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Abstract: The equivalence between parabolic transport equations for solute concentrations and
stochastic dynamics for solute particle motion represents one of the most fertile correspondences
in statistical physics originating from the work by Einstein on Brownian motion. In this article,
we analyze the problems and the peculiarities of the stochastic equations of motion in microfluidic
confined systems. The presence of solid boundaries leads to tensorial hydrodynamic coefficients
(hydrodynamic resistance matrix) that depend also on the particle position. Singularity issues,
originating from the non-integrable divergence of the entries of the resistance matrix near a solid
no-slip boundary, determine some mass-transport paradoxes whenever surface phenomena, such
as surface chemical reactions at the walls, are considered. These problems can be overcome by
considering the occurrence of non vanishing slippage. Added-mass effects and the influence of fluid
inertia in confined geometries are also briefly addressed.

Keywords: microfluidics; stochastic models; confined geometries; slip flows; Langevin equations

1. Introduction

The main legacy of the Einsteinian theory of Brownian motion to modern physics
lies in the confirmation of the atomistic nature of matter and in the equivalence between
random molecular motion at the microscopic level and the macroscopic phenomenon of
diffusion [1,2].

Thanks also to the contributions by Langevin, Smoluchowski and many others [3–5],
it is now common knowledge in applied transport theory [6] that any transport equation,
expressed in the form of an advection-diffusion equation for the concentration field c(x, t)
of some solute diffusing in a fluid phase,

∂c(x, t)
∂t

= −∇ ·
[
u(p)(x) c(x, t)

]
+ D∇2c(x, t) (1)

where u(p)(x) is the macroscopic velocity field experienced by the solute (coinciding in
most of the applications with the fluid phase velocity u(x)), and D its isotropic diffusivity,
can be represented in terms of the microscopic motion of the solute particles by means of a
Langevin equation of the form

dx(t) = u(p)(x(t)) dt +
√

2 D dw(t) (2)

where dw(t) = (dw1(t), dw2(t), dw3(t)) is the increment of a three-dimensional Wiener
process in the time interval (t, t + dt). This equivalence is also computationally important
as it enables to solve parabolic transport equations in complex geometries by means of
stochastic simulations of the Langevin Equation (2) [7–10].

The description of physical processes in terms of stochastic Langevin equations, both
in equilibrium and in out-of equilibrium conditions, has become one of the strongest and
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more fruitful research lines in modern statistical physics, providing useful insights in all
the fields of physical investigation, including quantum and particle physics [11–13].

The Langevin Equation (2), expressed exclusively with respect to the particle position
x(t), can be derived from a stochastic dynamics (stochastic Newton equation) of the form

dx
dt = v

m dv
dt = −η

[
v− u(p)(x)

]
+ Fstocha(t)

(3)

where Fstocha(t) dt = α dw(t), α =
√

2 kb T η, m is the particle mass, η the friction factor, T
the absolute temperature and kB the Boltzmann constant, in the limit for m/η � 1, i.e., in
the case particle inertia could be neglected. This simplification is not only important in
transport theory, but also in the thermodynamics of fluctuations as it implies the simplest
form of fluctuation-dissipation relation [14,15],

D η = kB T (4)

that, in the case of spherical particles for which η = 6 π µ Rp (µ is the fluid viscosity, Rp the
particle radius) is referred to as the Stokes-Einstein relation. Equation (4) connects a trans-
port parameter, related to the intersity of fluctuations (the diffusivity D) to a hydrodynamic
quantity, related to dissipation (the friction factor η) at constant temperature T.

The rise of microfludics as an autonomous hydrodynamic discipline has informed re-
cent research in the theory of fluid motion, with relevant practical applications in analytical
chemistry, molecular biology and biomedicine, production of high-quality pharmaceuti-
cals, etc. [16–19]

The analysis of flow systems at microscale in devices (microchannels, microreactors)
of almost comparable size than that of solute particles, necessarily implies a more detailed
understanding of all the physical processes at small lengthscales, and thus a unitary and
integrated use of theoretical tools deriving from practically all the branches of physics
coupled to hydrodynamic problems [20]: optical methods for trapping, particle manipula-
tion and detection [21,22] are of common use in microfluidics, and electrosmotic [23–25]
and acoustic effects [26,27], either for fluid mixing or for separation purposes can be
conveniently integrated within a microfluidic device. On the other hand, microscale hy-
drodynamics represents the natural realm where thermal and hydrodynamic fluctuations
play a leading role. This admits also interesting practical implications related to the use
of micrometric particles for detecting and measuring superficial phenomena and surface
interactions (Brownian probes) [28–30]. For 1 µm particles, quantum effects and forces
become measurable, and this opens the way for testing quantum theories, such as the
occurrence of the Casimir effect, using “macroscopic” microfluidic systems [31,32], paving
the way for a better understanding of the quantum-to-classical transition.

In most of the microfluidic applications, linearized hydrodynamic equations can be
used with reasonable accuracy [33,34]. For timescales much larger than the dissipation
time tdiss = m/η, the instantaneous Stokes equations{

µ∇2u(x)−∇p(x) = −∇ · τ(x) = 0
∇ · u(x) = 0

(5)

where (u, p, τ) are the velocity, the pressure and the stress tensor of the fluid respectively,
provides a good approximation for modeling fluid-particle interactions, and the no-slip
boundary conditions at the particle surface (Sp)

u(x) = v + (x− x0)×ω x ∈ Sp (6)

where (v, ω) is the velocity and the angular velocity of the particle, and x0 a reference
point, say the center of mass of the particle, describe with sufficient accuracy fluid-
particle interactions.
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Consequently, all the theory of Stokesian hydrodynamics [33–36], developed through-
out more than one and half century, finds in microfluidics a vast field of application.
Exceptions to the applicability of the Stokesian hydrodynamics in microfluidics occur for
specific inertial effects such as the Segre-Silberberg effect [37–39], and the use of “high-
Reynolds number flows” (with a Reynolds number order of 100–1000) in microchannels (T-
and Y-junctions) for nanoparticle production [40–42].

The linearity of the Stokes equations and of the boundary conditions at the fluid-
particle interface yields a the linear relation between the velocity of the particle and the
hydrodynamic force acting on it, that in the case of a sphere moving in an unbounded fluid
consist in the well known Stokes’ laws, F = −η∞ v and T = −ηω

∞ ω, (F is the force and
T the torque), where η∞ = 6 π µ Rp and ηω

∞ = 8 π µ R3
p are scalar coefficients due to the

isotropy of the problem and the uniformity of the fluid.
On the other hand, whenever the fluid is confined into a bounded device, correspond-

ing to the hydrodynamic domain bounded by walls, both the symmetries (isotropy and
uniformity) are generically broken. Therefore, the hydrodynamic resistance law attains a
more general position-dependent and tensorial character(

F
T

)
= −H(x)

(
v
ω

)
(7)

where H(x) is the 6× 6 overall resistance matrix of the hydrodynamic interactions, pos-
sessing a block structure

H =

(
η(x) C(1)(x)

C(2)(x) ηω(x)

)
(8)

where (i) η, and ηω are the translational and rotational friction matrices, respectively, (ii)
C(1), and C(2) are the roto-translational coupling matrices. By the Lorentz’s reciprocal
theorem it is possible to prove [33] that η and ηω are symmetric matrices, while C(1) and

C(2) satisfy the property C(2) =
[
C(1)

]T
, where the superscript “T” indicates the transpose.

Correspondingly, the overall resistance matrix H(x) is symmetric and positive definite.
This automatically implies, due to the fluctuation-dissipation relation (4), a tensorial

and position-dependent diffusivity. The latter two properties have deep and non triv-
ial implications whenever a stochastic equation of motion, in the form of Equation (3)
is considered, due to the highly singular nature of the Wiener description of the ther-
mal/hydrodynamic fluctuations. For the sake of completeness, it should be also mentioned
that a position dependent effective diffusivity arises in modeling solute transport in mi-
crochannels with undulated walls, in the case the transport problem is referred exclusively
to the channel axial coordinate [43,44]. This is referred to as the Fick-Jacobs approximation
and it is essentially a geometrical effect within an approximate transport model unrelated
to any hydrodynamic interactions.

The scope of this article is to analyze in detail the problems and the peculiarities of
particle transport in microfluidic systems, originating from the confined nature of the flow,
starting from the stochastic description of the microscopic particle motion, in a way that
may also be useful for researchers in microfluidics that are not fully familiar with stochastic
differential equations. While stochastic modeling of particle transport involving constant
effective diffusivities is widely used in the analysis of microfluidic devices, the inclusion
of hydrodynamic effects, deriving from fluid confinement, represents a completely new
and unexplored field of theoretical and numerical investigation. This article attempts to
fill this gap, providing a methodological bridge between hydrodynamic theory and the
stochastic formulation of transport phenomena in confined geometries, addressing also in
a clear and critical way the complexities and the difficulties of this approach. The article
addresses also novel original derivations as regards specific topics, such as the use of the
overdamped approximation in non-equilibrium conditions and the effect of slippage as
regards transport phenomena involving surface effects (such as surface chemical reactions).
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In order to illustrate the physical concepts and the resulting analytical approaches,
the hydrodynamics of a spherical particle near an infinite planar solid surface is explicitly
considered, as a prototypical and paradigmatic case study of the hydrodynamic problems
occurring in microfluidic channels. Throughout this article, rigid particles and Newtonian
fluids are considered.

The article is organized as follows. Section 2 addresses the formulation of fluctuation
dissipation relations in confined systems, and the computational problems associated with
it. Section 3 analyzes the reduction of the equation of motion in the form of a Langevin
Equation (3), discussing also the case of non-equilibrium thermal conditions (thermophore-
sis). Section 4 discusses the problems arising from the non-integrable singularity of the
friction factor near a solid no-slip wall, as regards diffusional problems in the presence of
superficial phenomena (surface chemical reactions). A way for overcoming these problems
lies in relaxing the no-slip assumption, as discussed in Section 5, where we show the
necessity of considering slippage effects both at the particle external surface and at the
walls of the fluid domain. Finally, Section 6 discusses in a succinct way the role of the fluid
inertial effects in the formulation of the stochastic equations for particle motion.

2. Fluctuation-Dissipation Relations in Confined Geometries

Consider the motion of a rigid spherical particle, of mass m and momentum of inertia
I, in a microfluidic device. Let v and ω be its velocity and angular velocity, respectively.
Assume that the particle is dispersed in a fluid flow, characterized by the fluid velocity
u(x) and that the particle is also subjected to the action of an external potential field U(x).
The particle equations of motion read

m dv = (Fflow + Fhydro) dt−∇U dt + Fstocha dt

I dω = (Tflow + Thydro) dt + Tstocha dt
(9)

where Fflow and Tflow are the force and the torque deriving from the action of the external
flow field u(x) (assuming that the particle velocity and angular velocity are vanishing),
Fhydro and Thydro are the force and the torque due to the hydrodynamic interactions (de-
scribed by means of Equation (7) in the case the external flow velocity is vanishing and the
particle possesses a velocity v and an angular velocity ω), and Fstocha, Tstocha represent the
the stochastic force and the torque deriving from to thermal fluctuations. This decomposi-
tion is made possible because the hydrodynamic equations for the fluid are assumed to be
linear. The basic problem in the statistical physics of microparticle motion resides in the
determination of the contributions of the thermal perturbations Fstocha and Tstocha, since all
the other terms in Equation (9) stem from a classical hydrodynamic analysis.

Following the original approach due to Einstein and Langevin [15], in the case the
fluid is described by means of an instantaneous response (Stoke’s regime), it is natural to
represent Fstocha and Tstocha in the form of a linear superposition of vector-valued Wiener
processes, i.e., as

Fstocha(x)dt = α(x) dw(t) + γ(x) dwω(t)

Tstocha(x)dt = ε(x) dw(t) + β(x) dwω(t)
(10)

where dw(t) = (dw1(t), d2(t), dw3(t)) and dwω(t) = (dwω
1 (t), dwω

2 (t), dwω
3 (t)) are the

increments in the time interval (t, t + dt) of two mutually independent vector-valued
Wiener processes. This observation is a consequence of the fact that Wiener processes are
also memoryless, in the meaning that if one defines ξ(t) = dw(t)/dt = (ξ1(t), ξ2(t), ξ3(t)),
interpreted in a distributional meaning, than the correlation function 〈ξi(t0,+t) ξ j(t0)〉 =
δ(t) δi,j is impulsive (here 〈·〉 indicates indifferently either ensemble or temporal averages,
and t0 > 0 is any time instant) [45].

Henceforth, in order to simplify the notation, the explicit dependence of the matrices
α, γ, ε, β on the position x will be omitted. While the determination of Fflow, Fhydro
and Tflow, Thydro follows for the simple application of the Stokesian hydrodynamics, the
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estimate of the matrices entering Equation (10) and defining the thermal perturbations
requires a statistical physical ansatz that, at constant temperature T, the thermal fluctuations
described by Equation (10) would provide the known result of equilibrium statistical
physics [14]. This is the essence of the fluctuation-dissipation ansatz, and for this reason,
owing to linearity, it is sufficient to consider the statistical properties for the particle
dynamics in the absence of external forcings, i.e., for Fflow = ∇U = 0, Tflow = 0. Under
these conditions, by substituting Equations (7), (8) and (10) into the equations of motion (9)
one obtains,

dv(t) = − η
m v(t) dt− C(1)

m ω(t) dt + α
m dw(t) + γ

m dwω(t)

dω(t) = −C(2)

I v(t) dt− ηω

I ω(t) dt + ε
I dw(t) + β

I dwω(t)
(11)

where also for η, C(1), C(2), ηω the explicit dependence on the position has been omitted.
The matrices α, β, γ, ε are the stochastic amplitude matrices, and the final goal of

fluctuation-dissipation analysis is their determination from physical principles enforcing
equilibrium properties. Let ∆ be the overall 6× 6 stochastic amplitude matrix entering
Equation (11),

∆ =

(
α
m

γ
m

ε
I

β
I

)
(12)

and define the 6× 6 matrix σ, the entries of which are σi,j as

σi,j =
1
2

6

∑
h=1

∆i,h ∆j,h (13)

In matrix form,

σ =
1
2

∆ ∆T =

 α αT+γ γT

2 m2
α εT+γ βT

2 m I
ε αT+β γT

2 m I
β βT+ε εT

2 I2

 =

(
a

2 m2
c

2 m I
d

2 m I
b

2 I2

)
(14)

which is, by definition, symmetric. Expressing Equation (11) componentwise

dvi = −
(

1
m ∑3

j=1 ηi,j vj +
1
m ∑3

j=1 C(1)
i,j ωj

)
+ 1

m ∑3
j=1 αi,j dwj +

1
m ∑3

j=1 γi,j dwω
j

dωi = −
(

1
I ∑3

j=1 C(2)
i,j vj +

1
I ∑3

j=1 ηω
i,j ωj

)
+ 1

I ∑3
j=1 εi,j dwj +

1
m ∑3

j=1 βi,j dwω
j

(15)

so that the associated Fokker-Planck equation for the probability density function p(v, ω, t)
attains the form [45]

∂p
∂t = ∑3

i=1
∂

∂vi

[(
1
m ∑3

j=1 ηi,j vj +
1
m ∑3

j=1 C(1)
i,j ωj

)
p
]

+ ∑3
i=1

∂
∂ωi

[(
1
I ∑3

j=1 C(2)
i,j vj +

1
I ∑3

j=1 ηω
i,j ωj

)
p
]

+ ∑3
i,j=1

∂2

∂vi∂vj

( ai,j p
2 m2

)
+ ∑3

i,j=1
∂2

∂vi∂ωj

( ci,j p
2 m I

)
+ ∑3

i,j=1
∂2

∂ωi∂vj

( di,j p
2 m I

)
+ ∑3

i,j=1
∂2

∂ωi∂ωj

( bi,j p
2 I2

)
(16)

The statistical equilibrium properties can be ascertained from the analysis of the lower-
order (first and second) moments of p(v, ω, t). The first-order moments relax to zero in the
long-term regime, as a consequence of the fact that the hydrodynamic interaction matrix H
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is positive definite. It is therefore sufficient to consider the second-order moments for the
translational/angular velocities,

Mv,v
i,j (t) =

∫
R3

dω
∫
R3

vi vj p(v, ω, t) dv

Mv,ω
i,j (t) =

∫
R3

ωjdω
∫
R3

vi p(v, ω, t) dv (17)

Mω,ω
i,j (t) =

∫
R3

dv
∫
R3

ωi ωj p(v, ω, t) dω

To begin with, consider Mv,v. From the Fokker-Planck Equation (16) one obtains

dMv,v
h,k

dt = − 1
m ∑3

j=1 ηh,j M
v,v
j,k −

1
m ∑3

j=1 ηk,j M
v,v
j,h −

1
m ∑3

j=1 C(1)
h,j Mv,ω

k,j −
1
m ∑3

j=1 C(1)
k,j Mv,ω

h,j

+
ah,k+ak,h

2 m2

(18)

In the long-term limit (equilibrium), it follows from Equation (18) that

[η Mv,v + Mv,v η] +

[
C(1)(Mv,ω)T + Mv,ω

(
C(1)

)T
]
=

1
2 m

(
a + aT

)
(19)

Next, consider Mω,ω, the entries of which satisfy the equations

dMω,ω
h,k

dt = − 1
I ∑3

j=1 C(2)
h,j Mv,ω

j,k −
1
I ∑3

j=1 C(2)
k,j Mv,ω

j,h −
1
I ∑3

j=1 ηω
h,j M

ω,ω
j,k −

1
I ∑3

j=1 ηω
k,j M

ω,ω
j,h

+
bh,k+bk,h

2 I2

(20)

so that the value attained at equilibrium is

[ηω Mω,ω + Mω,ω ηω ] +

[
C(2)Mv,ω + (Mv,ω)T

(
C(2)

)T
]
=

1
2 I

(
b + bT

)
(21)

Finally, consider the mixed second-order roto-translational moments

dMv,ω
h,k

dt = − 1
m ∑3

j=1 ηh,j M
v,ω
j,k −

1
m C(1)

h,j Mω,ω
j,k −

1
I ∑3

j=1 ηω
k,j M

v,ω
h,j −

1
I ∑3

j=1 C(2)
k,j Mv,v

j,h

+
ch,k+dk,h

2 m I

(22)

admitting the equilibrium condition

1
m

[
ηMv,ω + C(1)Mω,ω

]
+

1
I

[
Mv,ωηω + Mv,v

(
C(2)

)T
]

c + dT

2 m I
(23)

Fluctuation-dissipation conditions, and the explicit expression for the stochastic am-
plitude matrices follow by enforcing the equilibrium properties [14]

Mv,v =
kB T

m
I , Mω,ω =

kB T
I

I , Mv,ω = 0 (24)

where I is the moment of inertia, and I the identity matrix. These conditions stem from the
Maxwellian equilibrium velocity distribution, and from the energy equipartition theorem
applied to a rigid particle, admitting 6 degrees of freedom. Making use of Equation (24)
and of the equilibrium expression Equation (19) for Mv,v, one obtains that the matrix a
should be symmetric and

a = 2 kB T η (25)

A similar analysis for Mω,ω Equation (21) at equilibrium provides

b = 2 kB T ηω (26)
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The equilibrium results deriving from the analysis of the mixed roto-translational
moments yield

kB T
[

C(1) +
(

C(2)
)T
]
=

c + dT

2
(27)

a solution of which is dT = c and

c = 2 kB T C(1) , d = 2 kB T C(2) (28)

Once the “diffusional” matrices a, b, c, d have been expressed in terms of the hydro-
dynamic resistance matrices, the next step is to derive the expression for the stochastic
amplitude matrices α, β, γ, ε.

Because of Equation (28), the 6× 6 matrix ∆ defined by Equation (12) is symmetric,
and satisfies the algebraic matrix equation

∆2

2
= kB T

(
η

m2
C(1)

m I
C(2)

m I
ηω

I2

)
= σ (29)

Mutuating this property from the symmetry of hydrodynamic matrices, the matrix σ
is symmetric and positive definite, and it is known from matrix theory [46] that there exists
a unique, symmetric, and positive definite matrix ∆ solution of Equation (29), formally

∆ =
√

2 σ1/2 (30)

In order to determine the explicit expression for the matrix ∆, it is convenient to
normalize its entries, expressing the force/torque and the velocity/angular velocity in the
same physical dimensions. If `p is the characteristic particle length, `p = Rp for spherical
particle of radius Rp, set T̂ = T/`p, ω̂ = `p ω. In this way, T̂ has the dimension of a force,
and ω̂ the dimension of a velocity, so that Equations (7) and (8) become(

F
T̂

)
= −Ĥ(x)

(
v
ω̂

)
(31)

where Ĥ(x) is the normalized overall resistance matrix possessing the block structure

Ĥ(x) =

(
η̂(x) Ĉ(1)(x)

Ĉ(2)(x) η̂ω(x)

)
=

(
η(x) C(1)(x)/`p

C(2)(x)/`p ηω(x)/`2
p

)
(32)

and the normalized moment of inertia is given by Î = I/`2
p. In this way, Equation (11)

attains the normalized representation

dv(t) = − η
m v(t) dt− Ĉ(1)

m ω̂(t) dt + α̂
m dw(t) + γ̂

m dwω(t)

dω̂(t) = − Ĉ(2)

Î
v(t) dt− η̂ω

Î
ω̂(t) dt + ε̂

Î
dw(t) + β̂

Î
dwω(t)

(33)

with α̂ = α, γ̂ = γ/`p, ε̂ = ε/`p, β̂ = β/`2
p. The normalized matrix Equation (29)

thus becomes

∆̂
2

2
= kB T

 η
m2

Ĉ(1)

m Î

Ĉ(2)

m Î
η̂ω

Î2

 = σ̂ (34)

and ∆̂ =
√

2 σ̂1/2.
For symmetric and positive definite matrices σ̂, the estimate of their square root σ̂1/2

reduces to an eigenvalue problem [46]. Let λi > 0, i = 1, . . . , 6, be the eigenvalues of σ̂, and
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V(i) = (V(i)
1 , . . . , V(i)

6 ) the corresponding unit eigenvectors. The solution of Equation (34)
can be expressed as

∆̂ =
√

2V diag(λ1/2
1 , . . . , λ1/2

6 )V−1 (35)

where V is the eigenbasis transformation matrix, the column of which are orderly the
eigevectors of σ̂, i.e.,

V =

 V(1)
1 . . . V(6)

1
. . . . . . . . .

V(1)
6 . . . V(6)

6

 (36)

and diag(λ1/2
1 , . . . , λ1/2

6 ) is a diagonal matrix, the diagonal entries of which are the square
roots of the eigenvalues λi, i = 1, . . . , 6.

An Example: Systems with Axialsymmetric Geometry

As an application of the previous analysis, consider a system with axialsymmetric
geometry. Typical axisymmetric systems in microfluidics are spherical particles moving in
a slit channel or near an infinitely extended planar wall. The symmetries of the problem
reduces the 21 independent coefficients of the hydrodynamic resistance matrix to 5. By
taking a Cartesian coordinate system (x1, x2, x3) with x3 lying on the axis of symmetry as
in Figure 1, the resistance matrix takes the form [33]

H =



η1,1 0 0 0 C 0
0 η1,1 0 −C 0 0
0 0 η3,3 0 0 0
0 −C 0 ηω

1,1 0 0
C 0 0 0 ηω

1,1 0
0 0 0 0 0 ηω

3,3


(37)

Therefore, the matrix σ̂, chosing `p = Rp, becomes

σ̂ =



σ̂1 0 0 0 σ̂c 0
0 σ̂1 0 −σ̂c 0 0
0 0 σ̂3 0 0 0
0 −σ̂c 0 σ̂4 0 0
σ̂c 0 0 0 σ̂4 0
0 0 0 0 0 σ̂6

 (38)

where

σ̂1 = σ̂2 = η1,1
kB T
m2 , σ̂3 = η3,3

kB T
m2 , σ̂4 = σ̂5 = ηω

1,1
kB T

I2 R2
p

σ̂6 = ηω
3,3

kB T
I2 R2

p , σ̂c = C
kB T
m I

Rp

(39)

The eigenvalues of σ̂ are

λ1 = λ2 =
σ̂1 + σ̂4 − r

2
, λ3 = σ̂3 , λ4 = λ5 =

σ̂1 + σ̂4 + r
2

, λ6 = σ̂6 (40)

where r =
√
(σ̂4 − σ̂1)2 + 4σ̂2

c . The eigenvector matrix V entering Equation (36) takes in
this case the expression
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V =



−−σ̂1+σ̂4+r
2σ̂c

0 0 −−σ̂1+σ̂4−r
2σ̂c

0 0

0 − σ̂1−σ̂4−r
2σ̂c

0 0 − σ̂1−σ̂4+r
2σ̂c

0
0 0 1 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
0 0 0 0 0 1


(41)

By applying Equations (36) and (38), we obtain for ∆̂

∆̂ =



∆̂1 0 0 0 ∆̂c 0
0 ∆̂1 0 −∆̂c 0 0
0 0 ∆̂3 0 0 0
0 −∆̂c 0 ∆̂4 0 0

∆̂c 0 0 0 ∆̂4 0
0 0 0 0 0 ∆̂6


(42)

where

∆̂1 = ∆̂2 =
(σ̂1 − λ1)

√
λ4 − (σ̂1 − λ4)

√
λ1

r
, ∆̂3 =

√
2 σ̂3

∆̂4 = ∆̂5 =
(σ̂4 − λ4)

√
λ1 − (σ̂4 − λ1)

√
λ4

r
, ∆̂6 =

√
2 σ̂6 , ∆̂c =

σ̂c(
√

λ4 −
√

λ1)

r

(43)

As h→ ∞, i.e., far away from the wall, the coupling term σ̂c → 0, and the quantity r
take the limit form

r =
√
(σ̂4 − σ̂1)2 =

π µ Rp kB T
m2

√(
η̄ω

1,1

Ī2 − η̄1,1

)2

(44)

where

η̄ω
1,1 =

ηω
11

π µ R3
p
= 8 , η̄1,1 =

η11

π µ Rp
= 6, Ī =

I
mR2

p
=

2
5

(45)

Substituting these values into Equation (43), we obtain the expected results in the free
space

∆̂i =
√

2 σ̂i , i = 1, . . . , 6 (46)

and therefore

α =
√

2kBTη∞ I , β =
√

2kBTηω
∞ I , γ = ε = 0 (47)

where I is the 3× 3 identity matrix. In order to recover the Stokesian limit values in the
free space η∞, ηω

∞, the argument of the square root in Equation (43) should be positive, i.e.,

η̄ω
1,1

η̄1,1
> Ī2 (48)

Inequality (48) is fulfilled in the free space as follows from Equation (45).
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Figure 1. Schematic representation of a spherical particle near an infinitely extended planar wall.

3. Adiabatic Elimination of the Velocity Variables

In this Section we consider the formulation of the overdamped approximation for mi-
crometric rigid particles in confined geometries. The overdamped approximation consists
in expressing the equations of motion in the form of a kinematic equation for the mechanical
degrees of freedom associated with translational and rotational motions. This is made
possible due to the fact that velocity variables are customarily characterized by a faster
relaxation dynamics than position and orientational variables. This is certainly true for
micrometric particles if one considers their transport properties at time scales much larger
than the characteristic dissipation timescale tdiss = m/η∞, the order of magnitude of which
falls between 10−6–10−7 s for micrometric particles in water at room temperature. For this
reason, the overdamped approximation is often referred to as the adiabatic elimination of
the fast velocity variables, and this follows by imposing the condition

m dv ' 0 , I dω ' 0 (49)

and extracting out of Equation (49) the expression for v and ω, entering the kinematic equation

dx = v dt , dφ = ω dt (50)

where φ = (φ1, φ2, φ3) is the vector-valued angular variable accounting for the parti-
cle orientation.

The overdamped approximation in confined geometries presents intrinsic peculiarities,
just because the hydrodynamic resistance matrix depends on the position x, and in general
of the orientation φ, and this raises delicate issues when the thermal fluctuations are
expressed as linear superposition of increments of Wiener processes, owing to their highly
singular local structure [45]. This problem in the physical literature is usually referred
to as the Ito-Stratonovich dilemma [47,48]. The most convenient and simple approach to
perform the adiabatic elimination of the fast velocity variable is due to Sancho et al. [49]. The
starting point in this derivation is that the configurational coordinates of a particle driven by
Wiener fluctuations still represent a locally smooth, and almost everywhere differentiable
continuous stochastic process with probability 1, and this property determines the way
Equation (49) is interpreted. Without loss of generality, let us suppose that the particle
is subjected to an external potential U(x), and that no additional flow contribution are
present. The latter can be added at the end of the adiabatic elimination process.

In order to perform this analysis in the simplest formal way, it is convenient to
group together configurational and velocity variables, thus introducing the 6-dimensional
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configurational and velocity variables, z and V, respectively, and the overall stochastic
forcing dW(t)

z =

(
x
φ

)
, V =

(
v
ω

)
, dW(t) =

(
dw(t)

dwω(t)

)
(51)

so that the equations of motion can be compactly expressed as

dz = V dt , mmI dz = −H(z)V dt−∇zU(z) dt + ν(z) dW(t) (52)

where mmI is the mass/moment-of inertial tensor, mmI = diag(m, m, m, I, I, I) for a spheri-
cal particle, H(z) the hydrodynamic resistance matrix, ∇z the nabla operator with respect
to the z-variable and ν is the matrix of thermal fluctuation intensity satisfying, as discussed
in the previous Section, the condition at thermal equilibrium,

ν(z) νT(z) = 2 kB T H(z) (53)

The overdamped approximation corresponds to the limit for mass and momentum of
inertia tending to zero. In performing this limit, upon correct physical grounds, it should
be ensured that the configurational variable z(t) is a smooth stochastic process. To this end,
the Wong-Zakai theorem can be enforced [50,51], implying that the stochastic differential
equation describing particle dynamics should be interpreted in a Stratonovich way [52],
Technically, this means that, in performing the limit process, the quantity H(z)V dt should
be interpreted as

H(z)V dt = H(z) ◦ dz = H(z + dz/2) dz (54)

where “◦” indicates the Stratonovich rule in the definition of stochastic integrals and
differentials. It is also convenient to recall a known result, deriving from the Ito lemma,
namely that [45]

dWi(t) dWj(t) = δi,j dt + o(dt) (55)

where δi,j are the Kronecker’s symbols (entries of the identity matrix), and o(dt) is a quantity
going to zero for dt→ 0 faster than dt.

The final goal of this analysis is to derive a kinematic equation for the configurational
particle degrees of freedom (Langevin equation) expressed in the Ito way and, out of it, the
transport equation for particle density, corresponding to the Fokker-Planck equation for
the statistical characterization of the so-obtained Langevin equation.

Making use of the Wong-Zakai result, expressed by Equation (54), the overdamped
approximation of Equation (52) is thus given componentwise by

0 =
6

∑
j=1

Hi,j

(
z +

dz
2

)
dzj −

∂U
∂zi

dt +
6

∑
j=1

νi,j(z) dWj(t) (56)

Expanding the first term at the r.h.s. of Equation (56) in Taylor series to the leading
order,

6

∑
j=1

Hi,j

(
z +

dz
2

)
dzj =

6

∑
j=1

Hi,j(z) dzj +
1
2

6

∑
j,k=1

∂Hi,j(z)
∂zk

dzj dzk + o(dt) (57)

The quantity dzj dzk can be evaluated from Equation (56), by considering for the first
term at the r.h.s. of Equation (56) its Ito interpretation, namely ∑6

j=1 Hi,j(z) dzj that provides
the leading order contribution as the remainder in this approximation is order of o(dt).
Thus, enforcing also Equation (55), one obtains
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dzj dzk =

(
−

6

∑
p=1

H−1
j,p

∂U
∂zp

dt +
6

∑
p,m=1

H−1
j,p νp,m dWm(t)

)

×
(
−

6

∑
q=1

H−1
k,q

∂U
∂zq

dt +
6

∑
q,n

H−1
k,q νq,n dWn(t)

)

=
6

∑
p,m,q,n=1

H−1
j,p H−1

k,q νp,m νq,n dWm(t) dWn(t) (58)

=
6

∑
p,m,q,n=1

H−1
j,p H−1

k,q νp,m νq,nδm,n dt =
6

∑
p,q,m=1

H−1
j,p H−1

k,q νp,m νq,m dt

=
6

∑
p,q=1

H−1
j,p H−1

k,q kB T Hq,p dt = 2 kB T H−1
j,k dt + o(dt)

where H−1
j,p = (H−1)j,p, and in deriving the last relation we have made use of Equation (53).

Substituting Equations (57) and (59) into Equation (56) it follows that

6

∑
j=1

Hi,j dzj = −kB T
6

∑
j,k=1

∂Hi,j

∂zk
H−1

k,j dt− ∂U
∂zi

dt +
6

∑
j=1

νi,j dWj(t) (59)

where the o(dt)-terms have been neglected. Correspondingly, the Langevin equation in the
configuration (x, φ)-space becomes

dzi = −
6

∑
j=1

H−1
i,j

∂U
∂zj

dt− fi dt +
6

∑
j,h=1

H−1
i,j νj,h dWh(t) (60)

where

fi = kB T
6

∑
j,h,k=1

H−1
i,j

∂Hj,h

∂zk
H−1

k,h (61)

The Fokker-Planck equation for the probability density p(z, t) associated with
Equation (61) is thus given by

∂p
∂t

= ∇z ·
(

H−1∇zU p
)
+∇z · (f p) +

6

∑
i,j=1

∂2

∂zi∂zj

(
Di,j p

)
(62)

where f = ( fi)
6
i=1 and the generalized diffusivity tensor Di,j takes the form

Di,j =
1
2

6

∑
p,k,q=1

H−1
i,p νp,k H−1

j,q νq,k =
1
2

6

∑
p,q=1

H−1
i,p H−1

j,q 2 kB T Hp,q

= kB T H−1
i,j (63)

i.e., the generalized diffusivity tensor D(z) = (Di,j(z))6
i,j=1 is related to the resistance

matrix H(z) by the relation
D(z)H(z) = kB T (64)

generalizing the fluctuation-dissipation relation Equation (4). Next, consider the contri-
bution of the vector field f entering the Fokker-Planck Equation (62). From the identity
H−1 H = I, it follows componentwise, for any k = 1, . . . , 6,
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6

∑
j=1

∂H−1
i,j

∂zk
Hj,h +

6

∑
j=1

H−1
i,j

∂Hj,h

∂zk
= 0 (65)

and thus,
∂H−1

j,h

∂zk
= −

6

∑
m,j=1

H−1
i,m

∂Hm,j

∂zk
H−1

j,h (66)

The latter expression implies that the entries fi of f defined by Equation (61) reduce to

fi = −kB T
6

∑
h=1

∂H−1
i,h

∂zh
(67)

Substituting Equations (63) and (67) into Equation (62), the Fokker-Planck equation
for p(z, t) attains the simpler form

∂p
∂t

=
6

∑
i,j=1

∂

∂zi

(
H−1

i,j
∂U
∂zj

p

)
− kB T

6

∑
i=1

∂

∂zi

(
6

∑
j=1

∂H−1
i,j

∂zj
p

)
+ kB T

6

∑
i,j=1

∂

∂zi∂zj

(
H−1

i,j p
)

(68)

that can be rewritten in a more compact way as

∂p
∂t

=
6

∑
i,j=1

∂

∂zi

(
H−1

i,j
∂U
∂zj

p

)
+

6

∑
i,j=1

∂

∂zi

(
Di,j

∂p
∂zj

)
(69)

The latter corresponds to an advection-diffusion equation in the configuration space
in the presence of the effective velocity veff = H−1∇zU, stemming from the potential U(z)
and of the tensor diffusivity D. Conversely, Equation (68) represents the classical formula-
tion of the Fokker-Planck equation associated with a Langevin dynamics interpreted in the
Ito way, attaining the following expression

dzi = −
6

∑
j=1

H−1
i,j

∂U
∂zj

dt +
6

∑
j=1

∂Di,h

∂zh
dt +

√
2

6

∑
j=1

(D1/2)i,j dWj(t) (70)

where (D1/2)i,j are the entries of the square root matrix D1/2 of the diffusivity tensor D,
D1/2 D1/2 = D. It is also clear from the Ito representation of the Langevin Equation (70)
the occurrence of an additional convective contribution depending on the divergence of the
diffusivity tensor. This term admits a physical meaning as, even for U(z) = 0, it provides a
biasing average velocity V(bias)

i (z),

V(bias)
i (z∗) =

d〈zi〉
dt

∣∣∣∣
z=z∗

(71)

where d〈zi〉/dt|z=z∗ is the average value of the particle velocity evaluated when the particle
configuration is at z = z∗ [53,54].

In the case of a spherical particle, the hydrodynamic matrices depends solely on x
and not on φ. Consequently it is easy to obtain the evolution equation for the marginal
distribution px(x, t) =

∫
S3

p(z, t) dφ, where S3 = [0, 2 π)3. Assume also that the spherical
particles are immersed in a flow, and that the force exterted by the flow onto a generic
particle located at x is Fflow(x) = η(x) u(p)(x). In this case, the spatial particle density
function px(x, t) satisfies the balance equation

∂px

∂t
=

3

∑
i=1

∂

∂xi

[(
u(p)

i −
3

∑
j=1

η−1
i,j

∂U
∂xj

)
px

]
+

3

∑
i,j=1

∂

∂xi

(
Dx

i,j
∂px

∂xj

)
(72)
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where Dx
i,j(x), is the 3× 3 diffusivity tensor, ∑3

h=1 Dx
i,h(x) ηh,j(x) = kB T δi,j.

3.1. An Application

As a simple application of the overdamped theory, consider the vertical motion of a
spherical particle in the upper half-plane delimited by a planar wall at x3 = 0 in isothermal
conditions at temperature T. Indicate with x = h the distance of the particle from the wall,
and assume that the particle is subjected to an external potential U(x), as in [28,29], where
U(x) stems from gravity and from a local double-layer repulsive potential near the wall.
In this case the problem is spatially one-dimensional, since η(x) = η3,3(x), and D(x) =
kB T/η(x) depends solely from the distance x from the wall. Setting U′(x) = dU(x)/dx,
and similarly for D′(x), the Fokker-Planck equation for the density function px(x, t) reads

∂px(x, t)
∂t

=
∂

∂x

(
U′(x)
η(x)

px(x, t)
)
+

∂

∂x

(
D(x)

∂px(x, t)
∂x

)
(73)

and this equation corresponds to the Langevin-Ito equation

dx(t) = −η−1(x(t))U′(x(t)) dt + D′(x(t)) dt +
√

2 D(x(t)) dw(t) (74)

where dw(t) is the increment of a one-dimensional Wiener process. Assuming that the
potential is attractive towards x = 0 at large distances, so that

∫ ∞
0 e−U(x)/kB T dx < ∞,

it follows from Equation (73) that in the limit for t → ∞, the density px(x, t) converges
towards a stationary density p∗x(x), solution of the equation

η−1(x)U′(x) p∗x(x) + D(x)
dp∗x(x)

dx
= 0 (75)

corresponding, as expected, to the Boltzmann distribution

p∗x(x) = A e−U(x)/kB T (76)

This is a classical result, starting from which, micrometric particles may be used as
Brownian probes, upon recording their statistical properties i.e. their stationary density
function p∗x(x), in order to investigate and measure surface properties of materials [28,29].

It is instructive to analyze in greater detail the mathematical properties of Equation (73).
This is a one-dimensional parabolic equation for px(x, t), and as the wall at x = 0 is im-
permeable to particle transport,

∫ ∞
0 px(x, t) dx = 1 for any t ≥ 0. To solve Equation (73), it

should be equipped with initial and boundary conditions. As regards the initial condition,
px(x, 0) = px,0(x), with

∫ ∞
0 px,0(x) dx = 1. The boundary condition at infinity, x → ∞ is

the classical regularity condition, namely

lim
x→∞

xn px(x, t) = lim
x→∞

xn ∂px(x, t)
∂x

= 0 , for t > 0 , n = 0, 1, . . . (77)

meaning that px(x, t) and ∂px(x, t)/∂x should decay faster than any power xn of x for
x → ∞. At x = 0, the zero-flux boundary condition applies, implying in the present case

−U′(x)
η(x)

px(x, t)− D(x)
∂px(x, t)

∂x

∣∣∣∣
x=0

= 0 (78)

Two cases should be discussed. If, (i) limx→0 |U′(x)| < ∞, since D(0) = kB T/η(0) = 0,
the wall boundary condition at x = 0 blows up, reducing Equation (78) to a trivial identity
that does not provide any condition on the local behavior of px(x, t) near x = 0. Conversely,
if (ii) limx→0 |U′(x)| = ∞, and moreover limx→0 U′(x)/η(x) = C 6= 0, where the constant
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C may even diverge to ∞, the boundary condition (78) reduces to a homogeneous Dirichlet
condition,

px(0, t) = 0 (79)

As in principle, the condition on the potential U leading to Equation (79) could not
be verified in a physical systems, as for the case analyzed in [28,29], it follows from the
above analysis that the simple transport model Equation (73) displays a singular behavior
as regards the wall boundary conditions. This singular phenomenon is a peculiar feature
of the transport equations involving a hydrodynamic Stokesian description of the fluid-
particle interactions in confined geometries, deriving from the singularity of some entries
of the resistance matrix near a solid wall.

3.2. Thermophoresis from the Overdamped Approximation

An interesting byproduct of the overdamped analysis discussed above is the derivation
of thermophoretic effects from the stochastic equations of motion. For simplicity, let us
consider the case of a spherical particle in its translational motion, neglecting rotational
effects and in the absence of any external or fluid forcing. It has been shown in [55] (see
also [56]) that even in the presence of a non-equilibrium steady temperature profile T(x)
the fluctuation-dissipation relation can be applied, so that the equations of motion in the
present case read

dx = v dt

m dv = −η(x) v dt +
√

2 kB T(x) η1/2(x) dw(t) (80)

Within the overdamped approximation, enforcing the same Stratonovich-approach
developed in Section 2 to the term η(x) v dt = η(x) ◦ dx, one obtains

−
3

∑
j=1

ηi,j dxj −
1
2

3

∑
j,k=1

∂ηi,j

∂xk
dxj dxk +

√
2 kB T(x) (η1/2)i,j dwj(t) = 0 (81)

Since,

dxj dxk = 2 kB T(x)∑3
p,q=1(η

1/2)j,p (η
1/2)k,q dwp(t) dwq(t) + o(dt)

= 2 kB T(x)∑3
p,q=1(η

1/2)j,p (η
1/2)k,p dt + o(dt) = 2 kB T(x)η−1

j,k dt + o(dt)
(82)

This leads to the following Langevin equation

dxi = −kB T(x)
3

∑
j,h,k=1

η−1
i,j

∂ηj,h

∂xk
η−1

h,k dt +
√

2 kB T(x) (η1/2)i,j dwj(t) (83)

From the fluctuation-dissipation relation extended to non-equilibrium steady thermal
conditions, ∑3

h=1 Di,h ηh,j = kB T(x) δi,j, it follows, for any k = 1, 2, 3, that

∑3
h=1

∂Di,h
∂xk

ηh,j + ∑3
h=1 Di,h

∂ηh,j
∂xk

= kB
∂T
∂xk

δi,j

∑3
h=1

∂Di,h
∂xk

ηh,j + kB T(x) ∑3
h=1 η−1

i,h
∂ηh,j
∂xk

= kB
∂T
∂xk

δi,j

(84)

which implies

− kB T(x)
3

∑
h,j=1

η−1
i,h

∂ηh,j

∂xk
ηj,m =

∂Di,m

∂xk
− kB

∂T
∂xk

η−1
i,m (85)
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From the latter expression it follows that

− kB T(x)
3

∑
h,j,k=1

η−1
i,h

∂ηh,j

∂xk
ηj,k =

3

∑
k=1

∂Di,k

∂xk
− 1

T(x)
∂T
∂xk

Di,k (86)

Therefore, Equation (82) becomes

dxi =

(
3

∑
k=1

∂Di,k

∂xk

)
dt−

3

∑
k=1

Di,k

T(x)
∂T
∂xk

dt +
3

∑
k=1

√
2(D1/2)i,k dwk(t) (87)

and the corresponding Fokker-Planck equations reads

∂px

∂t
=

3

∑
i,j=1

∂

∂xi

(
Di,j

T
∂T
∂xj

px

)
+

3

∑
i,j=1

∂

∂xi

(
Di,j

∂px

∂xj

)
(88)

providing the occurrence of an additional convective contribution to the flux, depending
on the temperature gradient, and equal to

Jthermo = −D
T
∇T px (89)

providing a thermophoretic velocity vthermo equal to−D∇T/T [57]. This result shows that
thermophoretic effects naturally follow from the accurate description of stochastic particle
motion in thermal non-equilibrium conditions.

4. Wall Singularities: Superficial Phenomena

In the previous Section we have outlined the physical problems associated with the
setting of boundary conditions for transport equations in confined geometries due to the
singularities of the entries of the resistance matrix. The asymptotic trends of all the entries
of H(x) of two smooth no-slip surfaces almost in contact, such as the case of a particle very
close to a solid surface, has been studied by Cox [58] for any value of the walls’ curvatures.
From the Cox’s analysis, it results that the drag force on a particle moving towards the
wall is inversely proportional to gap between the surfaces (particle and wall surfaces). To
simplify the analysis, let us focus on a spherical particle of radius Rp. By considering a
Cartesian reference system x = (x1, x2, x3) with the origin on the wall and with x3 colinear
to the axis passing between the two contact points of the two surfaces, we have that
η3,3(x) ∼ O(Rp/h) as h/Rp → 0. For example, the drag force on a sphere moving towards
a planar wall can be expressed to the leading order by the Taylor approximation [59]

η3,3(x) =
6 π µ R2

p

h
+ O(1) (90)

for small gaps h between sphere and planar wall. At larger distances, Lorentz [60] found

η3,3(x) = 6 π µ Rp

(
1 +

9
8

Rp

h

)
(91)

and, since 9/8 ≈ 1, a reasonable approximation over the whole range of h values is given by

η3,3(x) = 6 π µ Rp

(
1 +

Rp

h

)
(92)
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The singularity of η3,3(x) at the wall implies that a particle, initially at h = h0 and
moving towards the solid surface due to the action of a constant force Fg, say gravity,
reaches the surface in an infinity time tsurf, being the integral

tsurf =
∫ 0

h0

η3,3(h)
Fg

dh→ ∞ (93)

divergent to infinity. The characteristic time tsurf is referred to as the wall touching time.
This result poses severe problems in predicting the kinetics of coalescence and deposition
of dispersed particles from hydrodynamic theories based on the Stokes model Equation (5).
To complete the picture, let us consider the scaling behavior of the remaining resistance
coefficients. As regards the other coefficients, they are all logarithmically singular as
O(log(h)) with the exception of the rotational resistance around the normal axis to the
surfaces attaining a finite value close to the wall, i.e., η6,6(h) = O(1) as h→ 0. Singularities
at a contact point between surfaces are typical of Stoke’s flows due to the no-slip condi-
tions at solid boundaries. For example, in contact line motions [61] and for flows near
a corner [62] it has be found that unphysical singularities can be eliminated or mollified
by introducing slippage at solid boundaries [63,64]. Before, addressing the effect of slip
boundary conditions, it is useful to investigate further the pathologies arising from the
classical no-slip hydrodynamic description in dealing with surface phenomena.

Surface Phenomena and Hydrodynamic Singularities

All the surface phenomena (particle coalescence, surface aggregation, adsorption,
surface chemical reactions) depending on a transfer mechanism of molecules and particles
from the fluid phase onto the surface are deeply influenced by the spatial dependence of
the entries of the hydrodynamic resistance matrix. Paradoxes arise due to the singularities
of these entries at the solid walls (for incompressible flows, assuming no-slip boundary
conditions at the solid boundaries).

In order to highlight these phenomena, it is sufficient to consider a simple problem,
namely the pure diffusional motion of solute particles (nanoparticles) in the neighborhood
of a solid wall (located at x3 = x = 0), undergoing at the solid wall a surface chemical
reaction characterized by a linear, first-order kinetics. To simplify the analysis, let us assume
that far away from the wall, say at x = L, the particle concentration is kept fixed, and equal
to c0. The problem is thus specified by the parabolic diffusion equation for the particle
concentration c(x, t),

∂c(x, t)
∂t

=
∂

∂x

(
D(x)

∂c(x, t)
∂x

)
(94)

equipped with the boundary conditions

D(x)
∂c(x, t)

∂x
= k c(x, t)

∣∣∣∣
x=0

, c(L, t) = c0 (95)

Consider the steady-state solution c∗(x) of Equation (94). From Equation (94) it fol-
lows that,

dc∗(x)
dx

=
B

D(x)
(96)

where B is a constant, and thus

c∗(x) = A + B
∫ x

0

dξ

D(ξ)
(97)

where A is a second constant to be determined from the boundary conditions. From
Equation (97) it follows that a solution exists provided that 1/D(x) is locally integrable
near x = 0. But this is not the case when the hydrodynamic modeling deriving from
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incompressible Stokes equations imposing no-slip boundary conditions at the solid walls,
as 1/D(x) ∼ 1/x.

On the other hand, in the case 1/D(x) would be locally integrable near x = 0, the
steady-state solution c∗(x) would attain the expression

c∗(x) = c0
1 + k Φ(x)
1 + k Φ(L)

, Φ(x) =
∫ x

0

dξ

D(ξ)
(98)

It is clear from the above problem that Stokes’ hydrodynamics applied to transport
phenomena coupled to any form of superficial chemical physical processes determines
unphysical paradoxes. In the present case, the paradox can be resolved within a classical
hydrodynamic formulation by deriving, from more general hydrodynamic conditions, a
diffusion coefficient D(x) that is integrable near x = 0, i.e., such that D(x) ≤ C/xα, with
C > 0 and α < 1. Indeed, this property can be recovered by relaxing the no-slip boundary
conditions as addressed in the next Section.

5. Effect of Slip Boundary Conditions

Although the no-slip assumption, u = 0, at the interface between a Newtonian fluid
and a solid boundary is largely accepted due to its capability of predicting mechanical
and hydrodynamical properties involving macroscopic bodies and large-scale systems, the
nature of the proper boundary conditions for the tangential velocity at a solid interface has
been a long-debated issue over more than two centuries of hydrodynamic research [65]. As
an alternative to the no-slip hypothesis, Navier [66] proposed that the tangential stresses at
any point on the solid surface should be the same as the stresses at a neighboring internal
point of the fluid, providing the boundary condition

β (u− v) · (I− n⊗ n) = −n · τ · (I− n⊗ n) (99)

where I is the identity matrix, n, the unit normal vector to the surface of the solid, β
a friction constant and “⊗” indicates dyadic composition, (n ⊗ n)i,j = ni nj. Since the
isotropic pressure contribution entering τ vanishes at the r.h.s of Equation (99), the Navier’s
boundary condition (99) can be written as

(u− v) · (I− n⊗ n) = λ n · (∇u +∇uT) · (I− n⊗ n) (100)

where λ = µ/β, having the dimension of a length, is the so called slip length. It is
evident that the slip length represents a new parameter in modeling Stokes flow. In
fact, while the no-slip model describes an idealized fluid/solid interface, the slip model
introduces an additional parameter related to the chemical physical interactions at the
solid-liquid interface.

Slip phenomena can be distinguished in two main classes: intrinsic slip and apparent
slip [67]. The first one is due exclusively to the molecular dynamics at the solid-liquid
interface. The second one is due to artifacts at the surfaces that can increase or decrease
the slippage, such as the presence of gas bubbles or the surface roughness. However, these
artifacts have necessarily a characteristic length below which no-slip conditions applies.
In addition, as shown by Cox [58], the nature of the singularity does not depend on the
curvature of the approaching surfaces. In considering very small gaps between the surfaces
(h → 0), the apparent slip vanishes. Therefore, in the remainder, we will refer solely to
the intrinsic (molecular) slip. The occurrence of slippage depends in principle, either on
hydrodynamic conditions or on the gap length. In fact, as shown by molecular dynamic
simulations [68], the slip length for the system (PA-6,6 oligomer)-graphene increases by
increasing the shear rate and by reducing the gap between the solid walls. Being such
behavior, due to the molecular rearrangement of the fluid, it is appreciable solely when the
gap is small enough to be comparable with the characteristic size of the molecular structure
of the fluid. However, at this lengthscale scale, it is not possible to mark a clear distinction
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between the solid surface and the domain of the fluid used in continuous hydrodynamic
models, due to solvation and diffusive phenomena. Therefore, a constant slip length, used
in hydrodynamic theories (and in the remainder), should be considered as a parameter
emerging from the complexity of the molecular system. A review of typical slip lengths
for several fluid-surface systems obtained experimentally is given in [67]. Non vanishing
values of the slip length are in the range λ = 1÷ 100 nm, whereas typical characteristic
lengthscales of colloids are Rp = 10÷ 104 nm. Correspondingly, the dimensionless slip
length for a colloid attains values in the range λ̂ = 10−4 ÷ 10.

Owing to the linearity of the slip boundary conditions Equation (100), a linear re-
lation between resistance and particle velocity Equation (7) still holds. In [33], a purely
mechanical proof of the symmetry of the resistance matrix has been provided, alternative
to the thermodynamic approach followed in [69]. However, this proof, as opposed to the
thermodynamic one, considers solely no-slip conditions at the solid surfaces. To fill this
gap, Appendix A provides a more general proof of the symmetry of the resistance matrix
also in the presence of slippage enforcing mechanical arguments.

Either the problems of translating or rotating sphere in an unbounded fluid have
been solved by Basset [70] in the presence of the Navier’s slip obtaining the following
expressions for the force and the torque acting on the sphere

Fhydro = −6πµRp

(
1 + 2λ̂

1 + 3λ̂

)
v (101)

Thydro = −8πµR3
p

(
1

1 + 3λ̂

)
ω (102)

Being λ̂ = 10−4 ÷ 10, larger spherical particles experience the force and the torque cor-
responding to no-slip boundary conditions Fhydro ≈ −6 π µRp v and Thydro ≈ −8 π µ R3

p ω,
whereas for smaller colloids the Basset’s correction becomes necessary.

For a particle in a confined geometry, the slip boundary conditions can be considered
either at the surface of the particle (Sp), with a slip length λp, or at the surface of the walls
(Sw) with a slip length λw. Therefore, the boundary conditions for the flow become

(u− v) · (I− n⊗ n) = λpn · (∇u +∇uT) · (I− n⊗ n), x ∈ Sp

(u− v) · (I− n⊗ n) = λwn · (∇u +∇uT) · (I− n⊗ n), x ∈ Sw

(103)

Spherical Particle Moving Perpendicular to a Planar Wall

Let us to consider the problem of a spherical particle near a planar wall as depicted in
Figure 1. Hocking has shown [71] that, in the presence of the same slip on both the surfaces
(λp = λw = λ), the touching time in Equation (93) becomes finite although the singularity
of the transversal resistance at the wall still remains [71] . The functional dependence of the
resistance to perpendicular translations on h in the limit h→ 0, derived by Hocking using
lubrication methods, attains the form

η3,3(ĥ, λ̂)

η∞
=

1
3λ̂

[(
1 +

ĥ
6λ̂

)
log

(
1 +

6λ̂

ĥ

)
− 1

]
+ O(1) (104)

where ĥ = h/Rp. Consequently, the drag force is logarithmically singular at the wall,
Equation (91) becomes integrable and the touching time attains a finite value.

A seminalytical expression for the drag force over a sphere translating perpendicularly
to a plane has been obtained by Goren [72] over the entire range of positions and for any
values of λw and λp using a bispherical coordinate system. However, the author [72] has
provided only few numerical values for η̂3,3(ĥ, λ̂) corresponding to relatively large gaps
and slip lengths, and considering solely the case λw = λp. In point of fact, in order to obtain
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the numeric values for the transversal resistance from the Goren’s solution is in principle
necessary to solve an infinite dimensional linear system of equations for any position of
the sphere. On the other hand, the infinite linear system, truncated to a finite number N
of equations, provides approximate but accurate values for the force experienced by the
particle with an error that decreases as N increases, while the number of the equations from
a fixed accuracy increases as ĥ→ 0 and the slip lengths increase.

In order to obtain the values of η3,3(ĥ, λ̂p, λ̂w) for different slip lengths and at any
distance from the wall, we have either performed FEM simulations, the detail of which
are reported in the Appendix B, or solved the Goren’s equations up to N = 500. The data
depicted in Figure 2 show that the Hocking asymptotic Equation (104) matches accurately
the FEM simulations and the Goren solution in the range of λ̂ = 0÷ 10−1 and that the
predicted logarithmic scaling starts to appear for gaps smaller then the slip length (ĥ . λ̂),
after a transition zone, where η3,3 ∼ 1/ĥ.
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Figure 2. Dimensionless hydrodynamics resistance coefficient η3,3/(6 π µ Rp) vs h/Rp for equal slip
lengths on the particle surface and on the wall. Each color in the figure corresponds to a different
slip length as described in the inner legend. Continuous lines represent the results of the Goren’s
equations, dotted lines the values obtained by the Hocking’s equation Equation (104), and symbols
the results of FEM simulations.

On the other hand, as depicted in Figure 3, if the no-slip boundary condition is
imposed on solely one of the surfaces, the singular scaling η3,3 ∼ 1/ĥ remains no matter
the value of the slip length imposed on the other surface. In the latter conditions, we can
distinguish three different regimes: (i) the scaling η3,3 ∼ 1/ĥ for λ̂ . ĥ . 10−1, (ii) an
apparent logarithmic behavior for 10−2λ̂ . ĥ . λ̂ and (iii) the asymptotic regime where
η3,3 ∼ 1/ĥ for ĥ . 10−2λ̂.
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Figure 3. Dimensionless hydrodynamics resistance coefficient η3,3/(6 π µ Rp) vs h/Rp in the case
no-slip boundary conditions are imposed at the surface of the sphere (a) or at the wall (b). Each
color in the panels corresponds to a different combination of slip lengths λp, λw as described in the
inner legends. Continuous lines represent the results of the Goren’s equations, symbols the results of
FEM simulations.

To complete the analysis the data in Figure 4 show that, keeping fixed the slip length
at one of the surfaces (λ̂i = 10−3, i = w, p) and increasing the slip length on the other λ̂j,
j = p, w, the logarithmic scaling occurs for ĥ . λ̂j. This means that an arbirarily small
slip on both the surfaces is sufficient to determine an asymptotic logarithmic scaling of the
transversal resistance and thus the occurrence of a finite value of the touching time.
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Figure 4. Dimensionless hydrodynamics resistance coefficient η3,3/(6 π µ Rp) vs h/Rp obtained by
keeping fixed the slip length λ̂i = λi/Rp = 10−3 on the i-th surface (i = w, p) and varying the slip
length on the other obtained by solving the Goren’s equations. Observe that the curves corresponding
to i = w and i = p practically overlap in this range of parameter values.

6. Fluid Inertial Effects

So far we have considered fluid-particle interaction within the instantaneous Stokes
regime, neglecting fluid inertia. In point of fact, while the Reynolds number is smaller that
1 in most of the microfluidic applications, this is not the case of the product of the Reynolds
number times the Strouhal number, which is order of 1 or higher due to the high frequency
of the thermal fluctuations. This means that a more accurate description of particle motion
at short time and length scales would involve a hydrodynamic description of fluid inertia,
which in the present case corresponds to the time-dependent Stokes regime [69],

ρ
∂u
∂t

= µ∇2u−∇p (105)

with ∇ · u = 0.
It is well known that the force Fhydro(t) exerted by a fluid with density ρ and viscosity

µ on a spherical particle of radius Rp moving with velocity v in a still fluid, can be expressed
in the Laplace domain F̂hydro(s) = L[Fhydro(t)] =

∫ ∞
0 e−s t Fhydro(t) dt as [34]

F̂hydro(s) = −6 π µ Rp v̂(s)− 6 π
√

µ ρ R2
p

1√
s
(s v̂(s))− 2

3
π R3

p ρ (s v̂(s)) (106)

The first term at the r.h.s of Equation (106) is the Stokesian friction factor, the second
one corresponds in the time domain to the convolutional Basset force

FBasset(t) = −6
√

π µ ρ R2
p

∫ t

0

1√
t− τ

(
dv(τ)

dτ
+ v(0) δ(τ)

)
dτ (107)

and the third term is the added-mass contribution

Fam(t) = −ma

(
dv(t)

dt
+ v(0) δ(t)

)
, ma =

Vp ρ

2
(108)

where Vp is the particle volume, equal to half the mass of the fluid occupying the particle
volume. Physically, the added mass contribution corresponds to the back action on the
particle of the correlated motion of nearby fluid elements originating from the particle
movement within the fluid [73]. In confined geometries, the added mass ma(x) becomes a
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tensorial quantity dependent on particle position. For instance, for a spherical particle near
a solid planar wall,

ma(x) =

 m1(h) 0 0
0 m1(h) 0
0 0 m2(h)

 (109)

where m1(h), and m2(h), corresponding to the parallel and transversal added masses, are
smooth functions of the particle distance from the wall, as depicted in Figure 5 attaining a
finite value for h = 0.
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Figure 5. Ratio of the added mass ma of a sphere moving perpendicular (m2, red line) and parallel
(m1, black line) to a planar wall to that in an unbounded fluid ma,∞ = (2/3)πρR3

p obtained by
FEM simulations.

Similarly, the Basset contribution attains in confined geometries a tensorial, position-
dependent character,

FBasset =
∫ t

0
B(t− τ, x)

dv(τ)
dτ

dτ (110)

where B(t, x) = (Bi,j(t, x))3
i,j=1 and x = x(t). There are very few works on the characteriza-

tion of the Basset force in confined geometries [74], and the detailed study of fluid inertial
effects in microchannels and in the presence of solid walls represents an almost virgin field
of theoretical and experimental investigation.

Gathering these contributions, and considering also the action of a potential U(x) and
of a flow force Fflow = η(x) u(p)(x), deriving e.g., by a (pressure-drive) flow in the fluid,
the equations of motion for a microparticle become,

dx
dt

= v

(m + ma(x))
dv
dt

= −η(x) (v− u(p)(x))−∇U(x) (111)

−
∫ t

0
B(t− τ, x)

(
dv(τ)

dτ
− du(p)(x(τ))

dτ

)
+ Fstocha(x, t)

where Fstocha(x, t) is the stochastic fluctuational contributions, to be determined by enforc-
ing fluctuation-dissipation relations. But also this aspect, owing to the explicit dependence
of Fstocha(x, t) on the position x, represents a challenging problem in statistical physics,
especially if one is interested in determining the velocity autocorrelation function. Fortu-
nately, for t� tdiss, corresponding to typical conditions in microfluidic applications, the
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fluid inertia can be neglected, and the stochastic description of particle motion can be based
on the theory addressed in Sections 2 and 3.

7. Concluding Remarks

Microfluidics is not only an emerging field as regards practical applications but it
provides a fertile playground for analyzing fundamental physical questions. This is be-
cause particle motion at microscale is controlled by thermal stochastic fluctuations, the
understanding of which would not only improve the performances of micofluidic devices
(e.g. for separation purposes), but also could test the validity of classical physical theories
(hydrodynamics) down to the scale where quantum effects should start to appear (going
down to the nanoscale).

The fundamental peculiarity of microhydrodynamics in confined geometries is that
fluid-particle interactions depend on the position and, owing to fluctuation-dissipation rela-
tions, these spatial nonuniformities are transferred to mass-transport properties (diffusion)
giving rise to delicate theoretical issues and paradoxes.

As long as fluid inertia is negligible, it is still possible to derive a rather complete
characterization of thermal fluctuations, and to perform a simplification of the equations
of motion, eliminating the fast velocity variables, thus reducing the statistical description
to the Fokker-Planck equation for the particle spatial density corresponding to a classical
advection-diffusion equation in physical space and time. However, even in this case,
transport paradoxes arise due to the singularity of the hydrodynamic resistances in the
neighbourhood of a solid wall.

We have thoroughly analyzed how the lack of integrability of mass-transport models
(diffusion equation) in the presence of a surface chemical reaction depend on the simpli-
fying assumption of no-slip boundary conditions. The inclusion of slippage effects at all
the solid surfaces (walls and particle) transforms the non-integrable 1/h-singularity in
the transversal resistance coefficient η3,3(h) near a planar wall into a logarithmic singular-
ity (∼− log h) resolving the above mentoned integrability problem. Hovewer, there are
physical reasons to conjecture that a more refined modeling of fluid-particle interactions
(including compressibility and acoustic effects) could completely eliminate the singularity
in η3,3(h) at the wall. This issue will be addressed in forthcoming works.

The inclusion of fluid inertia in confined microfluidics opens up other interesting
and fundamental problems. The theoretical and numerical estimate of the Basset force
even in simple confined systems is a basic ingredient in order to tackle the formulation
of fluctuation-dissipation relations, and the efficient determination of the fluctuational
force Fstocha(x, t), similarly to what developed in the free space, in order to determine
the short-time behavior of the velocity autocorrelation functions. In this framework, the
development of more elaborate statistical physical methods should proceed hand-in-hand
with the accurate experimental analysis of particle motion at short time and length scales
near a solid surface, following and extending the experimental investigations recently
performed for Brownian particles in the free space [75,76].
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Appendix A. Symmetry of the Resistance Matrix Independently of the Slippage

In order to show the symmetries of the matrices η, ηω, C(1), C(2) and, a-fortiori, of
the overall matrix H, in the presence of slip boundary conditions the Lorentz’s reciprocity
theorem can be used as in [33]. Lorentz’s reciprocal theorem [60] states that given two
solutions (u(1), p(1)) and (u(2), p(2)) of the Stokes’ Equation (5), the following identity holds
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∫
∂Vf

u(1) · τ(2) · n dS =
∫

∂Vf

u(2) · τ(1) · n dS (A1)

where Vf is the fluid domain, ∂Vf its boundary and n the normal unit vector to the boundary.
Let us apply Equation (A1) to the problem of a particle moving in a bounded fluid domain
considering two distinct solutions defined by the following slip boundary conditions

u(1) = v(1) + λpnp · e(1) · (I− np ⊗ np), x ∈ Sp

u(1) = λwnw · e(1) · (I− nw ⊗ nw), x ∈ Sw

u(1) = 0, |x| → ∞

(A2)

and 
u(2) = v(2) + λpnp · e(2) · (I− np ⊗ np), x ∈ Sp

u(2) = λwnw · e(2) · (I− nw ⊗ nw), x ∈ Sw

u(2) = 0, |x| → ∞

(A3)

e(1), e(2) being the strain rates

e(1) = ∇u(1) +∇uT
(1), e(2) = ∇u(2) +∇uT

(2)

where np and nw indicate the normal unit vectors to the surface of the particle and of
the walls, respectively. The condition for |x| → ∞ applies solely if the fluid domain is
unbounded, as in the case of Figure 1 The integral relation (A1) thus becomes∫

Sp
u(1) · τ(2) · npdS +

∫
Sw

u(1) · τ(2) · nwdS =
∫

Sp
u(2) · τ(1) · npdS +

∫
Sw

u(2) · τ(1) · nwdS (A4)

The boundary conditions Equation (A2) and (A3) can be substituted in the integrands
entering Equation (A4). For example, the first integrand at the l.h.s. of Equation (A4)
becomes

u(1) · τ(2) · np = v(1) · τ(2) · np + λpnp · e(1) · (I− np ⊗ np) · (−p(2)I + e(2)) · np (A5)

where the pressure term vanishes, since

p(2)(I− np ⊗ np) · I · np = 0 (A6)

Therefore,

u(1) · τ(2) · np = v(1) · τ(2) · np + λpnp · e(1) · (I− np ⊗ np) · e(2) · np (A7)

In a similar way, the integrand on the surface of the particle at the r.h.s of Equation (A4)
can be expressed as

u(2) · τ(1) · np = v(2) · τ(1) · np + λpnp · e(2) · (I− np ⊗ np) · e(1) · np (A8)

The second term at the r.h.s of Equation (A8) is symmetric with respect to the indices
(1)↔ (2), i.e.,

λpnp · e(2) · (I− np ⊗ np) · e(1) · np = λpnp · e(1) · (I− np ⊗ np) · e(2) · np (A9)

Therefore, these terms vanish in the Equation (A4) and so do the integrals on the
surface of the walls. Since v(1) and v(2) are constant at the boundary, we have

v(1) · F(2) = v(2) · F(1) (A10)
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where F(h), h = 1, 2, are the hydrodynamic forces acting upon the particle in the two
problems considered. In the present case, the hydrodynamic resistance matrices depend on
the slip lengths

F(1) = −η(x; λp, λw) · v(1), F(2) = −η(x; λp, λw) · v(2) (A11)

so that the substitution of Equation (A11) into Equation (A10) yields

v(1) · η(x; λp, λw) · v(2) = v(2) · η(x; λp, λw) · v(1) (A12)

and consequently,
η(x; λp, λw) =

[
η(x; λp, λw)

]T (A13)

It is easy to recognize that the slip-dependent contributions mutually cancel out at the
left and right hand sides of the Lorentz’s reciprocal relation also in the case of a rotating
particle, where,

u(1) = ω(1) × (x− x0) + λpnp · e(1) · (I− np ⊗ np), x ∈ Sp

u(1) = λwnw · e(1) · (I− nw ⊗ nw), x ∈ Sw

u(1) = 0, |x| → ∞

(A14)

and 
u(2) = ω(2) × (x− x0) + λpnp · e(2) · (I− np ⊗ np), x ∈ Sp

u(2) = λwnw · e(2) · (I− nw ⊗ nw), x ∈ Sw

u(2) = 0, |x| → ∞

(A15)

from which we obtain
ηω(x; λp, λw) =

[
ηω(x; λp, λw)

]T (A16)

A similar result occurs in application of Lorentz’s reciprocal relation to mixed problems,
considering a translation boundary condition for u(1), and a rotational one for u(2), providing

C(1)(x; λp, λw) =
[
C(2)(x; λp, λw)

]T
(A17)

From Equations (A13), (A16) and (A17) it follows that

H(x; λp, λw) =
[
H(x; λp, λw)

]T (A18)

demonstrating the symmetry of the overall resistance matrix.

Appendix B. Details on the FEM Simulations

The software COMSOL Multiphysics 5.4 has been used to perform FEM simulations.
To take computational advantage from the axial symmetry of the problem of a sphere trans-
lating perpendicularly to a planar wall, for obtaining the coefficient η3,3 in Equation (33),
cylindrical coordinates (r, φ, z) have been used in a two dimensional (r, z) square domain
representing the fluid domain, with an empty disk, representing the spherical particle,
possessing unit radius placed at distance h from planar wall.

The length of the sides of the square has been chosen much larger than the characteris-
tic length of the physical problem (L > max(103h, 10Rp)), so that their presence does not
affect the resistance on the sphere, and a no-slip boundary condition has been imposed on
these sides. Conversely, on the perimeter of the disk and on the nearest side (representing
the planar wall), Navier’s slip conditions Equation (103) have been imposed to solve the
Stokes’ problem Equation (5).

A finer mesh has been set on the perimeter of the disk representing the sphere, and the
maximal length of the elements has been imposed to be less than 0.1 Rp. A quadratic shape
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order has been set to model the curvature of the circle and a double boundary layer with
thickness about 0.005 Rp has been built around the circle, representing the surface of the
sphere. The mesh in the square (fluid domain) has been modeled by imposing two different
zones: a nearest zone of linear size 10Rp with a maximum growth rate of the finite elements
equal to 1.1, and an exterior zone with a higher growth rate of about 2. Both P2P1 and P3P2
finite elements have been used depending on the position of the particle. Figure A1 reports
the data of the error analysis. The reference data for checking the numerical simulations
are those of a no-slip particle moving parallel to a slip plane wall reported by Kezirian [77],
obtained by the author solving the Stokes’ equations in bi-spherical coordinates. These
data, to the best of our knowledge, are the only exact results regarding this kind of problem
available in the literature. The percentage error has been evaluated by the relation

%error = 100
∣∣∣∣ηCom

1,1 − ηKez
1,1

ηKez
1,1

∣∣∣∣ (A19)

where ηCom
1,1 refers to numerical simulations and ηKez

1,1 to the data by [77].
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Figure A1. Percentual error (A19) of the FEM results for η1,1 with respect to the data obtained by
Kezirian [77] for a no-slip sphere translating parallel to a planar wall with slip length λw/Rp = 104.

Figure A1 reports this comparison in three different cases. The data obtained by
P2P1 element are accurate (%error < 1) for gaps larger than the radius of the particle. For
smaller gaps, the dimension of the box can be considerably reduced since the total force
depend principally on the hydrodynamic field in the gap. In this near field zone, pressure
field is the leading term in the evaluation of the stress tensor [71]. Correspondingly, an
improvement of the evaluation of the pressure field, obtained by non linear elements P3P2,
yields accurate results with a percentage error less then 1%.

The same parameters have been used for building both the geometry and the mesh
for evaluating the added mass of a sphere moving near a plane wall. In this case, the fluid
model used is a potential flow,

∇ · u(x) = 0, u(x) = ∇φ(x), x ∈ Vf (A20)

Therefore, for a given position of the sphere, three Laplace equations (one for each
Cartesian axis i = 1, 2, 3)

∇2φ(i)(x) = 0 (A21)
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has been solved by using Lagrangian quadratic elements, with the impermeability bound-
ary conditions

n · ∇φ(i)(x) = n · v(i), x ∈ Sp (A22)

where n is the normal unit vector to the sphere and v(i) the velocity of the particle in the
i-th direction. The entries of the added-mass matrix have been evaluated as [78],

ma,ij

ma,∞
=

∫
Sp

φ(i)njdS
2
3 πR3

p
(A23)
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