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a b s t r a c t

We inspect the possibility that neutron star interiors are a mixture of ordinary matter and mirror
dark matter. This is a scenario that can be naturally envisaged according to well studied accretion
mechanisms, including the Bondi–Hoyle one. We show that the inclusion of mirror dark matter in
neutron star models lowers the maximum neutron star mass for a given equation of state, and that it
decreases the tidal deformability of a given neutron star. These general features imply that, given an
equation of state, one can constrain the maximum viable amount of mirror dark matter in neutron stars
in order to consistently fulfil existing maximum mass and tidal deformability constraints. Conversely,
using tidal deformability measurements to rule out equations of state requires making assumptions
on the amount of mirror dark matter contained in neutron stars. Finally, the presence of mirror dark
matter also modifies the universal relation that links the tidal deformability of a neutron star to
its compactness. Therefore, caution is mandatory when considering exotic models, such as the ones
discussed in this paper.

© 2021 Published by Elsevier B.V.
1. Introduction

Neutron stars (NSs) are unique natural laboratories to probe
he physics of nuclear matter at supranuclear densities [1,2].
he behaviour of matter in their interiors is governed by the
urrently unknown NS equation of state (EoS), which provides a
elation between the thermodynamical variables of NS matter —
t the very least between pressure and density. With terrestrial
aboratory experiments, we can test the EoS at a density near the
aturation density of nuclei, 2.7 × 1014 g/cm3, but we cannot
reach the density of a NS core, nor deal with the huge number
of nucleons that is typical of NSs. The EoS has an impact on
the macroscopic properties of NSs, such as the radius at a given
mass, the maximum mass that can be achieved, and the moment
of inertia at a given mass [3]. Last but not the least, the EoS
has a direct impact on how NSs deform under the effect of
external tidal fields. As shown by Flanagan and Hinderer [4], the
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NS tidal deformation leaves a clean imprint on the gravitational-
wave (GW) signal emitted by inspiralling NS binary systems. This
imprint depends on the tidal deformability parameter, which is
sensitive to the EoS. This implies that measurements of such
parameter via GW observations can directly constrain the NS EoS.
Indeed, the LIGO-Virgo [5,6] observation of GW170817 yielded a
first direct measurement of the tidal deformability parameter [1,
7], and sparked several studies aiming at constraining the NS EoS,
e.g., [8,9]. A second tidal deformability measurement came with
the GW190425 event [10], and constraints on the NS EoS may be
produced by combining these two events, e.g., [11].

In this work, we study exotic models of NSs containing mir-
ror dark matter (MDM). MDM arises from a particle physics
perspective and can fit cosmological constraints [12,13]. It is a
specific kind of dark matter that globally restores parity [14–19].
MDM is an exact replica of ordinary matter that forms a distinct
sector of matter; in the minimal coupling approach followed in
this work, it interacts with the ordinary sector of matter only
gravitationally. We determine the maximum mass of our exotic
NS models and use the framework provided by Flanagan and
Hinderer to calculate their tidal deformabilities.

Our work is motivated by the fact that NS models with or-

dinary matter alone tend to support high maximum masses and
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idal deformabilities or low maximum masses and tidal deforma-
ilities, while current observational data indicates that NSs can
e very massive, but at the same time not very deformable.
his statement is supported by GW170817 data [7,20], results
rom the NICER (the Neutron star Interior Composition Explorer)
ollaboration [21–23] – which infers masses and radii of NSs from
heir X-ray emissions – and radio timing observations of PSR
0348+0432 [24] and PSR J0740+6620 [25]. Several studies have
onsidered this very tension between nuclear physics and astro-
hysical observations, e.g., [26], and there have been attempts
o alleviate it with the inclusion of dark matter in NSs [27,28],
ut none with MDM so far. Notably, a possibility of alleviating
his tension without the use of dark matter is offered by allowing
ransitions of nucleonic matter to hyperonic matter, e.g., [29], to
uark matter, e.g., [30,31], or both, e.g., [32]. Nevertheless, we
ill focus our investigations on the alternative scenario offered
y MDM, which we deem worthy of being addressed. Our two
ain constraints are, Mobs

max = 2M⊙ as a representative of the
ighest NS mass ever measured,1 and the dimensionless tidal
eformability parameter for a reference 1.4M⊙ NS inferred from
W170817 Λobs

1.4 = 190+390
−120 [7].

This work is organized as follows. In Section 2 we provide
ome basic notions about NSs, including the approach to calculate
he NS tidal deformability. In Section 3 we explore the EoS models
sed in this paper, and clarify the reason for our choices. In Sec-
ion 4 we introduce the basic features of the dark matter model
nder scrutiny in this work, and specify the inclusion of this kind
f matter in NSs. Finally, in Section 5 we compare our results with
he publicly available GW data for GW170817 [33,34].

We work in G = c = 1 units, unless otherwise noted.

. Neutron stars

NSs are the leftovers of the evolution of stars with masses
f at least ∼ 8M⊙, and core masses of at least ∼ 1.4M⊙ [35].
hey are the second most compact objects known in our Universe,
fter black holes, with central density of order O(1015) g/cm3.
s a consequence, the EoS that governs the microphysics of
atter inside NSs is still unknown, and various candidates are
resent in the literature [36,37]. A non-rotating and isotropic NS
n hydrostatic and thermodynamic equilibrium can be modelled
s a self-gravitating perfect fluid at zero temperature, T = 0K,
n general relativity. This is achieved by solving the Tolman–
ppenheimer–Volkoff (TOV) equations [38,39],

dm(r)
dr

= 4πϵ(r)r2 , (1)

dp(r)
dr

= − [p(r) + ϵ(r)]
dΦ
dr

, (2)

dΦ(r)
dr

=
1
2r

[
1 −

2m(r)
r

]−1 [
8πr2p(r) +

2m(r)
r

]
, (3)

which are derived from the Einstein Equations for the most
general spherically symmetric line element

ds2 = −e2Φ(r)dt2 + e2Γ (r)dr2 + r2dθ2
+ r2 sin2(θ )dφ2 . (4)

In these equations, p(r) and ϵ(r) denote the fluid pressure and
energy density, respectively, and Γ (r) is governed by the relation

e−2Γ (r)
= 1 −

2m(r)
r

. (5)

1 The ∼ 68% confidence measurement for PSR J0348+0432 is (2.01 ±

.04)M⊙ [24] while the mass of PSR J0740+6620 is 2.14+0.10
−0.09 M⊙ at ∼ 68%

redibility [25].
2

losing this system of first order differential equations for the
our unknownsm, ϵ, p, and Φ requires prescribing an EoS. Obtain-
ing a specific model requires picking a value of the central energy
density and integrating the TOV equations up to the surface of the
star, where the condition p(r = R) = 0 is met. This allows one to
determine two macroscopic properties of the NS model: its radius
R and its gravitational mass M = m(r = R). A family of models,
ay be obtained by repeatedly solving the TOV equations for a
iven EoS, while varying the central energy density [see Fig. 1 in
ection 3 for two examples of this].

.1. Tidal deformability

Other than the NS mass and radius, a third macroscopic NS
roperty of interest within this paper is the tidal deformability.
hysically, this quantity is introduced by considering a static and
pherically symmetric star, plugged into a static quadrupolar tidal
ield εij and linearizing the response of the star to the deforming
ield by writing

ij = −λεij , (6)

here Qij is the induced quadrupole momentum of the star,
nd λ is the tidal deformability. This is related to the ℓ = 2
imensionless tidal Love number k2 by

2 =
3
2
λR−5 . (7)

In this section we summarize the steps that lead to the equations
that are necessary to calculate λ for a specific NS model. We refer
the reader to, e.g., Refs. [40,41] for details.

The starting point is the following first order perturbation of
the line element in Eq. (4):

ds2 = −e2Φ(r)
[1 + H(r)Y20(θ, φ)]dt2

+e2Γ (r)
[1 − H(r)Y20(θ, φ)]dr2 (8)

+ r2[1 − K (r)Y20(θ, φ)](dθ2
+ sin2 θdφ2) .

he decomposition into spherical harmonics (Yℓm) is truncated
t leading order (ℓ = 2) and, without loss of generality, the
zimuthal number m is set to zero. This is suitable to describe
he scenario in which a non-rotating NS is subject to the external
idal field generated by a companion in a compact binary, during
he early stages of inspiral. The deformation will be static and
xisymmetric around the line connecting the NS to its companion,
hich constitutes the axis chosen for the spherical harmonic
ecomposition. The line element in Eq. (8) allows one to perturb,
t first order, the left hand side of the Einstein Equations, i.e., the
instein tensor Gµν . To complete the picture, the following per-
urbation of the stress-energy tensor, i.e., the right hand side of
he Einstein Equations, is prescribed for the perfect fluid of the
S:

Tµ
ν = diag (δϵ(r), δp(r), δp(r), δp(r)) Y20(θ, φ). (9)

The µ ̸= ν perturbed Einstein Equations δGµ
ν = 0 lead to the

xpression
′
= H ′

+ 2HΦ ′ , (10)

here we use a prime to denote a derivative with respect to
he radial coordinate r , and where for simplicity we dropped the
xplicit notation for the dependency on r . With the two angular
arts of the µ = ν perturbed Einstein Equations one may instead
rite

p =
δG2

2 + δG3
3 , (11)
16πY20(θ, φ)
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hich links δp to the metric perturbation, via δG2
2 and δG3

3.
inally, we can combine the remaining components of the per-
urbed Einstein Equations in the following way:

G0
0 − δG1

1 = 8π Y20(θ, φ)[δϵ − δp] . (12)

ecause of isotropy, we may write δϵ = f (p)δp. Thus, for small
ariations of p, we may further set f (p) =

dϵ
dp , since the relation

ϵ =
dϵ
dpδp holds generally, including for small changes in the

pressure. The function f (p) is the inverse of the speed of sound
squared, which for a fluid is defined as

c2s (p) =
dp
dϵ

. (13)

his provides a link between the internal structure and the EoS.
his allows us to rewrite Eq. (12) as

G0
0 − δG1

1 =
f (p) − 1

2

(
δG2

2 + δG3
3

)
. (14)

Substituting the explicit expressions for the perturbed Einstein
ensor in Eq. (14) and using Eq. (10) leads to a second order
rdinary differential equation for the metric perturbation H(r),
hich reads

(r)
(

−
f (p)Γ ′(r)

r
−

f (p)Φ ′(r)
r

− 2Γ ′(r)Φ ′(r) +
3Γ ′(r)

r
(15)

6e2Γ (r)

r2
+ 2Φ ′′(r) − 2Φ ′ 2(r) +

7Φ ′(r)
r

)
(16)

H ′(r)
(

−Γ ′(r) + Φ ′(r) +
2
r

)
+ H ′′(r) = 0 . (17)

The derivatives of Γ and Φ may be eliminated using the back-
ground Eqs. (1)–(3). The differential equation for H(r) needs to
be solved in order to determine the tidal deformability. This is
done by integrating outwards, starting from H(r0 ≪ 1) = a0r20 .
utside the star, where all fluid variables vanish, the solution
o the differential equation may be expressed in terms of the
ssociated Legendre functions Q 2

2 (x) and P2
2 (x) as

H = c1Q 2
2

( r
M

− 1
)

+ c2P2
2

( r
M

− 1
)

. (18)

he coefficients c1 and c2 are determined by matching the interior
and exterior solutions at r = R. This procedure leads to the sought
xpression for the ℓ = 2 tidal Love number:

2 =
8C5

5
(1 − 2C)2 [2 + 2C(y − 1) − y] ×

× 2C
{

[6 − 3y + 3C(5y − 8)] + 4C3
[13 − 11y +

+ C(3y − 2) + 2C2(1 + y)] +

+ 3(1 − 2C)2[2 − y + 2C(y − 1)] ln(1 − 2C)
}

−1, (19)

here C = M/R denotes the compactness of the star, while y =

H ′(R)/H(R). This equation and Eq. (7) allow for the calculation
f λ.
As a final comment, we note that it is often common to work

ith the dimensionless tidal deformability

=
2
3
k2
C5 (20)

nd we will do so in the remainder of this paper.

. Equation of state choices

In this section we motivate our choices for the two EoSs used
n this work, namely, SLy [42] and MS1 [43].
 i

3

Fig. 1. Neutron star equilibrium sequences obtained with ordinary matter and
the SLy (blue) and MS1 (red) equations of state. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

A condition that every viable EoS candidate must satisfy is to
be able to sustain the maximum mass constraint [Mobs

max = 2M⊙,
see Introduction]. A second condition that must be satisfied by an
EoS is that it yields a dimensionless tidal deformability parameter
for a 1.4M⊙ NS that is compatible with Λobs

1.4 = 190+390
−120. Within

an NS modelling approach, if an EoS cannot produce a stable con-
figuration that supports the mass measured for PSR J0348+0432
and for PSR J0740+6620 or a tidal deformability that agrees with
the GW170817 data, that EoS must be ruled out.

In Fig. 1, we show the masses and radii of two NS equilibrium
sequences obtained by repeatedly integrating the TOV equations
while varying the central density, once assuming the SLy EoS
(blue curve) and a second time assuming the MS1 EoS (red
curve). The curves terminate when the compactness, C = M/R,
eaches its maximum value, beyond which the star becomes
nstable. Both sequences are seen to admit NSs compatible with
he maximum mass observational constraint. MS1 supports NSs
ith large radii, i.e., low compactness values. By virtue of Eq. (20),

t therefore yields high dimensionless tidal deformabilities and
ndeed it was found to be incompatible with the GW data of
he GW170817 event [1,7,44]. Nonetheless, we will show that
his incompatibility may be evaded resorting to non-canonical NS
odels that include MDM, in addition to ordinary matter from

he Standard Model. Essentially, the addition of MDM increases
he compactness of a NS with a given gravitational mass. For this
ery reason, we choose to use MS1 as an EoS in this work.
At the same time, the presence of MDM lowers the maximum

S mass: by inspecting Fig. 1, one sees that SLy runs the risk of
alling short of fulfilling the maximum NS mass constraint when
DM is included in modelling NSs. The choice of using the SLy
oS therefore enables us to show that there can be a maximum
mount of MDM content in NSs.

. Mirror dark matter

Dark matter provides a vast theoretical scenario that encodes
he appearance of massive matter fields in the Universe other
han the visible ones, in order to fulfil astrophysical constraints. A
lausible type of dark matter is MDM [45–48], which arises natu-
ally if one assumes that Nature is parity-symmetric. Asymmetric
irror scenarios have then been deeply analysed in the literature,
ith specific focus, for instance, on the possible implications of
symmetric fermionic dark matter for neutron stars [49]. The

dea behind this model traces back to Lee and Yang’s paper on
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arity violation [50]. In the same article they proposed a way
o restore this symmetry globally, by creating a mirror partner
or each particle. This implies the existence of a new sector that
s an exact replica of the Standard Model, but with opposite
andedness. This symmetry can be interpreted as a spacetime
arity that connects each particle e, n, p, γ and so on, to the
orresponding e′, n′, p′, γ ′, where the prime symbol denotes the
irror sector. Following these assumptions, ordinary and mirror
articles will have the same mass and be governed by the same
ynamics – with mirror particles also forming atoms, molecules
nd astrophysical objects – but the two sectors will communicate
nly via gravitational interactions.2 It is also worth mentioning
pecific predictions for the evolution and structural properties of
irror star massive compact halo objects (MACHOs) [51], and the
ossibility of carrying out tests on mirror neutron oscillations [52,
3] in forthcoming experiments, including the European Spalla-
ion Source (ESS). Bounds on neutron-mirror neutron mixing have
een also derived from pulsar timing [54].
In the scenario of our interest, MDM is tied to galaxy halos,

nd should mainly appear within the form of cold helium and
ases of heavier elements. From the measurements of Bahcall and
ollaborators [13], we can conjecture that dark matter may be
ound in regions close to those containing stars. Differently, the
ass–light ratio would not be constant. These two assumptions
oint to the perfect environment in which ordinary matter stars
an capture dark matter during their lifetime and then become
Ss with a percentage of total mass due to dark matter, and/or
Ss can directly capture dark matter from their environment.
hese are the exact ingredients to apply an accretion criterion
uch the as the Bondi–Hoyle one [55,56]. This is a Newtonian-
allistic approach, meaning that the magnetic field is ignored
nd no relativistic effect is considered. However, since we work
ith MDM, the magnetic effect can be neglected, for this matter

nteracts little or not at all with photons. There are very few
rticles that address a fully relativistic accretion scenario for NSs.
owever, our model is indeed a pure ballistic one and, as stated
n [56], the few works that account for relativistic effect are in
greement with its accretion rate.
Another, more sophisticated accretion formula for a body

tanding in a cloud of gases is derived by X.Y. Li, F.Y. Wang
nd K.S. Cheng in [57]. Regardless of the specific choice for the
ccretion model, there is no doubt that the capture of MDM is
phenomenon that must be taken into account in this scenario.
ith the Bondi–Hoyle and the Li–Wang–Cheng accretion models,

n ordinary star can acquire O(1M⊙) during its billion-year long
ifetime. In light of the fact that mass accretion of ordinary and
ark matter by celestial objects can be estimated realistically only
t order of magnitude level [56], and given that tidal heating is
ubdominant to any other accretion mechanism by several orders
f magnitude for a wide class of ordinary and exotic compact
bjects [58], we are motivated to investigate configurations with
percentage of dark matter mass with respect to the total mass

n the range 0%–50%.

.1. Modelling neutron stars containing mirror dark matter

The presence of MDM may be incorporated in NS models by
reating ordinary baryonic matter (B) and MDM as two non-
nteracting perfect fluids. This is done by splitting the pressure

2 In a more refined picture, which we do not consider in the present paper,
DM can interact with the Standard Model particles via, for instance, the
o called photon-mirror-photon kinetic mixing. With a mixing of strength of
rder ϵ ∼ O(10−9), MDM can fulfil all constraints imposed by cosmological
bservations, including those from the cosmic microwave background and big
ang nucleosynthesis [12].
4

and energy density that appear in Eqs. (1)–(3) into two additive
contributions:

p(r) = pB(r) + pMDM (r) , (21)
ϵ(r) = ϵB(r) + ϵMDM (r) . (22)

n particular, since we are assuming that the two fluids only
nteract through gravity, Eq. (2) separates in two equations:

dpB(r)
dr

= − [pB(r) + ϵB(r)]
dΦ(r)
dr

, (23)

dpMDM (r)
dr

= − [pMDM (r) + ϵMDM (r)]
dΦ(r)
dr

. (24)

ad we inserted a channel of non-gravitational interaction [57,
9,60], this simplification would not have been possible.
To build NS models that include MDM, one must integrate

qs. (1), (3), (23), and (24), with the constraints in Eqs. (21) and
22), starting from the centre of the star. To do so, an EoS and
central density need to be specified in both matter sectors.

n principle, we could use two different EoSs, one per mat-
er species [see, e.g.,61]. However, it is a good approximation
o use the same EoS in both sectors [60,62]. Given the dif-
erent nucleosyntheses, dark matter nuclei are not distributed
ike ordinary ones, but it is fair to assume that, during the col-
apse, the strong gravitational field of the core reduces the nuclei
nto mirror-protons, mirror-neutrons and small agglomerates of
irror-nucleons that evolve in a way that is similar to that of the
rdinary sector, reaching β-equilibrium. Therefore, we specify a
ingle EoS that holds in both matter sectors. As discussed in the
revious Section, we adopt the SLy and MS1 EoSs.
The radius R of the NS is determined by integrating the equa-

ions of the two-fluid TOV model until the condition that the total
ressure vanishes is reached, i.e., p(r = R) = 0. The radius of
he sphere containing all the baryonic ordinary matter is defined
s RB ≤ R such that pB(RB) = 0; similarly, one may define
MDM ≤ R such that pMDM (RMDM ) = 0 as the radius of the sphere
hat contains all the MDM present in the NS.

Within the two fluid approach that we outlined so far, it is also
ossible to define three distinct masses. The total ordinary matter
ass is the integral of 4πr2ϵB(r) from r = 0 to r = R, while the

otal MDM mass is the integral of 4πr2ϵMDM from the centre of
he NS up to its surface. Finally, the (total) gravitational mass is
nstead given by

(R) =

∫ R

0
4πr2 [ϵB(r) + ϵMDM (r)] dr . (25)

his is the quantity we report in our results, unless otherwise
tated.

. Results

We now present our results obtained by repeatedly integrating
he TOV equations for two fluids (ordinary matter and MDM)
escribed in the previous Section, while varying the total central
ensity and the MDM central density, for a given EoS (which we
ecall holds for both matter sectors). This produces a collection of
S models that we interpolate in order to produce NS equilibrium
equences with a fix ratio of MDM mass to total mass, MMDM/M .
ecause masses are integrated quantities, it is not possible to fix
his ratio a priori and an interpolation over a sample of models is
ecessary.
In Fig. 2 we show six NS equilibrium sequences obtained

or the MS1 EoS for different values of MMDM/M . The sequence
ithout MDM is shown as a dot-dashed line in the total radius
ersus total mass plane: in the absence of MDM, the NS radius is
aximum at a given NS (total) mass. As the MDM contribution

o the total mass increases, so does the compactness of the NSs,
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Fig. 2. NS equilibrium sequences for the MS1 EoS at fix values of the MDM
mass to total mass ratio MMDM/M . The legend indicates the value of MMDM/M
or a given sequence.

able 1
adius R, compactness C , Love number k2 , and tidal deformability Λ for M =

.4M⊙ NS models built with the MS1 EoS (top) and the SLy EoS (bottom), as
he percentage of MDM mass varies as indicated in the table header.
MMDM/M 10% 20% 30% 40% 50%

R [km] 13.97 13.06 12.13 11.24 10.44
C 0.148 0.158 0.170 0.184 0.198
k2 [10−2] 8.38 7.37 6.47 6.23 6.76
Λ 786 495 301 197 148

R [km] 10.90 9.98 9.06 8.22 7.57
C 0.190 0.207 0.228 0.251 0.273
k2 [10−2] 6.00 4.85 4.04 3.52 3.33
Λ 163 85 44 23 15

i.e., the radius R decreases for a given M . At the same time, the
value of the maximum (total) mass of a stable NS,Mmax, decreases
progressively. Quantitatively, for the MS1 EoS, R ∼ 14.5km and
Mmax ≃ 2.75M⊙ in the absence of MDM, while for MMDM/M =

0%R ∼ 10.5km and Mmax ≃ 1.95M⊙. Since the TOV equations
or two fluids that interact only gravitationally are insensitive to
wapping the two fluid species, the MMDM/M = 50% sequence
ollects the most compact configurations that are obtainable for
given EoS. A sequence with MMDM/M = 90%, for example,

s identical to a sequence with MMDM/M = 10%. Indeed, this
ymmetry was exploited to benchmark the code we wrote to
ntegrate the TOV two-fluid model described in Section 4.1.

Having seen the general behaviour of a NS equilibrium se-
uence for a given EoS as we increase the amount of MDM, we
eport in Table 1 the values of the NS radius, compactness, Love
umber, and tidal deformability (R, C , k2, and λ) for a NS with a
anonical M = 1.4M⊙ total mass when varying MMDM/M . These
roperties are calculated for both the MS1 and the SLy EoSs.
We now turn to a discussion of the general results presented

o far, in light of the constraints from GW170817 [Λobs
1.4 =

90+390
−120], and PSR J0348+0432 and PSR J0740+6620 [Mobs

max =

M⊙]. The MS1 EoS is not compatible with GW170817 data when
onsidering ordinary matter alone [1]. However, the inclusion
f MDM in an NS model lowers the NS tidal deformability: it
s indeed possible to make the MS1 EoS compatible with both
he maximum mass constraint and the tidal deformability mea-
urement of GW170817, if the MDM sector is included when
odelling NSs. In other words, MS1 may be ruled out under the
ypothesis that the source of the GW170817 signal contained no
DM, otherwise it cannot.
The case of SLy is different. Without MDM, this EoS leads to NS

odels compatible with both the maximum mass constraint and
5

Fig. 3. The background is the posterior distribution of the two NS dimensionless
tidal deformabilities in the source of GW170817, assuming a low-spin scenario,
that is, the magnitude of the NS spin parameter is uniformly sampled between
0 and 0.05, see [1,7,44] for details. The probability density is higher where the
background is brighter. The dashed white line encloses the 90% credible region
of such posterior. The coloured curves correspond to specific choices of the EoS
and MMDM/M that satisfy the two observational constraints Λobs

1.4 = 190+390
−120 and

Mobs
max = 2M⊙: as in [1,7,44], they are obtained by constructing the interpolating

unction Λ(M) (for the given EoS and a given MMDM/M value) and running it
n the component mass posterior of GW170817. The GW170817 data is taken
rom [63].

able 2
alues of the dimensionless tidal deformability for 1.4M⊙ NS models built with
he SLy or the MS1 EoS and several values of MMDM/M , as denoted in the header
f the table. We highlight in bold configurations that are in agreement with both
he Λobs

1.4 = 190+390
−120 and the Mobs

max = 2M⊙ observational constraints.

MMDM/M 0% 10% 20% 30% 40% 50%

SLy 282 163 85 44 23 15
MS1 1246 786 495 301 197 148

GW170817, but just a small amount of MDM, namely MMDM/M ≃

%, can drive the maximum mass below 2M⊙. The presence of
MDM may depend on the local environment and, therefore, this
statement may be rephrased as follows: under the hypothesis
that an SLy-like EoS holds in NS interiors, the amount of MDM
in, say, PSR J0348+0432 is bounded by MMDM/M < 1%.

All in all, adding MDM as a degree of freedom of NS models
alleviates the tension due to Mobs

max and Λobs
1.4 discussed in the

Introduction. If one admits the possibility that NSs contain MDM
in their interiors, in order for an EoS to meet experimental ob-
servations the following criterion – namely a necessary condition
– must be verified: at least one NS equilibrium sequence of
the family of sequences yielded by that EoS must satisfy the
maximum mass constraint, and at least one sequence must agree
with the tidal deformability measurement of GW170817. Once
again, this relies on the fact that the amount of available MDM
may depend on the local environment.

Both MS1 and SLy satisfy the necessary condition we just
stated. A more interesting criterion is the following sufficient
condition: for a given EoS to be viable, at least one curve of the
family of its NS equilibrium sequences must be in agreement with
both the maximum mass constraint and the tidal deformability of
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Fig. 4. Deviation from the universal behaviour reported in Eq. (26) of the
compactness as a function of the dimensionless tidal deformability for NS
models that include MDM, for NS masses greater than 1.2M⊙ . Cfit denotes the
ompactness yielded by Eq. (26) for a given Λ, while Cexotic is the value obtained
n the presence of MDM. The MS1 EoS is used. The black dotted–dashed line
arks the 2% error quoted in [64] for the universal relation in Eq. (26). The
ercentages in the legend refer to the ratio MMDM/M .

W170817. A concrete application of this is shown in Fig. 3. Here,
e plot the two-dimensional posterior distribution for the tidal
eformabilities of the two constituents of the GW170817 binary
S (data from [63]); the 90% credible region for this distribution
s delimited by the white dashed contour line. We also overlay
xamples of Λ1–Λ2 curves that satisfy the sufficient criterion just
nounced and that were constructed assuming either the MS1 or
he SLy EoS. Each of these coloured curves is obtained by choosing
n EoS, fixing the MDM contribution to the total mass MMDM/M ,
onstructing the interpolating function Λ(M) where M is the NS
ravitational mass, and then running this interpolating function
n the component mass posterior of GW170817. This procedure is
dentical to the one used in [1], but with the additional possibility
f including MDM in our NS models. The EoS and MMDM/M

choices label the single curves in the figure. MS1 satisfies the suf-
ficient condition (i.e., both the tidal deformability and maximum
mass constraints) for any value of MMDM/M between ∼ 20% and
∼ 40%. Below this interval, it yields tidal deformability values that
are not compatible with GW17087, whereas above this interval it
cannot satisfy the maximum mass constraint. On the other hand,
as mentioned previously, SLy is viable on for MMDM/M ≲ 1%, oth-
erwise it cannot meet the maximummass constraint given by PSR
J0348+0432 and PSR J0740+6620. These results are summarized
in Table 2, where we report the dimensionless tidal deformability
of 1.4M⊙ NSs, Λ1.4, for both EoSs and various values of MMDM/M:
configurations that are compatible with Λobs

1.4 = 190+390
−120 and with

Mobs
max = 2M⊙ are highlighted in bold.

5.1. Universal relations

Although the EoS that regulates the microphysics of a NS is
unknown, some universal, i.e., EoS-independent, relations that
connect NS related quantities have be found for canonical mat-
ter. For example, [65–68] report an essentially EoS-insensitive
relation between the moment of inertia, the tidal Love number,
and the spin-induced quadrupole moment of an NS. Another
universal relation expresses, instead, the compactness C of an
NS as function of its dimensionless tidal deformability parameter
Λ [64]:

C =
1 [

3.71 − 3.91 · 10−1 lnΛ + 1.056 · (10−1 lnΛ)2
]

. (26)

10

6

Fig. 5. Energy density profile for a NS model for the SLy EoS and 30% of MDM.

This equation is obtained by computing Λ and C for the APR4,
MS1, and H4 EoSs, and then fitting the results. The deviations for
the fit are quoted to be of at most ∼ 2%, and the fits are built for
NSs with mass of at least 1.2M⊙.

Universal fits like the one above are derived under certain
assumptions about NSs. Most commonly, the NSs are taken to be
stationary, cold, to have low magnetic fields, etc. Since this article
considers non-canonical NS models that include MDM, we will
compare our results for C and Λ to the predictions of Eq. (26), in
order to assess the deviations from it. This is interesting as the
introduction of MDM breaks one of the assumptions made when
deriving this universal relation. Our results are reported in Fig. 4,
where we show the deviation of the compactness of our models
from the compactness given by Eq. (26), as a function of Λ, for
different values ofMMDM/M , and assuming the MS1 EoS. The ∼ 2%
deviation quoted for the fit in Eq. (26) is indicated for reference
by the dotted–dashed line, and we restrict the NS total mass to be
greater than 1.2M⊙. We find that the universal relation in Eq. (26)
is indeed followed, with deviations that exceed the 2% error only
in some extreme cases and by 5%, at most. Similar results hold
for the SLy EoS.

The configurations with the largest deviations from the uni-
versal behaviour are those with MMDM/M = 30%. This is due to
how the addition/removal of MDM from the NS models impacts
the density profiles of the stars. Since the tidal deformability
depends mostly on the proprieties of the outermost layers of the
NS [69,70], the deviations from Eq. (26) grow progressively as the
distribution of the two fluid species in the outer shell is less and
less homogeneous. When MDM is absent or it constitutes all the
matter in the NS model, one has a single fluid TOV model, which
constitutes the model behind Eq. (26); therefore, deviations from
the universal behaviour are negligible. When MMDM/M = 50%,
something similar happens: the two fluids are evenly mixed
throughout the star, which effectively behaves as a single fluid
TOV model, and again Eq. (26) is verified (purple dots in Fig. 4).
Between MMDM/M = 0% and MMDM/M = 50% (and equivalently
between MMDM/M = 50% and MMDM/M = 100%), the two fluids
coexist in the inner parts of the NS model but the external shell
contains only ordinary matter (equivalently MDM). A transition
layer between the two-fluid and single-fluid region thus exists.
This moves progressively outwards as MMDM/M approaches 50%
(or equivalently inwards as MMDM/M approaches 100%, starting
from 50%). An example of this is provided in Fig. 5, where we
show the baryonic matter, MDM, and total density profiles of
a 1.58M⊙ NS model with MMDM/M = 30%, built with the SLy
EoS. The presence of a knee in the total density profile (the two-
fluid to single-fluid transition layer) alters the tidal deformability
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f the star, as one of the two fluids is no longer present. Since
he position of this knee depends upon the relative amount of
DM and ordinary matter, the C-Λ relationship varies with it.
here is therefore an optimal spot between MMDM/M = 0% and
MDM/M = 50% (and equivalently between MMDM/M = 50% and
MDM/M = 100%) that maximizes the deviations from Eq. (26):

his happens when the ‘‘inohomogeneity’’ of the outer layers is
reatest.

onclusions

Over the last five years, astronomy and astrophysics have
een witnessing an epochal revolution: the LIGO-Virgo direct
bservations of GW signals have opened up the pathway to the
xploration of the Universe by means of a new channel of ob-
ervations. We have started to probe the Universe according to a
ew paradigm, going beyond observations performed within tra-
itional astronomy, via electromagnetic radiation. Additionally,
e can combine observational data obtained in multiple obser-
ation channels, provided by gravitational and electromagnetic
aves, and by neutrinos.
Within this vast panorama of possibilities, our work carried

ut a systematic study of the equilibrium properties of NSs en-
ompassing MDM. Our research perspective is supported by clues
uggesting that dark matter is widespread in galaxies, and that
DM could represent the majority of dark matter in Nature.
hrough processes of accretion and capture, this form of dark
atter can be assimilated by NSs and modify some of their
haracteristics, such as the maximum mass, the compactness,
nd the tidal deformability. To the best of our knowledge, the
idal deformability had never been calculated before for NSs with
DM (but see [27] and [28] for the cases of fermionic dark matter

nteracting with ordinary nucleonic matter via the Higgs portal
echanism and of bosonic dark matter with quartic self-coupling,

espectively).
The results presented in Section 5 show that NSs with MDM

re more compact, less massive and less deformable than canon-
cal NSs, all else being fixed. This circumvents the general ten-
ency of standard NS models to require stiff EoSs in order to
upport high masses, which comes with the downside of strug-
ling to support low tidal deformabilities, given for example by
W170817 [7]. On the other hand, while soft EoSs can sup-
ort low tidal deformabilities in canonical NS models, these can
truggle to support high mass values.
We carried out a comparison with the dimensionless tidal

eformability constraint of GW170817 (Λobs
1.4 = 190+390

−120 for a
.4M⊙ NS) and the Mobs

max = 2M⊙ maximum mass constraint of
SR J0348+0432 and PSR J0740+6620. We found that the intro-
uction of MDM in NS models can allow EoSs to satisfy these
onstraints both separately – as the local environment of a source
nd its history affect the amount of MDM a NS contains – and
imultaneously. Specifically, we showed that the SLy EoS satisfies
oth constraints if MDM is at most ∼ 1% of the total matter in
he star: this implies that if SLy EoS governs NS interiors, then
o more than ∼ 1% of the mass of PSR J0348+0432, for example,
an be ascribed to MDM. The MS1 EoS, instead, easily satisfies
he maximum mass constraint and it can be made compatible
ith the tidal deformability constraint for percentages of MDM
etween 20% and 40% of the total NS mass.
Finally, in Section 5.1 we assessed the deviations from the C-
universal behaviour reported in [64] for standard NSs, when

ne instead admits the presence of MDM. We found that in the
DM scenario, for a percentage of MDM ≳ 10% the deviation
rosses the 2% tolerance quoted in [64]. The difference from the
niversal trend increases up to about 5% until the MDM reaches
ercentages around ∼ 30% of the total NS mass. At this point,
7

he agreement of the MDM configurations with the universal
ehaviour improves again. We attribute this behaviour to the
istribution of ordinary and MDM near the surface of the NS, as
hese layers dominate the calculation of Λ [69,70].

Future developments of the work carried out in this paper
range from testing systematically more EoSs, to exploring other
models of dark matter — for instance, adding a kinetic mix in
the case of MDM [12]. With a suite of exotic NS models in hand,
comparisons against observational results could then gradually
induce restrictions on the parameter space that characterizes
viable dark matter candidates.
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