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Abstract: Graphene-based nanocomposites are largely explored for the development of sensing
devices due to the excellent electrical and mechanical properties of graphene. These properties, in
addition to its large specific surface area, make graphene attractive for a wide range of chemical
functionalization and immobilization of (bio)molecules. Several techniques based on both top-
down and bottom-up approaches are available for the fabrication of graphene fillers in pristine and
functionalized forms. These fillers can be further modified to enhance their integration with polymeric
matrices and substrates and to tailor the sensing efficiency of the overall nanocomposite material. In
this review article, we summarize recent trends in the design and fabrication of graphene/polymer
nanocomposites (GPNs) with sensing properties that can be successfully applied in environmental and
human health monitoring. Functional GPNs with sensing ability towards gas molecules, humidity,
and ultraviolet radiation can be generated using graphene nanosheets decorated with metallic or
metal oxide nanoparticles. These nanocomposites were shown to be effective in the detection of
ammonia, benzene/toluene gases, and water vapor in the environment. In addition, biological
analytes with broad implications for human health, such as nucleic bases or viral genes, can also be
detected using sensitive, graphene-based polymer nanocomposites. Here, the role of the biomolecules
that are immobilized on the graphene nanomaterial as target for sensing is reviewed.

Keywords: graphene; polymers; sensors; nanocomposites; environmental monitoring; human
health monitoring

1. Introduction

In recent years, significant progress has been achieved in the development of nanocom-
posite materials with enhanced sensing properties, making them suitable to be used in
monitoring devices for a wide range of applications. In particular, the interest in research
and fabrication of nanocomposites for sensing has greatly increased due to the possibility
to maintain the advantages of the polymer matrix, such as mechanical properties and pro-
cessability [1], and, at the same time, enhancing its performance by the use of nano-sized
fillers [2,3]. Due to the nanometer size of the reinforcing phase, the interface-to-volume
ratio is higher than in conventional composites [4]. Nanometric dimensions and extremely
high aspect ratios of the tubes and plates used as fillers play a crucial role on the nanocom-
posite performance, leading to unique properties, such as a low percolation threshold
(0.1–2 vol%), a large number of particles per particle volume (106–108 particles/µm3),
extensive interfacial area per volume of particles (103–104 m2/mL), and short distances
between particles (10–50 nm at 1–8 vol%) [5]. Indeed, nanocomposites generally show an
enhancement in terms of electrical conductivity because of the better compactness of the
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polymer phase, and therefore show a higher coupling among the nanoparticles through the
grain boundaries [6,7].

A crucial aspect concerning polymer-based nanocomposites is the improvement of the
nanofiller dispersion in a polymer matrix having different chemical properties. This repre-
sents a nontrivial task and is a fundamental requirement to ensure homogeneous properties
for this class of composites [8–10]. For instance, in the case of graphene nanoplatelets dis-
persed into a polymer phase, the filler tends to form agglomerates due to the non-covalent
van der Waals and π–stacking interactions acting between the nanoparticles, which leads
to a loss of performance of the overall nanocomposite. To avoid this, numerous studies
have focused on techniques to evaluate and improve the nanofiller dispersion in polymer
phases [11–13]. A method based on the direct analysis of optical images using a specific
MATLAB algorithm was developed to assess the filler dispersion in a quantitative way [11].
A dispersion index was determined by comparing the grayscale optical image with the
corresponding uniformly dispersed picture. Gudarzi et al. employed a two-phase react-
ing system for functionalization of graphene oxide (GO), with the aim of enhancing the
dispersion of the GO nanosheets in an epoxy matrix [12]. This procedure revealed a good
dispersion and bonding between graphene and epoxy up to 0.5 vol% (~1 wt%) of filler.
Goda et al. grafted poly(delta-gluconolactone) from reduced graphene oxide platelets
(PGL-g-rGO) in different mass ratios to prepare nanocomposites with a polyvinyl alcohol
(PVA) matrix [13]. In this case, the presence of the functional groups on the surface of the
PGL-g-rGO filler enhanced the interfacial interaction with PVA, thus improving the filler
dispersion.

The aptitude for sensing of graphene/polymer nanocomposites (GPNs) largely derives
from the superior conductive properties of graphene. Single-layer graphene shows electrical
conductivity up to 6000 S/cm [14,15], which is independent of chirality, and high thermal
conductivity up to 5300 W/mK at room temperature [16]. These properties are enhanced
by choosing a suitable polymer matrix or substrate, with an optimized interaction at the
interphase region with the graphene layer [17–19], and by adding specific elements with
sensing abilities, such as biomolecules [20–22], metals, or metal oxides [23]. Graphene
allows detection of gas molecules that attach to or detach from its surface: the adsorbed
molecules change the local carrier concentration of graphene, which leads to step-like
changes in resistance [24,25]. For this reason, graphene is widely employed for creating
sensitive nanomaterials for environmental monitoring applications. In this regard, GPNs
allow the detection of harmful gases in the environment, such as ammonia (NH3) or
nitrogen dioxide (NO2) [26,27], and also measurement of the humidity level in specific
settings [28,29].

Recently, graphene/polymer nanocomposites have also found applications in radi-
ation monitoring devices, for example those used to assess the levels of ultraviolet (UV)
radiation exposure in different environments [30–33]. GPNs can be employed as UV-
sensitive elements for monitoring systems in extreme environments, such as in space [31].
In addition, they can be used in industrial settings characterized by high levels of UV-C
radiation, such as in sterilization plants, or to monitor the levels of incoming UV-C radiation
in Earth regions that are most at risk of ozone layer depletion.

Graphene-based polymer nanocomposites are also successfully employed in sensing
devices for monitoring human health. In this field of application, the high specific surface
area and the atomic thickness of the graphene layers play a key role for improving the
interaction between carbon atoms and analytes [34]. Moreover, nanocomposite sensors
based on graphene sensing elements may guarantee enhanced contact with the skin due
to the mechanical flexibility and ultrathin thickness of graphene, eliminating motion
artifacts [35]. Furthermore, several biomolecules, such as deoxyribonucleic acid (DNA),
enzymes, and antibodies, can be immobilized on the surface of graphene-based sensor
platforms that can be used for detecting and monitoring specific analytes [36–38].

Other sensing materials can be used to pursue environmental and human health
monitoring, such as those based on pure or modified conductive polymers (CPs) [39–41],
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polymer matrix composites (PMCs) filled with carbon nanotubes (CNT) [42–45], or metal
oxides [46,47]. For instance, Xie et al. used pure polyaniline films, polyaniline and acetic
acid mixed films, and polyaniline and polystyrene sulfonic acid composites for the detection
of nitrogen dioxide (NO2) [41]. Other gas sensors were fabricated using polyaniline and
metal oxides, such as zinc oxide (ZnO), titanium dioxide (TiO2), iron(III) oxide (Fe2O3),
tin(IV) oxide (SnO2), tungsten oxide (WO3), copper(II) oxide (CuO), and cerium(IV) oxide
(CeO2) [46]. The incorporation of metal oxides in polyaniline had the effect of improving
the poor mechanical strength of the pure polymer and allowed for selectivity towards
specific gas molecules [48]. Various biosensors based on polypyrrole were proposed
for glucose monitoring [49]. In particular, several studies focused on the fabrication of
glucose biosensors using polypyrrole films filled with CNT and glucose oxidase [44,45]. For
these nanocomposites, the simultaneous incorporation of the fillers also served to impart
biocatalytic and electrocatalytic properties to the sensor.

In this review article, we report on recent trends in the development of graphene/
polymer nanocomposites (GPNs) with sensing properties that can be applied for envi-
ronmental and human health monitoring. The main methods used for the synthesis of
graphene are described, focusing on its superior electrical and mechanical properties. The
routes for fabricating GPNs are also reported, considering the role of the polymer/filler
interface on the final properties of these materials. An overview of GPNs used for detect-
ing harmful gas molecules and/or humidity level in specific environments is presented.
Moreover, nanocomposite sensors with the ability to assess UV radiation exposure are
presented in view of their application in environmental monitoring devices. Applications
of novel GPNs for examining human health parameters are also discussed. The role of
biomolecules and how they can be specifically integrated to enhance the sensing properties
of the nanomaterials is highlighted.

2. The Graphene Nanomaterial: Synthesis and General Properties

Today, graphene represents one of the most attractive nanomaterials employed in the
development of functional nanocomposites. It is one of the allotropes of carbon and is
composed of one-atom-thick planar sheets of sp2-bonded carbon atoms that are densely
packed in a honeycomb crystal lattice. This 2D structure can be wrapped up into 0D
fullerenes, rolled into 1D nanotubes, or stacked into 3D graphite, as shown in Figure 1 [50].
The exceptional properties shown by graphene justify its increasing use as a functional filler,
especially for polymer-matrix-based nanocomposites [51,52]. In particular, it possesses
peculiar electrical characteristics, such as an anomalous quantum hall effect and a high
electron mobility at room temperature (23 × 104 cm2/Vs) [53,54] and shows excellent
mechanical performance [55]. Specifically, its high tensile strength, elasticity, Young’s
modulus (~1 TPa) and spring constant are mainly due to its hexagonal lattice structure,
with the sp2 bonds conferring stability and opposing in-plane deformation [56]. In addition,
graphene shows high thermal conductivity (~5000 W/mK) [16], and its field of application
is further extended by the possibility to functionalize it chemically. Several biological
applications involving graphene highlighted its biocompatibility [57–59] (although this
aspect is currently the subject of extensive investigations due to the possible toxicity of
nanomaterials).

Different approaches are currently used for the synthesis of graphene. These can be
grouped into two main categories that are referred to as bottom-up and top-down meth-
ods [60,61]. Typically, the bottom-up approaches allow small-scale production of graphene,
characterized by high quality and large size sheets, starting from carbon compounds.
These methods include techniques such as carbon vapor deposition (CVD), arc discharge,
epitaxial growth on silicon carbide (SiC), self-assembly, and reduction of CO2 [61], and
allow production of both monolayer and multiple-layer graphene, as reported in Table 1.
Conversely, the top-down methods allow large-scale production of graphene, pristine or
functionalized, in the form of small particles. Therefore, this approach is particularly suit-
able to synthetize graphene to be used as filler in polymer nanocomposites. It involves the
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separation of graphene directly from graphite or graphite derivatives and includes several
methods, which are summarized in Table 2, such as exfoliation or super acid dissolution
of graphite, solvothermal reduction or chemical reduction of graphite oxide, and thermal
exfoliation/reduction of graphite oxide.
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Table 1. Bottom-up techniques for producing graphene sheets. For each technique, the size of
graphene sheets that can be obtained and the related advantages/disadvantages are reported.

Technique
Graphene Size

Advantages Disadvantages References
Thickness Lateral

Confined
self-assembly Single layer 100 nm Thickness control Presence of defects [62]

Arc discharge
Single layer,

bilayer, and few
layers

Few 100 nm to few µm Up to 10 g/h of
graphene

Low yield of graphene;
carbonaceous

impurities
[63]

Epitaxial growth
on SiC Few layers Up to cm Very large area of

pure graphene Very small scale [64–66]

CVD Few layers Very large (cm) Large size; high
quality Small production scale [67]

Reduction of
carbon monoxide

(CO)
Multiple layers Sub-µm Unoxidized sheets Contamination with

α-Al2O3 and α-Al2S [68]

Unzipping of
carbon nanotubes Multiple layers Few µm long

nanoribbons

Size controlled by
selection of the

starting nanotubes

Expensive starting
material; oxidized

graphene
[69]
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Table 2. Top-down techniques for producing graphene sheets. For each technique, the size of
graphene sheets that can be obtained and the related advantages/disadvantages are reported.

Technique
Graphene Size

Advantages Disadvantages References
Thickness Lateral

Electrochemical exfolia-
tion/functionalization of

graphite

Single and few
layers 500–700 nm

High electrical
conductivity of the

functionalized
graphene

Cost of ionic liquids [70,71]

Direct sonication of
graphite

Single and
multiple layers µm or sub-µm Unmodified graphene;

inexpensive Low yield; separation [72,73]

Micromechanical
exfoliation Few layers µm to cm

Large size and
unmodified graphene

sheets

Very small-scale
production [74]

Superacid dissolution of
graphite

Mostly single
layer 300–900 nm Unmodified graphene;

scalable

Use of hazardous
chlorosulfonic acid;
cost of acid removal

[75]

Thermal
exfoliation/reduction of

graphene oxide

Single and few
layer ∼500 nm

1-step
exfoliation/reduction;
short heating time; dry

basis

High heating
temperature; smaller

sheet size compared to
chemically reduced

sheets

[76]

Chemical reduction of
colloidal graphene oxide

in water

Single and
multiple layer µm or sub-µm Large sheet size; some

routes use only water

Some of these methods
use hazardous
chemicals; only

dispersed in
hydrophilic polymers

[77]

Li alkylation of graphite
fluoride Single layer µm

Large size;
functionalized sheets;

no oxygen
functionality

Cost of the starting
material; restacking

after annealing
[78]

In general, the commonly referred to “graphite oxide” (GO) is made of graphene
oxide sheets stacked with an interlayer spacing of between 6 and 10 Å, depending on the
water content [79]. According to the Lerf–Klinowski model [79–82], graphene oxide can
be described as pristine aromatic “islands” separated from each other by aliphatic regions
containing epoxide and hydroxyl groups and carbon–carbon double bonds. Typically,
hydroxyl and epoxy groups can be detected at higher concentrations on the basal plane
of graphene oxide, whereas carbonyl and carboxylate acid groups are found at the sheet
edges [80]. A representation of graphene, graphene oxide, and reduced graphene oxide
structures is showed in Figure 2 [83].
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The thermal exfoliation of GO allows separation of the graphene oxide sheets and
reduction of the oxygen content, generally leading to restoration of the ability to conduct
electricity [84]. In particular, GO can be reduced and exfoliated simultaneously upon
rapid heating, which induces the thermal decomposition of the oxygen-containing func-
tional groups due to the pressure of the gas products, in particular CO2, that builds up
instantaneously between the sheets [76,84,85]. The obtained graphene can be dispersed in
polar organic solvents due to the polar oxygen-containing functional groups remaining
on it and due to its wrinkled nature preventing the sheets from restacking [76,84,86]. The
oxygen-to-carbon element ratio and the electrical conductivity of the resulting graphene
can be modulated depending on the time and temperature adopted during the process [87].
For instance, high quality graphene with fewer structural and topological defects was
obtained at lower process temperatures, under vacuum, in the presence of an accelerating
agent (such as H2 or HCl), or with microwave or irradiation assistance [88,89].

The chemical functionalization of graphene represents a valid approach to improving
the interaction between the filler and the polymer matrix, further increasing the solubility
of the reinforcement [90–93]. The process involves functional groups that can be small
molecules [94] or polymer chains [95], and both covalent and non-covalent functionaliza-
tion can be carried out [17]. In particular, covalent functionalization can be performed at
the end of the graphene sheets or on their surface and involves rehybridization of one or
more sp2 carbon atoms into the sp3 configuration by nucleophilic substitution, electrophilic
addition, condensation, or addition [96]. Concerning the non-covalent functionalization, it
allows the connection between the molecules without involving chemical bonds and gener-
ally requires the physical adsorption of suitable molecules on the graphene surface [97].
Specifically, these molecules wrap around graphene by means of van der Waals forces
and can involve π–π interactions, electrostatic attraction, adsorption of surfactants, and
polymer wrapping [98–101].

3. Graphene/Polymer Nanocomposites: Fabrication and Properties

Graphene-based nanocomposites with a polymer matrix are commonly fabricated
following three different methods: solution blending, in situ polymerization, and melt
mixing [102–104]. The most common technique is solution blending [102], which involves
solubilization of the polymer in a suitable solvent and mixing with graphene to form
a homogeneous dispersion. Generally, polymers such as polystyrene, polycarbonate,
polyacrylamide, polyimides, and poly(methyl methacrylate) are mixed with graphene
oxide [105–108], which can be previously functionalized with isocyanates, alkylamine, or
alkyl-chlorosilanes in order to improve its dispersibility in organic solvents.

The fabrication of GPNs by in situ polymerization is based on the polymerization of
the matrix in the presence of the selected filler, starting from a mixture of monomer and
reinforcement [102–104]. Typically, this approach allows the obtainment of a good grade of
dispersion of graphene-based nanofillers, avoiding the need of preliminary exfoliation [104].
In the melt mixing technique, the filler is dispersed in the polymer matrix, exploiting high
temperatures and shear forces [74]. The polymer phase is melted at a high temperature,
thus facilitating the dispersion or intercalation of the graphene oxide nanoplatelets without
the use of organic (often toxic) solvents.

The main polymers employed in the manufacture of graphene-based nanocomposites
are reported in Table 3, with the indication of the method used for the fabrication and the
type of property enhanced by the presence of the filler.
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Table 3. Main polymers used in the fabrication of graphene-based nanocomposites, with the indica-
tion of the fabrication method and the property enhancement induced by the filler.

Polymer Used as
Matrix

Type of Graphene
Filler Fabrication Method Property Enhanced Reference

Poly(vinyl alcohol)
(PVA)

Reduced graphene
oxide Solution blending Mechanical properties (increase in

elastic modulus and tensile strength) [109]

Poly(methyl
methacrylate) (PMMA)

Reduced graphene
oxide Solution blending Electrical conductivity [110]

Poly(butylene
succinate) (PBS) Graphene oxide Solution blending Mechanical properties (increase in

elastic modulus and tensile strength) [111]

Chitosan Cryomilled graphene Solution blending Mechanical properties (increase in
tensile strength) [112]

Isobutylene isoprene
rubber (IIR)

Reduced graphene
oxide Solution blending Dielectrical permittivity [113]

Unsaturated polyester
resin (UPR) Graphene nanosheets Solution blending

Mechanical properties (increase in
tensile strength and flexural strength);
thermal properties; dielectric strength

[114]

Polystyrene (PS) Graphene nanosheets In situ polymerization
Electrical conductivity; thermal

properties (increase in glass transition
temperature and thermal stability)

[115]

Polyaniline (PANI) Graphene oxide In situ polymerization Electrical conductivity [116]
High Density

Polyethylene (HDPE) Exfoliated graphene Melt mixing Electrical conductivity [117]

Polycarbonate (PC) Functionalized
graphene sheets Melt mixing Electrical conductivity [118]

Polypropylene (PP) Exfoliated graphene Melt mixing Mechanical properties (increase in
flexural strength) [119]

Poly(vinyl chloride)
(PVC) Graphene nanoplatelets Melt mixing Mechanical properties (increase in

elastic modulus and tensile strength) [120]

Polyethylene
terephthalate (PET) Graphene nanosheets Melt mixing Electrical conductivity [121]

The properties of the GPN nanocomposites are strictly related to the spatial distribution
and alignment of the graphene nanofiller and to its interfacial adhesion with the polymer
phase. In particular, GPNs with low loadings of functionalized graphene sheets generally
exhibit a shift in the glass transition temperature [107] compared to that of uncharged
polymer. This behavior can be ascribed to a reduced mobility of the polymer chains at the
interface between the filler and the matrix [122,123]. Therefore, the constraint applied on
the chains can directly induce an increase in glass transition temperature [124,125].

In terms of thermal conductivity, the performance of GPNs can be evaluated by
referring to the 2D geometry of the graphene fillers. These are characterized by lower
interfacial thermal resistance that provides higher thermal conductivity to the host poly-
mer matrix [51,126]. Nevertheless, the 2D structure can be a source of anisotropy in the
nanocomposite arrangement, for which the in-plane thermal conductivity can be as much
as ten times higher than the cross-plane conductivity [127]. This is typically evaluated
following the percolation theory, therefore considering phonons as the main mode for
thermal conduction in polymers. Covalent bonding between the filler and the polymer
matrix can reduce phonon scattering at the interface, leading to an overall enhancement of
the GPN thermal conductivity [128].

The electrical conductivity behavior of GPNs can be analyzed by considering the
influence of different factors and their overall effect. In particular, the characteristics of the
specific graphene-based filler, such as its aspect ratio and morphology, as well as its inter-
sheet junction, can affect the electrical performances of GPNs [51,129]. In the same way,
processing, dispersion, and the related state of aggregation and alignment of the nanoparti-
cles coalesce to determine the electrical behavior of the resulting nanocomposite [51,130].
Several theoretical models and experiments have aimed to assess the role of nanofiller
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shape, geometry, and state of dispersion on the percolation threshold of graphene/polymer
nanocomposites [131,132].

As mentioned above, the overall performance of polymer-based nanocomposite mate-
rials can be related to the quality and stability of the polymer/nanofiller interphase region.
Typically, the physical and mechanical properties and the chemical composition of this
region are different from those of the bulk polymer matrix [133,134]. In the case of an
interphase stiffer than the surrounding polymer, this can result in higher overall stiffness
and strength of the composite, but with lower resistance to fracture [135]. The interphase
properties can also affect the mechanical behavior of the nanocomposites depending on
the morphology and size of this region. In fact, several studies show that its thickness
can be tailored to achieve both higher strength and improved toughness of the resulting
nanocomposite [18,136,137]. Force-modulation atomic force microscopy (AFM) and nanoin-
dentation are techniques that are commonly used to investigate the interphase and its
properties [133,138]. In particular, AFM phase imaging is currently considered a useful
tool to evaluate the thickness and the relative stiffness of the interphase, since it involves
much lower interaction forces between the probe and the sample than force modulation
or nanoindentation [135]. The arrangement of graphene-based fillers inside the polymer
matrix is also investigated in order to assess the state of dispersion at the microstructural
level and its impact on the nanocomposite properties. Results reveal that graphene-based
fillers, such as graphene oxide or graphene nanoplatelets, can arrange differently in the
host polymer, originating structural states that can be classified as stacked, intercalated, or
exfoliated [104], as showed in Figure 3.
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The intercalated state can be considered as a particular type of stacked structure, which
is characterized by greater interlayer spacing (but still within a few nanometers) [139].
Generally, in the exfoliated structure, graphene nanoplatelets have the largest interfacial
contact with the polymer matrix, and this allows improvement in the performance of the
composite in different ways [102,104]. Due to the interactions with the matrix, the exfoliated
phase can exhibit a curved shape. In this case, the rumpled shape assumed by the filler can
result in mechanical interlocking, acting as a possible mechanism of strengthening. The
compatibility between the host polymer and the nanoplatelets is one of the major factors
determining the filler morphology in the matrix: the nanoplatelets are characterized by a
more extended conformation for high polymer/filler affinity or, conversely, a crumpled
conformation when the affinity decreases [140]. Finally, the processing method used to
fabricate the nanocomposite also affects its microstructure to a great extent: solution mixing
or in situ polymerization generally induce an exfoliated and randomly oriented status
to the nanoplatelets, whereas the melt mixing technique generates a more oriented and
intercalated or stacked structure of the nanoplatelets [141].
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4. Applications of Graphene/Polymer Nanocomposites in Sensing Devices

The enhanced properties of graphene/polymer nanocomposites and the possibility to
tailor their performance toward more specific applications make them suitable materials for
sensing. In this perspective, the ability to detect an external stimulus, whether of a chemical,
physical, or biological nature, and give information about it can be developed through ac-
curate selection and successive engineering of the starting materials. Graphene is one of the
most promising materials for sensing applications, and its properties are widely employed
singularly or functionally combined with other suitable materials [142–144]. Metal oxide
nanoparticles, for instance, are usually coupled with graphene, graphene oxide, or reduced
graphene oxide for large-scale production of sensing devices in different fields, from en-
vironmental pollution to clinical and pharmacological detection [145]. Another effective
integration derives from the coupling of graphene and biological molecules [146,147], thus
realizing hybrid nanomaterials with enhanced functional properties that can be wisely
employed for sensing applications.

4.1. Applications of GPNs in Environmental Monitoring: Gas and Humidity Sensors

Graphene oxide and reduced graphene oxide are successfully used to fabricate gas-
sensitive graphene/polymer nanocomposites due to their ability to entrap gas molecules
that in turn cause a variation to the conducting properties [26,148–150]. In fact, oxidizing
and reducing gases interact with graphene in different ways, leading to carrier generation or
carrier annihilation with a change in the sensor resistance or current [151,152]. The addition
of metal (nano)particles to graphene oxide can enhance its response to gas molecules [152].
The choice of a specific metal can be performed by evaluating the best solid–gas interactions
depending on the nature of the analyte. For instance, palladium exhibits a significant
affinity for hydrogen, promoting the dissociation of its molecules into atoms [153], whereas
nickel is more suitable for carbon monoxide detection as it forms nickel carbonyl with a
sufficiently low activation energy [154]. Therefore, graphene can be decorated with metallic
nanoparticles and opportunely coupled to polymers to fabricate GPN nanocomposites that
are able to detect specific gas molecules.

A sensor based on polypyrrole (PPy) and graphene nanoplatelets (GN) decorated
with titanium dioxide (TiO2) nanoparticles was developed for detecting ammonia (NH3)
gas molecules [26]. The nanocomposite was synthesized by a sol–gel process combined
with in situ chemical polymerization. The NH3-sensing properties were investigated for
GN, PPy/GN thin films, and TiO2/PPy/GN nanocomposites under the same conditions,
demonstrating the highest sensitivity and the fastest response for the TiO2/PPy/GN sam-
ples (Figure 4a). Results show a good electrical-resistance response for the TiO2/PPy/GN
nanocomposite, which is able to detect NH3 molecules at room temperature with repro-
ducibility and excellent selectivity (Figure 4b).
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Another type of graphene/polymer nanocomposite sensitive to NH3 was realized
using polypyrrole (PPy) and tungsten oxide (WO3). A chemical oxidative polymerization of
polypyrrole in the presence of GO–WO3 filler was used to realize the nanocomposite [148].
The uniform distribution of the WO3 nanoparticles on the PPy-decorated GO nanosheets
was confirmed by transmission electron microscopy (Figure 5a). The nanocomposite
showed an improved sensitivity (by 58%) with reduced response time (50 s) and recovery
time (120 s) in an environment at room temperature (30 ◦C) and 50% relative humidity
(RH). The lower detection limit was measured at 5 ppm (Figure 5b).
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Reproduced with permission from Albaris et al., Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol.;
published by Elsevier, 2020 [148].

A gas-sensitive polymer, such as polyaniline (PANI), and reduced graphene oxide
(rGO) nanosheets were used for preparing nanocomposite films for ammonia (NH3) de-
tection [155]. The responsivity of the PANI-rGO nanocomposite as an NH3 gas sensor
revealed consistent values at different relative humidity conditions and could be used
under highly humid environments. Generally, graphene/PANI nanocomposites are syn-
thetized by in situ chemical polymerization and solution mixing. In particular, in situ
chemical polymerization allows more uniform dispersion of graphene oxide (GO), creating
strong interactions between the filler and the polyaniline matrix [150].

Polyaniline–graphene nanoplatelet (PANI–GN) nanocomposites were fabricated for
detecting toluene and benzene gases at ambient temperature [149]. They were synthesized
with different amounts of graphene in the polymer matrix using in situ polymerization of
aniline monomers in the presence of GNs. The sensitivity was dependent on the content
of graphene in the PANI matrix: nanocomposites with 6 wt% of graphene nanoplatelets
showed a maximum sensitivity of 90% and 80% for toluene and benzene gases, respectively.
In particular, the PANI–GN nanocomposites showed higher sensitivity and decreased
response and recovery times towards toluene as compared to benzene, likely due to
the higher diffusion rates of toluene gas molecules into the nanocomposite. PANI–GN
nanocomposites could be used as conductometric sensors for the detection of toluene at
lower concentrations than benzene.

GO/poly(diallyldimethylammonium chloride) (PDDA) nanocomposite films were
deposited on a flexible polyimide (PI) substrate and used as a humidity sensor [29]. The
multilayer GO/PDDA nanocomposites were realized using the layer-by-layer self-assembly
technique as illustrated in Figure 6a. The sensing properties were investigated at relative
humidity levels in the range of 11–97%. Several exposure/recovery cycles were performed
using an exposure interval of 125 s followed by a recovery interval of 125 s at 11% RH.
Figure 6b shows the variation of capacitance for the GO/PDDA films upon switching the
humidity level. The area between two adjacent dotted lines identifies each cycle, and an
increase in the capacitance value is observed with the rising of RH in the range of 11–97%.
The sensing properties were investigated at different relative humidity levels in the range
of 11–97%. These sensors exhibited an extremely high response, reaching unprecedented
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values of 265,640%. The sensing mechanism of the GO/PDDA nanocomposite was an-
alyzed using complex impedance spectra and bode diagrams, which gave an indication
of the water molecule permeation into the mesopores of the multilayer film. Its response
and recovery times make this nanocomposite material suitable for humidity detection in
various contexts, including measuring human breath.
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A quartz-crystal microbalance (QCM) resonator comprised of a GO/tin dioxide/
polyaniline (GO/SnO2/PANI) nanocomposite was synthetized via in situ oxidative poly-
merization and used as a humidity sensor [28]. The humidity-induced frequency changes of
the QCM sensor were investigated upon exposure to different relative humidity (RH) levels
at room temperature. High sensitivity of 29.1 Hz/%RH was observed over a wide range of
0–97% RH, with short response and recovery times of 7 s and 2 s, respectively. The humidity
sensing mechanism, which is schematically depicted in Figure 7, was analyzed using the
Langmuir adsorption isotherm model. Water molecules adsorb on the GO/SnO2/PANI
nanocomposite, linking to the hydroxyl, carboxyl, and epoxy groups that are attached
on GO, the amino groups on PANI, and the surface vacancies on the SnO2 nanoparticles.
In particular, water molecules are firstly chemisorbed on the coated film at low RH, and
then they are physisorbed by double hydrogen bonding. At high RH, second-layer water
molecules are physisorbed through single hydrogen bonding.
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Nanocomposites based on graphene oxide and chitosan (GO/CS) were used as sensing
material of quartz crystal microbalance (QCM) sensors to detect amine vapors [156]. The
GO/CS nanocomposite was developed in a porous mesh structure made of interconnected
nanofibers with diameters of 50 nm. The response of the GO/CS coated sensor was
compared to that of the sensors functionalized with pure CS and pure GO after exposure
to different organic vapors (Figure 8). At room temperature, the GO/CS nanocomposite
showed high sensitivity to aliphatic amines such as methylamine (MA), dimethylamine
(DMA), and trimethylamine (TMA), with sensitivity values of 2.7, 2.3, and 4.8 Hz/ppm,
respectively. The sensing mechanism is based on the adsorption/desorption of the amine
vapors due to the hydrogen-bonding interaction of the protonated amine with the hydroxyl
sites of the GO/CS film. The sorption properties and the sensing mechanism were described
using the linear solvation energy relationship (LSER) model [157]. The LSER model defines
the sorption properties in the form of sorbent and solute pairs, determining a connection
between the sorption properties of the sensing material and the chemical and physical
parameters of the analytes. The experimental results revealed reversibility, repeatability,
and long-term stability for the GO/CS nanocomposite.
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Another interesting class of graphene/polymer nanocomposites for gas-sensing ap-
plications is based on conductive polymers, such as poly(3,4-ethylenedioxythiophene)
(PEDOT). Chemically modified graphene/poly(3,4-ethylenedioxythio-phene):poly (styre-
nesulfonate) (PEDOT:PSS) nanocomposite films were fabricated for hydrogen (H2) sens-
ing [158]. The sensing behavior of rGO/PEDOT:PSS nanocomposites can be considered
the same of a n-type material, whereas GO/PEDOT:PSS shows p-type characteristics.
GO/PEDOT:PSS exhibited better H2 gas-sensing properties than rGO/PEDOT:PSS. This
result may be related to the poor distribution of the nanofillers in the rGO/PEDOT:PSS
samples. The sensitivity, response time, and recovery time of the GO/PEDOT:PSS sensors
toward H2 molecules (100 ppm) were 4.2%, 30 s, and 25 s, respectively. In the work by Yang
et al., porous poly(3,4-ethylenedioxythiophene) (PEDOT) nanostructures were deposited
on reduced graphene oxide (rGO) films, resulting in sensing platforms for nitrogen dioxide
(NO2) detection [27]. The sensing performance of these nanocomposites was compared
to that of gas sensors based on bare rGO and on common rGO/PEDOT composites. Re-
sults revealed that the rGO/porous PEDOT samples possess an enhanced gas adsorption
and desorption property, which can be ascribed to the high surface area and the porous
nanostructure of these nanocomposites.

4.2. Applications of GPNs in Environmental Monitoring: UV Radiation Sensors

On Earth, exposure to UV radiation, particularly to that in the dangerous UV-C region,
is limited by several factors, most notably the presence of the ozone layer that blocks the
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shorter wavelengths (100–280 nm) that are typical of the UV-C band. On the other hand, the
space environment is characterized by intense and unfiltered UV radiation, which accounts
for about 10% of the total electromagnetic radiation originating from the Sun [159].

Miniaturized UV sensors can be employed to monitor hazardous exposures during
working activities involving artificial sources of radiation without interfering with normal
activities [160,161]. Some industrial applications, such as sterilization processes, rely on the
use of highly damaging UV-C radiation, necessitating wearable devices that can reliably
detect and quantify any accidental exposure to workers [162]. In addition, an enhanced
UV-sensing system would be useful to detect small amounts of incoming UV-C radiation
and to correlate these measurements with ozone layer depletion, particularly in regions
that are most at risk, such as those near the equator.

The nanomaterials involved in the engineering of UV sensors typically include struc-
tures such as zinc oxide and silver nanoparticles [163–165]. In this field, graphene properties
can be exploited to improve carrier transport and UV absorption and therefore the photo-
response of the sensors. Nanocomposites based on zinc oxide nanowires and reduced
graphene oxide [166,167] show enhanced performance compared to photodetectors based
on nanowires made of pure zinc oxide. In particular, graphene nanosheets allow the devel-
opment of conductive networks and enhanced photo-response due to the large interface
regions between graphene and zinc, which prevents carrier recombination and facilitates its
transport [166]. Reduced graphene oxide was also combined with tungsten oxide nanodiscs
to fabricate UV-sensitive composite materials [168]. Tungsten oxide shows an indirect, large,
energy-band gap that makes it a good candidate for UV detection. Nevertheless, only a
few studies [153,169] have focused on its employment for this purpose, probably due to its
very slow response time. The coupling of tungsten oxide with reduced graphene oxide led
to a response time on the order of milliseconds [168], with the improvement attributed to
the carrier transport efficiency of graphene.

Several studies have demonstrated that graphene nanoplatelets (GNs) can be suc-
cessfully functionalized with DNA molecules in order to obtain UV-sensitive complexes
that can be further embedded in a polymer matrix [30–33,170–172]. In this way, novel
graphene/polymer nanocomposites with UV-sensitive properties are obtained. For ex-
ample, UV-sensitive nanocomposite films were prepared by integrating DNA-modified
graphene nanoplatelets with a polymer matrix made of poly(3,4-ethylenedioxythio-phene):
poly(styrenesulfonate) (PEDOT:PSS) [32,33]. The superior electrical properties and the
mechanical strength of graphene were used to enhance the properties and stability of the
PEDOT:PSS, whereas the DNA molecules were sensitive to UV and were shown to have
an exfoliating effect on the GNs in aqueous solution. The high specific surface area of the
nanoplatelets favors the formation of a large number of non-covalent interactions between
the amines of the DNA molecules and the carboxyl groups of the nanoplatelets [173,174].
Films were exposed to UV-C radiation and different techniques were used to evaluate their
response under UV exposure. Results were useful to assess the ability of these nanocom-
posites to detect an absorbed dose. Raman microscopy mapping was used to investigate
the chemical modifications caused by the radiation and the role of each component of
the films in the overall response of the nanocomposites (Figure 9) [33]. These graphene–
DNA/PEDOT:PSS films could be used in ultra-small and lightweight UV sensor devices
for monitoring in space or for industrial settings on Earth that are characterized by high
levels of UV-C radiation. Moreover, electrical resistance tomography (ERT) was used to
investigate the conductivity changes occurring at the surface of the nanocomposite coat-
ings during UV irradiation, providing in situ monitoring of UV-induced degradation in
composite materials and structures [30].
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Graphene–DNA complexes were also embedded in polydimethylsiloxane (PDMS)
matrices, fabricating free-standing thin films and 3D materials with improved conforma-
bility and reduced size [31,170,172,175]. PDMS is well known for its chemical inertia,
biocompatibility and flexibility, which make it an excellent candidate for wearable sen-
sors. Furthermore, PDMS exhibits high optical transparency to UV radiation with good
transmittance in the UV-C band (above 240 nm) [176], allowing major exposure of the incor-
porated graphene–DNA filler during irradiation. The properties of graphene–DNA/PDMS
nanocomposite films were investigated before and after exposure to UV-C radiation, and
the effect of different amounts of filler was evaluated. In addition, these nanocomposites
were also tested as free-standing 3D materials in a simulated space environment [31],
and they showed good stability in terms of thermal and wettability properties with a
considerable electrical response to irradiation.

4.3. Applications of GPNs in Human Health Monitoring

Many sensors based on nanocomposite materials find applications in the monitoring
of human health parameters [177,178]. In this regard, the sensing devices need to be
comfortable to wear, biocompatible, and lightweight [179–181]. They need to interface with
the human body, concurrently showing high selectivity and sensitivity in detecting and
quantifying specific signals or analytes.

Graphene, graphene oxide, and chemically modified graphene are widely employed
to fabricate nanocomposites suitable for detecting biological analytes, such as uric acid
and ascorbic acid [182], hydroquinone and catechol [183], and nucleic bases [184,185]. The
presence of functional groups on the nanocomposite surface is fundamental to creating
hydrogen bonds with the analytes, so the strength of these bonds and the distance between
the interaction sites and the reaction center make possible the discrimination of the analytes.

DNA molecules can be immobilized on a graphene surface by physical adsorption
or by chemical binding, thus creating sensitive platforms where each binding event with
the analyte can be detected through the changes of the electric or electrochemical prop-
erties of these platforms [186,187]. Noncovalent interactions can be promoted through
physical adsorption, involving π–π stacking interactions between the DNA nucleobases
and the aromatic surface of graphene. In particular, in the case of single-stranded DNA
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(ssDNA), stable aqueous dispersions of graphene/DNA can be obtained without traces
of sedimentation for months [173]. Double-stranded DNA (dsDNA) is also used as a
dispersing agent for graphene nanoplatelets. However, in this case less stable aqueous
solutions are obtained due to the weaker hydrophobic interactions arising from the base
pairing of the nucleobases. Nevertheless, graphene/dsDNA affinity can be significantly
enhanced by further functionalizing graphene oxide with polar groups, which are able
to establish electrostatic interactions with the DNA bases. The immobilization of DNA
on graphene through covalent bonds is generally carried out after functionalizing the
DNA with amino groups, which are able to interact with the graphene oxide surface via
carbodiimide chemistry [188]. In particular, amine-terminated ssDNA can be linked to the
surface of graphene oxide directly or through the involvement of specific molecules that
act as carriers.

Single-stranded DNA was covalently immobilized on a polyaniline/graphene (PAN/
GN) nanocomposite, which was applied onto a glassy carbon electrode (GCE) and used
for HIV-1 gene detection [20]. The procedure is described schematically in Figure 10. In
particular, the negatively charged phosphate backbone of HIV-1 binds to the sensitive
surface via π–π* stacking interactions. The hybridization between the ssDNA probe and the
HIV-1 target generates double-stranded DNA (dsDNA), which increases electron-transfer
resistance in proportion to the concentration of the gene. The sensitivity and the selectivity
of this nanocomposite were tested, and a low detection limit of 1.0 × 10−16 M for the HIV-1
target was measured.
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nanocomposite. The inner graph shows cyclic voltammograms of (a) PAN/GN/GCE, (b)
ssHIV/PAN/GN/GCE, and (c) ssHIV/PAN/GN/GCE hybridized with 1 × 10−11 M of target
HIV. Reproduced with permission from Gong et al., J. Mater.; published by Elsevier, 2019 [20].

The development of new composite materials using biomolecules, such as enzymes,
has allowed further extension into the fields of sensing applications in medical diagnosis
and bio-industrial analysis. Several sensitive nanocomposites have been realized using
natural polymers, such as gelatin, alginate, and chitosan, as matrix due to their intrinsic
biodegradability and biocompatibility that make them suitable for biomedical applica-
tions [189]. In particular, chitosan has been combined with graphene to develop nanocom-
posite materials with sensing properties useful for monitoring human health [190–193].

Xie et al. developed an immunosensor based on graphene and chitosan-modified
screen-printed carbon electrode (SPCE) (Figure 11) [21]. The phospho-p53 capture antibody
was adsorbed on the surface of the graphene–chitosan/SPCE. A sandwich immunocom-
plex was formed between the targeted phospho-p5315 antigen, the phospho-p53 capture
antibody, the antigen, and the biotinylated phospho-p5315 detection antibody, which was
previously marked with horseradish peroxidase (HRP). The high surface area of graphene
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allowed the immobilization of a large amount of capture antibody, increasing the sensitivity
of this nanocomposite immunosensor.
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Nanocomposite films based on glucose oxidase (GOD), platinum (Pt), functional
graphene sheets (FGS), and chitosan were developed for glucose sensing [191]. The elec-
trocatalytic action of FGS and Pt nanoparticles towards hydrogen peroxide (H2O2) was
exploited to obtain a sensitive biosensor with a detection limit of 0.6 µM for glucose. The
performance of this type of sensor can be ascribed to the large surface area and the fast elec-
tron transfer of graphene and Pt nanoparticles. This sensor showed good reproducibility
and long-term stability, with negligible response to other compounds such as ascorbic acid
and uric acid. The GOD/Pt/FGS/chitosan-sensitive nanocomposite can be useful for both
clinical and home-care devices for rapid monitoring of glucose.

Glucose sensing was also performed with composite films made of graphene, chitosan
and uric acid, which were deposited onto glassy carbon electrodes [192]. A molecularly
imprinted electrochemical sensor was obtained, and its sensitivity mechanism was ana-
lyzed by electrochemical impedance spectroscopy and chronocoulometric methods. A
comparison between graphene-doped and undoped sensors was carried out, with results
demonstrating an improvement in terms of sensitivity due to the high surface area and
good electronic conduction of graphene.

Sensitive films based on EDTA-modified reduced graphene (EDTA-RG) and Nafion
were fabricated and tested as dopamine detectors [194]. Graphene was chemically modified
by silanization using N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (EDTA-
silane). The selectivity was investigated by using dopamine and ascorbic acid. Experimental
tests demonstrated that the sulfuric groups of Nafion and the carboxylic groups of EDTA-



Polymers 2022, 14, 1030 17 of 25

RG interfere with the diffusion of ascorbic acid, thus enabling the selective detection of
dopamine.

More recently, biosensing has seen advances towards more complex structures that are
able to enhance the overall sensitivity of the detecting surface. A sensing composite material
was realized using fractal nanoplatinum with a cauliflower-like morphology, which was
developed on a reduced graphene oxide paper [195]. Platinum was electrodeposited on
the graphene–nanocellulose sheets using pulsed sonoelectrodeposition. As a result, a
conductive nanocomposite paper with a highly electroactive surface was obtained and then
functionalized using glucose oxidase (via chitosan encapsulation) or RNA aptamer (via
covalent linking) as depicted in Figure 12. In this way, the material’s sensitivity towards
glucose or Escherichia coli bacteria can be activated. Depending on the enzyme selected,
good performance in terms of sensitivity and response times were obtained.
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5. Summary and Final Remarks

Recent trends in the development of graphene-based polymer nanocomposites (GPNs)
with sensing properties were examined, with emphasis on applications in the fields of
environmental and human health monitoring. In this review article, the methods that
are traditionally used to synthetize and functionalize the graphene filler were included.
These methods can be classified into two main categories, namely bottom-up and top-down
approaches, and allow for the production of graphene sheets with various dimensions
(thickness and lateral size) and purity. Next, we discussed methods for the fabrication
of GPNs, taking into account the role that the interactions between the polymer and the
graphene nanomaterial have on the composite’s final properties. Typically, in situ polymer-
ization is a good choice for obtaining homogeneous nanocomposites by creating a polymer
network directly around the fillers, thus avoiding energetic methods—which might cause
damage to the conductive capability of graphene—for dispersion. For environmental
monitoring, graphene/polymer nanocomposites with metallic or metal oxide nanoparticles
immobilized on the graphene filler possess the ability to detect harmful gas molecules
(ammonia, benzene, and/or toluene) or measure humidity. Graphene-based nanocom-



Polymers 2022, 14, 1030 18 of 25

posites with UV-sensing properties have recently been developed by immobilizing DNA
strands on graphene: the proof-of-principle experiments were successful, opening the way
to their potential use as lightweight, sensitive components of radiation monitoring systems
on Earth or in space. The application of specific graphene/polymer nanocomposites for
examining human health parameters was also discussed. Integration of (bio)molecules with
the graphene surface was reviewed, and their role was explained, taking into consideration
the interactions with the material and how they affect the overall sensing properties of
the nanocomposites. One of their most important characteristics is the loading capacity of
nanocomposites towards the biological analyte acting as the sensing element. The use of
fractal-type nanoparticles with high surface roughness represents a great advantage for the
immobilization of large quantities of enzymes or RNA for biosensing purposes.
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