𝑟𝑗

 (5-1) 

where 𝑖 and 𝑗 are the directions over which to evaluate the gradient and hence 𝑖 = 𝑦, 𝑗 = 𝑧,
𝑘 = 𝑥. Referring to the Figure 5-2, the acceleration due to the gravity gradient, 𝑑𝑟𝑖̈ =Γ𝑖𝑗 𝑑𝑟𝑗, 

can be expressed as follows: 
 

𝑑𝑟𝑦̈ ≡ 𝑑𝑦̈ = Γ𝑦𝑧𝑑𝑧 + Γ𝑦𝑦𝑑𝑦 

 
𝑑𝑟𝑧̈ ≡ 𝑑𝑧̈ = Γ𝑧𝑦𝑑𝑦 + Γ𝑧𝑧𝑑𝑧 

(5-2) 
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Taken into account the relations in Figure 5-2, it holds: 
 

𝑑𝑦 = 𝑑𝑙 cos𝜑 
𝑑𝑧 = 𝑑𝑙 sin𝜑 
𝑑𝑥 = 0 

(5-3) 

 
The torque of the force 𝑓𝑡𝑔moving the mass 𝑚 is 𝑀𝑓 = 𝑙 𝑓𝑡𝑔, where the force is orthogonal to 

the rod and 𝑙 is the half-length of the rod:  

𝑑𝑓𝑡𝑔 = 𝑚 𝑑𝑦̈𝑡𝑔 (5-4) 

Moreover, taking into account the design in Figure 5-2, it holds as well: 

𝑑𝑦̈𝑡𝑔 = 𝑑𝑧̈ cos𝜑 − 𝑑𝑦̈ sin𝜑 (5-5) 

Substituting and using the gravity gradient relation: 
 

𝑑𝑓𝑡𝑔 = 𝑚 (𝑑𝑧̈ cos𝜑 − 𝑑𝑦̈ sin𝜑) =

= 𝑚[(Γ𝑦𝑧𝑑𝑧 + Γ𝑦𝑦𝑑𝑦) cos𝜑 − (Γ𝑧𝑦𝑑𝑦 + Γ𝑧𝑧𝑑𝑧) sin𝜑] 
(5-6) 

 
and substituting 𝑑𝑦 and 𝑑𝑧: 

𝑑𝑓𝑡𝑔 = 𝑚 𝑑𝑙 (Γ𝑦𝑧 cos 𝜑
2 + Γ𝑧𝑧 cos𝜑 sin𝜑 − Γ𝑦𝑦 cos𝜑 sin𝜑 − Γ𝑧𝑦 sin 𝜑

2) (5-7) 

At last: 

𝑓𝑡𝑔 = 𝑚𝑙 [
Γ𝑧𝑧 − Γ𝑦𝑦

2
sin 2𝜑 + Γ𝑦𝑧 cos 2𝜑] (5-8) 

The same applies for the second mass, therefore at last we get for the total torque around 
the x axis: 

𝑀𝑥 = 𝑀𝐴 +𝑀𝐵 = 2𝑚𝑙2 [
Γ𝑧𝑧−Γ𝑦𝑦

2
sin 2𝜑 + Γ𝑦𝑧 cos 2𝜑] (5-9) 

A gradiometer of this type is sensitive to the off-axis component Γ𝑦𝑧 of the gravity gradient 

and to the difference between two main in-axis components, Γ𝑧𝑧 − Γ𝑦𝑦.  

The dynamics equation for the system is the damped and forced mechanical oscillator as 
follows:  

2𝑚𝑙2  (𝜃̈ +
𝛽

2𝑚𝑙2
𝜃̇ +

𝑘𝑇
2𝑚𝑙2

𝜃) = 𝑀𝑥 

 
(5-10) 

where 𝜃 is the angular displacement due to the torque,  𝐼 = 2𝑚𝑙2 is the moment of inertia of 

the body with respect to the rotation axis and 𝜔0
2 = 𝑘𝑇 2𝑚𝑙

2⁄  is the resonance angular 

frequency with 𝜔0 = 2𝜋𝜈0. Applying to the previous equation of motion for the two test 
masses system, we get: 
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2𝑚𝑙2 (𝜃̈ +
𝛽

2𝑚𝑙2
𝜃̇ +

𝑘𝑇
2𝑚𝑙2

𝜃) = 2𝑚𝑙2 [
Γ𝑧𝑧 − Γ𝑦𝑦

2
sin 2𝜑 + Γ𝑦𝑧 cos 2𝜑] 

 
(5-11) 

The transfer function of such a system (a second order system) is the following: 
 

𝐻(𝑗𝜔) =
1

2𝑚𝑙2(−𝜔2 + 𝑗𝜔
𝛽

2𝑚𝑙2
+ 𝜔02)

 (5-12) 

 
Figure 5-3 depicts the behaviour of such a system. The plot is generated considering a 
system of two masses, 1 kg each one, with a distance of 0.5 m between them and assuming 
𝐼 = 2𝑚𝑑2. 
 

 

Figure 5-3: transfer function for the single bar - two masses    

 
The transfer function is characterised by a flat region for 𝜔 ≪ 𝜔0, a peak due to the 

resonance at 𝜔 = 𝜔0 and a fast decrease for 𝜔 ≫ 𝜔0.  
An improvement of such a system can be achieved by adding a second barbell with two 
proof masses placed in in the x-y plane at angle of 90° with respect to the first one. Figure 
5-4 depicts the envisaged system.  
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Figure 5-4: improvement of the initial system by adding a second bar orthogonal to the first one   

 
In this case, a further gravity gradient torque 𝑀𝐶𝐷, equals to the first one and acting on the 
second bar, is introduced; however this torque has an opposite sign due to an opposite 
rotation: 𝑀𝐶𝐷 = −𝑀𝐴𝐵. In this configuration, the effect is to produce a differential torque on 
the overall system doubled with respect to the previous case:     

𝑀𝑥 = 𝑀𝐴𝐵 −𝑀𝐶𝐷 = 2𝑀𝐴𝐵 = 4𝑚𝑙
2 [
Γ𝑧𝑧−Γ𝑦𝑦

2
sin 2𝜑 + Γ𝑦𝑧 cos 2𝜑] (5-13) 

Consequently, the response to this torque is increased by doubling the induced rotation of 
the system. The dynamic equation and the related transfer function translates into, 
respectively: 

4𝑚𝑙2 (𝜃̈ +
𝛽

4𝑚𝑙2
𝜃̇ +

𝑘𝑇
4𝑚𝑙2

𝜃) = 2𝑚𝑙2[(Γ𝑧𝑧 − Γ𝑦𝑦) sin 2𝜑 + 2 Γ𝑦𝑧 cos 2𝜑] (5-14) 

 
and: 

𝐻(𝑗𝜔) =
1

4𝑚𝑙2(−𝜔2 + 𝑗𝜔
𝛽

4𝑚𝑙2
+ 𝜔0

2)
 (5-15) 

 
Figure 5-5 depicts the behaviour of the transfer function in magnitude and phase versus the 
frequency. The plot is generated considering a system of four masses, 1 kg each one, with 
a distance of 0.5 m between them and assuming 𝐼 = 4𝑚𝑙2.  
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Figure 5-5: improvement in the transfer function for the two orthogonal bars with a couple of 
masses per each one, subjected to the torque of the gravity gradient 

 
The transfer function is the same type of the previous one, characterised by a flat area for 
𝜔 ≪ 𝜔0, a peak due to the resonance at 𝜔 = 𝜔0 and a fast decrease for 𝜔 ≫ 𝜔0. However, 
in this case, the change in the configuration modifies the resonance frequency, which 
decreases, due to the change in the moment of inertia.  
In both cases (single and double bar) the typical operating condition is in the flat region, 
where the expression of the transfer function can be simplified to the following, assuming 
the condition 𝜔 ≪ 𝜔0: 

𝜃

𝑀𝑥
=

1

𝜔02𝐼
 (5-16) 

By using the expression previously found for the torque of the gravity gradient 𝑀𝑥 and for 
the moment of inertia 𝐼, it is possible to get the relation that establishes how the rotation 
angle 𝜃 changes as function of the sensed gravity gradient for the case with two bars (𝜃2𝑟) 
(the same happens for the one bar case but adding a factor ½ in front of the expression):  
 

𝜃2𝑟 =
(Γ𝑧𝑧 − Γ𝑦𝑦) sin 2𝜑 + 2Γ𝑦𝑧 cos 2𝜑

𝐼 𝜔02
 

 

(5-17) 
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The working principle in both cases, single and two bars, is to measure the rotation angle 𝜃 
due to the gravity gradient corresponding at different positions 𝜑 in order to derive the 
components (Γ𝑧𝑧 − Γ𝑦𝑦) and Γ𝑦𝑧. The output of the gradiometer includes two sinusoidal 

signals in quadrature: the first one is a measurement of the difference between two of the 
diagonal components (Γ𝑧𝑧 − Γ𝑦𝑦) while the second one measures the corresponding off-

diagonal component of the tensor Γ𝑦𝑧 in the coordinate frame of the sensor. 

A way to enhance the weak output signals could be to modulate the output by rotating the 
crossed bars around the x axis with a constant angular velocity 𝜔. With this approach, the 
signals to be measured would show off at a doubled frequency (2𝜔) with respect to the 

modulation frequency (𝜔). This condition allows to disentangle in frequency the gradients to 
be measured from other disturbances, that typically occur at the modulation frequency. 
The behaviour of the rotation angle as function of the gravity gradient sensed is depicted in 
Figure 5-6, while the angle 𝜑 is modulated with an angular velocity 𝜔: 𝜑 = 𝜔𝑡: 

𝜃2𝑟 =
(Γ𝑧𝑧 − Γ𝑦𝑦) sin 2𝜔𝑡 + 2Γ𝑦𝑧 cos 2𝜔𝑡

𝐼 𝜔02
 (5-18) 

The plot is produced for a case with Γ𝑧𝑧 = 2 10
−13 𝑠−2,  Γ𝑦𝑦 = 1 10

−13𝑠−2,  Γ𝑧𝑦 =

0.5 10−13𝑠−2, 𝜔 =  1 10−3 𝑟𝑎𝑑/𝑠, i.e. 𝜈 =  1.6 10−4 Hz, a moment of inertia 𝐼 =
2.5 10−1 kg 𝑚2; the system is composed of four masses, 1 kg each one, with a distance of 
0.5 m between them. 
 

 

Figure 5-6: Modulation of the rotation angle 𝜃 induced by the gravity gradient torque when 

the crossed bars are rotated by the angular velocity 𝜔     
 

In this case, the gravity gradient induces a rotation of the system of an angle 𝜃 while the 
system is rotated around x axis by the angular velocity 𝜔. The value of the angle is found at 
a doubled frequency (2𝜔) with respect to the modulation frequency, as depicted in Figure 
5-7. 
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Figure 5-7: PSD of the modulated signal of previous figure. The peak is ~ 1.6 10−15 𝑟𝑎𝑑 at 

~ 3.2 10−4𝐻𝑧, double of the modulation frequency    
 
A gravity gradient of the order of 10−13𝑠−2induces between the arms a relative rotation 

𝜃 ~ 1.6 10−15 𝑟𝑎𝑑, corresponding to a linear displacement Δ𝑥 =  𝜃 ∙ 𝑙 ~4 10−16𝑚.. 
 
The same equations above derived can be extended for the continuous case [126]. The 
torque for each element 𝑑𝑚 is: 

𝑀⃗⃗⃗ = 𝑟 𝑥 𝐹⃗  
 

or in terms of components: 
𝑀𝑖 = ∑ 𝜀𝑖𝑗𝑘𝑥𝑗𝐹𝑘𝑗𝑘   

 
where 𝜀𝑖𝑗𝑘 is the Levi-civita symbol, in which 𝜀𝑖𝑗𝑘 = 0 if two or more indices are equal, while  

𝜀𝑖𝑗𝑘 = ±1, depending on the permution Π according to (−1)Π = ±. Introducing the force due 

to the acceleration by the gravity gradient derived from 𝑑𝑥𝑘̈ = Γ𝑘𝑗 𝑑𝑥𝑗 (Einstein sum) on the 

𝑑𝑚 mass:  
𝐹𝑘 = Γ𝑘𝑗 𝑑𝑥𝑗  𝑑𝑚 

 
The torque components integrated on the overall mass will be: 
 

𝑀𝑖 = ∫𝜀𝑖𝑗𝑘𝑑𝑥𝑗  Γ𝑘𝑙 𝑑𝑥𝑙 𝑑𝑚 

 
The derivation of the continuous case is available in [126]. At last the torque is expressed 
for a continouos system with two orthogonal arms as follows: 
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𝑀𝑥 = (𝐼𝑦𝑦 − 𝐼𝑧𝑧) [
Γ𝑧𝑧−Γ𝑦𝑦

2
sin 2𝜑 + Γ𝑦𝑧 cos 2𝜑] 

 
In this case the dynamics equation of the system translates into: 
 

𝐼𝑥𝑥 (𝜃̈ +
𝛽

𝐼𝑥𝑥
𝜃̇ +

𝑘𝑇

𝐼𝑥𝑥
𝜃) = (𝐼𝑦𝑦 − 𝐼𝑧𝑧) [

Γ𝑧𝑧−Γ𝑦𝑦

2
sin 2𝜑 + Γ𝑦𝑧 cos 2𝜑]  

 

The corresponding transfer function is formulated as follows: 
 

𝐻(𝑗𝜔) =
1

𝐼𝑥𝑥(−𝜔
2 + 𝑗𝜔

𝛽
𝐼𝑥𝑥
+ 𝜔0

2)
 

(5-19) 

 
Proceeding as previous for the discrete case, the corresponding relation establishing how 
the rotation angle 𝜃 changes as function of the sensed gravity gradient, for the case with 
two bars (𝜃2𝑟𝑐) and in the flat region of the spectrum (𝜔 ≪ 𝜔0), is as follows:  
 

𝜃2𝑟𝑐 =
(𝐼𝑦𝑦 − 𝐼𝑧𝑧) [

Γ𝑧𝑧 − Γ𝑦𝑦
2 sin 2𝜑 + Γ𝑦𝑧 cos 2𝜑]

𝐼𝑥𝑥𝜔02
 

 

(5-20) 

In this case, the expression modifies to take into account of the principal moment of inertia 
of the continuous body. 
 

5.2 Instrument feasibility and characteristics    

Based on this approach, on the analysis of studies found in literature on gradiometric 
sensors and on the basis of the expertise at IAPS on accelerometric sensors, a possible 
concept of angular gradiometer compatible with the requirements previously defined has 
been identified as in Figure 5-8. 
The gradiometer is constituted by four sensing masses arranged as couples at the end of 
two arms. The mass core is concentrated at the end of the arms, carving the interior part of 
each arm so that only a fork-shaped structure joins the sensing mass to the central torsional 
spring. This structure has been modified and worked with the aim of increasing the moment 
of inertia around the rotation axis and hence to reduce the resonance frequency; as 
described in section 4.5, this is one of the approaches to foster the instrument sensitivity to 
the gravity gradient to be measured. Indeed, the resonance frequency for such a system 

type, expressed by 𝜈𝑜 = 1 2𝜋⁄ √𝑘𝑡 𝐼⁄ , shows off that a low frequency can be obtained by 

making thin and long arms and a test mass with a large moment of inertia. 
 
Figure 5-8 depicts the envisaged instrument. Arms are joined at the centre by means of a 
spring with a cruciform-shape which allows to separate the flexural from the torsional 
vibration modes (those of interest). Indeed, as established through know.how developed a 
t IAPS, such a shape allows to decouple the frequencies of torsion from those of flexion and 
traction; in this case the cruciform-shape allows to make large displacements when solicited 
with a torsional force while keeping low displacements when solicited with a flexural force.  
Figure 5-9 shows the detail of the spring, characterised by a diameter of 23 mm, a width of 
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each cross arm of 3 mm, a curvature radius at the centre of 2.5 mm and a total length of 
200 mm.   

 
 

Figure 5-8: Possible concept for the angular gradiometer envisaged for the gravity gradient 
measurement 

 
The last structure found is the result of several configurations that have been modified and 
worked, taking into account the need of reducing the resonance frequency as one of the 
mean to foster the sensitivity to the gravity gradient to be measured (section 4.5).  
The sensor is assumed to be realised in Aluminium Al7075, the same material used for ISA 
and HAA accelerometers. This material, also known as Ergal, constituted by an alloy of 
Aluminium (Al), Zinc especially (Zn, 5-6 %, which affects the overall hardness), Magnesium 
(Mg, 2-3 %) and Copper (Cu, 1-2 %), is typically used in aerospace and aeronautical 
applications to realise structures needed to support important static and dynamical loads 
and maintaining at the same time lightness characteristics. The choice of this material 
derives from the heritage of sensors developed at IAPS, being a material with good thermal 
conductivity characteristics (in order to reduce thermal gradients inside the material), good 
durability, good hardness and a-magnetic properties, making it not sensitive to magnetic 
field action, and at last easiness of being manufactured and worked by milling machine. 
The overall mass of the naked sensor is around 19 kg (18.9 kg), with each single proof mass 
of about 4 kg. The separation distance among ends of opposite masses is about 86 cm. The 
surface of the sensing mass is 2.9 10-2 m2 (2.9 104 mm2). The moment of inertia of each 
sensing mass with respect to the rotation axis (y) is 6.2 10-2 kg m2. With respect to the two 
other axes, 1.9 10-2 kg m2 (x) and 4.5 10-2 kg m2 (z). 
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Figure 5-9: Detail of the cross-shaped spring used  to realise the angular gradiometer described in 

the text  

A modal analysis, carried out by means of the Solidworks CAD (Computer Aided Design), a 
software for the 3D parametric drawing and design by Dassault Systèmes [186], allowed to 
identify the oscillation modes of the overall system. In particular, the frequency of oscillation 
of the mode of interest, the fork mode (second and third mode, 11.21 and 11.28 Hz), is the 
mode of interest being solicited by a gravity gradient torque; it corresponds to a resonance 
frequency of about 11.2 Hz. The main mode is 10.2 Hz, while the following modes have 
resonances at 73 Hz and higher.  The quality factor Q of the system, i.e. a quantity related 
to the Brownian noise and to the dissipation of the oscillations (see later on the noise on the 
detection chain), is about 1.5*103. The result of the analysis is shown in Figure 5-10. 
 

 
Figure 5-10: Modal frequency (2th) for the envisaged configuration  

 
 
Due to the relatively closeness of fork and main mode frequency, an alternative 
configuration, with similar mechanical characteristics, has been envisaged to foster the 
decoupling . In this approach, the two arms are arranged on two separated springs, rather 
than a single one. Figure 5-11 shows off the different configuration identified. 
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Figure 5-11: Alternative configuration for the angular gradiometer   

 
A further modal analysis has been carried out with Solidworks for this configuration as well. 
In this case the frequency of oscillation of the fork mode (second mode) is around 17 Hz, 
while the main mode is at around 12 Hz (12.4 Hz), well far from the 36 Hz and 91 Hz of the 
following resonances. The quality factor Q of the system is about 700. The result of the 
analysis is shown in Figure 5-12. 
 

 
Figure 5-12: Alternative configuration for the angular gradiometer   

 
In this configuration the overall mass of the sensor is around 21 kg, with each single proof 
mass of about 4.5 kg. The separation distance among ends of opposite masses is about 68 
cm. The surface of each single mass is about 3.36*10-2 m2. The moment of inertia of each 
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sensing mass with respect to the rotation axis (y) is 8.6*10-1 kg m2. With respect to the two 
other axes, 7.83*10-1 kg m2 (z) and 8.51*10-1 kg m2. 
 

5.3 Signal detection and noise   

For a continous system as previously defined, the equations relating the torque to the 
corresponding rotation angle allows to obtain the Figure 5-13 and Figure 5-14, in case of 
the first configuration identified; values relatively higher are achieved with the second 
configuration. These values are obtained assuming reference values of the gravity gradient 
(as derived from previous chapters, section 4.3/Table 4-8, section 3.3.3/Table 3-3 and 
figures at end of section 4.2.2 ), Γ𝑦𝑦 = 1 10

−13𝑠−2, Γ𝑧𝑧 = 2 10
−13𝑠−2, Γ𝑧𝑦 = 0.5 10

−13𝑠−2 (i.e. 

10−4 𝐸, 2 10−4𝐸, 0.5 10−4𝐸). 
   

 

Figure 5-13: Modulation of the relative angle between the two arms of the gradiometer 
when subjected to a gravity gradient (10-13 s-2), by rotating the overall system 

 
Such an angle, result of the relative rotation between the two arms of the gradiometer when 
undergoes to a gravity gradient (10-13 s-2), needs to be detected by a proper electronic read-
out and properly amplified. This can be faced by using a capacitive system, the same 
approach implemented in ISA and HAA accelerometer. Moreover, this approach has been 
also applied for single axis gradiometers previously developed at IAPS [157].  
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Figure 5-14: PSD of the previous modulated signal    
 
The corresponding values of the torque modulated and its PSD values are shown in Figure 
5-15 and Figure 5-16. 
 

 

Figure 5-15: Modulation of the torque between the two arms of the gradiometer when 
subjected to a gravity gradient (10-13 s-2), by rotating the overall system 
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Figure 5-16: PSD of the previous modulated signal    

 
Although the detection system is not part of the analysis to be carried out in this work, it 
needs to do some assumptions to prove the capability of detection.    
The gravity gradient forces the torsional oscillator to move, inducing a relative movement 
between the two arms. Such a displacement can be detected by means of a capacitive 
bridge transducer, a possible scheme of which is shown in Figure 5-17 [155][157].   
 

 

Figure 5-17: Scheme of the possible signal detection system employed to detect the 
sensing masses displacement     

 
The bridge, constituted by two detection capacitors (pick-up/sensing mass) and two external 
fixed capacitors, Ca, Cb, is driven by a bias voltage Vp with a frequency fp, trough a 
transformer. A displacement of the proof mass produces an unbalancing of the bridge and 
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an output signal at  frequency 𝑓𝑠 ≪ 𝑓𝑝, detected as a modulation of the bias voltage. A high 

transducer factor α, referring to the displacement of the sensing mass to the voltage at the 
bridge output, is obtained by means of high values of the bias voltage Vp. The bridge 
attenuation prevents this high voltage from being transferred to the input of the amplifier. 
The output signal of the capacitive bridge is sent to a low noise amplifier, working at 10 kHz, 
where its noise is low. The remaining two capacitors, C3, C4, are used to control the system: 
a constant voltage applied across them induces a torque able to change the equilibrium 
position of the sensing mass and hence with a change of the bridge balance condition. A 
suitable voltage brings the bridge to equilibrium. High bridge attenuation is essential to avoid 
that the drive voltage appears at the amplifier and also reduces the noise introduced by the 
drive voltage generator. 
After the amplifier, the signal is demodulated by using a reference frequency derived from 
the same generator, converted into a digital signal and acquired by the data acquisition 
system. 
Taking into account results on the angle to be detected (10−19𝑟𝑎𝑑, Figure 5-13 and Figure 
5-14) and dimensioning the detection system to assume reasonable and realistic values, the 
angle change can be transformed in a voltage signal of few nV (1-5 nV) at the output of the 
bridge, signal that can be amplified with a proper low noise amplifier and taking into account 
a general low noise of the acquisition chain. 
Referring to the detection systems developed at IAPS in the past [157][155], the voltage at 
the output of the capacitive bridge can be proven it is given by the formula: 
 

𝑉𝑂𝑈𝑇 ≡ 𝑉𝐴𝐵 = 𝑉𝐶𝐷 (
𝐶1(𝜃)

𝐶1(𝜃) + 𝐶2(𝜃)
−

𝐶𝑎
𝐶𝑎 + 𝐶𝑏

) 

 
Taking into account that: 

𝐶1(𝜃) ≈ 𝐶0 +
𝐶0
𝑑1
 𝑏 𝜃 

𝐶2(𝜃) ≈ 𝐶0 +
𝐶0
𝑑2
 𝑏 𝜃 

 
where 𝐶0 is the nominal gap between faces and 𝑏 represents the distance between the 
rotation axis and the middle point of the detector capacitors. Assuming that the gap between 
the faces of the capacitors is 𝑑1 ≈  𝑑2 =  𝑑,  we obtain as signal:  
 

𝑉𝑠𝑖𝑔𝑛𝑎𝑙 = 𝛼 𝑏 𝜃𝑠𝑖𝑔𝑛𝑎𝑙  
 

where the transducer factor 𝛼 between the output voltage and the linear displacement is: 
 

𝛼 =
𝑛 𝑄𝑒𝑉𝑝

2𝑑
 𝑏 

 

where  𝑛 is the transformer factor, 𝑄𝑒 is the quality factor of the electric circuit (equals to the 

inductance of the transformer multiplied the impedance of the capacitive bridge), 𝑑 is the 
gap between proof mass and plates and 𝑉𝑝 is the bias voltage of the bridge. Assuming 𝑛 =

1, 𝑄𝑒 = 30, 𝑉𝑝 = 250 𝑉, 𝑑 = 15 𝜇𝑚, a signal output of few nV is generated as output, signal 

that can be amplified for further processing.  
Figure 5-18 depicts a possible layout for the first configuration with detection plates mounted 
(pick-up plates).  
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Figure 5-18: Layout of the possible signal detection system employed to detect the sensing 
masses displacement, where the sensing masses are coupled to counterposed plates 

(details in the text)     

 
At last, such an instrument concept, with reasonable assumptions on the detection system, 
and with the two possible configurations, is theoretically able to detect the gravity gradient 
as per the requirements previous defined.   

 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-19: Summary of the main characteristics of the two configurations for the angular 
gradiometer 
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Figure 5-19 reports a summary of the main characteristics for the two configurations and the 
gravity gradient values used for the evaluation of performance. Such values were derived 
for a mission around Venus at 300 km till to 𝑙 =  100 and for a mission around Mars at 
250/300 km till to 𝑙 =  100 (Table 4-8 in section 4.3).  
 
An analysis of the noise expected along the detection chain can be carried out. Different 
contributions can be identified referring to the study in [157][155]. 
One of the main components is the Brownian noise, i.e. the Brownian motion associated to 
the mechanical oscillator which introduces a thermal noise (section 4.5), that is able to 
produce a torque per unit band equals to: 
 

𝑀𝐵𝑊𝑁 = √
2𝑘𝐵 𝑇𝜔0𝐼

𝑄
 

 
where kB is the Boltzmann constant, T the thermodynamical temperature of the oscillator, 
𝜔0 the angular frequency, Q the quality factor and I the inertial moment of the test mass. 
From this expression it is clear that in order to obtain a low level of this noise it is necessary 
to have a mechanical oscillator with a high quality factor. Other possible approaches are the 
reduction of the temperature of the oscillator and/or the resonance frequency of it. 
A second source of noise is the noise generated by the preamplifier (LNA, Low Noise 
Amplifer in Figure 5-17). This is characterised by the voltage and current noise according to 
the following expressions: 

𝑉𝑛 = √(2𝑘𝐵 𝑇𝑛 𝑍𝑛) 
 

𝑖𝑛 = √2𝑘𝐵𝑇𝑛/𝑍𝑛 

 
with 𝑇𝑛 equivalent noise temperature of the amplifier and 𝑍𝑛 noise impedance: 
 

𝑇𝑛 =
𝑉𝑛 𝑖𝑛
2𝑘𝐵

 

 

𝑍𝑛 =
𝑉𝑛 

𝑖𝑛
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These generators introduce in the chain a direct voltage to the input of the ideal preamplifier, 
and a charge fluctuation across the detections capacitors with consequent torque acting on 
the torsional oscillator. 
Further noise is introduced by the losses associated with the four bridge capacitors. They  
can be expressed by a series resistances Rs and its associated noise voltage generator Vrs 

[177]. From the point of view of the mechanical oscillator, Vrs produces an output voltage 
equals to that of an equivalent torque expressed by: 
 

𝑀𝑅𝐷 = √
4 𝑘𝐵  𝑇𝜔0𝐼

𝑄𝐷𝐸
 

 
with the factor QDE, expressed by: 
 

1

𝑄𝐷𝐸
= 4

𝜔0
Ω𝑝

tan 𝛿

𝛽
 

 
where 

tan 𝛿 ≅ 𝑅𝑠Ω𝑝𝐶 

 
If the amplifier has a high input impedance, on the loss resistance associated with the 
detection capacitors, there is no dissipation of the energy coming from the mechanical 
oscillator, i.e. the mechanical Q is not directly decreased by the transducer dissipations. 
The total quality factor of the system, Qtotal, which takes into account the dissipation in the 
oscillator and the thermal noise associated with the transducer losses, would be expressed 
by [157]: 

1

𝑄
=
1

𝑄
+
1

𝑄𝑒
 

 
At last, the total torque noise per unit band can be expressed by the following formula [157]: 
 

𝑀𝑡 = √
4𝑘𝐵𝜔0
𝑚𝑟

[
𝑇

𝑄𝑡
+ 𝑇𝑛

2𝑍𝑛𝐶𝜔0
𝛽

]
𝐼2

𝑏2
 

 
Table 5-1 Summary of values used in the detection chain  

 
Quantity Symbol Value Unit 

Boltzmann constant 𝑘𝐵 1.38064852*10-23 J/K 

Total mass 𝑚𝑟 19 kg 

System  temperature 𝑇 293 K 

Angular pulsation 𝜔0 ≈120 rad/s 

Quality factor 𝑄𝑡 1500  

Noise temperature 
amplifier 

𝑇𝑛 0.2 K 

Input impedance 
amplifier 

𝑍𝑛 10k Ohm 

Plate capacitance  𝐶 ≈17 nF 

Dissipation coefficient 𝛽 0.01 N/m/s 
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Moment of inertia 𝐼 1.25 * 10-1 kg m2 

Distance CM-rotation 
centre 

𝑏 0.4 m 

 
By using values previously introduced and by doing some reasonable assumptions (see 
Table 5-1), the total torque noise for unit of band in the previous formula reaches the value: 
 

𝑀𝑡 ≈ 1.2 10
−21  𝑁 𝑚 √𝐻𝑧⁄  

 
and a total quality factor of: 

𝑄𝑡 ≈ 1500 
 
The total torque noise is lower than the value expected as shown in Figure 5-15 and Figure 

5-16 (< 3.5 10−15 𝑁 𝑚 √𝐻𝑧⁄ ). 
As stressed in section 4.5, an important element to be considered is the thermal stability. 
Indeed, any mechanical structure is sensitive to the thermal oscillations that induce changes 
in the distances and generate spurious signals. The way to solve this issue is double.  
At first for the gradiometer manufacturing it needs to choose a mechanical material stable 
as much as possible to the temperature variations. However, in this case the material needs 
to have also other characterics useful at its feasibility, such as to be worked by milling 
machine, to have good thermal conductivity properties, good resistance and durability, and 
amagnetic properties. It is not easy to find a material covering all those characteristics. Being 
an element of wide discussion and analysis, this topic is not faced in this thesis but it will be 
dealt with through the future activities at IAPS group. Moroever, the change in the material 
would require a review of the overall assembly to evaluate the mechanical and thermal 
performance, theoretically and, especially, experimentally.  
The second way to approach the thermal variations is to increase the thermal stability. This 
means that the signal changes induced by the temperature variations during the measure 
have to be lower than the instrument sensitivity. This is achieved by realising an instrument 
as much as possible stable with the temperature and able to work in thermally controlled 
environment.       
Referring to the considerations reported at the end of section 4.5, the minimum gravity 
gradient measurable can be computed, by using the relation here reported again for 
convenience: 

Γ𝑚𝑖𝑛 =
(𝑆 𝑁⁄ )0.5

2 𝑑 𝜏
(
2𝑘𝐵𝑇

𝑚𝑡𝑜𝑡
)
0.5

  

 
where 𝑆 𝑁⁄  is the desired signal-to-noise ratio, 𝑑 is the distance between the sensing 

masses, 𝜏 is the time in which the measure needs to be integrated (integration time), 𝑘𝐵 is 
the Boltzmann constant, 𝑇 is the temperature of the instrument. Assuming the values  𝑆/𝑁 =
 5, 𝜏 = 250 𝑠, 𝑚𝑡𝑜𝑡 = 19 𝑘𝑔, 𝑇 = 293 𝐾, 𝑑 = 0.43 𝑚 , we get as measurable minimum gravity 

gradient the value Γ𝑚𝑖𝑛 = ~2 10
−13𝑠−2 = ~10−4 𝐸, i.e. a value corresponding at the value 

to be measured. For longer times of integration, longer than 250 s, the S/N can be increased 
and /or the minimum value achievable can be furtherly reduced.   
 
Table 5-2 reports a comparison between the instrument requirements (section 4.5) and the 
expected performance of the proposed instrument, highlighting their fulfilment.    
 

Table 5-2 Comparison between instrument requirements and expected performance of the 
proposed instrument concept  
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Variables Values 

 Requirement  Performance Notes 

orbit altitude 
(km) 

200-350 
(Venus) 

300 assumed circular orbit 

200-300 
(Mars) 

~250/300 assumed circular orbit 

Sensitivity (s-2) 10-13-10-14 ~10-13 - 

Lmax 100 100 maximum degree 

Frequency (Hz) 10−4  −  10−1 12 𝐻𝑧 𝑜𝑟 17 𝐻𝑧 
(Resonance 
frequency) 

- 

Mass (kg) < 50 20  referred to the 
mechanical part 

Length (m)  < 2 < 1 - 

 
The solutions above depicted for a single axis gradiometer are envisaged to be improved 
and furtherly detailed in future activities carried out at IAPS after the present work. Indeed, 
further possibilities to increase the performance theoretically achievable with the above 
configurations can be faced in the future by addressing some items. 
A first element is the possibility to further reduce the resonance frequency with respect to 
the values of two configurations proposed (i.e. 11 and 17 Hz), towards values closer to 1 Hz 
(or lower), although it is not an easy task to accomplish for the mechanical design.  Indeed, 
a driver of the gradiometer performance (and hence of the acceleormeter components) is 
based onthe lowering of the resonance frequency. As shown in section 4.5, a reduction of 
the frequency reflects in an increase of the sensitivity (signal-to-noise ratio), and such an 
increase depends on the amount of reduction introduced. For instance, an increase of 
sensitivity (and transduction factor) of a 120 factor could be achieved by reducing from 11 
Hz to 1 Hz the resonance frequency.    
Moreover, this action (frequency reduction) affects positively as well the thermal behaviour 
of the sensor, allowing a reduction of all effects due to thermoelastic denformations of the 
sensor structure. Indeed, a frequency reduction implies an increased displacement of the 
sensing mass when the same input acceleration is provided, allowing to have a signal to 
peak more with respect to spurious background signal induced by the thermal sensitivity.     
As highlighted in section 4.5, a particular element to be investigated is the thermal sensitivity. 
Preliminary experimental activity at IAPS on increasing performance of accelerometers has 
shown that using materials with CTE closer possible to that of the sensor material, both for 
insulators and fasteners, allows to reduce the thermal sensitivity of the capacitance among 
the electrodes and the sensing mass. Moreover, the use of thinner isolators allows a simpler 
electrodes geometry and hence better tolerances, resulting in a better mechanical coupling 
of the elements. This turns out in reduced thermoelastic stress, as well. 
At last, investigation on a linear gradiometer could be also faced as alternative configuration 
with respect to the proposed angular gradiometer or as complementary instrument to allow 
the measure of in-line and off-line components at the same time.   
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6. Conclusions  

This thesis is framed in the context of the measurement of the gravitational field of planetary 
bodies. In the last twenty years such a topic has become central to study interior and surface 
of planets and the related results have been widespreadly used in understanding the Solar 
System formation and evolution. Indeed, many planetary processes at large scale are ruled 
by the body internal structure, where surface and tectonic features are mainly the result of 
heat exchanges from the interior to the surface.           
There are different approaches through which the study of the surface and the interior of a 
planet can be tackled: seismology, magnetic field studies, investigation of planetary rotation, 
gravity analysis. The gravity field measurement is one of the observational methods to 
investigate those processes and to place constraints on the structure of the planetary 
interiors, their formation and geologic evolution.  
Within this framework, the thesis was centred on evaluating the gravitational gradiometry as 
a means to measure the gravitational field of planetary bodies in the Solar System. Satellite 
gravitational gradiometry, based on measuring the second derivatives of the gravitational 
potential V(|𝑥⃗|) along the 3-dimensions, i.e. the measure of the gravitational acceleration 
gradient, is a new window on space gravity missions recently opened through the GOCE 
mission around the Earth (2009-2013). Capitalise on the differentiation process of gravity 
accelerations allows to highlight small-scale surface and sub-surface features, making such 
a technique inherently sensitive to the medium and large degrees of the field structures (i.e. 
to high resolutions). In this context, the gravitational gradiometry puts itself as a 
complementary technique with respect to the traditional radio-tracking in the measurement 
of the gravitational field. 
This thesis presented an assessment of the most up-to-date gravity fields of planetary 
bodies, highlighting strong issues and shortages; at the same time, needed improvements 
were considered. A diversified scenario on the current knowledge was derived. As multiple 
fleet of spacecrafts have visited some planetary bodies for a deep exploration, such as Mars, 
Venus and obviously the Earth and the Moon, very few satellites or none have reached other 
bodies. In the latter case, just few satellites entered the orbit’s body, whereas others carried 
out single or multiple fly-bys. Moreover, excluding the Earth and the Moon, the spatial 
resolution is limited to the major structures and features, achieving hundreds of kilometers, 
also for the most explored planets, Mars and Venus. The result is that the gravity field 
knowledge is good for some bodies, and very poor or lacking for others.  
The link between the field knowledge and the measurement of the planetary interiors was 
faced and delved into, showing the relationship with moment of inertia and interior models 
used to deepen their formation and evolution. Open science themes and questions were 
identified and science needs were derived, establishing a list of interesting bodies (from a 
scientific point of view) to be addressed with the gravitational gradiometry technique.  
Primary interests are demonstrated for Venus, which was explored last from Venus Express 
(2006-2014), and in particular to the different thermal, geological and atmospheric evolution, 
with respect to th Earth. At the same time, Mars keeps alive the interest in it, being the planet 
most targeted in terms of dedicated missions till now and for the future as well. The first 
seismometer out of the Earth and Moon (Apollo missions) is currently operating on Mars 
with Mars Insight. However, several questions related to the interior structure are still open. 
Comparison of the planetary bodies gravity field state of the art with the scientific needs 
allows to infer that the most interesting objectives are represented by Venus and Mars, in 
addition to specific targets among the Galilean and Saturnian moons, such as Ganymede, 
Europa, Titan.   



 
 

168 
 

Following the science needs, measurement techniques of the gravitational field were 
reviewed, identifying advantages and drawbacks. Gradiometric technique in its different 
variations was investigated and analysed, pointing out its potential benefits. In this context, 
spaceborne, airborne and groundborne main gradiometric instruments have been identified 
and analysed to identify the current status and performance. At last the scientific needs were  
compared to the instruments state of the art. Results showed that just one space 
gradiometer has been developed and flight-proved till now within the GOCE mission. Its 
outstanding performance (~10−2𝐸) were achieved because of the synergic coupling of high-
performance accelerometers, used as basic elements of the gradiometer, with the state-of-
the-art of spacecraft subsystems built around it: all the system works as one whole gravity 
instrument.        
All the other systems discussed have been developed as prototypes, at the test level or are 
simply under study (TRL 2-5). They employ different sensing technologies (mechanical 
superconducting, magnetically levitated, MEMS-type) to get the gravity gradient, but the 
principle of measurement is led back to the two basic approaches: differential accelerometry 
and torsion balance. However, the declared performance is often potential and have been 
tested in a limited approach, verifying just some elements. The most complete system on-
ground developed is represented by the Paik’s gradiometer and colleagues, both in the 
superconducting mechanical and levitated version.           
Following these results, some scenarios of a spacecraft orbiting a planetary body among 
the ones identified, placed on a circular and polar orbit have been envisaged. For each 
scenario expected signal and frequency band to be measured by a gradiometric mission 
were derived. Moreover, a more precise evaluation of the gravity gradients was investigated, 
in order to have a simulation tool able to evaluate correctly the gravity gradient in terms of 
all the independent components (5, plus one redundant). The tool was thought to be used 
for any planetary body and for any orbit around it. Currently, the focus was limited to circular 
orbits because this type of orbits is typically used in gravity missions. As future work it could 
be possible to extend the formulation to elliptical orbits as well.   
Simulations have been developed in matlab code to allow an estimate of the time series of 
expected gradiometric signals for any body and any (circular) orbit. Simulations were carried 
out to compute the time series of gravity gradients along a specified orbit, basically quasi-
polar and circular, followed by a hypothetical spacecraft around Venus and Mars.  
Following this analysis, needs for the design of a gravity mission were investigated and 
discussed, identifying advantages and drawbacks. Moreover, requirements to be matched 
by a typical gradiometric instrument/mission in terms of sensitivity and spectral band were 
set for identified scientific targets (chapter 4). In this frame, approaches to increase the 
sensitivity of a gradiometric instrument were introduced and analysed.   
At last, an instrument concept able to satisfy the measure requirements for the target bodies 
was introduced and analysed. A single axis torsion-balance gradiometer based on IAPS 
technology has been proposed and analysed and its performance have been compared to 
the expected gradiometric signal for a spacecraft orbiting Mars or Venus, evaluated on the 
basis of the developed matlab code. Analysis and performance of the instrument in two 
different configurations were investigated and discussed. The analysed instrument concept 
proved to fulfil the requirements identified in chapter 4, as detailed in chapter 5. This analysis 
of an instrument concept to be used in planetary missions is considered as a starting point 
to be further developed and prosecuted both theoretically (design and materials 
improvement, additional simulations) and experimentally (dedicated tests on mechanical 
and thermal improvements of the design) within the frame of the research group at IAPS.       
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APPENDIX 

 
Gravity gradient computation 

 
A more precise evaluation of the gravity gradients was investigated, in order to have a 
simulation tool able to evaluate correctly the gravity gradient in terms of all the independent 
components (5), in addition to the third in-axis component, as explained in section  4.2.1 
and 4.2.2.  
The tool was thought to be used for any planetary body and for any orbit. Hereafter, the 
focus is limited to circular orbits (𝒆=𝟎). Future work foresees to extend the formulation to 
elliptical orbits as well.   
The software is made of the following routines: 
 

• Routines to compute the inclination functions 𝐹𝑙𝑚𝑝(𝑖) and the cross-track inclination 

functions (introduced by Koop [125]) till degree and order 𝑙, 𝑚 =  55 and to produce 
an output in tabular format (2 routines,  “f_inc_norm” and “f_inc_cross_norm”, called 
by the main routine “computa_f_inc”); 

• Routine derived from Gooding [124] to compute the inclination functions 𝐹𝑙𝑚𝑝(𝑖) till 

very high degrees (𝑙 ~ 1000) and to produce an output in tabular format (not reported 
hereinafter); 

• General routine for the computation of the six gravity gradients based on the Kaula 
expansion in terms of orbital elements; the computation is carried out along a defined 
orbit and with inclination functions loaded by the computation of previous routines. 
 

The general routine receives as input the spherical harmonic coefficients for a planetary 
body till a 𝑙𝑚𝑎𝑥 (𝐶𝑙𝑚, 𝑆𝑙𝑚), the main body characteristics (𝐺,𝑀, 𝑅) and the orbit characteristics 
(a,  e,  i,  Ω,ω,  M). The output provides the computation of the inclination functions 𝐹𝑙𝑚𝑝(𝑖)  

and of the six gravity gradients 𝛤𝑧𝑧, 𝛤𝑥𝑥, 𝛤𝑥𝑧, 𝛤𝑦𝑧, 𝛤𝑥𝑦 ,  𝛤𝑦𝑦 for the chosen body and orbit. The 

inclination functions are early evaluated and then recalled from the main program. These 
functions have been initially computed by a dedicated routine till degree and order 𝑙, 𝑚 =
 55. For very high degrees 𝑙, a more computational efficient routine from Gooding [124] was 
used.   

 
1. “computa_f_inc” 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% COMPUTATION KAULA INCLINATION FUNCTIONS %%%%% 
%%%%% AND CREATION OF RELATED LOOKUP TABLE %%%%%%%% 

 
clear 
clc 

  
format long 

  
% 
tic 
in_d = 89;             % inclination (degrees) 
lmax = 55;             % degree max  

  
jjj = 1;  %%% index for l variation 
l = (1:lmax); 
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%%% write inclination function data on a file  
fid = fopen('f_inc_norm_i89_l55.txt','w'); 
fid2 = fopen('f_inc_cross_norm_i89_l55.txt','w'); 
for jjj = 1 : length(l) 

     
    l(jjj); 

         
    % corresponding values of m, i.e. l + 1 
    m = (0:l(jjj)); 

     
    %%% index for m variation 
    for j = 1 : length(m) 

            

        %%%% p = 0:l, corresponding to k = -l : 2 : l     
        jj = 1;    %%% index for k variation, i.e. p 
        p = (0:l(jjj)); 
         

        for  jj = 1 : length(p) 

             
             p(jj); 
             k = l(jjj) - 2*p(jj); 

         
        %%% normalisation factor for inclination functions 
        [Fn(jjj, j, jj)] = f_inc_norm(l(jjj), m(j), p(jj), in_d); 

         
        fprintf(fid,'%3i %3i %3i %4.10e\n', l(jjj), m(j), p(jj), Fn(jjj, j, 

jj)); 

           
        end 

               
        %%%% p = 0:l-1, i.e. l - 2p -1, corresponding to k = -(l - 1) : 2 : 
        %%%% l - 1 

         
        kkk = 1;    %%% index for k1 variation 
        p1 = (0:l(jjj)-1); 

         
        for  kkk = 1 : length(p1) 

              
             l; 
             m; 
             p1(kkk); 
             k1 = l(jjj) - 2*p1(kkk) - 1; 

              

             %%% compute the cross-track inclination function (from Koop thesis, 

pag. 220) 
             [Fcn(jjj, j, kkk)] = f_inc_cross_norm(l(jjj), m(j), p1(kkk), in_d); 

              
             fprintf(fid2,'%3d %3d %3d %16.10f\n', l(jjj), m(j), p1(kkk), 

Fcn(jjj, j, kkk)); 

                    
        end 

         
    end 

     
end 

  
fclose(fid); 



 
 

181 
 

fclose(fid2); 
toc 

  
data1 = 

load('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_norm_i89_l55.t

xt'); 
ll1 = data1(1:end,1); 
mm1 = data1(1:end,2); 
pp1 = data1(1:end,3); 
Fn = data1(1:end,4); 

  
Finc = [ll1 mm1 pp1 Fn]; 

  
data2 = 

load('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_cross_norm_i89

_l55.txt'); 
ll2 = data2(1:end,1); 
mm2 = data2(1:end,2); 
pp2 = data2(1:end,3); 
Fcn = data2(1:end,4); 

  
Finc_c = [ll2 mm2 pp2 Fcn]; 

 

 
 

2. “f_inc_norm” 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%% NORMALISED KAULA INCLINATION FUNCTIONS %%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Atot = output of normalised inclination function 
%%%% ll = harmonics degree 
%%%% mm = harmonics order  
%%%% kk = l - 2*pp, variable change  
%%%% in_dd = orbit inclination in degrees 

  
function [Atot]  = f_inc_norm(ll, mm, pp, in_dd) 

  
    %%%%% INPUT PARAMETERS %%%%%%%% 
    in = deg2rad(in_dd);      % conversion to radians 
%     pp = (ll - kk)/2;        % link between classical p variable and the new k 

variable  
    kk = ll - 2 * pp; 
    q = floor((ll - mm)/2);  % compute the integer of 
    t = 0 : min(pp, q);      % t values  
    s = 0 : mm;              % s values 

     
    %%%% normalisation factor for inclination functions 
    if mm == 0 
           deltam = 1; 
        else 
           deltam = 0; 
    end 

     
    Nlm = sqrt((2 - deltam)*((2*ll + 1)*factorial(ll - mm))/factorial(ll + mm)); 

          
    %%% index for t variation 
    for w = 1 : length(t) 
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        gi = 2*ll - 2*t(w);  
        AA(w) = (factorial(gi)/(factorial(t(w))*factorial(gi/2)*factorial(ll - 

mm - 2*t(w))*2^(gi)))*sin(in)^(ll - mm - 2*t(w)); 

                    
        %%% index for s variation              
        for y = 1 : length(s) 

             
            c = 0 : ll - mm - 2*t(w) + s(y);  % c values 

             
            %%% index for c variation 
            for i = 1 : length(c) 

                                       
                %%%% verify conditions for the sum over c                      
                if (mm - s(y)) - (pp - t(w) - c(i)) < 0 ||  pp - t(w) - c(i) < 0 
                    B(i) = 0; 
                else 
                    B(i) = nchoosek(mm - s(y), pp - t(w) - c(i)) * (-1)^(c(i) - 

q);  
                end 

            
                if ll - mm - 2*t(w) + s(y) - c(i) < 0 || c(i) < 0 
                    C(i) = 0; 
                else 
                    C(i) = nchoosek(ll - mm - 2*t(w) + s(y), c(i));  
                end         

                
               D(i) = nchoosek(mm, s(y))*cos(in)^s(y) * C(i) * B(i);             

                             
            end 

             
            % sum over c (i.e. C and B), at s fixed 
            Asd(y) = AA(w)*sum(D); 

             
            % reinitialise A and D 
            A = []; 
            D = []; 
        end 

        
        % sum over s 
        Ast(w) = sum(Asd); 

  
    end 

     

    Atot = Nlm*sum(Ast); 

     
end 

 

 
 

3. “f_inc_cross_norm” 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%% CROSS-TRACK INCLINATION FUNCTIONS %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Formulas from pag. 220 of Koop thesis "global gravity field modelling using 

satellite gravity gradiometry" 
%%%% Atot = output of inclination function 
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%%%% ll = harmonics degree 
%%%% mm = harmonics order  
%%%% kk = l - 2*pp, variable change  
%%%% in_dd = orbit inclination in degrees 

  
function [Astot]  = f_inc_cross(ll, mm, pp, in_dd) 

  
    %%%%% INPUT PARAMETERS %%%%%%%% 
    in = deg2rad(in_dd);      % conversion to radians 
%     pp = (ll - kk)/2;        % link between classical p variable and the new k 

variable          
    kk = ll - 2*pp - 1; 
    q = floor((ll - mm)/2);  % compute the integer of 
    t = 0 : min(q, pp);      % t values 
    s = 0 : mm;              % s values 

     
     %%%% normalisation factor for inclination fucntions 
    if mm == 0 
           deltam = 1; 
        else 
           deltam = 0; 
    end 

         
    Nlm = sqrt((2 - deltam)*((2*ll + 1)*factorial(ll - mm))/factorial(ll + mm)); 

     
    %%% t variation 
    for w = 1 : length(t) 

         
        gi = 2*ll - 2*t(w);  
        AA(w) = (((-

1)^(t(w))*factorial(gi))/(2^ll*factorial(t(w))*factorial(gi/2)*factorial(ll - mm 

- 2*t(w)))); 

         
        %%% s variation 
        for y = 1 : length(s) 

             
            f(y) = sin(in)^(ll - mm - 2*t(w) - 1)*cos(in)^(s(y) - 1)*((ll - mm - 

2*t(w))*cos(in)^2 - s(y)*sin(in)^2); 

             
            %%% c variation 
            cmin = max(0, pp - t(w)); 
            cmax = min(ll - mm  - 2*t(w)+ s(y) - 1, mm - s(y)); 
            c = cmin : cmax; 

             
            if cmin > cmax 
                c = 0; 
            end 

                        
            %%%% 
            for i = 1 : length(c) 

                 
                %%% verify condition for the sum over c                   
                if (mm - s(y)) - (pp - t(w) - c(i)) < 0 ||  pp - t(w) - c(i) < 0 
                    B(i) = 0; 
                else 
                    B(i) = nchoosek(mm - s(y), pp - t(w) - c(i)); 
                end 

            
                if (ll - mm - 2*t(w) + s(y) - 1 - c(i)) < 0 || c(i) < 0 
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                    C(i) = 0; 
                else 
                    C(i) = nchoosek(ll - mm - 2*t(w) + s(y) - 1, c(i));  
                end         

                
               %%% intermediate computations 
               A(i) = AA(w)* nchoosek(mm, s(y))* 2^(2*t(w) - ll + 1)*(-1)^(q + 

t(w)) * f(y) * C(i) * B(i) * (-1)^(c(i)); 

                       
               D(i) = nchoosek(mm, s(y))* 2^(2*t(w) - ll + 1)*(-1)^(q + t(w)) * 

f(y) * C(i) * B(i);              

                             
            end 

             
            As(y) = sum(A);         % sum over C(i) and B(i), with s and t 

fixed, and AA included  
            Asd(y) = AA(w)*sum(D);  % sum over C(i) and B(i), with s and t 

fixed, and AA not included 

  
            A = []; 
            D = []; 

             
        end 

        
        Astd(w) = sum(As);   % sum over s, with t fixed  
        Ast(w) = sum(Asd);   % sum over s, with t fixed  

         
    end 

     
    Astot = Nlm*sum(Ast); 

  
end 

  

 

4. “gradient_grid_read_table_time” 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% GRAVITATIONAL FUNCTIONALS - GRAVITY GRADIENT %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% SPHERICAL HARMONICS SYNTHESIS WITH KAULA EXPANSION IN TERMS OF ORBITAL 

ELEMENTS %%%%% 
%%%% COMPUTED ALONG A DEFINED ORBIT AND WITH INCLINATION FUNCTIONS LOADED 
%%%% BY A LOOKUP TABLE 

 
clear 
clc 
clf 
format long 

  
%%%%%%%%%% 
% EARTH 
%%%%%%%%% 
%planet = 'Earth'; 

%G = 6.672e-11;      % m^3/(kg*s^2) 

%mu = 0.3986004415e6*1e9; %%% m^3/s^2 

%M = 5.972e24;       % kg Terra 

%R = 6378*1e3;     % radius Earth in m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%% EARTH DATA %%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%% GOCE data 

%%data = 

%importdata('C:\Users\Maverick\Marco\Dottorato\tesi\modelli_gravità\TERRA\GGM05S

%.gcf'); 

  
% l = data(50:end,1); 

% m = data(50:end,2); 

% C_lmi = data(37:end,4); 

% S_lmi = data(37:end,5); 

% E_Clm = data(37:end,6); 

% E_Slm = data(37:end,7); 

  
% A = [l m C_lmi S_lmi E_Clm E_Slm]; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% MARS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
planet = 'Mars'; 

mu = 0.4282837581575610e+05*1e9; %%% GM in m^3/s^2 

G = 6.672e-11;      % m^3/(kg*s^2) 

M = 6.419e23;       % kg Mars mass 

R = 3390*1e3;      % radius Mars in m 

% % c = 8.5e-5;      % Kaula constant for Mars (from konopliv MRO120D) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% MARS DATA %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
data = 

importdata('C:\Users\Maverick\Marco\Dottorato\tesi\modelli_gravità\MARTE\MRO120D

\jgmro_120d_sha.tab.txt'); 

% data = 

importdata('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\jgmro_120d_sha

.tab.txt'); 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%% VENUS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% planet = 'Venus'; 
% mu = 0.3248585920790000E+06*1e9;  % GM in m^3/s^2 
% M = 4.869e24;        % kg Venus mass 
% R = 6051*1e3;        % radius Venus in m 
% % c = 1.2e-5;          % Kaula constant for Venus (from Konopliv) 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%% VENUS DATA %%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% data = 

importdata('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\shgj180u.txt')

; 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %   Table 10-1.  The Magellan mapping orbit 
% % ------------------------------------------------- 
% %     Parameter                        Value 
% % -------------------------------------------------  
% % Periapsis altitude, km (miles)      257 (172) 
% % Apoapsis altitude, km (miles)     8,000 (5,000) 
% % Periapsis latitude                 10 degrees N 
% % Orbit peroid, hours                  3.15 
% % Inclincation (relative to            85.3 
% % Venus's equator), degrees 
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% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%% MOON %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% planet = 'Moon'; 
% M = 7.348e22;          % kg Moon mass 

% R = 1738*1e3;          % Moon radius in m 
% mu = 0.4902800305555400E+04*1e9; %%% m^3/s^2 
% c = 3.6e-4;      % Kaula constant for Moon (from Lemoine 2013) 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%% LOAD DATA %%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% data = 

importdata('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\gggrx_0660pm_s

ha.tab'); 
% % data = importdata('jggrx_1500e_sha.tab'); 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%% MERCURY %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% planet = 'Mercury'; 
% M = 3.302e23;       % kg Mercury mass 
% R = 2440*1e3;      % Mercury radius in m 
% mu = 2.2031870798779644e4*1e9;   % GM in m^3/s^2; 
% % c = 4e-5;          % Kaula constant for Mercury (from Mazarico 2014) 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%% MERCURY DATA %%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% data = 

importdata('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\ggmes_50v06_sh

a.tab'); 

  
l = data(2:end,1); 
m = data(2:end,2); 
C_lmi = data(2:end,3); 
S_lmi = data(2:end,4); 
E_Clm = data(2:end,5); 
E_Slm = data(2:end,6); 

  
A = [l m C_lmi S_lmi E_Clm E_Slm]; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% ORBITAL PARAMETERS r, omega0 (i.e. omega and M), i %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% h = 0; 
%%% MARS 
%%%% MRO --> 255-kilometer x 320-kilometer near-polar orbit around Mars. 
h = 255*1e3;              % orbit heigth wrt the surface in m 
%%% VENUS 
%%%% Magellan --> Periapsis altitude, km 257, Apoapsis altitude, km 8,000 
% Periapsis latitude, 10 degrees N, Orbit peroid, hours 3.15, Inclincation  
%%%(relative to Venus's equator  85.3 degrees 
% h = 300*1e3;              % orbit heigth wrt the surface in m 
r = R + h;                % orbit heigth wrt the centre in m 
Per = 2*pi*sqrt(r^3/(mu));  % orbital period     

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% ORBITAL DATA %%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
omega_p = deg2rad(0);   % perigee argument    
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n = sqrt(mu/r^3);        % mean motion 
omega = deg2rad(67.8);   % RAAN 
tetag = deg2rad(10);     % Planet's argument of longitude 
M = deg2rad(0); 
in_d = 89;             % inclination (degrees) 

  
%%% time dependence 
sample = 4;           % orbit sampling in time (s)  
points = round(Per/sample);    % points along the orbit 
step = 360/points;     
len = step*r;    % minimum orbit length corresponding to step 
Tr = (86400);    % mission duration 
Np = Tr/sample;  %%% number of measures during the mission Tr 
time = 0:sample:(Np); 
Nr = round(Tr/Per);     %%% number of orbit revolutions in Tr 
Nd = 1;                 %%% nodal days number in Tr 
omega0_dot = 2*pi/Per;   %%% rad/s    
% omegae_dot = 2*pi/;    %%% rad/s 
% Tday = 2*pi/omegae_dot;   % period of one nodal day 
% Tnodal = 2*pi/omega0_dot; % period of one revolution  

  
%%%% planet-pointing 
%%%% angular rate due to planet-pointing  
ang_rate = 2*pi/Per 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% LOAD TABLE INCLINATION FUNCTIONS %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% data1 = 

importdata('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_norm_pro

va.txt'); 
% data1 = 

load('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_norm_i89_l55.t

xt'); 
data1 = 

load('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_norm_i89_l200.

txt'); 
% data1 = 

importdata('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_norm_i14

4_l20.txt'); 

  
lll = data1(1:end,1); 
mmm = data1(1:end,2); 
ppp = data1(1:end,3); 
Fnnn = data1(1:end,4); 

  
Finc = [lll mmm ppp Fnnn]; 

  
% % data2 = 

load('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_cross_norm_pro

va.txt'); 
% data2 = 

load('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_cross_norm_i89

_l55.txt'); 
%  
% % data2 = 

importdata('C:\Users\Maverick\Marco\Dottorato\matlab\error\finali\f_inc_cross_no

rm_i144_l20.txt'); 
%  
% ll2 = data2(1:end,1); 
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% mm2 = data2(1:end,2); 
% pp2 = data2(1:end,3); 
% Fcn = data2(1:end,4); 
%  
% Finc_c = [ll2 mm2 pp2 Fcn]; 

  
ii = 1;  %%% index for row of Finc table 
iii = 1; %%% index for row of Finc_c table 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
tic 
%%% max degree l  
% lmax = 70; %%% VENUS 
lmax = 100;  %%% MARS 
%%% find index ki = lmax 
% ki = find(l == lmax, 1, 'first'); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% PRINT ORBIT DATA 
fprintf('Planet = %8s\n', planet); 
fprintf('Orbit height (km) = %2.3f\n', h/1e3); 
fprintf('Orbital period (hours) = %2.3f\n', Per/3600); 
fprintf('Orbital velocity (m/s) = %2.3f\n', sqrt(mu/r)); 
fprintf('Orbital angular rate (rad/s and degree/s) = %2.6f %2.6f\n', ang_rate, 

rad2deg(ang_rate)); 
fprintf('Inclination (degrees) = %2.2f\n', in_d); 
fprintf('Argument of pericentre (degrees) = %2.2f\n', rad2deg(omega_p)); 
fprintf('RAAN (degrees) = %2.2f\n', rad2deg(omega)); 
fprintf('Argument of longitude (degrees) = %2.2f\n', rad2deg(tetag)); 
fprintf('Orbit sampling in time (s) = %2.2f\n', sample); 
fprintf('Orbit sampling in frequency (Hz) = %2.2f\n', 1/sample); 
fprintf('Number of points considered along the orbit = %2.2f\n', points + 1); 
fprintf('Spacing between points (m) = %2.2f\n', len); 
fprintf('Mission duration (s and day) = %5.2f %5.2f\n', Tr, Tr/86400); 
fprintf('Number of measures during the mission = %2.2f\n', Np); 
fprintf('Number of orbit revolutions = %2.2f\n', Nr); 
fprintf('Maximum degree = %2.2f\n', lmax); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%% time 
jai = (0 : Np - 1); 
%%% index for l change 
i = 1;       
% jjj = 1;  %%% index for l variation 
ll = 1:lmax; 

  
for jjj = 1 : length(ll) 
% for jjj = 1 : l(ki)  

     
  ll(jjj); 

   
    %%% local gravity gradient formulas are retrieved from table 4.1 pag. 54 of 
    %%% Koop thesis, in terms of variables (r, omega0, in_d). For gradient 
    %%% yz and xy, formulas are taken from table 4.2 at pag. 56 

     
    %%% multiplicative factor for gravity gradient 
%     gamma_l = (mu/R^3)*(R/r)^(l(jjj) + 3); 
    gamma_l = (mu/R^3)*(R/r)^(ll(jjj) + 3); 
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    %%% select the right spherical harmonics coefficients 
    if A(i,1) == ll(jjj) 

  
    %%% corresponding values of m, i.e. l + 1 values for each m     
    Clm = C_lmi(i:i+ll(jjj)); 
    Slm = S_lmi(i:i+ll(jjj)); 
    eClm = E_Clm(i:i+ll(jjj)); 
    eSlm = E_Slm(i:i+ll(jjj)); 

  
    i = i + ll(jjj) + 1; 

        
    end 

        

    % corresponding values of m, i.e. l + 1 
    m = (0:ll(jjj));  

     
    %%% index for m variation 
    for j = 1 : length(m) 

         
        m(j); 
        %%% choose the harmonic coefficient wrt l - m  
        if  mod(ll(jjj) - m(j), 2) == 0      %%% l - m pari 
            alfa_lm = Clm(j, :); 
            beta_lm = Slm(j, :); 
        else 
            alfa_lm = -Slm(j, :);   %%% l - m dispari 
            beta_lm =  Clm(j, :); 
        end 

                 

        %%%% p = 0:l, corresponding to k = -l : 2 : l     
        jj = 1;    %%% index for k variation, i.e. p 
        p = (0:ll(jjj)); 
        for  jj = 1 : length(p) 

             
            k = l(jjj) - 2*p(jj); 

         
        %%% normalisation factor for inclination functions (from table) 
        if Finc(ii, 1) == ll(jjj) && Finc(ii, 2) == m(j) && Finc(ii, 3) == p(jj) 

            
           Fn = -Finc(ii,4); 

             
        end 

          

        ii = ii + 1; 

         
        %%% argument of trigonometric functions      
%         psi_km = k * omega0_0 + m(j) * omegae_0; 
%         psi_km = k * omega0_0 + m(j) * omegae_0 *m(j) + (k * omega0_dot + m(j) 

* omegae_dot)*(t - t0); 
        psi_km = (2*pi*jai/Np)*Nr*(k + m(j) * Nd/Nr); %% t0 = 0 e omega0_0 = 

omegae_0 = 0 

         
        %%% compute gravity gradient zz, yy, xz, xx; 
        %%% local gravity gradient formulas are retrieved from table 4.1 pag. 54 

of 
        %%% Koop thesis, in terms of variables (r, omega0, in_d). 
        %%% jj =  index for k variation. i.e. of p     
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        kappa_zz = Fn * (alfa_lm * cos(psi_km) + beta_lm * sin(psi_km)); 
        kappa_yy = -((ll(jjj) + 1)^2 - k^2) * kappa_zz; 
        kappa_xz = -(ll(jjj) + 2) * k * Fn * (beta_lm * cos(psi_km) - alfa_lm * 

sin(psi_km)); 
        kappa_xx = -(ll(jjj) + 1 + k^2) * kappa_zz;   

  
        Tzz(:, jj) = (ll(jjj) + 1) * (ll(jjj) + 2) * gamma_l * kappa_zz; 
        Tyy(:, jj) = gamma_l * kappa_yy; 
        Txz(:, jj) = gamma_l * kappa_xz; 
        Txx(:, jj) = gamma_l * kappa_xx; 

         
        end 

               
%         %%% compute gravity gradient xy, yz 
%         %%% For gradient yz and xy, formulas are taken from tabel 4.2 at pag. 

56 
%         %%%% p = 0:l-1, i.e. l - 2p -1, corresponding to k = -(l - 1) : 2 : 
%         %%%% l - 1 
%          
%         kkk = 1;    %%% index for k1 variation 
%         p1 = (0:ll(jjj)-1); 
%          
%         for  kkk = 1 : length(p1) 
%               
%              ll; 
%              m; 
%              p1(kkk); 
%              k1 = ll(jjj) - 2*p1(kkk) - 1; 
%                 
%              %%% argument of trigonometric functions      
% %              psi_km1 = k1 * omega0_0 + m(j) * omegae_0;   
%              psi_km1 = (2*pi*jai/Np)*Nr*(k1 + m(j) * Nd/Nr); %% t0 = 0 e 

omega0_0 = omegae_0 = 0 
%               
%              %%% compute the cross-track inclination function (from Koop 

thesis, pag. 220) 
%              %%% normalisation factor for inclination functions (from table) 
%              if Finc_c(iii, 1) == ll(jjj) && Finc_c(iii, 2) == m(j) && 

Finc_c(iii, 3) == p1(kkk) 
%             
%                  Fcn = Finc_c(iii,4);  
%              
%              end 
%           
%              iii = iii + 1; 
%               
%              %%% kkk = index for k1 variation 
%              kappa_xy = Fcn*(alfa_lm * cos(psi_km1) + beta_lm * sin(psi_km1)); 
%              kappa_yz = Fcn*(beta_lm * cos(psi_km1) - alfa_lm * sin(psi_km1)); 
%              
%              Txy(:, kkk) = -k1 * gamma_l * kappa_xy;             %%% 

alternative version 
%              Tyz(:, kkk) = -(ll(jjj) + 2) * gamma_l * kappa_yz;  %%% 

alternative version  
%                      
%         end 

       
        %%% sum over k and k1 values,i.e. over p, at l and m fixed, and save in 

variable S  
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        Szz(:, j) = sum(Tzz, 2); 
%         Sxy(:, j) = sum(Txy, 2);   %%% alternative version with cross-track 

inclination function (from Koop thesis, pag. 220) 
%         Syz(:, j) = sum(Tyz, 2);   %%% alternative version with cross-track 

inclination function (from Koop thesis, pag. 220) 
        Syy(:, j) = sum(Tyy, 2); 
        Sxz(:, j) = sum(Txz, 2); 
        Sxx(:, j) = sum(Txx, 2); 

         
        if ll(jjj) == 1 

             
            SSzz(:, j) = sum(Tzz, 2); 
%             SSxy(:, j) = sum(Txy, 2);   %%% alternative version with cross-

track inclination function (from Koop thesis, pag. 220) 
%             SSyz(:, j) = sum(Tyz, 2);   %%% alternative version with cross-

track inclination function (from Koop thesis, pag. 220) 
            SSyy(:, j) = sum(Tyy, 2); 
            SSxz(:, j) = sum(Txz, 2); 
            SSxx(:, j) = sum(Txx, 2); 

         
        end 

         
        %%% initialise       
        Tzz = []; 
%         Txy = [];     
%         Tyz = [];     
        Tyy = [];    
        Txz = [];     
        Txx = [];           

         
    end 

         
    %%% save in variable U and sum over m values, at l fixed   
    Uzz(:, jjj) = sum(Szz, 2);   % not k dependent 
%     Uxy(:, jjj) = sum(Sxy, 2);   % alternative version  
%     Uyz(:, jjj) = sum(Syz, 2);   % alternative version     
    Uyy(:, jjj) = sum(Syy, 2); 
    Uxz(:, jjj) = sum(Sxz, 2); 
    Uxx(:, jjj) = sum(Sxx, 2); 

     
    %%%% value of the gradient at l fixed and at m values  
    sSzz(:, 1:jjj+1) = Szz;     
%     sSxy(:, 1:jjj+1) = Sxy; 
%     sSyz(:, 1:jjj+1) = Syz; 
    sSyy(:, 1:jjj+1) = Syy; 
    sSxz(:, 1:jjj+1) = Sxz; 
    sSxx(:, 1:jjj+1) = Sxx; 

     
    %%% initialise  
    Szz = [];     
%     Sxy = []; 
%     Syz = []; 
    Syy = []; 
    Sxz = []; 
    Sxx = []; 

  
end 

  
toc 
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%%% sum over l, at a certain point of the orbit 
Gzz = sum(Uzz, 2) + 2*mu/r^3;    % aggiunta del termine per l=0, ossia il 

monopolo che è Gzz = +2*mu/r^3 
% Gxy = sum(Uxy, 2);              % Gyy = -mu/r^3; Gxx = -mu/r^3   
% Gyz = sum(Uyz, 2); 
Gyy = sum(Uyy, 2) - mu/r^3; 
Gxz = sum(Uxz, 2);                                                                                                                                                                                                                                   
Gxx = sum(Uxx, 2) - mu/r^3; 

  
% output = [Gzz; Gxx; Gyy; Gxy; Gyz; Gxz]; 
% fid = fopen('GG.txt','w'); 
% fprintf(fid,'%s %16s %16s %16s %16s %16s\n', 'Gzz', 'Gxx', 'Gyy', 'Gxy', 

'Gyz', 'Gxz'); 
% fprintf(fid,'%1.10e %16.10e %16.10e %16.10e %16.10e %16.10e\n', Gzz, Gxx, Gyy, 

Gxy, Gyz, Gxz); 
% % fprintf(fid,'%5.10e\n', Gzz,); 
% fprintf(fid,'%5.10e\n', Gxx); 

  
% fclose(fid); 

  
traccia = Gxx + Gyy + Gzz; 

  
%%%%% PSD %%%%% 

  
[pzz,szz] = psdblack(Gzz, length(Gzz), 1/sample); 
[pxx,sxx] = psdblack(Gxx, length(Gxx), 1/sample); 
[pyy,syy] = psdblack(Gyy, length(Gyy), 1/sample); 

  
figure(9) 
clf 
loglog(szz, pzz.^.5,'LineWidth', 1.5) 
hold on 
loglog(sxx, pxx.^.5, 'r', 'LineWidth', 1.5) 
loglog(syy, pyy.^.5, 'g', 'LineWidth', 1.5) 
grid on 
title('GG PSDBlack') 

  
fprintf('Monopole value Gzz (s-2 and E) = %5.10e %5.4f\n', 2*mu/r^3, 

2*mu/r^3/1e-9); 
fprintf('Monopole value Gxx (s-2 and E) = %5.10e %5.4f\n', -mu/r^3,  -mu/r^3/1e-

9); 
fprintf('Monopole value Gyy (s-2 and E) = %5.10e %5.4f\n', -mu/r^3,  -mu/r^3/1e-

9); 

  

time = Tr; 
time_h = linspace(1, Tr, Tr/sample)/3600; 

  
figure(1) 
clf 
% plot((Gzz-2*mu/r^3)/1e-9) 
% plot((Gzz-2*mu/r^3)) 
plot(time_h, Gzz/1e-9) 
% plot(time_h, (Gzz-2*mu/r^3)/1e-9) 
grid on 
% xlim([0 time_h(2701)]) % Venus 
xlim([0 time_h(3301)]) 
xlabel('Time (h)') 
ylabel('GRAVITY GRADIENT ZZ (E)') 
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% ylabel('GRADIENTE DI GRAVITA ZZ (s^-2)') 
title('GRAVITY GRADIENT ZZ (l = 100) (E)') 
% title('GRAVITY GRADIENT ZZ (l = 70) (E)') 

  
figure(2) 
clf 
% plot((Gyy + mu/r^3)/1e-9,'r') 
% plot((Gyy + mu/r^3),'r') 
plot(time_h,(Gyy)/1e-9,'r') 
% plot(time_h, (Gyy + mu/r^3)/1e-9, 'r') 
grid on 
% xlim([0 time_h(2701)]) 
xlim([0 time_h(3301)]) %Mars 
xlabel('Time (h)') 
ylabel('GRAVITY GRADIENT YY (E)') 
% ylabel('GRADIENTE DI GRAVITA YY (s^-2)') 
title('GRAVITY GRADIENT YY (l = 100) (E)') 
% title('GRAVITY GRADIENT YY (l = 70) (E)') 

  
figure(3) 
clf 
% plot((Gxx + mu/r^3)/1e-9,'g') 
% plot((Gxx + mu/r^3),'g') 
plot(time_h,(Gxx)/1e-9,'g') 
% plot(time_h,(Gxx + mu/r^3)/1e-9,'g') 
grid on 
% xlim([0 time_h(2701)]) 
xlim([0 time_h(3301)]) % Mars 
xlabel('Time (h)') 
ylabel('GRAVITY GRADIENT XX (E)') 
% ylabel('GRADIENTE DI GRAVITA XX (s^-2)') 
title('GRAVITY GRADIENT XX (l = 100) (E)') 
% title('GRAVITY GRADIENT XX (l = 70) (E)') 

  
% figure(4) 
% clf 
% plot(Gxy/1e-9) 
% % plot(Gxy) 
% grid on 
% ylabel('GRADIENTE DI GRAVITA XY (E)') 
% % ylabel('GRADIENTE DI GRAVITA XY (s^-2)') 

  
% figure(5) 
% clf 
% plot(Gyz/1e-9,'r') 
% % plot((Gyz),'r') 
% grid on 
% ylabel('GRADIENTE DI GRAVITA YZ (E)') 
% % ylabel('GRADIENTE DI GRAVITA YZ (s^-2)') 

  
figure(6) 
clf 
plot(time_h, (Gxz)/1e-9,'g') 
grid on 
% xlim([0 time_h(2701)]) 
xlim([0 time_h(3301)]) % Mars 
xlabel('Time (h)') 
ylabel('GRAVITY GRADIENT XZ (E)') 
% ylabel('GRADIENTE DI GRAVITA XZ (s^-2)') 
title('GRAVITY GRADIENT XZ (l = 100) (E)') 
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% title('GRAVITY GRADIENT XZ (l = 70) (E)') 

  
%%%% PLOT AT L FIXED VS TIME 
elle = lmax; 

  
figure(71) 
clf 
plot(Uzz(:, elle)/1e-9) 
% plot((Uzz(:, elle)- 2*mu/r^3)/1e-9) 
grid on 
xlabel('Time (s)') 
ylabel('GRAVITY GRADIENT ZZ (E)') 
title('GRAVITY GRADIENT ZZ AT l FIXED (100), SUM OVER m, VS TIME (E)', 

'fontsize', 9) 
% title('GRAVITY GRADIENT ZZ AT l FIXED (70), SUM OVER m, VS TIME (E)', 

'fontsize', 9) 

  
figure(72) 
clf 
plot(Uyy(:,elle)/1e-9, 'r') 
% plot((Uyy(:,elle)+ mu/r^3)/1e-9, 'r') 
grid on 
xlabel('Time (s)') 
ylabel('GRAVITY GRADIENT YY (E)') 
title('GRAVITY GRADIENT YY AT l FIXED (100), SUM OVER m, VS TIME (E)', 

'fontsize', 9) 
% title('GRAVITY GRADIENT YY AT l FIXED (70), SUM OVER m, VS TIME (E)', 

'fontsize', 9) 

  
figure(73) 
clf 
plot(Uxx(:, elle)/1e-9,'g') 
% plot((Uxx(:, elle) + mu/r^3)/1e-9,'g') 
grid on 
xlabel('Time (s)') 
ylabel('GRAVITY GRADIENT XX (E)') 
title('GRAVITY GRADIENT XX AT l FIXED (100), SUM OVER m, VS TIME (E)', 

'fontsize', 9) 
% title('GRAVITY GRADIENT XX AT l FIXED (70), SUM OVER m, VS TIME (E)', 

'fontsize', 9) 

  

  
% figure(74) 
% clf 
% % plot(ll(1:end),Uxy(500,1:end),'k') 
% plot(Uxy(:, elle),'k') 
% grid on 
% xlabel('degree l') 
% ylabel('GRADIENTE DI GRAVITA XY AT L FIXED VS TIME (s^-2)') 

  
% figure(75) 
% clf 
% % plot(ll(1:end),Uyz(500,1:end),'y') 
% plot(Uyz(:, elle),'y') 
% grid on 
% xlabel('degree l') 
% ylabel('GRADIENTE DI GRAVITA YZ AT L FIXED VS TIME (s^-2)') 

  
figure(76) 
clf 
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plot(Uxz(:, elle)/1e-9,'m') 
grid on 
xlabel('Time (s)') 
ylabel('GRAVITY GRADIENT XZ (E)') 
title('GRAVITY GRADIENT XZ AT l FIXED (100), SUM OVER m, VS TIME (E)', 

'fontsize', 9) 
% title('GRAVITY GRADIENT XZ AT l FIXED (70), SUM OVER m, VS TIME (E)', 

'fontsize', 9) 

  
%%%% PLOT AT TIME FIXED, VS L 
%%%% time chosen = 1801*4/3600 = dopo  ore di orbita  
%%%% time chosen = 2701*4/3600 = dopo 3 ore di orbita  
figure(81) 
clf 
% plot(ll(2:end),Uzz(500,2:end) + 2*mu/r^3) 
% plot(Uzz(2701, :)/1e-9) 
plot(Uzz(3301, :)/1e-9) % Mars 
grid on 
xlabel('Degree l') 
ylabel('GRAVITY GRADIENT ZZ (E)') 
title('GRAVITY GRADIENT ZZ AT TIME FIXED VS l, SUM OVER m (E)', 'fontsize', 9) 

  
figure(82) 
clf 
% plot(Uyy(2701, :)/1e-9, 'r') 
plot(Uyy(3301, :)/1e-9, 'r')% Mars 
grid on 
xlabel('Degree l') 
ylabel('GRAVITY GRADIENT YY (E)') 
title('GRAVITY GRADIENT YY AT TIME FIXED VS l, SUM OVER m (E)', 'fontsize', 9) 

  

figure(83) 
clf 
% plot(Uxx(2701, :)/1e-9,'g') 
plot(Uxx(3301, :)/1e-9,'g') % Mars 
grid on 
xlabel('Degree l') 
ylabel('GRAVITY GRADIENT XX (E)') 
title('GRAVITY GRADIENT XX AT TIME FIXED VS l, SUM OVER m (E)', 'fontsize', 9) 

  

  
% figure(84) 
% clf 
% % plot(ll(1:end),Uxy(500,1:end),'k') 
% plot(Uxy(:, 9000),'k') 
% grid on 
% xlabel('degree l') 
% ylabel('GRADIENTE DI GRAVITA XY AT L FIXED VS TIME (s^-2)') 

  
% figure(85) 
% clf 
% % plot(ll(1:end),Uyz(500,1:end),'y') 
% plot(Uyz(:, 9000),'y') 
% grid on 
% xlabel('degree l') 
% ylabel('GRADIENTE DI GRAVITA YZ AT L FIXED VS TIME (s^-2)') 

  
figure(86) 
clf 
% plot(Uxz(2701, :)/1e-9,'m') 
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plot(Uxz(3301, :)/1e-9,'m') 
grid on 
xlabel('Degree l') 
ylabel('GRAVITY GRADIENT XZ (E)') 
title('GRAVITY GRADIENT XZ AT TIME FIXED VS l, SUM OVER m (E)', 'fontsize', 9) 

  

  
%%%% PLOT AT L FIXED (the last computed, f.i. l = 70) VS M, at TIME FIXED 
%%%  time chosen = 9000*4/3600 = dopo 10 ore di orbita  

  
figure(91) 
clf 
% plot(sSzz(2701,1:end)/1e-9) 
plot(sSzz(3301,1:end)/1e-9) %MArs 
grid on 
xlabel('order m') 
ylabel('GRAVITY GRADIENT ZZ (E)') 
title('GRAVITY GRADIENT ZZ VS m AT l = 100 AT FIXED TIME (E)', 'fontsize', 9) 
% title('GRAVITY GRADIENT ZZ VS m AT l = 70 AT FIXED TIME (E)', 'fontsize', 9) 

  
figure(92) 
clf 
% plot(sSxx(2701,1:end)/1e-9, 'g') 
plot(sSxx(3301,1:end)/1e-9, 'g') % Mars 
grid on 
xlabel('order m') 
ylabel('GRAVITY GRADIENT XX (E)') 
title('GRAVITY GRADIENT XX VS m AT l = 100 AT FIXED TIME (E)', 'fontsize', 9) 
% title('GRAVITY GRADIENT XX VS m AT l = 70 AT FIXED TIME (E)', 'fontsize', 9) 

  
figure(93) 
clf 
% plot(sSyy(2701,1:end)/1e-9, 'r') 
plot(sSyy(3301,1:end)/1e-9, 'r') % Mars 
grid on 
xlabel('order m') 
ylabel('GRAVITY GRADIENT YY (E)') 
title('GRAVITY GRADIENT YY VS m AT l = 100 AT FIXED TIME (E)', 'fontsize', 9) 
% title('GRAVITY GRADIENT YY VS m AT l = 70 AT FIXED TIME (E)', 'fontsize', 9) 

  
% figure(94) 
% clf 
% plot(sSxy(elle,1:end), 'm') 
% grid on 
% xlabel('order m') 
% ylabel('GRADIENTE DI GRAVITA XY VS M AT L = 55 AT FIXED TIME (s^-2)') 

  
% figure(95) 
% clf 
% plot(sSyz(elle,1:end), 'k') 
% grid on 
% xlabel('order m') 
% ylabel('GRADIENTE DI GRAVITA YZ VS M AT L = 55 AT FIXED TIME (s^-2)') 

  
figure(96) 
clf 
string86 = sprintf('GRAVITY GRADIENT XZ VS m AT l = %d AT FIXED TIME (E)', 

elle); 
% plot(sSxz(2701,1:end)/1e-9) 
plot(sSxz(3301,1:end)/1e-9) %MArs 
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grid on 
xlabel('order m') 
ylabel('GRADIENTE DI GRAVITA XZ (E)') 
title(string86,'fontsize',9) 

 

 


