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Interleukin-33 (IL-33) is an epithelial-derived cytokine that can be released upon tissue
damage, stress, or infection, acting as an alarmin for the immune system. IL-33 has long
been studied in the context of Th2-related immunopathologies, such as allergic diseases
and parasitic infections. However, its capacity to stimulate also Th1-type of immune
responses is now well established. IL-33 binds to its specific receptor ST2 expressed by
most immune cell populations, modulating a variety of responses. In cancer immunity, IL-
33 can display both pro-tumoral and anti-tumoral functions, depending on the specific
microenvironment. Recent findings indicate that IL-33 can effectively stimulate immune
effector cells (NK and CD8+ T cells), eosinophils, basophils and type 2 innate lymphoid
cells (ILC2) promoting direct and indirect anti-tumoral activities. In this review, we
summarize the most recent advances on anti-tumor immune mechanisms operated by
IL-33, including the modulation of immune checkpoint molecules, with the aim to
understand its potential as a therapeutic target in cancer.

Keywords: IL-33, tumor microenvironment, tumor immunity, eosinophils, ILC2, CD8 T cells, immune
checkpoints, basophils
INTRODUCTION

Interleukin-33 (IL-33) was initially described by JP Girard’s group as a nuclear factor from high
endothelial venules (NF-HEV) (1). It was later rediscovered, by a computational sequence search, as
an IL-1 family member (2). Although initially defined as an immune component of Th2 response,
its pleiotropic contribution to the immune response has now emerged. Hence, IL-33 has been
involved in different immune processes, such as inflammatory diseases, allergies, infections and
cancer (3). IL-33 is expressed as a nuclear factor by different types of cells, such as endothelial cells,
Abbreviations: AML, acute myeloid leukemia; BMDC, bone marrow-derived DC; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; DC, dendritic cells; HMGB1, high-mobility group box 1 protein; IL-33, Interleukin-33; ILC2, type 2
innate lymphoid cells; LA, lactic acid; LDHA, lactate dehydrogenase A; PDAC, pancreatic ductal adenocarcinomas; PD-1,
programmed cell death-1; Tc9, IL-9 producing CD8+ T cells; TILC2, tumor-infiltrating ILC2; TME, tumor microenvironment.
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fibroblasts, epithelial cells and other stromal cells (4). In the
tumor microenvironment (TME), these cells, together with
tumor cells and some immune infiltrating cells, are an
important source of IL-33 (5, 6). Like high-mobility group box
1 protein (HMGB1), IL-33 is released outside the cell after stress
or damage and acts as an alarmin that activates the immune
response (7). Two different isoforms of IL-33 have been
described: the IL-33 full-length form (IL-33 FL) and the IL-33
mature form (8, 9). Several inflammatory proteases, mostly
derived from neutrophils and mast cells, can process IL-33 FL
into the mature form, endowed with superior (10- to 30-fold)
bioactivity (4). Since both neutrophils (10) and mast cells (11)
are recruited in the TME, these proteases may be abundantly
present thus amplifying IL-33 activity. On the other hand, the
pro-inflammatory action of IL-33 may be controlled by
oxidation (12) or proteolytic cleavage by apoptotic caspases
(13), leading to IL-33 inactivation. Therefore, the balance
between different proteases as well as the nature of tumor cell
death (necrotic vs apoptotic) may dictate the activity of IL-33
within the TME.

IL-33 binds to a heterodimer formed by its primary receptor ST2
and the co-receptor IL-1 receptor accessory protein (IL1RAP). This
activates a signal cascade through MyD88-IRAK-dependent
pathway, and leads to NF-kB, c-Jun N-terminal kinase (JNK) and
mitogen-activated protein kinase (MAPK) activation (2), which
results in the release of a plethora of soluble mediators by different
immune cells (14). IL1RAP is constitutively expressed at low levels
by virtually all cells, including immune cells (15). ST2 is expressed
primarily by cells involved in Th2 response, such as Th2 cells,
eosinophils, basophils, mast cells, a subset of regulatory T cells
(Treg) and type 2 innate lymphoid cells (ILC2), but also by Th1
cells, CD8+ T cells, NK cells, macrophages, neutrophils, dendritic
cells (DC) and B cells (16, 17). A soluble form of ST2 (sST2) exists as
a decoy receptor that prevents IL-33 binding to the transmembrane
receptor (18). Tumor, epithelial and immune cells express sST2 at
various levels, which may contribute to regulate the availability of
IL-33 in the TME (19).

The IL-33/ST2 axis has a controversial role in cancer
immunity, since both pro- and anti-tumoral functions have been
reported. This dichotomy seems to depend on multiple factors,
such as the composition of the TME and tissue of tumor origin,
and has been reviewed recently (16). In this mini review, we will
focus on the anti-tumor effects of IL-33/ST2, with emphasis on the
most recent advances on immune mechanisms and their potential
exploitation for future therapeutic options.
IL-33 PROMOTES THE EFFECTOR
FUNCTIONS OF CD8+ T AND NK CELLS

Several studies demonstrated that IL-33 expression positively
correlates with CD8+ T and NK cell recruitment and activation
in the TME. Transgenic expression of IL-33 in B16 or 4T1 tumor
cells (20) or in the host (21), as well as exogenous administration
of the recombinant protein (22) induce the recruitment of
activated (IFN-g+ CD107+) CD8+ T and NK cells in the TME,
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which inhibited tumor growth in mice. In a breast cancer model,
IL-33 induced the recruitment and activation of NK cells to the
lung that prevented pulmonary metastasis onset (23). IL-33 can
increase the cytotoxicity of CD8+ T cells and NK cells also
in vitro, indicating a direct action (21). Both FL and mature IL-33
isoforms acted as adjuvants in an HPV DNA vaccination model
promoting antigen-specific CD8+ T cell expansion and
degranulation that resulted in regression of established TC-1
lung tumors (24). Although these findings point to a similar
biological activity of FL and mature IL-33 isoforms, the
possibility that FL IL-33 is converted into the mature form
once released in the TME and exposed to local proteases
cannot be excluded (9, 24).

Mechanistically, the ability of IL-33 to induce tumor-reactive
IFN-g+ CD107+ CD8+ T and NK cells was recently shown to be
dependent on MyD88 signaling in a mouse model of Lewis lung
carcinoma (25). Furthermore, the IFN-inducing DNA sensor
STING promoted tumor cytotoxicity by stimulating some
chemokines (CXCL10 and CCL5) and IL-33, which
participated in NK cell infiltration and activation in a mouse
model of NK-sensitive melanoma (26). These studies reveal a
possible link between IL-33 and IFN-related response in cancer
immunity, as already reported in IgG4-related autoimmune
diseases (27).

The role of endogenous IL-33 in mediating CD8+ T cell-
dependent antitumor responses was also demonstrated. In
murine hepatocellular carcinoma, tumor-derived IL-33
promoted the expansion of IFN-g+ CD4+ and CD8+ T cells,
increased CTL cytotoxicity and inhibited tumor growth (28).
Induction of IL-33 production by stromal cells following LCMV-
based vector immunotherapy elicited protective anti-tumor
CD8+ T cell effector responses (29). In a colon carcinoma
model, endogenous IL-33 promoted IFN-g expression by both
CD4+ and CD8+ T cells, increased CD8+ T cell infiltration over
Treg cells and augmented CD8+ T cell-mediated antitumor
responses (30). These observations imply that endogenous
levels of IL-33 by tumor and stromal cells may support cancer
immune surveillance by CD8+ T cells.

IL-33 can promote the effector functions of CD8+ T cells also
through stimulation of DC. IL-33 administration in tumor-
bearing mice activated DC and increased Ag cross-presentation
to CD8+ T cells in melanoma (31) and acute myeloid leukemia
(AML) models (32). One group reported that IL-33-stimulated
DC expand a population of cytotoxic IL-9 producing CD8+ T
cells, termed Tc9, endowed with potent anti-tumor activity in
melanoma-bearing mice (33). The relevance of Tc9 cells in
human cancers is still unclear.

Notably, IL-33 is implicated in the differentiation of T cells
into tissue-resident memory T (TRM) cells, a recently identified
CD8+ T cell population found in various human cancers and
correlating with favorable outcome (34). These cells express the
integrins CD103 and CD49a and the C-type lectin CD69, and are
characterized by in situ proliferation, location and persistence in
close contact with malignant cells, via binding of CD103 to
tumor E-cadherin (35). Whether and how IL-33 can affect TRM

in cancer warrants investigation.
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MODULATION OF CD4+ T CELL
FUNCTIONS BY IL-33 IN THE TME

Both conventional and regulatory CD4+ T cells are direct targets
of IL-33. IL-33 can promote the recruitment and the
immunosuppressive functions of Treg cells expressing ST2,
favoring tumor growth and immunoevasion (36–39). On the
other hand, IL-33 can activate conventional Th cells, inducing
their phenotypic polarization, clonal expansion, and cytokine
production (40). IL-33 preferentially promotes Th2 response,
which is classically believed to contrast tumor immunity,
although its role appears ambivalent (41). Under some
conditions, such as in the presence of IL-12, IL-33 can induce
Th1 responses (42, 43). In an HPV-associated mouse tumor
model, IL-33 promoted IFN-g and TNF-a production by
antigen-specific CD4+ T cells (24). Similarly, IL-33 was
reported to amplify IFN-g+ CD4+ T cells in mouse models of
hepatocellular (28) and colon carcinoma (30, 44). These data
demonstrated that IL-33 has the capacity to promote Th1-
mediated anti-tumor response.

Lastly, IL-33 also promotes the differentiation of IL-9-
producing Th cells (45), which exert potent antitumor activity
in certain solid cancers, such as melanoma (46). Therefore, IL-33
can differently regulate CD4+ T cell polarization and function in
the TME. A comprehensive analysis of cytokine profiles activated
by IL-33 in various cancers may help clarify the CD4+ T cell
subsets (including Treg) targeted by IL-33 in relation to the
specific TME and anti-tumor response elicited.
IL-33 ACTIVATES EOSINOPHILS,
BASOPHILS, AND MAST CELLS

Eosinophils infiltrate most human and experimental cancers
where they play diverse roles (47). Migration to the TME can
be mediated by eotaxins (eotaxin-1/CCL11, eotaxin-2/CCL24,
eotaxin-3/CCL26) that bind the CCR3 receptor highly expressed
on eosinophils (47, 48) and by alarmins (i.e., HMGB1 and IL-33)
released from dying tumor cells (22, 49). Whereas HMGB1 is a
direct chemoattractant for eosinophils (50), IL-33 appears to
recruit eosinophils only indirectly, via stimulation of tumor-
released chemokines, such as CCL24 (51, 52), or through the
activation of IL-5 producing ILC2 (53–55) and mast cells (56).

Several studies demonstrated the role of eosinophils in
mediating the anti-tumoral activities of IL-33. Injection (22) or
tumor expression (57) of IL-33 in melanoma-bearing mice
inhibited tumor growth and this effect was abolished upon
eosinophil depletion by injections of anti-Siglec-F mAb. In
models of transplantable and colitis-associated colorectal
cancer, tumor growth reduction induced by IL-33 was
abrogated in eosinophil-deficient DdblGATA-1 mice, but was
restored by adoptive transfer of eosinophils activated with IL-33
ex vivo (52). Mechanistically, eosinophils can exert anti-tumor
activity partly by promoting the recruitment of CD8 T cells (22,
58). In fact, eosinophils are an important source of chemokines
(CCL5, CXCL9, CXCL10) that attract CD8+ T cells in TME (58)
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and can be up-regulated by administration of IL-33 (22).
Moreover, eosinophils can exert direct tumor cytotoxicity (22,
51, 52). In a model of pulmonary melanoma metastasis,
eosinophil depletion caused the inhibition of metastasis
formation in mice receiving IL-33, without apparent
involvement of cytotoxic CD8+ T cells, thus suggesting an
active role of eosinophils in the lung (22). In fact, IL-33 can
directly activate human (59, 60) and mouse (52, 61) eosinophils
by up-regulating activation markers (i.e. CD69), adhesion
molecules (i.e., ICAM-1 and CD11b/CD18), and the
degranulation markers CD63 and CD107a, resulting in the
killing of several tumor cell types (51, 52, 62, 63). Once
activated with IL-33, these granulocytes exert tumor cytotoxic
functions through contact-dependent degranulation, involving
polarization of eosinophilic effector proteins (eosinophil cationic
protein, eosinophil peroxidase, and granzyme B) and
convergence of lytic granules to the immunological synapses
(51). This study provides the first evidence that eosinophils
during degranulation employ a mechanism similar to that used
by NK cells (64).

IL-33 is able to activate murine and human basophils,
increasing histamine and cytokine production in vitro and
promoting their expansion in vivo (16, 65–67). IL-33 can
synergize with IL-3 to induce IL-9 production in human
basophils (68), which may support tumor immunity (69). In
human basophils, IL-33 alone does not directly induce
degranulation but can enhance IL-3- and anti-IgE-mediated
degranulation (67, 70). Recently, our group reported that
mouse basophils stimulated with IL-33 up-regulate the
expression of granzyme B and of the degranulation marker
CD63 and induce melanoma cell killing in vitro (71). Although
the role of basophils in cancer immunity is still unclear (72), this
latter observation may broaden the spectrum of immune effector
cells that can be activated by IL-33 within the TME.

Mast cells infiltrate several types of experimental and human
tumors (56, 73). IL-33 activates human mast cells to release
several cytokines (74) and enhances immune complex-triggered
activation of human mast cells (75). Furthermore, IL-33
increases the expression of ICAM-1 (76) and MHC-II (77),
and promotes the survival (78) and degranulation (79) of
murine mast cells. However, due to the wide range of
mediators they release, it is difficult to define the pro- or anti-
tumorigenic activity of mast cells (11).
IL-33 AS AN ENHANCER OF ANTI-TUMOR
ACTIVITIES OF ILC2

ILC2 constitutively express ST2 and respond directly to IL-33,
which is necessary for their expansion, recruitment and
activation (80, 81). Two distinct subsets of ILC2 have been
described: resident natural ILC2 and inflammatory ILC2,
which can be induced upon IL-33 stimulation (81). High
numbers of ILC2 can be found in many IL-33-enriched
tumors, although their role in cancer immunity remains
controversial (82). Ikutani et al. first described an anti-tumoral
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role of ILC2 in a mouse model of melanoma. In this study,
systemic IL-33 injections expanded IL-5-producing ILC2 that
induced eosinophil recruitment, which were critical to suppress
pulmonary metastases (54). In another study, inoculation of
IL-33-expressing EL4, CT26 or B16.F10 tumor cells induced
MyD88-dependent intratumoral expansion of ILC2 in mice that
were indispensable for IL-33-mediated antitumor activity
independently of eosinophils (83). In this model, ILC2 exerted
anti-tumoral activity through production of CXCL1 and CXCL2.
Binding of these chemokines to tumor cell-expressed CXCR2,
which was sustained by the hypoxic TME created by IL-33,
resulted in tumor cell apoptosis. This study first demonstrated
that activated ILC2 can be cytotoxic for tumor cells.

A recent study on the B16.F10 melanoma model showed that
TME acidification caused by lactic acid (LA) produced by the
tumor impaired ILC2 survival and function (55). This prevented
tumor infiltration of ILC2 and resulted in rapid tumor growth.
Accordingly, gene expression analysis in human cutaneous
melanomas revealed an inverse correlation between lactate
dehydrogenase A (LDHA, the enzyme responsible for LA
production) and markers associated with ILC2. In vivo
interference with LDHA in B16.F10 tumors or administration
of IL-33 to tumor-bearing mice increased the number of
intratumoral ILC2 and restored ILC2 ability to contrast tumor
progression. IL-33 also induced an increase in the number of
tumor infiltrating eosinophils. This study reveals an anti-
tumorigenic role of IL-33/ILC2/eosinophils axis controlled by
glucose metabolism.

Moral and co-workers reported that ILC2 infiltrate human
and mouse pancreatic ductal adenocarcinomas (PDAC) (84).
High frequencies of tumor-infiltrating ILC2 (TILC2) were found
in “hot” tumors (enriched in CD8+ T cells), and correlated with
better survival and high expression of IL-33. By comparing the
effects of IL-33 deficiency (or exogenous administration) on
orthotopic PDAC and heterotopic skin tumor growth, the
authors demonstrated that TILC2 have tissue-specific effects on
PDAC immunity that depended on IL-33/ST2. In fact, pancreatic
TILC2, unlike skin TILC2, expressed ST2 and responded to
IL-33. In orthotopic PDAC, IL-33/TILC2 axis primed tissue-
specific CD8+ T cell immunity through recruitment of cross-
presenting CD103+ DC.

Overall, these studies suggest that despite the divergent effects
of ILC2 in tumor immunity, proper activation, such as with
IL-33/ST2 stimulation, may promote the anti-tumor functions of
these cells through multiple mechanisms, including recruitment
of eosinophils and cross-presenting DCs, and tumor cytotoxicity.
Given the tissue-specific phenotypes of ILC2, it is possible that
such mechanisms may vary depending on the tissue of
tumor origin.
MODULATION OF IMMUNE
CHECKPOINTS BY IL-33

Cancer immunotherapy targeting immune checkpoints has
proven effective in treating “hot” tumors through the
Frontiers in Immunology | www.frontiersin.org 4
restoration of preexisting T cell responses. Programmed cell
death-1 (PD-1) promotes apoptosis of antigen-specific T-cells,
while it sustains regulatory T cell development and function (85,
86). In the TME, up-regulation of PD-1 on T cells occurs in
response to activation due to tumor antigens (87), while
overexpression of its ligands (PD-L1 and PD-L2) on cancer
cells is a well-known immune escape mechanism (88). PD-1 is
expressed on a variety of different immune cell types, such as
T cells, B cells, NK, myeloid cells, mast cells and innate lymphoid
cells (89, 90). Mouse ILC2 express PD-1 in different percentages
depending on their tissue of origin and its expression is enhanced
by IL-33 stimulation, resulting in impaired Th2-type cytokine
production (91, 92). In a mouse model of obesity, TNF-a
triggered the expression of IL-33 by pre-adipocytes, which was
responsible for PD-1 upregulation on ILC2 (92). Interaction
between PD-1+ ILC2 and PD-L1hi M1 macrophages resulted in
impaired production of IL-5 and IL-13 by ILC2. These findings
point to a role of IL-33 in PD-1/PD-L1 pathway.

Emerging data indicate that IL-33 may modulate the PD-1/
PD-L1 axis also in cancer. In an AML model, Qin et al. observed
that IL-33 induced not only an increase of PD-1 expression on
CD8+ T cells in peripheral blood, but also higher levels of PD-L1
on tumor cells (32). IL-33 treatment combined with PD-1
blockade prolonged the survival of leukemic mice, providing
the first evidence that IL-33 may increase the therapeutic efficacy
of immune checkpoint inhibitors. Recently, Moral et al. carried
out similar studies on the PDAC mouse model. They showed
that IL-33 treatment increased the expression of PD-1 on TILC2,
but not in draining LN ILC2, indicating selective activation in the
tumor immune compartment (84). Combination of IL-33 and
anti-PD-1 reduced tumor growth and improved the survival of
PDAC mice in an ILC2-dependent fashion. Of note, this study
demonstrated that IL-33 activated TILC2 were direct targets of
anti-PD-1. Thus, activation of ILC2s with IL-33 may be a
strategy to increase immunotherapy efficacy in ILC2-
infiltrated cancers.

IL-33 can affect PD-1/PD-L1 signaling in other immune cells.
In a breast cancer model, IL-33 administration increased the
percentage of NKp461+ PD-1+ cells in the TME, while these cells
were less frequent in ST2-deficient mice (93). Furthermore, in
the B16.OVA melanoma model, systemic administration of
IL-33 combined with injection of dectin-1-activated bone
marrow-derived DC induced activation and PD-1 expression
in OVA-specific CD4+ T cells (45). The same group reported that
administration of IL-33 reduced the expression of the checkpoint
molecules PD-1, LAG-3 and 2B4 on CD8+ T cells in mice
immunized with “resting” DC (33). Although these two studies
suggest that the modulation of immune checkpoints in T cells by
IL-33 occurs via stimulation of DC, the possibility that IL-33
could also directly activate T cells cannot be excluded. Overall,
these findings suggest that IL-33 can affect the PD-1 pathway in
several immune cells. Understanding the mechanisms by which
IL-33 targets PD-1 in various cancer types may help improving
immunotherapy protocols.

The role of IL-33 in the modulation of cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) pathway has been less explored.
November 2020 | Volume 11 | Article 571593
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CTLA-4 is constitutively expressed in regulatory T cells and it is
up-regulated in conventional T cells upon activation, where it
functions as an inhibitory signal of T cell response (94). In a
B16.F1 melanoma pulmonary metastasis model, IL-33 increased
the frequency of CD8+ T cells expressing PD-1, KLRG-1 and
CTLA-4 (95). Hollande et al. reported that tumors expressing high
levels of endogenous IL-33 (i.e., Hepa 1-6 and EMT6) respond to
combined CTLA-4/PD-1 blockade partially through the help of
eosinophils (57). Although this study does not directly address
whether IL-33 is relevant for up-regulation of these immune
checkpoint molecules, it suggests that local IL-33 and eosinophils
recruitment in the TME may promote immunotherapy efficacy.
This hypothesis is supported by an increasing number of reports
that show a positive correlation between eosinophilia and clinical
response to anti-PD-1 and anti-CTLA-4 in cancer patients (47,
96, 97).
Frontiers in Immunology | www.frontiersin.org 5
CONCLUDING REMARKS

Although the role of IL-33 in cancer immunity remains
controversial, it appears that this alarmin has beneficial
effects in certain types of experimental tumors, particularly
melanoma (16, 20–22, 31, 51, 57). The current literature
suggests that the anti-tumor properties of IL-33 are
attributable to its capacity to stimulate CD8+ T cells, NK, DC,
eosinophils and ILC2 (Figure 1). Eosinophils are recruited
early in the TME and may play a role in the first
containment of tumor development (98). A similar function
may be potentially played by ILC2, mast cells and basophils.
Although relatively rare in human cancers, these cells can
release several soluble mediators that may orchestrate tumor
immunity in various manners (11, 47, 56, 71, 72, 82). For
example, following stimulation with IL-33, eosinophils and
FIGURE 1 | Anti-tumoral mechanisms of interleukin-33 (IL-33) in the tumor microenvironment (TME). IL-33 administration or its physiological expression within the
TME leads to direct or indirect recruitment of several immune effector cells such as eosinophils, ILC2, DC, NK cells, CD8+, and CD4+ T cells, establishing an immune
cross-talk or directly controlling tumor growth. ILC2 cells can: 1) directly induce tumor cell killing through CXCL1/CXCL2 release and binding to tumoral CXCR2, 2)
promote the recruitment of eosinophils via IL-5 production, 3) release CCL5 that facilitates CD103+ DC recruitment and cross-priming of CD8+ T cells. Following
IL-33 exposure, eosinophil recruitment may result in: 1) direct tumor cell killing via adhesion-dependent degranulation and 2) release of CD8+ T cell-attracting
chemokines (CCL5, CXCL9, CXCL10). Moreover, IL-33 can activate NK, CD8+ T (directly or via stimulation of cross-presenting DC) and CD4+ T cells, promoting
anti-tumor effector responses. These events may be hindered by concomitant recruitment of ST2+ Treg cells. Lastly, IL-33 also up-regulates programmed cell
death-1 (PD-1) on T lymphocytes (especially CD8+ T), NK cells and ILC2, as well as CTLA-4 on T cells, suggesting that this cytokine may improve the therapeutic
response to immune checkpoint inhibitors.
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ILC2 produce chemokines attracting CD8+ T cells (22) and
DCs (84), respectively, thus contributing to the initiation of
adaptive responses. Furthermore, release of Th2 cytokines, (i.e.,
IL-4 and IL-5) by basophils, mast cells and ILC2 may promote
the recruitment of eosinophils and macrophages that control
tumor progression (99, 100). Direct stimulation of NK, CD8+

and CD4+ T cells by IL-33 has been reported to promote Th1-
associated anti-tumor responses in several tumor models (20,
21, 23–26, 28–30). Induction of IL-9 producing CD4+ (45) and
CD8+ (33) T cells by IL-33 may also contribute to anti-tumor
immunity. However, IL-33 can induce and amplify Th2
responses in the TME, which may support tumor
progression. Moreover, stimulation of ST2+ Treg cell
recruitment in the TME (3, 16) may further dampen anti-
tumor responses. Therefore, tissue-specific environmental
factors that shape the local immune TME may dictate the
balance of immune responses induced by IL-33. This aspect
should be carefully considered when harnessing the IL-33/ST2
axis in tumors particularly enriched in Treg cells, such as breast,
lung and gastrointestinal cancers (101).

IL-33 appears to increase the expression of PD-1/PD-L1 and
CTLA-4 molecules on certain immune cells (Figure 1) and to
improve immunotherapy efficacy of checkpoint blockade in
some cancer models. The modulation of these and other
checkpoint molecules by IL-33 and the immune targets in each
cancer type remain to be fully elucidated. In this view, targeting
Frontiers in Immunology | www.frontiersin.org 6
IL-33/ST2 in specific immune cell populations may be a
promising strategy to increase the therapeutic response to
immune checkpoint inhibitors. Since TRM cells express high
levels of immune checkpoint molecules (i.e., PD-1, CTLA-4
and Tim-3), these cells are regarded as key targets of immune
checkpoint inhibitors dictating immunotherapy efficacy (102).
Future investigation should be directed to evaluate whether
targeting the IL-33/ST2 pathway may increase the density of
TRM cells in the TME and improve the response to immune
checkpoint blockade.
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