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1. Introduction

The primary aim of this paper is to describe some partial advances in the solution of the following
two problems.

1. Find the maximal order of vanishing at infinity of a non-zero Drinfeld quasi-modular form of given
weight.

2. Determine differential properties of Drinfeld quasi-modular forms of given weight and depth with
maximal order of vanishing at infinity (these forms will be called extremal).

Our results are obtained in a constructive way, studying families of forms with peculiar properties.
For our purposes, general tools need to be developed. Some will appear of independent interest.

Before going deeper in these topics and rigorously defining the entities above, we present an
overview of the more familiar framework of quasi-modular forms on the complex upper-half plane,
for the group SL2(Z).

1.1. The classical framework

Let z = x + i y ∈ C with y > 0 and u ∈ C be complex numbers related by u = e2π iz , so that 0 <

|u| < 1. For i = 1,2,3 the series:

E2i(z) = 1 + bi

∞∑
n=1

n2i−1 un

1 − un
,

with b1 = −24, b2 = 240, b3 = −504, normally converge in any compact subset of the domain deter-
mined by |u| < 1 and represent algebraically independent functions. The C-algebra of quasi-modular
forms is the polynomial algebra M̃ := C[E2, E4, E6], which is graded by the weights (where the weight
of E2i is 2i for i = 1,2,3) and filtered by the depths (the depth of a polynomial in M̃ is its degree
in E2):
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M̃ =
⊕
w�0

⋃
l�0

M̃�l
w ,

where M̃�l
w is the C-vector space spanned by the forms of weight w and depth � l.

Any element f of M̃�l
w \ {0} has a non-vanishing u-expansion

f (z) =
∞∑

i=0

ciu
i, ci ∈ C (1)

and the natural problem of determining the image of the function

ν∞ : M̃�l
w \ {0} → Z�0,

f �→ inf{i, ci �= 0}, with f as in (1) (2)

arises, for given l, w .
In [9, p. 459], Kaneko and Koike ask whether the image of ν∞ on the set M̃�l

w \ {0} is precisely the
interval [0,1, . . . ,dimC(M̃�l

w ) − 1], as numerical investigations suggest, for w small. This property, if
true, would imply that for any f ∈ M̃�l

w \ {0},

ν∞( f ) � dimC

(
M̃�l

w
) − 1 � 1

12

(
w + 11l + l(w − l)

)
. (3)

We recall that M̃ is a D-differential algebra, with D := u d
du = (2π i)−1 d

dz . Looking at the resultant
ResE2 ( f , D f ) of f and D f , seen as polynomials in E2, it is not difficult to prove that for f as above,
irreducible,1

ν∞( f ) � 1

12

(
w + 2l(w − l)

)
. (4)

Similar inequalities have already been used to describe diophantine properties of certain complex
numbers, see e.g. [6,16]. In fact, in order to prove (4), the above resultant can only be used if it does
not vanish, that is, if D f is not divisible by f . To prove the estimate for the remaining forms, we
need to characterise those forms f such that f divides D f . The key point is here to remark that the
only principal prime ideal of M̃ which is stable by differentiation is the ideal (�), where � is the
discriminant function (see [12, Chapter 10, Lemma 5.2]). The remaining case f = � in (4) can then
be checked directly.

Apart from some choices (l, w) with 1 � l � 10 and w � 20 and the case l = 0, the upper bound
of (4) is weaker than that of (3). The truth of the sharper estimate (3) remains unknown for general
l, w .

Let l, w be integers such that M̃�l
w �= (0), and let fl,w be the unique non-vanishing normalised2

quasi-modular form of the space M̃�l
w with the property that the function (2) attains its maximal

value on it.
In [9, Theorem 2.1], Kaneko and Koike constructed a family of quasi-modular forms which turns

out to be, up to a non-zero scalar factor and by means of elementary arguments, the family ( f1,2i).3

1 The inequality (4) also holds for f not necessarily irreducible.
2 A formal series f = ∑

i�i0
ci ui with ci0 �= 0 is said to be normalised if ci0 = 1. A quasi-modular form is normalised if its

u-expansion is.
3 In [9], Kaneko and Koike call any non-vanishing form f ∈ M̃�l

k \ M̃�l−1
k for which the equality ν∞( f ) = dimC(M̃�l

k ) − 1
holds, extremal. We warn the reader that in this paper, we will use this terminology in a different way.
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They prove that ν∞( f1,2i) = � i
3 	 = dim(M̃�1

2i ) − 1 (i � 0), where �·	 denotes the lower integer part
of a real number. Their construction is performed with an inductive process, in which the differential
operators (“Serre’s differential operators”, cf. p. 467 of [9]) defined by:

θ
(n−1)

d f = Dn f − n + d − 1

12
[E2, f ](2,d)

n−1 , (5)

play a crucial role, [ f , g](2,d)
n−1 being a suitable normalisation of the Rankin–Cohen bracket of f and g ,

of order n − 1 and weights 2 and d (its definition is available, for example, on p. 466 of [9]). It turns
out that for all i, the form f1,2i is essentially unique satisfying:

θ
(1)
2i−1 f1,2i = λ1,2i� f1,2i−8, i � 1, (6)

where � = (E3
4 − E2

6)/1728 and λ1,2i ∈ Q with λ1,2i = 0 if and only if 3|i.
For l = 2, Kaneko and Koike develop similar constructions in [9]. We omit to describe their results

referring to [8,9] for further details and references; however, we did not find any other result in the
direction of inequalities (3) for l � 2.

1.2. The drinfeldian framework: our results

From now on, the symbols u, M̃,�,ν∞, D will be used with a new meaning which we now de-
scribe. Occasionally, the older meanings related to the classical framework will reappear, but the
reader should not encounter any trouble with these occurrences.

In the following, q = pe is a positive power of a given prime number p fixed once and for all, and
θ will be an indeterminate over Fq . Certain results of this text do not hold for certain choices of q;
this will be highlighted on a case to case basis.

Let C be the completion of an algebraic closure K∞ of the field K∞ := Fq((1/θ)) for the unique
extension of the valuation −degθ to K∞ (the θ−1-adic valuation). For this valuation, K∞ is the com-
pletion of its subfield K = Fq(θ). We will also denote by A the Fq-algebra Fq[θ]. On C, K∞, K , A, we
will denote by | · | the ultrametric absolute value qdegθ (·) .

The story of Drinfeld modular forms4 begins with the pioneering work of Goss [4,5]. Later, in the
important paper [3], Gekeler considered the two functions E, g and discovered the function h, al-
lowing us, later in [1], to investigate some properties of the C-algebra of Drinfeld quasi-modular forms
M̃ := C[E, g,h].5 As “drinfeldian framework” (title of this section) we mean a natural counterpart of
the theory sketched in Section 1.1, for these Drinfeld quasi-modular forms.

We refer to the first part of our paper [1] for all the basic properties of Drinfeld quasi-modular
forms, noticing that the indeterminate T there becomes θ here.6 Gekeler’s functions E, g,h are al-
gebraically independent quasi-modular forms for the (homographical) action of the group GL2(A) on
Ω := C \ K∞ . For the three functions E , g , h, the triples (w,m, l) ∈ Z�0 × (Z/(q − 1)Z) × Z�0, where
w is the weight, m the type and l the depth, are (2,1,1), (q − 1,0,0) and (q + 1,1,0), respectively.

If we denote by M̃�l
w,m the C-vector space of Drinfeld quasi-modular forms of weight w , type m

and depth � l (which is by definition the space (0) if l < 0), we have [1, Proposition 2.2]:

M̃ =
⊕

w∈Z�0
m∈Z/(q−1)Z

⋃
l�0

M̃�l
w,m.

4 Rigid analytic modular forms, where the “base fields” are global, of positive characteristic.
5 Notice that in the introduction of [1], the sentence attributing to Gekeler’s paper the first occurrence of modular forms for

GL2(Fq[θ]) is obviously incorrect.
6 Several notations of [1] change in the present work. We adopt at the same time notations issued from Gekeler as in [3] and

notations that will be compatible with Papanikolas [13] since we believe that the use of t-motives will eventually intervene in
the theory of Drinfeld modular forms, and we want to keep certain symbols, such as t , free for that occasion.
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1.2.1. First part: extremality
We recall [1, Section 2 and Lemma 4.2 (i)-(iii)] that E, g,h have u-expansions convergent in a

neighbourhood of u = 0, with u(z) = 1/eC (π̃ z), where eC is Carlitz’s exponential function and π̃ ∈ C
is one of its fundamental periods (chosen once and for all)7 There is a C-algebra homomorphism
M̃ ↪→ C[[u]]. We will identify f ∈ M̃ with its image

∑
i�0 ciui in C[[u]]. We write ν∞(0) = ∞ and,

for f �= 0, ν∞( f ) = min{i such that ci �= 0}.

Definition 1.1. Let w, l be fixed non-negative integers and m be a class in Z/(q − 1)Z. A non-zero
quasi-modular form f ∈ M̃�l

w,m is said to be extremal of depth � l if for all g ∈ M̃�l
w,m \ {0}, ν∞(g) �

ν∞( f ).

A quasi-modular form which is extremal of depth � l needs not to be extremal of depth � l′ for
l′ > l. On the other hand, a straightforward argument shows that, for w,m, l fixed, a quasi-modular
form of weight w and type m which is extremal of depth � l is uniquely determined, up to multipli-
cation by an element of C× .

When a quasi-modular form f ∈ M̃�l
w,m \ M̃�l−1

w,m is extremal of depth � l, we will often say that f
is extremal. We will adopt this simplified terminology when the context allows the complete determi-
nation of l.

For all l, w,m such that M̃�l
w,m �= (0), let fl,w,m ∈ M̃�l

w,m be the unique normalised extremal quasi-
modular form of depth � l. Contrary to the classical framework, u-expansions of Drinfeld quasi-
modular forms are difficult to compute, and Gekeler’s algorithms developed in [3] are required.
Thanks to them, we did experiments that, after observation of the cases q = 2,3,5, w � q3 + 1,
l � q2 + 1 and any value of m, suggest the existence of a (conjectural) estimate as follows. For all
ε > 0 and for all l big enough depending on ε:

ν∞( fl,w,m) � (1 + ε)l(w − l) (7)

(notice that if l > 0, w > l).
Just like inequality (3), this inequality seems to be rather difficult to prove. Even weaker estimates

like an analogue of (4) are presently unavailable (see discussion in Section 1 of [1]). This is essen-
tially because in our case there are infinitely many irreducible quasi-modular forms f such that D f
is divisible by f , and in this last case there is no obvious candidate to replace the modular form
ResE( f , D f ).

It would be interesting to find an explicit function c(w, l) of the weight and the depth such that
for all l � 0, ν∞( fl,w,m) � c(w, l). Showing the existence of a constant c(q) > 0, depending on q only,
such that if l > 0,

ν∞( fl,w,m) � c(q)l(w − l),

would also have interesting arithmetic consequences. For instance, the results of the present paper
show that if c(q) exists, then c(q) � 1 (cf. Proposition 2.12). In the first part of this paper, we discuss
partial advances toward these estimates for small depths.

Although analogues of “higher Serre’s operators” can be constructed (this paper, Section 4.1), ideas
of proof of Kaneko and Koike as in [8] cannot extend to our case because these operators have too big
kernels due to the positive characteristic (but see Section 3.3 for some condition analogous to (6)).

In Section 2 we study the sequence of Drinfeld quasi-modular forms (xk)k�0, with xk ∈ M̃�1
qk+1,1

\
M̃�0

qk+1,1
, defined by x0 = −E , x1 = −Eg − h and by the recursion formula

xk = xk−1 gqk−1 − [k − 1]xk−2�
qk−2

, k � 2,

7 In [1], we wrote about t-expansions instead of u-expansions, and the period of Carlitz’s exponential was denoted by π
instead of π̃ , according to Gekeler [3].
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where � := −hq−1. After having dealt with some basic properties of this sequence, we show in Propo-
sition 2.3 that, for all k � 0, ν∞(xk) = qk . This shows that in general,

ν∞( fl,w,m) > dimC
(
M̃�l

w,m
) − 1,

in apparent contradiction with Kaneko and Koike’s prediction (3) in the classical framework.
We can show that for all k, xk is an irreducible polynomial in E, g,h and a resultant argument (see

Section 2.1.4) yields:

Theorem 1.2. For all k � 0, xk is an extremal quasi-modular form.

Looking back at subsequences of Kaneko and Koike’s sequence ( f1,2i)i�0, there does not seem
to be similar recursion formulas, with weights varying as sequences like (αqk + β)k�0 rather than
as arithmetic progressions. But experimentally, congruences between u-expansions of certain forms
f1,2i ’s seem to occur. They could be consequence of Clausen–von Staudt congruences for Bernoulli
numbers.

Our investigation was pushed a step further, with the sequence (ξk)k�0 defined, for k � 0 by:

ξk = [k]qxk+1xq
k−1 − [k + 1]xq+1

k ∈ M̃�q+1
(q+1)(qk+1),2

\ M̃�q
(q+1)(qk+1),2

, (8)

where [k] := θqk − θ (k � 1), [0] := 1, and we have set x−1 := −h1/q . Again, we could compute ν∞(ξk)

for all k and prove that ξk is always irreducible, implying the following (Section 2.2):

Theorem 1.3. Assuming that q � 3, the form ξk is extremal for all k � 0.

As a product of these investigations, we obtain the following multiplicity estimate:

Theorem 1.4. Let w and m be integers such that M̃�q2

w,m �= {0}, and let f be a non-vanishing form in M̃�q2

w,m.
Then

ν∞( f ) �
(
q3 + 1

)
(w − l).

1.2.2. Second part: differential properties
We were surprised to remark that the forms xk and ξk also enjoy a rich differential structure, and

the second part of this text, Section 3, is devoted to reporting our knowledge on this topic.
In all the following, we write D = (Dn)n�0 for the collection of higher derivatives on the C-algebra

of holomorphic functions on Ω = C \ K∞ introduced in [1, Section 1]. Therefore, D1 = (−π̃ )−1d/dz =
u2d/du. By Theorem 2 of [1], Dn induces a C-linear map

M̃�l
w,m

Dn−→ M̃�l+n
w+2n,m+n,

so that the C-algebra M̃ is D-stable (or hyperdifferential).
Already in [1], we have remarked that the problem of estimating the quantity ν∞( f ) for a Drin-

feld quasi-modular form f is intimately related to its differential properties (this point of view was
inherited by Nesterenko, and finds its foundations in Siegel and Shidlowski’s work).

In the papers [4,5], u-expansions were already considered, and their behaviour immediately ap-
peared to be surprisingly erratic. Later, in [3], Gekeler described algorithms to compute their u-
expansions. However, the unpredictable character of the coefficients of the u-expansions of all these
Drinfeldian forms remains nowadays one of the typical aspects making this theory independent from
the classical one. Similar observations can be made concerning the problem of Hecke’s eigenforms.
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As a strange resurgence of older problems, we remarked in [1] that also the operators Dn behave
erratically over the polynomial algebra C[E, g,h].

Here, we introduce the following:

Definition 1.5. Let f be a non-zero element of M̃ . We define the differential exponent εD( f ) of f as
follows: it is ∞ if Dn f

f ∈ M̃ for all n � 1, and otherwise it is the smallest integer k � 0 satisfying
D pk f

f /∈ M̃ (thus ε( f ) = 0 means D1 f
f /∈ M̃).

Let l, w,m be such that M̃�l
w,m \ M̃�l−1

w,m �= ∅ (with the convention that if l < 0, M̃�l
w,m := (0)), let

f be a quasi-modular form in this set. We say that f is differentially extremal of weight w , type m,
depth l, if it attains the biggest finite differential exponent within this set.

By [1, Proposition 3.6], a differentially extremal quasi-modular form cannot be proportional to
a power of h and if q �= 2,3 we obtained, in [1, Theorem 3], that if f is not proportional to a power
of h, then f has a finite differential exponent. In Section 3, by using a result of Cornelissen in [2] on
the factorisation in K [g,h] of certain normalised Eisenstein series, we prove:

Theorem 1.6. For all k � 0, xk is differentially extremal of differential exponent (k + 1)e.

We are presently unable to show the differential extremality of the forms ξk , but in Section 3.2,
we describe numerical computations which seem to confirm this hypothesis.

Sections 3.3 and 3.4 develop two questions, partly independent but not completely disjoint to the
problem of finding differentially extremal quasi-modular forms. The content of these sections will be
presented at their respective beginning; the reader can skip them in a first reading of the paper.

1.2.3. Third part: differential tools
The proofs of the statements above require several technical tools which appear in Section 4 of this

paper. In this section, the reader can find several results, some of which are of independent interest,
described in the summary below.

Let n,d be non-negative integers. We define the n-th Serre’s operator of degree d, ∂
(d)
n : M̃ → M̃ , by

the formula

∂
(d)
n f = Dn f +

n∑
i=1

(−1)i
(

d + n − 1

i

)
(Dn−i f )(Di−1 E). (9)

These operators can be considered as analogues of higher Serre’s C-linear differential operators (5) in
the drinfeldian framework. In Theorem 4.1 of Section 4.1 we show the (not obvious at all) property
that

∂
(w−l)
n : M̃�l

w,m → M̃�l
w+2n,m+n

(compare with [9, Proposition 3.3]). The properties of these operators are essential in the proof of
Theorem 1.6. A further application of the operators ∂

(d)
n is contained in Section 4.1.1, where we indi-

cate a new technique to determine modular eigenforms of all the Hecke operators.
In Section 4.2 we furnish algorithms to compute the polynomials

Dn E, Dn g, Dnh ∈ C[E, g,h].

These algorithms can be viewed as variants of Gekeler’s algorithms in [3]. Proposition 4.9 is cru-
cial, for example, in the computations of the polynomials Dnξk we made, as well as in the proof of
Theorem 1.6.
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1.2.4. Final remarks
It is strongly possible that the forms ξk are all differentially extremal. This can be checked, in

principle, by using the tools of Section 4.2, up to tremendous calculations we had not the courage to
do, but that can be done. In fact, we got interested in these forms ξk in an attempt of finding dif-
ferentially extremal forms by solving linear equations; later, we found that these forms are extremal,
yielding the actual presentation of this paper. This convinced us to follow a constructive approach to
produce multiplicity estimates.

The reader may remark that the problem of finding such families is essentially of a diophantine
nature. It can be proved, just as in [8, p. 153], that the sequence (xk)k�0 is related to the convergents
of the continued fraction expansion of the function h/E as a formal series in j := gq+1/�. On an-
other side, in [7], Kaneko reveals a connection between certain modular solutions of the differential
equations θ

(1)

k f = 0 and Apery’s approximations of ζ(2) = π2/6. Hence, it could reveal difficulty to
explicitly construct new interesting families in higher depth. Nevertheless, we think that the connec-
tion between extremality and differential extremality of certain families of Drinfeld quasi-modular
forms is such a topic that will deserve further surprises.

2. Order of vanishing and extremality

As already mentioned in the introduction, the main objective of this section is to introduce and
study two families of extremal Drinfeld quasi-modular forms: one in depth � 1 (the forms xk , see
Section 2.1) and one in depth � q + 1 (the forms ξk , see Section 2.2). We use these forms to prove
multiplicity estimates for quasi-modular forms of depth � q or � q2 (Sections 2.1.3 and 2.2.2). The
tools developed in this section allow to compute, in Proposition 2.12, certain extremal forms of depth
<

q+1
2 .

2.1. The family (xk)k�0

We begin by defining three sequences of Drinfeld quasi-modular forms:

(gk)k�0, (hk)k�0, (xk)k�0.

Einsenstein’s series for the group GL2(A) are defined on p. 681 of [3]:

E(w)(z) =
∑

a,b∈A

′
(az + b)−w , (10)

where the dash indicates that the sum is restricted to a,b not simultaneously zero. It is easy to prove
that the series E(w) converges uniformly on every compact subset of Ω , for all integers w > 0, to a
Drinfeld modular form of weight w and type 0 which is non-zero if and only if w ≡ 0 (mod q − 1)

(see [3] p. 682).
Following [3] p. 684 (and the notations of this reference), let us write g0 = 1 and, for k � 1,

gk = (−1)k+1π̃1−qk
Lk E(qk−1), (11)

where Lk := [k][k − 1] · · · [1].
For k � 0, gk is a non-vanishing normalised modular form of weight qk − 1 and type 0, whose

expansion at infinity belongs to A[[u]].
We have [3, Proposition 6.9]: g0 = 1, g1 = g , and

gk = gk−1 gqk−1 − [k − 1]gk−2�
qk−2

, k � 2. (12)
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In order to define the forms hk ’s (k � 0) we introduce, for fixed w ∈ N and m ∈ Z/(q − 1)Z, Serre’s
operator ∂

(w)
1 : Mw,m → M̃ , which is defined by

∂
(w)
1 f = D1 f − w E f . (13)

It is well known (see [3, Section (8.5)]) that

∂
(w)
1 (Mw,m) ⊂ Mw+2,m+1,

so we have in fact an operator ∂
(w)
1 : Mw,m → Mw+2,m+1 (note that in [3] Serre’s operator is denoted

by ∂w and defined by the formula ∂w f = w E f − D1 f = −∂
(w)
1 f ).

We now define, for k � 0:

hk = −∂
(qk−1)
1 gk, k � 0.

For all k, hk is a modular form of weight qk + 1, type 1. Moreover, h0 = 0 and h1 = h [3, Theorem
(9.1)]. Finally, we define the sequence (xk)k�0 by:

x0 = −E and xk = D1 gk, k � 1.

We will see in a little while that this definition is compatible with that of the introduction.

Since by definition we have, for k � 1, ∂
(qk−1)
1 f = D1 f + E f , we find hk = −D1 gk − Egk =

−xk − Egk . Hence the following identity holds (one immediately checks that it is also true for k = 0):

xk = −Egk − hk, k � 0. (14)

Therefore, the form xk is, for k � 0, a non-modular quasi-modular form of weight qk + 1, type 1 and
depth 1.

It turns out that the three families (gk)k , (hk)k and (xk)k satisfy the same recursion formula.

Proposition 2.1. The sequence (hk)k�0 is determined by the initial conditions

h0 = 0, h1 = h

and the recursion formula

hk = hk−1 gqk−1 − [k − 1]hk−2�
qk−2

, k � 2.

Similarly, the sequence (xk)k�0 is determined by the initial conditions

x0 = −E, x1 = −Eg − h

and the recursion formula

xk = xk−1 gqk−1 − [k − 1]xk−2�
qk−2

, k � 2.

Proof. We begin with the recursion relation for xk . The formulas x0 = −E (definition) and x1 = D1 g =
−Eg1 − h1 = −Eg − h have been already remarked. If k = 2, then g2 = [1]hq−1 + gq+1, so that by
formulas (2) of [1]:
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x2 = D1 g2 = −[1]hq−1 E − (Eg + h)gq

= x1 gq − [1]x0�,

which is the expected relation. If now k > 2, then D1 gqk−1 = 0 and D1�
qk−2 = 0, so that, by (12):

xk = D1 gk = D1
(

gk−1 gqk−1) + D1
(−[k − 1]gk−2�

qk−2)
= (D1 gk−1)gqk−1 − [k − 1](D1 gk−2)�

qk−2

= xk−1 gqk−1 − [k − 1]xk−2�
qk−2

.

The proof of the statement about the sequence (hk)k�0 is now clear. Indeed, by (14) and the result
on the sequence (xk)k�0 we have just proved, we have, for k � 2:

−(Egk + hk) = (−Egk−1 − hk−1)gqk−1 + [k − 1](Egk−2 + hk−2)�
qk−2

.

Using now the recursion formula (12) for the sequence (gk)k�0, we get the same recursion formula
for (hk)k�0. �
2.1.1. Order of vanishing of the form xk

In this section, we determine the order of vanishing at infinity of the form xk (for all k).
First of all, we recall our conventions for binomial coefficients [1, Section 3]. For n ∈ Z and i ∈ Z

with i � 0: (
n

i

)
:=

∏i
k=1(n − k + 1)

i! .

We begin with useful, although elementary observations on derivatives of gk and xk for k � 0.
The following formula is easy to check, for a,b ∈ C not both vanishing:

Dn
(
(az + b)−w) =

(
w + n − 1

n

)
(−1)n an

(az + b)n+w
, (15)

where the operators Dn = (−π̃ )n Dn have been introduced in [1, Section 1].

Lemma 2.2. For q �= 2, k � 1 or for q = 2, k � 2, we have:

D2 gk = · · · = Dqk−1 gk = 0.

Moreover, for all q and for all k � 1, we have:

D1xk = · · · = Dqk−1xk = 0.

Proof. Assuming that k � 2 for q = 2 or k � 1 otherwise, the integer w = qk − 1 is � 2 and we have
the following congruences:

n = 2,

(
w + n − 1

2

)
=

(
qk

2

)
≡ 0 (mod p),

n = ps, s = 1, . . . , ek − 1,

(
w + n − 1

n

)
=

(
ps + qk − 2

ps

)
≡ 0 (mod p).
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Therefore, from the computations above, the uniform convergence of Eisenstein series (10) and for-
mula (15):

D2 E(qk−1) = D p E(qk−1) = D p2 E(qk−1) = · · · = D pek−1 E(qk−1) = 0. (16)

By (11) and the fact that D is iterative (use formulas (18) and (19) of [1]), we obtain the property
concerning the gk ’s.

The property of the derivatives of the xk ’s then follows from the definition xk = D1 gk . Indeed,
D1xk = D1(D1 gk) = 2D2 gk = 0 (this holds when q = 2 by the congruence 2 ≡ 0 and when q �= 2
by the equality D2 gk = 0 we have just proved). Furthermore, for 2 � i � qk − 1, Di xk = Di(D1 gk) =
D1(Di gk) = 0. �

We recall, in the next proposition and for the rest of the paper, that Lk := [k] · · · [1] for k > 0. We
also set L0 := 1.

Proposition 2.3. For all k � 0, we have

xk = (−1)k+1Lkuqk + · · · . (17)

In particular, ν∞(xk) = qk.

Proof. By Lemma 2.2 and [1, Lemma 5.2] we have, for all k � 0, xk ∈ C[[uqk ]]. Since xk vanishes at
infinity, we may write:

xk =
∑
i�1

ck,iu
iqk

, ck,i ∈ C, k � 0.

From Corollaries (10.5), (10.11) and (10.4) of [3], collected in the first part of Lemma 4.2 of [1], we
find the following u-expansions:

g = 1 − [1]uq−1 + · · · ∈ C
[[

uq−1]],
h = −u

(
1 + u(q−1)2 + · · ·) ∈ uC

[[
uq−1]],

E = u
(
1 + u(q−1)2 + · · ·) ∈ uC

[[
uq−1]].

The third u-expansion tells that the result is true for k = 0, since x0 = −E = −u + · · · . We also verify
the result for k = 1 because the three u-expansions yield x1 = −Eg − h = [1]uq + · · · .

We finish the proof by induction on s = k − 2 � 0 with the help of Proposition 2.1. From the
recursion formula for xs+2 we see that the coefficient of uqs+1

in the u-expansion of xs+2 is cs+1,1 +
[s + 1]cs,1. But xs+2 ∈ C[[uqs+2 ]] and there cannot be a non-trivial contribution by a term proportional

to uqs+1
; we deduce that this coefficient is zero. Therefore, cs+1,1 = −[s + 1]cs,1. �

Remark 2.4. It can be proved that for all k, the normalisation of xk lies in A[[uqk ]].

2.1.2. Tables
Table 1 collects several useful data checked above. The order of vanishing of hk easily follows

from (14), the fact that ν∞(gk) = 0 and Proposition 2.3. The index k is supposed to be � 1.
Table 2 describes the first values of xk , from which one easily deduces the corresponding values of

gk,hk thanks to (14):
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Table 1

form f weight depth type ν∞( f )

gk qk − 1 0 0 0
hk qk + 1 0 1 1
xk qk + 1 1 1 qk

Table 2

x0 = −E
x1 = −Eg − h
x2 = −E(gq+1 + [1]hq−1) − gqh

2.1.3. A multiplicity estimate for forms of depth � q
The next simple lemma will be used quite often.

Lemma 2.5. Let f , g be quasi-modular forms, with f ∈ M̃�l
w,m and g ∈ M̃�l′

w ′,m′ , considered as polynomials
in C[E, g,h]. Then, their resultant ρ := ResE( f , g) with respect to E is a Drinfeld modular form of weight
w(ρ) = lw ′ + wl′ − 2ll′ and type m(ρ) = lm′ + l′m − ll′ .

Proof. This is elementary and follows by a suitable adaptation of, for example, [14, Lemma 6.1] (see
also [17, Theorem 6.1]). The information on the type will not be used in this paper but is given for
the sake of completeness. �

The degree d( f ) of a quasi-modular form f is by definition the positive integer d( f ) := w( f )−l( f ),
difference between its weight and its depth.

As an application of the previous results, we prove here a multiplicity estimate for quasi-modular
forms of depth � q that will be used later in this paper.

Proposition 2.6. Let w and m be integers such that M̃�q
w,m �= {0}, and let f be a non-vanishing form in M̃�q

w,m.
Then

ν∞( f ) � q2 + 1

q + 1
d( f ).

Proof. If the bound of the proposition holds for two forms f1 and f2 with f1 f2 ∈ M̃�q
w,m , then the

bound clearly holds for f1 f2 too, by adding the inequalities. So we may suppose that f is irreducible
in the ring C[E, g,h]. Let k be the smallest integer � 0 such that

w( f ) < qk + q. (18)

If there is λ ∈ C such that f = λxk , then ν∞( f ) = qk and d( f ) = qk , so the bound of Proposition 2.6
holds. If it is not the case, then consider the resultant (with respect to the indeterminate E)

ρ := ResE( f , xk).

The function ρ is a non-zero modular form of weight w( f )+ l( f )(qk − 1) according to Lemma 2.5, so
we have, by [3, formula (5.14)],

ν∞(ρ) � w(ρ)/(q + 1) �
(

w( f ) + q
(
qk − 1

))
/(q + 1). (19)
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On the other hand, since there exist U , V ∈ M̃ such that ρ = U f + V xk , we have

ν∞(ρ) � min
{
ν∞( f ), ν∞(xk)

} = min
{
ν∞( f ),qk}. (20)

By (18) we have qk > (w( f ) + q(qk − 1))/(q + 1), so the compatibility of (19) and (20) implies
min{ν∞( f ),qk} = ν∞( f ), hence

ν∞( f ) �
(

w( f ) + q
(
qk − 1

))
/(q + 1). (21)

We distinguish now two cases. If k = 0, then we get (note that d( f ) > 0)

(q + 1)ν∞( f ) � w( f ) � d( f ) + q � (q + 1)d( f )

and the result follows in this case. If k � 1, then by minimality of k satisfying (18) we have qk−1 +q �
w( f ), hence qk � q(w( f ) − q) � qd( f ). Replacing in (21) and using the estimate w( f ) � d( f ) + q, we
get the result. �
Remark 2.7. Observing the end of the proof of this Proposition, we notice that if l( f ) < q, then we
have the strict inequality w( f ) < d( f ) + q, and hence we get the strict inequality ν∞( f ) < (q2 + 1)/

(q + 1)d( f ). This remark will be crucial in the proof of Lemma 2.14.

2.1.4. Proof of Theorem 1.2
Table 1 of Section 2.1.2 shows that xk has a high vanishing order compared to its weight. Here we

prove that this vanishing order is the highest possible among forms in M̃�1
qk+1,1

, that is, that the form

xk is extremal in M̃�1
qk+1,1

. In fact we will even get a slightly more general result (Proposition 2.12).

Lemma 2.8. For all k � 0 we have:

ρk := det

(
gk hk

gk+1 hk+1

)
= (−1)k Lkhqk

.

Proof. To compute ρk it suffices to substitute gk+1,hk+1 by their expressions as linear combinations
of gk, gk−1 and hk,hk−1 with coefficients in M (cf. (12) and Proposition 2.1). We obtain the formula

ρk = −[k]hqk−1(q−1)ρk−1; since ρ0 = det
( 1 0

g h

)
, the lemma follows. �

Lemma 2.9. For all k � 0, the form xk is irreducible as a polynomial of C[E, g,h].

Proof. Assume by contradiction that δ is a non-trivial divisor of the polynomial xk . Since xk =
−gk E − hk is of depth 1, we can assume without loss of generality that δ is a modular form, common
divisor of gk and hk . But then, δ divides the form ρk of Lemma 2.8, which tells that δ is a multi-
ple by an element of C× of a power of h. Hence, h divides gk , which does not vanish at infinity;
contradiction, because h does. �

The next lemma gives a sufficient condition for an irreducible quasi-modular form to be extremal.

Lemma 2.10. Let ϕ ∈ M̃�l
w,m be a quasi-modular form satisfying

(q + 1)ν∞(ϕ) > 2l(ϕ)d(ϕ). (22)

Then, for all non-zero quasi-modular forms f ∈ M̃�l(ϕ)
w,m without non-constant common factor with ϕ , we have

ν∞( f ) � ν∞(ϕ). In particular, if ϕ is irreducible in C[E, g,h] then it is extremal.
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Proof. Suppose that there exists a non-zero form f ∈ M̃�l(ϕ)
w,m such that ν∞( f ) > ν∞(ϕ), and such

that f and ϕ have no common factor. Then the resultant ρ := ResE( f ,ϕ) is non-zero. Note that
ρ is a modular form of weight w(ρ) = wl(ϕ) + wl( f ) − 2l(ϕ)l( f ) � 2l(ϕ)d( f ) (Lemma 2.5). Now,
we have on one side ν∞(ρ) � w(ρ)/(q + 1) (since ρ is modular), and on the other side ν∞(ρ) �
min{ν∞(ϕ), ν∞( f )} = ν∞(ϕ). Thus we find

ν∞(ϕ) � w(ρ)/(q + 1) � 2l(ϕ)d( f )/(q + 1).

But this contradicts the hypothesis (22). This shows that ν∞( f ) � ν∞(ϕ) and the first part of the
lemma is proved. The second one is clear, since when ϕ is irreducible, then any f ∈ M̃�l(ϕ)

w,m either has
no common factor with ϕ or has the form λϕ with λ ∈ C . �
Proof of Theorem 1.2. It follows at once from Lemma 2.10 applied with ϕ = xk , since xk is irreducible
by Lemma 2.9 and since the condition (22) is clearly satisfied (see Table 1 of Section 2.1.2). �
Remark 2.11. We can generalise Theorem 1.2 a little bit as follows.

Proposition 2.12. Let r0, . . . , rs be non-negative integers not all of which are zero, let us write l = r0 +· · ·+ rs ,
w = r0 + r1q + · · · + rsqs + l and let m be the class of reduction modulo q − 1 of l. If l <

q+1
2 , then the quasi-

modular form

x = xr0
0 · · · xrs

s ∈ M̃�l
w,m \ M̃�l−1

w,m

is extremal.

Proof. Let f be a non-zero element of M̃�l
w,m . Write f = ϕ∗δ and x = ϕδ, where δ, ϕ , ϕ∗ are elements

of C[E, g,h] such that ϕ and ϕ∗ are coprime. If ϕ is constant, then f is a multiple of x in C[E, g,h],
so f = λx for some λ ∈ C∗ (since w( f ) = w(x) = w by hypothesis). Thus ν∞( f ) = ν∞(x) in this case.
If now ϕ is not constant, then ϕ has the form (up to an element of C∗)

ϕ = xα0
0 · · · xαs

s

with α0, . . . ,αs not all zero such that 0 � αi � ri for all i. One readily checks that the condition
(q + 1)ν∞(ϕ) > 2l(ϕ)d(ϕ) of Lemma 2.10 is equivalent to q + 1 > 2l, so it is satisfied. Applying now
this lemma yields ν∞(ϕ∗) � ν∞(ϕ), or equivalently ν∞( f ) � ν∞(x). Thus x is extremal. �
2.2. The family (ξk)k�0

We recall that the definition of the forms ξk occurs in (8). In this section we study the forms ξk
and give proofs of Theorems 1.3 and 1.4.

Proposition 2.13. For all k � 0, the quasi-modular form ξk satisfies

w(ξk) = (
qk + 1

)
(q + 1), l(ξk) = q + 1, ν∞(ξk) = qk+2 + qk.

Proof. The fact that w(ξk) = (qk +1)(q+1) immediately follows from the definition of ξk . Let us prove
that the depth of ξk is q + 1. If k = 0, a straightforward computation yields ξ0 = −[1]Eq+1 + ghE + h2,
so the result is clear. Suppose now that k � 1. By (14), xk = −gk E − hk for all k. We get, by definition
of ξk:

ξk = [k]q(gq Eq + hq )
(gk+1 E + hk+1) − [k + 1](gk E + hk)

(
gq Eq + hq)

. (23)
k−1 k−1 k k
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If we consider ξk as a polynomial in E , the coefficient of Eq+1 is therefore equal to α :=
[k]q gk+1 gq

k−1 − [k + 1]gq+1
k . This last form is non-zero since the constant term of its u-expansion

is (using the fact that gi = 1 + · · · for all i) [k]q − [k + 1] = −[1] �= 0. It follows that the degree in E
of the form ξk is exactly q + 1, hence l(ξk) = q + 1.

It remains to prove that ν∞(ξk) = qk+2 + qk . To do this, we first notice that the following relation
holds:

−�qk
ξk = xq+1

k+1 − xq
k xk+2.

Indeed, using the recursion formula of the sequence (xk) (Proposition 2.1), we have:

xq+1
k+1 − xq

k xk+2 = (
gqk+1

xq
k − [k]q�qk

xq
k−1

)
xk+1 − xq

k

(
gqk+1

xk+1 − [k + 1]�qk
xk

)
= −�qk

ξk.

Thus, it suffices to show that

ν∞
(
xq+1

k+1 − xq
k xk+2

) = qk+2 + qk+1. (24)

But by Proposition 2.3 we have:

xq+1
k+1 − xq

k xk+2 = (
(−1)k+2Lk+1uqk+1 + · · ·)q+1 − (

(−1)k+1(−1)k+3Lq
k Lk+2uqk+1+qk+2 + · · ·)

= ([k + 1]q − [k + 2])[k + 1]Lq+1
k uqk+1+qk+2 + · · ·

= −[k + 1][1]Lq+1
k uqk+1+qk+2 + · · ·

(we have used the fact that [k + 1]q − [k + 2] = −[1]). Hence (24) holds and the proposition is
proved. �
2.2.1. Proof of Theorem 1.3
Lemma 2.14. For every k � 0 the form ξk is irreducible in C[E, g,h].

Proof. Suppose that ξk is reducible. Write ξk = ab, where a, b are non-constant quasi-modular forms.
Suppose first that l(a) � 1 and l(b) � 1, or, equivalently, that l(a) � q and l(b) � q. Since l(ξk) = q + 1,
a and b cannot both have a depth equal to q, so we may suppose l(a) < q. By Proposition 2.6 and
Remark 2.7, we have

ν∞(a) <
q2 + 1

q + 1
d(a) and ν∞(b) � q2 + 1

q + 1
d(b).

Hence, since d(a) + d(b) = d(ξk) = qk(q + 1),

ν∞(ξk) = ν∞(a) + ν∞(b) <
q2 + 1

q + 1

(
d(a) + d(b)

) = qk(q2 + 1
)
.

But this contradicts the fact that ν∞(ξk) = qk(q2 + 1) (Proposition 2.13).
Thus we have l(a) = 0 or l(b) = 0. We will suppose in what follows that l(a) = 0, i.e. a is a mod-

ular form. We will even assume, without loss of generality, that a is irreducible. Returning to the
expression (23) of ξk , we see that ξk = αEq+1 + βEq + γ E + δ with
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α = [k]q gq
k−1 gk+1 − [k + 1]gq+1

k ,

β = [k]q gq
k−1hk+1 − [k + 1]gq

khk,

γ = [k]qhq
k−1 gk+1 − [k + 1]hq

k gk,

δ = [k]qhq
k−1hk+1 − [k + 1]hq+1

k .

As in Lemma 2.8, we define

ρk := det

(
gk hk

gk+1 hk+1

)
.

We have (Lemma 2.8) ρk = (−1)k Lkhqk
. Since a is a modular form dividing ξk , it divides α, β , γ and δ,

and thus also the two forms

hq
k−1α − gq

k−1γ = [k + 1]gkρ
q
k−1 = (−1)k−1Lq

k−1[k + 1]hqk
gk

and

hq
k−1β − gq

k−1δ = [k + 1]hkρ
q
k−1 = (−1)k−1Lq

k−1[k + 1]hqk
hk.

But h does not divide α as this form does not vanish at infinity (see e.g. the proof of Proposition 2.13).
So a must divide both gk and hk . But then a divides the form ρk , hence is equal to h (up to a constant
factor). But this is impossible since h does not divide α. Finally, the contradiction obtained shows that
ξk is irreducible, as announced. �
Proof of Theorem 1.3. By Proposition 2.13 we have ν∞(ξk) = qk(q2 + 1), l(ξk) = q + 1 and d(ξk) =
qk(q + 1), hence the condition (q + 1)ν∞(ξk) > 2l(ξk)d(ξk) is satisfied for q > 2. Since ξk is irreducible
by Lemma 2.14, we may therefore apply Lemma 2.10. We get that ξk is extremal. �
Remark 2.15. For q = 2, numerical computations show that ξk is also extremal for k = 0,1 (cf. Sec-
tion 3.2).

2.2.2. Proof of Theorem 1.4
We argue as in the proof of Proposition 2.6. We may suppose that f is irreducible in the ring

C[E, g,h]. Let k be the smallest integer � 0 such that

w( f ) < qk + q2. (25)

If there is λ ∈ C such that f = λξk , then ν∞( f ) = qk(q2 + 1) and d( f ) = qk(q + 1), so the bound of
the theorem holds. If it is not the case, then consider the resultant ρ := ResE ( f , ξk). The function ρ
is a non-zero modular form of weight (w( f ) + l( f )(qk − 1))(q + 1) by Lemma 2.5, so we have

ν∞(ρ) � w(ρ)/(q + 1) � w( f ) + q2(qk − 1
)
. (26)

On the other hand, we have

ν∞(ρ) � min
{
ν∞( f ), ν∞(ξk)

} = min
{
ν∞( f ),qk(q2 + 1

)}
. (27)
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By (25) we have qk(q2 + 1) > w( f ) + q2(qk − 1), so the compatibility of (26) and (27) implies
min{ν∞( f ),qk(q2 + 1)} = ν∞( f ), hence

ν∞( f ) � w( f ) + q2(qk − 1
)
. (28)

We now distinguish two cases. If k = 0, then we get (notice that d( f ) > 0)

ν∞( f ) � w( f ) � d( f ) + q2 �
(
q2 + 1

)
d( f )

and the result follows in this case. If k � 1, then by minimality of k satisfying (25) we have qk−1 +q2 �
w( f ), hence qk � q(w( f ) − q2) � qd( f ). Replacing in (28) and using the estimate w( f ) � d( f ) + q2,
we get the result.

3. Differential extremality

In Section 5 of [1], we have introduced the following subgroups of F × where F = C(E, g,h):

Ψk = {
f ∈ F ×; (D p j f )/ f ∈ M̃ for all 0 � j � k

}
,

with the additional notation Ψ−1 := F × . The differential exponent (the map we have mentioned in
the introduction) can then be defined in the following alternative way:

εD : F × → Z�0 ∪ {∞}
such that εD( f ) = k + 1 if f ∈ Ψk \ Ψk+1 and εD( f ) = ∞ if f ∈ Ψ∞ := ⋂∞

i=−1 Ψi . This makes sense
because for all k � −1, Ψk � Ψk+1.

Lemma 3.1. The following properties of the differential exponent hold, with f , g ∈ F × .

1. If f ∈ C×hZ , then εD( f ) = ∞.
2. If q �= 2,3, then εD( f ) = ∞ implies that f ∈ C×hZ .
3. We have εD( f p) = εD( f ) + 1. Moreover, if p � m, εD( f m) = εD( f ).
4. We have εD( f g) � inf{εD( f ), εD(g)}, and equality holds when εD( f ) �= εD(g).

Sketch of proof. The first property follows from [1, Proposition 3.6]. The second property is a
paraphrase of [1, Theorem 3]. In the third property, the first part is clear by using the formula
D pk+s f pk = (D ps f )pk

, which follows easily from Leibniz rule [1, Eq. (16)]. As for the second part, we
observe that εD( f m) � εD( f ) because the sets Ψk are, as already observed, multiplicative subgroups
of F × . Let us write k = εD( f ). Then, by Leibniz’s formula (15) of [1],

D pk ( f m)

f m
= m

D pk f

f
+

∑
i1+···+im=pk

0�i1,...,im<pk

Di1 f

f
· · · Dim f

f
.

The sum on the right-hand side is an element of M̃ while (D pk f )/ f /∈ M̃ , which implies the inequality
εD( f m) � εD( f ). The fourth property can be proved in a similar way; its proof is then left to the
reader. �

As in [1, Section 5] we denote by Fr the following subset of F , which turns out to be a subfield:

Fr =
⋂

0�i�r

ker D pi .

For r = −1 we define F−1 = F . We have Fr+1 ⊂ Fr and F p
r ⊂ Fr+1 for all r � 0.
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Proposition 3.2. Let f be an element of Ψk (k � 0). Then, h−ν∞( f ) f ∈ F ×
k . More precisely,

Dn f

f
= Dn(hν∞( f ))

hν∞( f )
, n = 0, . . . , pk+1 − 1.

Proof. Let us write ν∞( f ) = n0 + · · · + nk pk + mpk+1 with n0, . . . ,nk ∈ {0, . . . , p − 1} and m � 0. Let
us also define inductively:

f−1 = f , f0 = f−1/hn0 , . . . , f s = f s−1/hns ps
, . . . .

By [1, Proposition 3.6], we know that f−1, f0, . . . , fk ∈ Ψk .
We now prove by induction on s that f s ∈ F ×

s for 0 � s � k. From elementary weight considera-
tions, there exists α ∈ C such that

D1 f−1 = αE f−1.

Writing f−1 = cui + · · · (the dots . . . are understood as a series of higher powers of u and c �= 0) and
comparing D1 f−1 = ciui+1 + · · · with αE f−1 = α(u + · · ·)(cui + · · ·) yields α ≡ i ≡ n0 (mod p). Hence
α ∈ Fp = Z/pZ and we can choose a representative α of this class, with α = n0 (allowing an abuse
of notation). Now,

D1hn0 = n0 Ehn0 ,

which implies D1 f0 = 0, hence f0 ∈ F0.
Assuming now that f s ∈ F ×

s for s < k, we proceed to prove that f s+1 ∈ F ×
s+1. Since f s ∈ Ψs , we can

apply Lemma 5.9 of [1] to check that:

D ps+1 f s = αs E ps+1
f s, αs ∈ {0, . . . , p − 1}.

Since f s ∈ F ×
s by hypothesis, Lemma 5.2 of [1] implies that

f s = csuis ps+1 + · · · ∈ C
((

ups+1))
, cs �= 0.

Comparing D ps+1 f s = csisu(is+1)ps+1 + · · · with αs E ps+1
f s = αs(ups+1 + · · ·)(csuis ps+1 + · · ·) yields αs ≡

is ≡ ns+1 (mod p) which implies αs = ns+1. Now,

D ps+1 hns+1 ps+1 = ns+1 E ps+1
hns+1 ps+1

so that f s+1 ∈ F ×
s+1.

Finally,

f

hν∞( f )
= f

hn0+n1 p+···+nk pk

1

hmpk+1
= fk

hmpk+1
∈ F ×

k ,

and for all 0 � n � pk+1 − 1,

Dn f

f
= Dn(hν∞( f ))

hν∞( f )
. �
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3.1. Differential extremality of the forms xk

Here we prove Theorem 1.6. The proof makes use at once of the main result of [2], where the
factorisations in K [g,h] of Gekeler’s forms gk ’s are determined, and of differential tools that will be
developed in Section 4. We begin with a subsection devoted to the description of the needed result
from [2], and to some preliminary lemmas.

3.1.1. Preliminaries to the proof of Theorem 1.6
Since the C-algebra M̃ is equal to the polynomial ring C[E, g,h], the group Aut(C/K ) naturally

acts on M̃ , the action on an element f ∈ M̃ being given by the action on the coefficients of f seen as
a polynomial in E, g,h. Since the functions E, g,h have their u-expansions with coefficients in K , if
σ is a K -automorphism and if f = ∑

i�0 ciui , then we have

f σ =
∑
i�0

cσ
i ui .

If L is a subfield of C , we will say that f ∈ M̃ is defined over L if f ∈ L[E, g,h].

Lemma 3.3. For k � 0, let f be normalised and differentially extremal in M̃�1
qk+1,1

. Then, f is defined over the

inseparable closure of K in C .

Proof. Let f be as in the statement of the lemma. We know that εD( f ) � e(k + 1) = εD(xk) by Propo-
sition 4.9. Hence, for all n such that 1 � n � qk+1 − 1, f divides Dn f . Let An ∈ M̃ be the polynomial
such that Dn f = An f , for n as above. By Proposition 3.2, there exists ν ∈ Z such that An = (Dnhν)/hν ,
so An is defined over K by [1, formula (3)]. Let σ be any element of Aut(C/K ). For all n with
1 � n � qk+1 − 1, we have:

Dn f σ = (Dn f )σ = (An f )σ = An f σ ,

where the first identity comes again from [1, formula (3)]. Define ν := ν∞( f ) = ν∞( f σ ) and suppose
that f �= f σ . By Proposition 3.2 and [1, Lemma 5.2], we have f h−ν, f σ h−ν ∈ C((uqk+1

)), so there
exists α ∈ Z such that ν∞(( f − f σ )h−ν) = αqk+1. Now, since f and f σ are normalised, the form
φ := f − f σ satisfies ν∞(φ) > ν . Hence we get α > 0, which implies ν∞(φ) = ν + αqk+1 > qk . But
since ν∞(xk) = qk , this contradicts the extremality of xk (Theorem 1.2). Hence we have f = f σ . �

The following conjecture seems plausible, although pretty difficult to reach with the tools at our
disposal.

Conjecture 3.4. If f is differentially extremal, then f is defined over K .

We rewrite the needed result from [2] in the following lemma.

Lemma 3.5. Let k � 2 be even. Then the polynomial gk ∈ K [g,h] is irreducible and totally decomposable over
a separable extension of K .

Proof. We know from [2, Section 2] that if we set j = gq+1/�, there exist a non-zero element ck ∈ K
and a polynomial Pk ∈ K [X] such that

gk = ck�
deg(Pk) Pk( j), (29)
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where the degree of Pk is

qk − 1

q2 − 1
.

Hence p � deg(Pk), so that Pk is separable over K . Now, formula (29) establishes a bijective correspon-
dence between the irreducible factors in K [X] of Pk (K being an algebraic closure of K in C ), and the
irreducible factors in K [g,h] of gk . This shows the second statement of the lemma. The statement on
the irreducibility of gk follows from [2, Theorem E2]. �
Remark 3.6. If k � 3 is odd, it is easy to show from the results in [2] that gk is totally decomposable
over a separable extension of K , and equal to a product of g and an irreducible polynomial of K [g,h].
However, we will only use the case k even.

Lemma 3.7. Let K be any field. Let a,b, c,d be polynomials in K[X1, . . . , Xn], where n � 1, and write F =
aX0 + b, G = c X0 + d. Let I = (F , G) be the ideal generated by F , G in K[X0, X1, . . . , Xn], and define J :=

I ∩ K[X1, . . . , Xn]. Then, if a, c are coprime in K[X1, . . . , Xn], the ideal J ⊂ K[X1, . . . , Xn] is principal,
generated by the resultant ρ := ResX0(F , G) = ad − bc.

Proof. Let A F + BG ∈ K[X1, . . . , Xn] be any polynomial of J , where A, B ∈ K[X0, . . . , Xn]. Let us
write

A =
m∑

i=0

αi X i
0, B =

m′∑
i=0

βi X i
0

with αi, β j ∈ K[X1, . . . , Xn] and αmβm′ �= 0. Considering the leading term of the expansion of A F + BG
in powers of X0, we see that m = m′ . Moreover, assuming m > 0, we have

αma + βmc = 0 (30)

and

αib + αi−1a + βid + βi−1c = 0, 1 � i � m. (31)

Since a, c are coprime, we deduce from (30) that there exists um ∈ K[X1, . . . , Xn] such that
αm = cum , βm = −aum . Substituting in (31) for i = m, we get similarly the existence of um−1 ∈

K[X1, . . . , Xn] such that

αm−1 = dum + cum−1, βm−1 = −bum − aum−1.

Arguing by induction, one sees that there exist elements um−2, . . . , u0 ∈ K[X1, . . . , Xn] such that

αi = dui+1 + cui, βi = −bui+1 − aui, i = 0, . . . ,m − 1.

Now,

A F + BG = α0b + β0d = (du1 + cu0)b + (−bu1 − au0)d = (bc − ad)u0 = −ρu0.

Thus, A F + BG ∈ (ρ) and hence J ⊂ (ρ). Since conversely ρ = aG − cF ∈ J , we find J = (ρ). �
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We recall the definition (9) of the operators ∂
(d)
n :

∂
(d)
n f = Dn f +

n∑
i=1

(−1)i
(

d + n − 1

i

)
(Dn−i f )(Di−1 E). (32)

If f ∈ M̃�l
w,m \ M̃�l−1

w,m , we write ∂n f instead of ∂
(w−l)
n f .

Lemma 3.8. Let k � 1. Let f = aE + b be in M̃�1
qk+1,1

\ M, with a,b ∈ M, and such that f divides D1 f . Then

f = −D1a and D1 f = 0.

Proof. We have D1 f = A f with A ∈ M̃�1
2,1 , so that D1 f = μE f with μ ∈ C . By definition (32) we have

D1 f = d( f )E f + ∂1 f = ∂1 f , hence ∂1 f = μE f . Since by Theorem 4.1 ∂1 f has depth � 1, we deduce
μ = 0. Definition (32) gives ∂1a = D1a + aE and ∂1b = D1b − bE . Therefore,

0 = D1 f = (D1a)E + a(D1 E) + D1b = (∂1a − aE)E + aE2 + ∂1b + bE

= (∂1a)E + ∂1b + bE.

Since ∂1a, ∂1b ∈ M by Theorem 4.1, we get ∂1a = −b and ∂1b = 0. This yields f = aE −∂1a = −D1a. �
3.1.2. Proof of Theorem 1.6

The fact that εD(xk) = e(k + 1) follows from Proposition 4.9.
The theorem is clear for k = 0 because M̃�1

2,1 has dimension 1 and is generated by E = −x0.

For k > 0, let f = aE +b, with a,b ∈ M , be normalised in M̃�1
qk+1,1

\M and differentially extremal, so

that εD( f ) � e(k + 1). We want to prove that f is proportional to xk . Let us assume by contradiction
that this is not the case. We will use Lemma 3.5, which forces us to distinguish the even and the odd
k cases.

Case of k odd. We claim that a, gk+1 are coprime in M . Let us assume the contrary. We first note
that f , thus a, is defined over the inseparable closure of K by Lemma 3.3. Now, since k + 1 is even,
we can apply Lemma 3.5 to gk+1. We deduce that if a, gk+1 have a non-constant common factor,
then it must be gk+1 (up to a non-zero constant). So gk+1 must divide a which is obviously false, by
elementary weight consideration.

The ideal Ik ∩ M of M = C[g,h] is principal, generated by the resultant ρ = ResE ( f , xk+1) by
Lemma 3.7. This is a modular form of weight w = qk(q + 1), by Lemma 2.5, and it is non-zero since
xk+1 and f are coprime by the irreducibility of xk+1 (Lemma 2.9).

We have D j f / f ∈ M̃ and D j xk+1 = 0 for 1 � j � qk+1 − 1. Hence, the ideal Ik = ( f , xk+1) of M̃
contains the sets D1 Ik, . . . , Dqk+1−1 Ik .

By Theorem 4.1, ∂ jρ ∈ Ik ∩ M , j = 1, . . . ,qk+1 − 1. Since Ik ∩ M is principal, we get:

(∂ jρ)/ρ ∈ M, j = 1, . . . ,qk+1 − 1. (33)

It is then straightforward to see, from identity (32), that

(D1ρ)/ρ, . . . , (Dqk+1−1ρ)/ρ ∈ M̃. (34)

By [1, Lemma 5.7] and Proposition 3.2, the property (34) implies that

ρ = hν∞(ρ)φqk+1
, for some φ ∈ M with ν∞(φ) = 0.
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This equality of modular forms yields the following equality of weights:

qk(q + 1) = ν∞(ρ)(q + 1) + w(φ)qk+1. (35)

If q > 2 (resp. q = 2), the equality above can hold only if w(φ) = 0 (resp. w(φ) = 0,1). Indeed,
when w(φ) �= 0, we have w(φ) � q − 1. But the non-negativity of ν∞(ρ) in (35) is contradictory with
the conditions q > 2 and w(φ) � q − 1, or q = 2 and w(φ) � 2.

Let us assume, for q � 2, that w(φ) = 0, that is, that φ is a non-zero constant. There exists c in C× ,
such that

ρ = −gk+1 f + axk+1 = chqk
.

We have proved in Proposition 2.3 that ν∞(xk+1) = qk+1. It then follows that ν∞( f ) = ν∞(gk+1 f ) = qk

(remember that ν∞(gk+1) = 0). By the extremality of xk , f is proportional to xk , a contradiction.
It remains to treat the case q = 2 and w(φ) = 1 in (35). This yields 3 · 2k = 3ν∞(ρ) + 2k+1, that

is, 3ν∞(ρ) = 2k , which is impossible by the integrality of ν∞(ρ). This concludes the proof of the
theorem in the case k odd.

Case of k even. In this case, with the same arguments that we have used for the case k odd, we see
that two subcases hold. The first is the case f = aE + b with a, gk coprime, the second is the case of
a proportional to gk .

First subcase. This case can be handled in about the same way as the case of k odd, again with ad-
ditional nested subcases corresponding to q > 2 and q = 2. Regardless to the value of q, the resultant
ρ = ResE ( f , xk) has weight 2qk and satisfies:

ρ = hν∞(ρ)φqk+1
,

by means of arguments very similar to that we have used in the case k odd. This yields

2qk = ν∞(ρ)(q + 1) + w(φ)qk+1. (36)

From this we see that 2qk � w(φ)qk+1, so that identity (36) can hold only when w(φ) = 0 if q > 2
or when w(φ) = 0,1 if q = 2. But w(φ) = 0 is impossible in (36) since q + 1 never divides 2qk . It
remains to treat the case q = 2 and w(φ) = 1. In this case, ν∞(ρ) = 0, φ is proportional to g , and
there exists c in C× such that ρ = −gk f +axk = cgqk+1

. By Proposition 3.2, D1 f = · · · = Dqk+1−1 f = 0.

However, by [1, Proposition 5.4, identity (37)], the depth of Dqk f is equal to qk + 1 and Dqk f cannot
vanish; a contradiction.

Second subcase. It remains to treat the case of f = aE + b with a proportional to gk . But in this
case, by Lemma 3.8, f is proportional to D1 gk , thus proportional to xk by definition of the sequence
(xk)k�0. The proof of the theorem is now complete. �
3.2. Numerical observations

We made several numerical computations, essentially with q = 2,3,5, thanks to the algorithms of
Section 4.2 and with the help of a computer. Let us introduce the following family of quasi-modular
forms (where we recall that Lk := [k] · · · [1] if k > 0 and L0 := 1):

ηk := Lk+1xq
k + Lq

k gxk+1 ∈ M̃�q
q(qk+1),1

\ M̃�q−1
q(qk+1),1

, k � 0.

It is easy to prove that ν∞(ηk) = qk+1 + q − 1 and εD(ηk) = 0, for all k � 0 (use Lemma 3.1 for the
latter identity).

We present Table 3 describing both the results of this paper and the analysis of the results of
the numerical experiments we made. We look at extremal and differentially extremal quasi-modular
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Table 3

l f ν∞( f ) εD ( f ) f ′

1 xk qk (k + 1)e xk

2 x2
k 2qk (k + 1)e x2

k ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

s xs
k sqk (k + 1)e xs

k ∗
s′ xs′

k ∗ s′qk (k + 1)e xs′
k ∗

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q − 1 xq−1
k ∗ qk+1 − qk (k + 1)e xq−1

k ∗
q ηk ∗ qk + q − 1 0 xq

k ∗
q + 1 ξk ∗ qk+2 + qk (k + 2)e ∗ ξk ∗

forms in the vector spaces M̃�l
l(qk+1),l

with l = 1, . . . ,q + 1 and k � 0. The integer s is supposed to be

<
q+1

2 while the integer s′ satisfies q+1
2 � s′ � q − 1.

In the first column we enter the integer l which determines the vector space where we look for
an extremal quasi-modular form. In the second column, there is an extremal quasi-modular form
f (unique up to multiplication by a scalar in C×). If an asterisk (∗) appears, the resulting form is
certified by numerical computations solely in the case of q = 2,3,5 and k = 0,1. If no asterisk figures,
the validity of the entry is understood for all q and for all k � 0.

The third column contains ν∞( f ). In the fourth column, the differential exponent εD( f ) of the
corresponding form f is computed or estimated. Again, in absence of an asterisk, the result is uncon-
ditional. Otherwise, the value of the entry represents a lower bound for εD( f ) and its exact value for
q = 2,3,5 and k = 0,1.

In the fifth column we enter a differentially extremal quasi-modular form f ′ in M̃�l
l(qk+1),l

\
M̃�l−1

l(qk+1),l
. In this case, there is no need to write down all the orders of vanishing and differen-

tial exponents, since they can be easily computed applying the results of this text and in particular
Lemma 3.1. Of course, the presence of the asterisk tells that the corresponding quantity is checked
only for q = 2,3,5 and k = 0,1. It seems that these differentially extremal forms are unique up to
multiplication by a scalar in C× .

Table 3 indicates that extremality and differential extremality are inequivalent conditions. However,
it seems that certain forms, notably the xk ’s and ξk ’s, have the interesting property of being at once
irreducible, extremal and differentially extremal.

These primitive forms will become, in the opinion of the authors, of particular importance and will
deserve a crucial role in the forthcoming researches in this topic. In the case q = 2, computations have
been pushed forward to higher values of l and k disclosing the existence of other primitive forms, that
will be studied elsewhere.

3.3. The forms xk’s as solutions of certain differential systems

In this section, we give yet another property that characterises the collection of forms xk up to
scalars in C× . The theorem below could be understood as a reasonable substitute of Theorem 2 of [8].
We recall that the operators ∂

(d)
n have been defined in (9).

Theorem 3.9. Let f be a non-constant element of M̃�1
qk+1,1

. We have

∂
(qk)
1 f = · · · = ∂

(qk)

qk+1−1
f = 0

if and only if f is proportional to xk.
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The proof of this theorem requires the two following lemmas:

Lemma 3.10. We have:

Diqk−1 E = Eiqk
, k � 0, 1 � i < q. (37)

Proof. It follows by the same arguments of the proof of [1, Lemma 3.8]. Since we have [3, p. 686]

E = 1

π̃

∑
a∈A monic

∑
b∈A

a

az + b
,

we deduce

Diqk−1 E = 1

π̃ iqk

∑
a∈A monic

∑
b∈A

(
ai

(az + b)i

)qk

= (Di−1 E)qk

= Eiqk
. �

Lemma 3.11. Let f be a non-constant element of Ψe(k+1)−1 and n be an integer � qk+1 − 1. The following
conditions are equivalent:

1. Dn f = 0 if qk does not divide n and Dn f = Eiqk
f if n = iqk with 0 � i < q.

2. ∂
(qk)
1 f = · · · = ∂

(qk)

qk+1−1
f = 0.

We first need to focus on certain structures which appear in the operator ∂
(qk)
n . With d = qk and

1 � n � qk+1 − 1, the definition of the operator ∂
(d)
n reads:

∂
(qk)
n f = Dn f + R1 + R2,

where

R1 = (−1)n
∑

0�i�n−1,qk�i

(−1)i
(

qk + n − 1

n − i

)
(Di f )(Dn−i−1 E),

R2 = (−1)n
∑

0�i�n−1,qk|i
(−1)i

(
qk + n − 1

n − i

)
(Di f )(Dn−i−1 E).

We have the congruences modulo p:

(
qk + n − 1

n − jqk

)
≡

{( i
i− j

)
if n = iqk,

0 if qk � n,
for 0 � j � q − 1, jqk � n � qk+1 − 1. (38)

The binomial in the left-hand side of the congruence is, up to multiplication by a power of −1, the

coefficient of (D jqk f )(Dn− jqk−1 E) in the expression defining ∂
(qk)
n f . Hence, after (38) and (37),
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R2 = (−1)i
i−1∑
j=0

(−1) j
(

i

i − j

)
(D jqk f )(D(i− j)qk−1 E)

= (−1)i
i−1∑
j=0

(−1) j
(

i

i − j

)
(D jqk f )E(i− j)qk

, if n = iqk, (39)

and

R2 = 0, otherwise. (40)

Proof of Lemma 3.11. 1 ⇒ 2. We prove that ∂
(qk)
n f = 0 for n = 1, . . . ,qk+1 − 1. We have R1 = 0 by

hypothesis. If qk � n, Dn f = 0 and ∂
(qk)
n f = 0 because of (40). If n = iqk , Dn f = Eiqk

f by hypothesis
and by (39)

R2 = (−1)i Eiqk
f

i−1∑
j=0

(−1) j
(

i

i − j

)
(41)

= −Eiqk
f . (42)

Hence, in this case too, ∂
(qk)
n f = Dn f + R2 = 0.

2 ⇒ 1. For n = 1, the statement is true because ∂
(qk)
1 f = D1 f . Let us assume that we have al-

ready proved that, for all n � m − 1 (m being an integer � 2) Dn f = 0 if qk does not divide n and

Dn f = Eiqk
f if n = iqk . We know that ∂

(qk)
m f = 0. Hence Dm f = −R1 − R2 = −R2 (because R1 = 0

by induction hypothesis). If qk � m, R2 = 0 by (40) and Dm f = 0. Otherwise, the induction hypothesis
implies equality (42) and Dm f = Em f . �
Proof of Theorem 3.9. If f = cxk , c ∈ C× , then identity (69) of Proposition 4.9 and Lemma 3.11 im-

ply that the identities involving the operators ∂
(qk)
n hold. For the other implication, we first apply

Lemma 3.11 and then, Theorem 1.6. �
Remark 3.12. We could not find an analogue of Theorem 3.9 for the family (ξk)k�0. Similarly, we did
not find a reasonable substitute of Theorem 1 of [8].

3.4. Structure of the subfields Fk

The content of this section is independent on our quest of finding differentially extremal quasi-
modular forms and can be skipped in a first reading of the paper.

Proposition 3.2 says that every differentially extremal quasi-modular form is multiple by a power
of the form h of a (necessarily isobaric) element of Fk . By [11, Proposition 2.2], there exists,
for all k � 0, an element zk ∈ F \ Fk such that F is a Fk-vector space of dimension pk of basis

(1, zk, . . . , zpk−1
k ) and such that for all n,m ∈ N, Dnzm

k = (m
n

)
zm−n

k . However, this does not clarify much
the structure of the fields Fk themselves.

We now define the sequence (yk)k�1 by

yk = �qk−1
xk−1.
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Here, we prove:

Theorem 3.13. Let r � 0 be a non-negative integer. For every integer k such that qk+1 > pr , we have

Fr = F p
r−1(xk+1, yk+1).

For instance, if we take k = r, we find Fk = F p
k−1(xk+1, yk+1) for all k � 0.

To prove Theorem 3.13 we will need two lemmas.

Lemma 3.14. For all r � 0 we have [
Fr : F p

r−1

] = p2.

Proof. We know that [Fr−1 : Fr] = p for all r. Let us prove by induction that [Fr : F p
r ] = p3. This is

clear for r = −1. If now this property holds for the integer r − 1, then

[
Fr : F p

r
] = [Fr−1 : F p

r−1][F p
r−1 : F p

r ]
[Fr−1 : Fr] = p3 · p

p
= p3,

hence the property also holds for r. Thus it holds for all r � 0, from which we deduce

[
Fr : F p

r−1

] = [Fr : F p
r ]

[F p
r−1 : F p

r ] = p3

p
= p2. �

Lemma 3.15. For all k � 0 the elements xi
k+1 y j

k+1 (1 � i, j � p − 1) are linearly independent over F p .

Proof. Let us first consider the case k = 0. Suppose that there exists a relation∑
0�i�p−1
0� j�p−1

λ
p
i jx

i
1 y j

1 = 0 (43)

where λi j ∈ F . Since x1 = −(Eg + h) and y1 = Ehq−1 this rewrites, after multiplying (43) by hp−1:

∑
0�i�p−1
0� j�p−1

(
(−1)iλi jh

jpe−1)p
(Eg + h)i E jhp−1− j = 0. (44)

Since the forms Eg + h, E and h are algebraically independent over C by [1, Lemma 2.4], the forms
(Eg + h)i E jhk (0 � i, j,k � p − 1) are obviously linearly independent over F p . In particular, it follows
from (44) that (−1)iλi jh jpe−1 = 0 for all i, j, hence λi j = 0 for all i, j. This proves the result for k = 0.

Suppose now that k � 1. Since xk+1 = gqk
xk − [k]yk and yk+1 = �qk

xk , we have:

F p(xk+1, yk+1) = F p(xk+1, xk) = F p(
gqk

xk − [k]yk, xk
) = F p(xk, yk).

By induction, it follows that F p(xk+1, yk+1) = F p(x1, y1), hence[
F p(xk+1, yk+1) : F p] = [

F p(x1, y1) : F p] = p2
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by the case k = 0 we have just proved. But this means that the p2 generators xi
k+1 y j

k+1 (1 � i, j �
p − 1) of the F p-algebra F p(xk+1, yk+1) are F p-linearly independent. �
Proof of Theorem 3.13. Let r � 0 and k � 0 be as in the theorem. First of all, we note that by
Lemma 2.2 we have xk+1 ∈ Fr . Next, the relation [k + 1]yk+1 = xk+1 gqk+1 − xk+2 together with the

fact that gqk+1
, xk+1, xk+2 all belong to Fr shows that yk+1 ∈ Fr . Thus we have the inclusions

F p
r−1 ⊂ F p

r−1(xk+1, yk+1) ⊂ Fr .

Now, we have [Fr : F p
r−1] = [F p

r−1(xk+1, yk+1) : F p
r−1] = p2 by Lemmas 3.14 and 3.15. It follows that

Fr = F p
r−1(xk+1, yk+1). �

Remark 3.16. Let us define, for s ∈ Z and k � 0:

A(s)
k := {

f ∈ Ψk such that ν∞( f ) ≡ s
(
mod pk+1)} ∪ {0}.

It is an Fk-vector space by Proposition 3.2 and [1, Lemma 5.2]. Then it is easy to see that we have
the following direct sum:

Ak := C[Ψk] =
⊕

s∈Z/pk+1Z

A(s)
k .

Ak is a Z/pk+1Z-graded Fk-algebra. Proposition 3.2 implies that a basis of this algebra is
(1,h, . . . ,hpk+1−1). The difficulty of constructing differentially extremal quasi-modular forms comes
from the difficulty of computing the intersections A(s)

k ∩ M̃�l
w,m for given s,k, l, w,m. This seems to

explain why we did not really take advantage of Theorem 3.13.
It is easy to deduce from Proposition 3.2 that A(s)

k ∩ M = M pk+1
hs with M = C[g,h], that is,

Lemma 5.7 of [1] (this result also follows from [15, Theorem 2.6]).

4. Differential tools

This section, divided in two distinct subsections, contains two contributions to the study of differ-
ential properties of Drinfeld quasi-modular forms, the proof of Theorem 4.1 for the operators ∂

(d)
n and

the description of an algorithm which allows to compute higher derivatives of Drinfeld quasi-modular
forms. Although these tools have been already used, namely in Section 3, we decided to collect them
in a separate section as they can be of interest independent on the study of differential extemality.

4.1. Higher Serre’s operators

Here we study the higher Serre’s operators (9) and prove Theorem 4.1.
Let n,d be non-negative integers. We have defined the n-th Serre’s operator of degree d, ∂

(d)
n : M̃ → M̃ ,

by the following formula, that we quote again to ease the reading of this section:

∂
(d)
n f = Dn f +

n∑
i=1

(−1)i
(

d + n − 1

i

)
(Dn−i f )(Di−1 E). (45)

Notice that in this definition the integer d is arbitrary: In particular, it is not necessarily the weight
or the degree of f (at this stage f is not supposed to be a quasi-modular form, anyway). If n = 0,
then ∂

(d)
n f = ∂

(d)
0 f = f . If n = 1, we have ∂

(d)
n f = D1 f − dE f , which coincides with the formula (13)

when d = w( f ).
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In [9], the authors use the family of operators θ
(r)
k , described in the introduction, which act on

vector spaces of quasi-modular forms for SL2(Z). When n � 1, there is a strong similarity between
our operator ∂

(d)
n and the operator 1

n! θ
(n−1)

d .
In [18], the authors introduce a class of operators on Drinfeld modular forms which could play

the role of Rankin–Cohen operators in the drinfeldian framework. Their definition appears in formula
(3.14) of their Theorem 3.7, and the notation they adopt for their operator is [·,·]k,l,n . It is easy to
prove that for all n,d � 1 there exists λn,d ∈ Fq such that:

∂
(d)
n f = Dn f − λn,d(−π̃ )1−n(n + d − 1)[E, f ]2,d,n−1.

However, we do not have a general receipt to compute λn,d; for instance, we notice that it can vanish
for certain choices of n,d.

The remarkable feature of the operator ∂
(d)
n is that it does not increase the depth of quasi-modular

forms of degree d. In the classical case, a proof of this fact appears, for example, in [9, Proposition 3.3].

Theorem 4.1. Let w, l be non-negative integers with w � 2l and let m be a class in Z/(q − 1)Z. Define
d := w − l. For every n ∈ N, we have

∂
(d)
n

(
M̃�l

w,m
) ⊂ M̃�l

w+2n,m+n. (46)

In particular, ∂(w)
n sends modular forms of weight w and type m on modular forms of weight w + 2n and type

m + n.

To prove this theorem we will use the notion of polynomial associated with a Drinfeld quasi-
modular form introduced in [1]. We recall for convenience the definitions and properties we will
need here. If f is a Drinfeld quasi-modular form of weight w and type m, then there exists a unique
polynomial P f = ∑l

i=0 f i X i ∈ M̃[X] such that

f
(
γ (z)

) = (cz + d)w

(detγ )m

l∑
i=0

f i(z)

(
c

cz + d

)i

for every z ∈ Ω and every γ = ( a b
c d

) ∈ GL2(A). This polynomial is the polynomial associated with f ,
its coefficients are in fact Drinfeld quasi-modular forms. If f = 0, then P f = 0 and if f �= 0, then
the degree of P f is equal to the depth of f . When f is a modular form, then we have P f = f and
for f = E we have P E = E − π̃−1 X . Finally, if f1, f2 are two Drinfeld quasi-modular forms, then
P f1 f2 = P f1 P f2 and, if f1, f2 have the same weight and the same type, then P f1+ f2 = P f1 + P f2 .

It will be convenient to introduce the following notation, where X is an indeterminate over the
ring M̃ , which is equal to C[E, g,h] in virtue of [1, Theorem 1].

Definition 4.2. Let f = f (E, g,h) be an element of M̃ . For every n ∈ N we define ∂
(E)
n f ∈ M̃ by the

formula

f (E + X, g,h) =
∑
n�0

(
∂

(E)
n f

)
Xn ∈ C[E, g,h, X], (47)

The family ∂(E) = (∂
(E)
n )n�0 is obviously an iterative higher derivation on M̃ . We have ∂

(E)
1 = ∂

∂ E

and ( ∂
∂ E )n = n! ∂(E)

n . The interest of introducing ∂(E) is that the following property clearly holds (for
all Drinfeld quasi-modular forms f �= 0 and all integers l � 0):

l( f ) � l ⇐⇒ ∂
(E)
n f = 0 for all n � l + 1. (48)
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In fact, it turns out that the ∂
(E)
n f ’s are, up to powers of −π̃ , the coefficients of the associated

polynomial P f .

Lemma 4.3. Let f be a Drinfeld quasi-modular form. Then we have

P f (X) =
∑
n�0

∂
(E)
n f

(−π̃ )n
Xn.

Proof. We may assume that f is non-zero. Let w , m and l denote respectively the weight, the type
and the depth of f . Let us write f = ∑l

i=0 f i Ei , where f i = f i(g,h) ∈ Mw−2i,m−i . We have

P f =
l∑

i=0

P fi Ei =
l∑

i=0

f i P i
E =

l∑
i=0

f i

(
E − 1

π̃
X

)i

= f

(
E − 1

π̃
X, g,h

)
,

so the result immediately follows from (47). �
This very simple result allows to translate any property about the coefficients of the polynomial

P f into a property about the higher derivatives ∂
(E)
n f and conversely. For example, the reader will

easily check that the fact that ∂(E) is iterative is equivalent to Lemma 2.5 of [1]. For the proof of
Theorem 4.1, we will use the reformulation of [1, Proposition 3.1] in terms of the higher derivation
∂(E) . This yields the following commutation rule between ∂

(E)
j and Dn . Note that in the complex case

and for j = 1, the analogous formula is established in [9] (during the proof of Proposition 3.3).

Lemma 4.4. Let j � 0 and n � 0 be non-negative integers, and let f be a Drinfeld quasi-modular form of
weight w. Then we have

∂
(E)
j Dn f =

n∑
r=0

(
w + n − j + r − 1

r

)
Dn−r∂

(E)
j−r f ,

where we set ∂
(E)
i = 0 if i < 0.

Proof. This is exactly the formula for P Dn f given in Proposition 3.1 of [1], expressed in terms of the
higher derivation ∂(E) with help of Lemma 4.3, and taking into account the fact that Di = 1

(−π̃ )i Di . �
The next lemma is analogous to a similar formula appearing in the proof of [9, Proposition 3.3].

However, the proof in our case cannot be done by induction as in [9] and thus requires more care.

Lemma 4.5. Let n, d, w and k be non-negative integers, and let f be a Drinfeld quasi-modular form of
weight w. Then we have

∂
(E)

k ∂
(d)
n f =

k∑
i=0

(−1)i
(

d + k − w − 1

i

)
∂

(d+i)
n−i ∂

(E)

k−i f , (49)

where we define ∂
(d)
j = 0 if j < 0.
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Proof. The formula (49) being plainly true if n = 0, we will assume in the following that n � 1.
Applying the operator ∂

(E)

k to Eq. (45) and using Leibniz rule for the product ∂
(E)

k ((Dn−i f )(Di−1 E)),
we get

∂
(E)

k ∂
(d)
n f = ∂

(E)

k Dn f +
∑

1�i�n
0� j�k

(−1)i
(

d + n − 1

i

)(
∂

(E)
j Dn−i f

)(
∂

(E)

k− j Di−1 E
)
. (50)

Applying Lemma 4.4 with f = E and noting that ∂
(E)

k− j−r E = 0 if r > k − j or r < k − j − 1, we have
(we use the convention Di = 0 if i < 0)

∂
(E)

k− j Di−1 E =
∑
r�0

(
i − k + j + r

r

)
Di−1−r∂

(E)

k− j−r E

=
(

i

k − j

)
Di+ j−k−1 E +

(
i − 1

k − j − 1

)
Di+ j−k(1)

=

⎧⎪⎨⎪⎩
( i

k− j

)
Di+ j−k−1 E if j > k − i,

1 if j = k − i,

0 if j < k − i.

Substituting in (50), we obtain

∂
(E)

k ∂
(d)
n f = A + B, (51)

where

A =
∑

0�i�n

(−1)i
(

d + n − 1

i

)
∂

(E)

k−i Dn−i f

and

B =
∑

1�i�n
k−i+1� j�k

(−1)i
(

d + n − 1

i

)(
i

k − j

)(
∂

(E)
j Dn−i f

)
(Di+ j−k−1 E).

Applying Lemma 4.4 again and then making the change of variable I = i +r, we first find the following
expression for A:

A =
∑

0�i�n

∑
0�r�n−i

(−1)i
(

d + n − 1

i

)(
w + n − k + r − 1

r

)
Dn−i−r∂

(E)

k−i−r f

=
∑

0�I�n

[ ∑
0�i�I

(−1)i
(

d + n − 1

i

)(
w + n − k + I − i − 1

I − i

)]
Dn−I∂

(E)

k−I f

=
∑

0�I�n

(−1)I
(

d + k − w − 1

I

)
Dn−I∂

(E)

k−I f . (52)
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Similarly for B , we apply Lemma 4.4 to ∂
(E)
j Dn−i f and then make the changes of variable J = i + j −k,

I = i + r − J . This yields

B =
∑

0�I�n−1
1� J�n−I

(−1)I+ J S I J
(

Dn−I− J ∂
(E)

k−I f
)
(D J−1 E),

where

S I J =
I∑

r=0

(−1)r
(

d + n − 1

I + J − r

)(
I + J − r

I − r

)(
w + n − k − J + r − 1

r

)
.

Since (
d + n − 1

I + J − r

)(
I + J − r

I − r

)
=

(
d + n − 1

d + n − 1 − J

)(
d + n − J − 1

I − r

)
,

the sum S I J is equal to (
d + n − 1

d + n − 1 − J

)
T I J

with

T I J =
I∑

r=0

(−1)r
(

d + n − J − 1

I − r

)(
w + n − k − J + r − 1

r

)

=
(

d + k − w − 1

I

)
by [1, Lemma 3.2]. Hence we obtain the following expression for B:

B =
∑

0�I�n−1
1� J�n−I

(−1)I+ J
(

d + k − w − 1

I

)(
d + n − 1

d + n − 1 − J

)(
Dn−I− J ∂

(E)

k−I f
)
(D J−1 E). (53)

Now, we note that in the formula (52) the summands vanish if I > n or I > k, so we may assume that
I runs from 0 to k. Similarly, in the formula (53) we can let I vary from 0 to k. Using this remark,
and substituting (52) and (53) in (51), we get:

∂
(E)

k ∂
(d)
n f =

k∑
I=0

(−1)I
(

d + k − w − 1

I

)

×
[

Dn−I∂
(E)

k−I f +
n−I∑
J=1

(−1) J
(

d + n − 1

d + n − 1 − J

)(
Dn−I− J ∂

(E)

k−I f
)
(D J−1 E)

]
.

This is nothing else than the formula (49), so Lemma 4.5 is proved. �
We can now prove Theorem 4.1.



V. Bosser, F. Pellarin / Journal of Number Theory 129 (2009) 2952–2990 2983
Proof of Theorem 4.1. Let f ∈ M̃�l
w,m , and let k be any integer such that k � l + 1. We want to show

that ∂
(E)

k ∂
(d)
n f = 0, which will prove the proposition by property (48). We use for this Lemma 4.5.

Since here d = w − l, we have

∂
(E)

k ∂
(d)
n f =

k∑
i=0

(−1)i
(

k − l − 1

i

)
∂

(d+i)
n−i ∂

(E)

k−i f . (54)

In this sum, if i � k − l − 1, then k − i � l + 1 and hence ∂
(E)

k−i f = 0 (property (48)). If now i � k − l,

then
(k−l−1

i

) = 0. So all the summands in the right-hand side of (54) vanish and ∂
(E)

k ∂
(d)
n f = 0. �

4.1.1. Digression: an application to eigenforms of Hecke operators
Theorem 4.1 has already been used in the proof of Theorem 1.6 (in Section 3). Another interesting

application of this theorem is that it can be used to construct a priori new eigenforms for Hecke
operators, from given ones.

Let p = (P ) be a non-zero prime ideal of A, where P is a monic polynomial. Following [5, § 1.8]
or [3, § 7], we define, for any quasi-modular form f ∈ M̃�l

w,m , Tp f by the formula

(Tp f )(z) = P w f (P z) +
∑
b∈A

degθ b<degθ P

f

(
z + b

P

)
, (55)

where we remark the dependence of this operator on the weight w . We also notice that there is no
reason for Tp f to lie in M̃ , except when we already know that f ∈ M .

Lemma 4.6. If f ∈ M̃�l
w,m is a quasi-modular form which is an eigenform for Tp with eigenvalue λ ∈ C (that

is, such that Tp f = λ f ), then for all n � 1, Dn f ∈ M̃�l+n
w+2n,m+n also is an eigenform with eigenvalue λPn.

Proof. The function ϕ : z �→ f (P z) satisfies (Dnϕ)(z) = Pn(Dn f )(P z) for all n, and the functions
fb : z �→ f ((z + b)/P ) satisfy (Dn fb)(z) = P−n(Dn f )((z + b)/P ). Since the weight of Dn f is w + 2n,
we then see that

Tp(Dn f ) = Pn Dn(Tp f ) for all n � 0,

where this time, the operator Tp in the left-hand side is defined as in (55) but with w replaced by
w + 2n. It immediately follows that if Tp f = λ f for some λ ∈ C , then Tp(Dn f ) = λPn(Dn f ). �
Example. The normalised Eisenstein series gk defined in (11) (for k � 1) are modular eigenforms
of weight qk − 1 and type 0 of all the operators Tp with corresponding eigenvalue P qk−1, by
[3, Proposition 7.2]. Therefore, Lemma 4.6 says that xk = D1 gk is eigenform of all the operators Tp

with corresponding eigenvalue P qk
(if k � 1).

Question. Are the forms ξk of Section 2.2 eigenforms for all the Hecke operators?

More interesting is the particular case in which f is a modular form which is known to be an
eigenform for all the Hecke operators, and n is an integer such that Dn f is again a modular form. The
next lemma implies that when d � 2, there are infinitely many n’s for which Dn = ∂

(d)
n , and thus every

eigenform f of Tp of degree � 2 potentially yields other eigenforms (these forms may be identically
zero, but in many examples they are not).
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Lemma 4.7. Let d,k be non-negative integers with d � 2 and pk(p − 1) � d − 1, and write n = 1 − d + pk+1 .
Then ∂

(d)
n = Dn.

Proof. By using e.g. the formula (14) of [1], one easily checks that(
d + n − 1

i

)
≡ 0 (mod p) for all i = 1, . . . ,n.

The conclusion follows by applying these congruences to the formula defining the operators ∂
(d)
n . �

If f is a modular form of weight d � 2 and if n is the integer of Lemma 4.7, Dn f is a modular form
by Theorem 4.1. Note that for a given f , there might be other choices of n for which ∂

(d)
n f = Dn f ,

but it is not difficult to show that there is at most one more choice for n than the one in the lemma,
for which

(d+n−1
i

) ≡ 0 (mod p) for all i = 1, . . . ,n.

Example. We know [3, Corollary (7.6)] that h is an eigenform of all the Hecke operators. Here d =
q + 1, and we can take n = pk+1 − q for every k such that pk(p − 1) � q. Then we get an infinite
family of eigenforms (D pk+1−qh). We remark that we already knew from [1, Lemma 3.10] that these
functions are modular. We do not know yet how to characterise the integers n such that Dnh �= 0.

By using the tools developed in Section 4.2, some of these forms can be computed explicitly. Then,
it can be checked that not all of them are zero, and they do not belong to the families known by the
work of Gekeler and Goss [3,5]. For example, one computes easily:

Dq2−qh = gq−1hq

[1]q−1
, Dq(�) = ghq

[1] ,

so that gq−1hq and ghq are Hecke eigenforms.

4.2. An algorithm to compute higher derivatives

Let δ = (δn)n�0 be a higher derivation on a C-algebra F . Then, X being an indeterminate over F ,
the map (Taylor’s homomorphism)

T δ
X : F → F [[X]]

defined by

T δ
X (x) =

∞∑
n=0

(δnx)Xn

is a C-algebra homomorphism [10, Section 27].
Over F [[X]] there also is the iterative higher derivation δ′ = (δ′

n)n�0 uniquely determined by

δ′
n

(
f X i) =

(
i

n

)
f X i−n (56)

for f ∈ F and n, i � 0. One checks that (δn)n�0 is iterative if and only if, over F ,

T δ
X ◦ δn = δ′

n ◦ T δ
X , n � 0. (57)

Indeed, this condition is equivalent to the commutativity of the diagram on p. 209 of [10].
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From now on we work with F = C(E, g,h) and δ = D = (Dn)n�0. We also write, to ease notations,
T X = T D

X . We will also look at the fraction field F (X) of F [X] as embedded in F ((X)). For example,
the expression 1/(1 − E X) represents the formal series 1 + E X + E2 X2 + · · · ∈ F [[X]].

Let f be an element of F . In the following, we will make use of the polynomials

T X,k( f ) :=
qk−1∑
i=0

(Di f )Xi ∈ F [X],

so that, in F [[X]], we have the following congruence modulo the ideal (Xqk
):

T X ( f ) ≡ T X,k( f )
(
mod

(
Xqk ))

.

These polynomials provide approximations to arbitrary order for the formal series T X ( f ) as T X ( f ) =
limn→∞ T X,n( f ) (limit for the X-adic metric).

The map T X,k : F → F [X] is not a C-algebra homomorphism itself, but induces a C-algebra homo-
morphism:

T X,k : F → F [[X]]
(Xqk

)
= F [X]

(Xqk
)
.

The following identities and congruences will prove to be useful (the product being equal to 1
when the indexing set is empty):

T X,r+s
(

f qs) = T X,r( f )qs
, (58)

T X,r
(

f −1) ≡ f −qr
r−1∏
i=0

T X,r−i
(

f q−1)qi (
mod

(
Xqr ))

. (59)

Equality (58) holds for f ∈ F and r, s � 0 and its validity is easy to check. Congruence (59) holds for
f ∈ F × and r � 0 and can be proved as follows. Since T X ( f )qr ≡ f qr

(mod (Xqr
)), we have

T X,r
(

f q−1)1+q+···+qr−1

T X,r( f ) ≡ f qr (
mod

(
Xqr ))

,

yielding the desired congruence.

Proposition 4.8. Let r, s � 0 be integers. The following congruence holds, modulo the ideal (Xqr+s+1
) of F [[X]]:

T X,r+s+1(gs) ≡ [s + 1]−1 T X,r+1
(
�−1)qs(

T X,r(g)qs+1 T X,r+s+1(gs+1) − T X,r+s+1(gs+2)
)
. (60)

Proof. We appeal to the formula (12), which is equivalent to

gs = [s + 1]−1�−qs(
gqs+1

gs+1 − gs+2
)
, s � 0.

Congruence (60) is obtained applying the C-algebra homomorphism T X to both sides of the latter
identity (formulas (58) and (59) can help):

T X (gs) = [s + 1]−1 T X (�)−qs(T X (g)qs+1 T X (gs+1) − T X (gs+2)
)
, s � 0, (61)

and then reducing modulo the ideal (Xqr+s+1
) of F [[X]]. �
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We now give an algorithm for the explicit computation of T X (g1), T X (g2), . . . and T X (�), for
which Proposition 4.8 and Lemma 2.2 are the key tools.

The best way to describe our algorithm, naturally presented as an induction process, is to begin
by giving the detail of the explicit computation of its first steps. We start with the explicit compu-
tation of the polynomials T X,1(�) and T X,s+1(gs) (s � 1) (first approximation). Then, we proceed to

the computation of T X,2(�) and of a representative of T X (gs) modulo the ideal (Xqs+1+2) (second
approximation). Unfortunately, the full computation of the polynomials T X,s+2(gs) would be too long
to present in this article.

These explicit computations will prepare the reader for the general process which generates ex-
plicit expressions for the polynomials T X,r+s+1(gs) (s � 1) and T X,r+1(�) for all r � 1; he or she will
then be ready to understand the algorithm. At the same time, the accomplished explicit computations
are used for different purposes in several parts of this paper.

In [1, Theorem 4.1] we have computed D1 f , Dq f , Dq2 f ∈ C[E, g,h] with f ∈ {E, g,h}, applying
the classical technique consisting in solving linear equations in C-vector spaces of modular forms
with prescribed order of vanishing at infinity. This method of computation can be pushed beyond to
compute also Dq3 f , Dq4 f , . . . but then it requires that one first computes the coefficients of the u-
expansions of E, g,h with Gekeler’s algorithm of [3], before entering the linear algebra part. However,
the computation of the u-expansions of E, g,h is not an easy matter, since it also needs computation
of the so-called Goss polynomials, a task that usually generates large computations.

The algorithm we give here is of a different nature and can be considered as a variant of Gekeler’s
techniques of computing Goss polynomials (cf. Proof of Lemma 3.3), and using the recurrence rela-
tions (12) to yield u-expansions of modular forms. Our algorithm is easier to use, compared to the
methods introduced in [1] because it does not need any preliminary computation of u-expansions.

4.2.1. First approximation
We know that:

T X,s(gs) = gs + xs X, s � 1, (62)

T X,1(�) = �(1 − E X). (63)

The first formula follows easily from Lemma 2.2, while the second can be obtained by using [1,
Theorem 4.1(iii)] or applying Lemma 2.2 to g1, g2 and then use the formula

� = [1]−1(gq+1
1 − g2

)
, (64)

easily deduced from (12).
From (63) we obtain:

T X,1
(
�−1) ≡ �−1 1

1 − E X

(
mod

(
Xq))

= �−1(1 + E X + E2 X2 + · · · + Eq−1 Xq−1).
Substituting (62) in (60) we obtain the following congruence modulo the ideal (Xqs+1

) for T X,s+1(gs),
where we suppose that s � 1:

T X,s+1(gs) ≡ [s + 1]−1�−qs 1

1 − Eqs Xqs

((
gqs+1 + xqs+1

1 Xqs+1)
(gs+1 + xs+1 X) − (gs+2 + xs+2 X)

)
≡ gs + xs X

qs qs . (65)

1 − E X
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We thus obtain the following formula for T X,s+1(gs):

T X,s+1(gs) = gs + xs X + Eqs
Xqs

(gs + xs X) + · · · + E(q−1)qs
X (q−1)qs

(gs + xs X).

This in turn allows, inserting the congruence (65) for s = 1,2 in (64), to compute T X,2(�). Here is the

formula we find (congruences modulo the ideal (Xq2
)):

T X,2(�) ≡ [1]−1(T X,2(g1)
q T X,2(g1) − T X,2(g2)

)
≡ [1]−1

(
(g + x1 X)q+1

(1 − Eq Xq)q+1
− (g2 + x2 X)

)
≡ �

(
1 − E X +

(
gh

[1] − Eq
)

Xq +
(

Eq+1 − Egh

[1] − h2

[1]
)

Xq+1
)(

1 − Eq Xq)−1
. (66)

To check the last congruence, the reader can make use of Tables 1 and 2 of Section 2.1.2 and iden-
tity (64).

4.2.2. Second approximation
By using (60) and (65), we get, for all s � 1, the following congruences modulo the ideal (Xqs+2

):

[s + 1]T X,s+2(gs) ≡ T X,2
(
�−1)qs(

T X,1(g)qs+1 T X,s+2(gs+1) − T X,s+2(gs+2)
)

≡ T X,2
(
�−1)qs

((
gqs+1 + xqs+1

1 Xqs+1) gs+1 + xs+1 X

1 − Eqs+1 Xqs+1 − (gs+2 + xs+2 X)

)
.

The explicit computation of T X,2(�
−1) is possible with Formula (59). Unfortunately, it is rather

complicated to handle, so we limit ourselves to its determination modulo the ideal (Xq+1). This is
why we do not fully compute T X,s+2(gs) in this text.

Since T X,2(�) ≡ �(1 − E X + ([1]−1 gh − Eq)Xq) (mod (Xq+1)) we compute easily:

T X,2
(
�−1) ≡ �−1

( q−1∑
i=0

Ei Xi +
(

Eq − gh

[1]
)

Xq

) (
mod

(
Xq+1)). (67)

We reduce the qs-th power of the polynomial (67) modulo the ideal (Xqs+1+2). Looking at the for-
mula (12) in the form

�qs
gs = [s + 1]−1(gqs+1

gs+1 − gs+2
)

and x1 = −Eg − h, we find the congruences (modulo (Xqs+1+2)):

[s + 1]T X (gs)

≡ T X,2
(
�−1)qs((

gqs+1 + xqs+1

1 Xqs+1)
(gs+1 + xs+1 X)

(
1 + Eqs+1

Xqs+1) − (gs+2 + xs+2 X)
)

≡ T X,2
(
�−1)qs(

gqs+1
gs+1 − gs+2 + (

gqs+1
xs+1 − xs+2

)
X + (

xqs+1

1 gs+1 + Eqs+1
gs+1 gqs+1)

Xqs+1

− hqs+1
xs+1 Xqs+1+1)

≡ T X,2
(
�−1)qs(

�qs [s + 1]gs + �qs [s + 1]xs X − hqs+1
gs+1 Xqs+1 − hqs+1

xs+1 Xqs+1+1)
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≡
(q−1∑

i=0

Eiqs
X iqs +

(
Eqs+1 − gqs

hqs

[1]qs

)
Xqs+1

)

× ([s + 1]gs + [s + 1]xs X + hqs
gs+1 Xqs+1 + hqs

xs+1 Xqs+1+1) (
mod

(
Xqs+1+2)).

Therefore, we obtain:

Proposition 4.9. For s � 1, we have the congruences:

T X (gs) ≡ gs + xs X

1 − Eqs Xqs − hqs
(

− gs+1

[s + 1] + gqs
gs

[1]qs

)
Xqs+1 − hqs

(
− xs+1

[s + 1] + gqs
xs

[1]qs

)
Xqs+1+1

(
mod

(
Xqs+1+2)), (68)

T X (xs) ≡ xs

1 − Eqs Xqs − hqs
(

− xs+1

[s + 1] + gqs
xs

[1]qs

)
Xqs+1 (

mod
(

Xqs+1+1)). (69)

In particular, εD(xk) = (k + 1)e for all k � 0.

The second congruence of the proposition follows from the first and (57) because we have, for
s � 1:

T X (xs) = T X (D1 gs) = ∂

∂ X
T X (gs).

The value of εD(xk) is now easy to determine thanks to (69). Indeed, the first term of the right-hand
side of this identity tell that εD(xk) � (k + 1)e. Equality follows by checking that the coefficient of
Xqk+1

is a polynomial of C[E, g,h] which is coprime with xk by Lemma 2.9.

Remark 4.10. Notice that, substituting s = 0, the second formula agrees with [1, (iv) and (vii) of
Theorem 4.1]. There is no simple explanation of this fact.

4.2.3. End of description of the algorithm
We shall now describe, in its generality, the algorithm, which uses induction on r � 1. Taking into

account Proposition 4.9 and formula (67), we can assume that for an integer r � 1 we have already
computed T X,r+s(gs) (for all s � 1) and T X,r+1(�), explicitly as polynomials of C(E, g,h)[X].

Therefore, in (60), the polynomials

T X,r+s+1(gs+2), T X,r(g), T X,r+s+1(gs+1)

are all known. By using (59), we compute T X,r+1(�
−1), then we use (58) to raise the expression to

the qs-th power; we obtain the polynomials T X,r+s+1(gs), s � 1.
In particular, for s = 1,2 we have an explicit expression of T X,r+2(g1) and T X,r+3(g2) and the

degree < qr+2 representative of the class of reduction modulo (Xqr+2
) of the polynomial

[1]−1(T X,r+2(g1)
q+1 − T X,r+3(g2)

)
is the polynomial T X,r+2(�) by (64).

This ends the description of the algorithm.
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4.2.4. An algorithm which computes Dn f for f = E, g,h, n � 1
It remains to explain how to compute the polynomials T X,r( f ) with f ∈ {E, g,h} for r � 0. First of

all, T X,r(g) and T X,r(�) are computed by the algorithm of Section 4.2.3 (case s = 1).
We have � = −hq−1. Hence, T X (�) = −T X (h)q−1. By [1, Proposition 3.6], there exist two formal

series

fh =
∞∑

m=0

cm Xm, f� =
∞∑

m=0

dm Xm ∈ F [[X]]

with c0 = d0 = 1, such that T X (h) = hfh and T X (�) = � f� . We have

f q−1
h = f�,

so that the coefficients cn are uniquely determined by the following relations:

cn = �n −
∑

i+ j=n, i �=n

cid j, where �n =
{

0 if q � n,

cq
n/q if q|n,

n � 0.

The coefficients cn can be computed by induction on n � 0 and this allows to compute the polynomi-
als T X,r(h).

Now, D1h = Eh, so that T X (D1h) = T X (E)T X (h). But T X (D1h) = δ′
1 T X (h) because D is iterative and

we have (57), so that

T X (E) = (
δ′

1 T X (h)
)

T X (h)−1

where (δ′
n)n∈N is the iterative derivation defined in (56). Therefore,

T X,r(E) ≡
(

∂

∂ X
T X,r(h)

)
T X,r

(
h−1) (

mod
(

Xqr ))
, r � 0. (70)

The computation of the polynomials T X,r(h−1) can be made with (59).
In fact, since D1(�) = −E�, the computation of the sequence T X,r(E) can be achieved avoiding

the use of h, by using (57).

Remark 4.11. By Theorem 1 and Proposition 3.1 of [1], we also know that all the fractions
Dn E, Dn g, Dnh ∈ F belong to M̃ = C[E, g,h]. In fact, we have T X ( f ) ∈ M̃[[X]] for all f ∈ M̃ . This
property seems not to follow from Proposition 4.8.
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