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We present for the first time the exact next-to-leading-order QCD corrections to the light-quark part of
the mixed QCD-EW contributions to Higgs production via gluon fusion at the Large Hadron Collider, for a
center-of-mass energy of 13 TeV, with exact EW-boson mass dependence. The relevant two-loop real-
emission matrix element is computed using a dynamic one-dimensional series expansion strategy whose
stability and speed allows for a numerical phase-space integration using local IR subtraction counterterms.
For the choice of renormalization (μR) and factorization (μF) scales, μR ¼ μF ¼ MH , we find

σðα
2
sα

2þα3sα
2Þ

gg→HþX ¼ 1.467ð2Þþ18.7%
−14.6% ðμR varÞ � 2% ðPDFÞ pb, which we use to provide the best result, including

an estimate of suppressed contributions: σðEW;bestÞ
pp→HþX ¼ 2.11� 0.28 ðtheoryÞ pb.

DOI: 10.1103/PhysRevD.103.054037

I. INTRODUCTION

After the discovery of the Higgs boson with the Large
Hadron Collider (LHC) at CERN in 2012 [1,2], the work of
the LHC community has focused on the study of the Higgs
sector, which provides a stringent test of the Standard
Model of particles (SM) and a fertile environment for the
search of new physics (NP) signals [3–15].
A key ingredient for predictions of Higgs observables is

accurate knowledge of the Higgs production cross section
in gluon fusion, which at the LHC is by far the dominant

production mode. The coupling of the Higgs boson to
gluons is mediated by a heavy-quark loop. The Higgs
production cross section was computed at leading order in
the 1970s [16], and at next-to-leading order (NLO) in the
strong coupling constant αs in the 1990s [17,18]. NLO
QCD corrections are sizable (∼80%–100%), undermining
the reliability of the perturbative expansion in αs of the
production cross section. The next-to-next-to-leading-order
(NNLO) [19–21] and the next-to-next-to-next-to-leading-
order (N3LO) [22,23] corrections in αs have been computed
in the Higgs effective field theory (HEFT) approach—i.e.,
in the limit of a top quark much heavier than the Higgs
boson,MT ≫ MH, with all other quarks taken as massless,
which replaces the loop-mediated coupling with an effec-
tive tree-level coupling. The NNLO corrections turn out to
be significant (∼10%–20%), but with a reduced scale-
dependent uncertainty. The N3LO corrections turn out to be
small (∼4%–6%) [24], with a renormalization/factorization
scale variation of less than 2%.
The high accuracy of the N3LO corrections calls for the

evaluation of finite quark-mass effects and electroweak

*matteo.becchetti@unito.it
†roberto.bonciani@roma1.infn.it
‡delducav@itp.phys.ethz.ch
§valentin.hirschi@gmail.com∥fmoriell@itp.phys.ethz.ch
¶armin.schweitzer@phys.ethz.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 054037 (2021)

2470-0010=2021=103(5)=054037(9) 054037-1 Published by the American Physical Society

https://orcid.org/0000-0002-6273-8145
https://orcid.org/0000-0002-6527-7727
https://orcid.org/0000-0002-8908-6300
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.054037&domain=pdf&date_stamp=2021-03-26
https://doi.org/10.1103/PhysRevD.103.054037
https://doi.org/10.1103/PhysRevD.103.054037
https://doi.org/10.1103/PhysRevD.103.054037
https://doi.org/10.1103/PhysRevD.103.054037
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


contributions. Finite quark-mass effects are known through
NLO [18,25–30] and contribute a ∼ −7% change [29] to
the cross section. Although the relevant ingredients—
double-virtual [31–33], real-virtual [34–36], and double-
real [37,38]—of the computation of the finite quark-mass
effects at NNLO are available, such a computation has not
been performed yet. At NNLO, top-quark mass effects have
been estimated through a power expansion in MH=MT
[39–41] and found to be ∼1%. Light-quark mass effects—
in particular, the top-bottom interference—are not yet
known at NNLO.
Mixed QCD-electroweak (EW) effects arise at two

loops1—i.e., at Oðα2α2sÞ. They are due to the gluons
coupling to EW bosons V ¼ W, Z through a quark loop,
followed by the gauge coupling of the EW bosons to the
Higgs boson. Mixed QCD-EW contributions were calcu-
lated for the light-quark loop [42–44], for the heavy-quark
loop [45], and with full quark-mass dependence [45], and
were found to increase the N3LO cross section by about 2%
[24]. Since this increase is of the order of the residual QCD
uncertainty, it is important to compute the NLO corrections
in αs. Because the largest part (∼98% [44]) of the increase
atOðα2α2sÞ is due to the light-quark part of the mixed QCD-
EW contributions, the evaluation of the NLO corrections
has been aimed at the light-quark part. These corrections
were evaluated in the limit where the Higgs mass is much
smaller than the EW boson masses, MH ≪ MV [46], and
they turned out to be sizable.
The Oðα2α3sÞ corrections consist of three parts: the one-

loop 2 → 3, the three-loop 2 → 1, and the two-loop 2 → 2,
with sample diagrams shown in the first column of Fig. 1.
In Ref. [47], the one-loop 2 → 3 processes were computed
and found to yield a negligible contribution. The three-loop
contribution was evaluated analytically and expressed in
terms of multiple polylogarithms (MPLs) [48]. In Ref. [49],
the soft part of the two-loop 2 → 2 process was added. In
Ref. [50], the total cross section was evaluated in the small
EW-boson mass limit, MV ≪ MH. The planar master
integrals (MIs) for the two-loop gg → Hg process with
the exact EW-boson mass were published in Ref. [51] and
recently, in Ref. [52], the complete helicity amplitudes,
including the nonplanar diagrams, were presented. The
calculation was done analytically, expressing the results in
terms of MPLs.
In this work, we perform an independent computation of

the amplitude and of the MIs, which are evaluated by using
the series solution method of Ref. [53], and we present the
NLO QCD corrections to the total cross section for Higgs
production via gluon fusion at the LHC, due to the light-
quark part of the mixed QCD-EW contributions, with exact
EW boson mass dependence.

II. CALCULATION

A. Loop amplitudes

The computation of the two-loop gg → Hg amplitude for

the matrix element Mðα3sα2Þ
gg→Hg (see Fig. 1) is performed by

using the series expansion method of Ref. [53].
Specifically, we reduce the amplitude to MIs by using
computer programs [54–56] for the solution of integration-
by-parts identities (IBPs) [57–59] and Lorentz-invariance
identities (LI) [60]. By taking advantage of these identities,
we define a system of differential equations [61–64] for a
basis of canonical MIs [65]. The canonical basis is found by
using the methods of Refs. [65–71], and the corresponding
differential equations are solved in terms of generalized
power series, as described in Ref. [53]. The system of
differential equations uniquely defines the solution when
imposing boundary conditions at a special kinematic point.
We consider the infinite EW boson mass limit as our initial
boundary point. The numerical evaluation of the relevant
scattering amplitudes by means of the generalized power
series approach is well suited for Monte Carlo phase-space
integrations. Moreover, the analytic continuation of the
generalized power series to the physical regions is fully
algorithmic.
The series solution strategy can be summarized as

follows: We transport the integrals from a known boundary
point to a phase-space point of interest by solving the
differential equations in terms of generalized power series
along the line connecting the pair of points. This is done
dynamically for every new phase-space point. When the
line crosses a physical threshold, the analytic continuation
is defined by assigning a vanishing imaginary part to the
line parameter, in accordance with Feynman prescription.
By construction, the nonanalytic terms of the series are

FIG. 1. Overview of the relevant interferences necessary for the
computation of the hadronic cross section σðα

2
sα

2þα3sα
2Þ

gg→HþX . The red
cell is the LO, and cells highlighted in blue are part of the NLO
contribution. Amplitudes are denoted by a single representative
diagram. Curly lines denote gluons, wavy lines are massive weak
gauge bosons, continuous straight lines are massless quarks, and
the dashed line represents the Higgs boson.

1We count all factorized coupling constants except the strong
coupling as α.
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logarithms and rational powers of the line parameter, and
their analytic continuation is elementary. In order to
improve the efficiency of the evaluations, we consider a
precomputed grid of about 5000 physical phase-space
boundary points. In this way, the series solution can be
found along lines connecting pairs of points separated by
a relatively short distance. In general, these lines cross
fewer singular points of the differential equations, and they
require, for fixed precision, a lower truncation order of the
series, considerably reducing the average evaluation time.
In this work, we consider truncated power series which
guarantee a precision for the numerical evaluations of the
integral basis of at least 16 digits after the decimal point.
The average time for one form-factor evaluation on one
CPU core is Oð1 minÞ, ranging from Oð30 secÞ up to
Oð10 minÞ for input kinematic configurations featuring
large-scale hierarchies.
We verify our computation against Ref. [52] and report

benchmark values for the relevant matrix elements in the
Appendix. As for the three- and two-loop matrix elements

of the gg → H process [Mðα3sα2Þ
gg→H and Mðα2sα2Þ

gg→H , respectively,
in Fig. 1], we use the results presented in Refs. [48,72].

B. Phase-space integration and infrared regularization

Infrared (IR) divergences are locally subtracted using
two different paradigms for cross-validation: first, the
Frixione, Kunszt, and Signer (FKS) subtraction scheme
[73] and second, a modified version [74,75] of the
COLORFUL [76,77] scheme at NLO. To the best of our
knowledge, this is the first time that a two-loop matrix
element with implicit phase-space IR divergences has been
numerically integrated using local subtraction counter-
terms. To achieve this, we encoded the loop amplitudes
discussed in the previous paragraph as form factors of
effective vertices in the Universal FeynRules Output (UFO)
[78] model. We then created a custom plugin made publicly
available2 for the MadGraph5_aMC@NLO program [79],
allowing for the generation of a standalone library for
the evaluation of all matrix elements entering our compu-
tation. We finally customized the generation output of
MadGraph5_aMC@NLO for the NLO QCD correction of
inclusive Higgs hadroproduction within the Higgs
Effective Theory (HEFT) in order to accommodate the
aforementioned matrix elements as well as an offline
parallelization pipeline.
We validated our results against those obtained using a

modified version of the NLO implementation [77] of the
COLORFUL subtraction scheme rendered suitable for the
computation of a Higgs-inclusive cross section and imple-
mented in the private extension of MadGraph5_aMC@NLO

already featured in Ref. [47]. In that variant, the local soft

counterterm uses a mapping recoiling against initial states
(see Ref. [75] and Sec. 5.3.3 of Ref. [74]) and locally
identically cancels against its soft-collinear counterpart.
This is a consequence of the fact that our real-emission
matrix element only features soft emission from an initial-
initial dipole. The initial-final collinear counterterms alone
are thus sufficient to regularize the infrared (IR) divergen-
ces involved in our computation. We showcase the stability
of the real-emission matrix element in Fig. 2 by inves-
tigating the quality of its cancellation against local IR
counterterms both in the collinear and soft limits. We find
stability on par with that obtained in HEFT when consid-
ering tree-level real-emission matrix elements, where the
limiting factor is the double-precision accuracy of the input
kinematics. We also tested the independence of our result
on the arbitrary cutoff of the local IR collinear counterterms
(parameter y00 in Ref. [77]). We verified that our two
independent implementations of the FKS and COLORFUL IR
subtraction procedure give consistent results.

III. RESULTS

We carry out our computation in the Standard Model
(SM) using the relevant input parameters given in Table I,
where the masses of the gauge bosons are chosen in order to
align with the literature [48,72], and the weak coupling
follows from the gauge relation with GF. The Weinberg
mixing angle is determined by cos θW ¼ MW=MZ.

FIG. 2. Numerical stability of the two-loop real-emission
matrix element, locally subtracted with our modified implemen-
tation of COLORFUL, compared to their HEFT tree-level counter-
part when approaching the soft and collinear limits. The approach
parameter λ is defined so that the scaling of the real-emission
matrix when approaching the IR limit is λ−1. The weighted
integrand shown includes the Jacobian of the parametrization so
that it must scale like λα with α > 1

2
in order to be integrable.

2https://bitbucket.org/aschweitzer/mg5_higgs_ew_plugin/ or
http://madgraph.physics.illinois.edu/Downloads/PLUGIN/
higgsew.tar.gz.
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We remind the reader that we consider for the W-
exchange only the first two light-quark generations,
whereas the Z-exchange also receives contributions from
massless b quarks, as discussed in Refs. [48,72]. We
furthermore neglect the contribution from gg → Hqq̄
(computed to be below 0.1 pb in Ref. [47]).
For comparison purposes, we start by providing here the

cross section for the hadroproduction of a Higgs boson,
computed at LO and NLO QCD in HEFT:

σðHEFT;α
2
sαÞ

gg→HþX ¼ 13.209þ23.4%þ2.0%
−17.3%−2.0% pb; ð1Þ

σðHEFT;α
2
sαþα3sαÞ

gg→HþX ¼ 30.484þ19.8%þ1.9%
−15.3%−1.9% pb; ð2Þ

where the first set of uncertainties corresponds to the
(1
2
, 1, 2) μR scale variation. The second set reports the

PDF uncertainty obtained within MadGraph5_aMC@NLO,
which uses the LHAPDF [80] interface. At this point, the
factorization scale variation is insofar not a reliable error
estimate, since we only consider initial-state gluons, and its
size will therefore depend strongly on the chosen central
scale. However, the reduction of the scale dependence can
be seen in Eq. (20), which also includes an estimate for the
qg channel. Our result for the correction from light quarks
to the mixed QCD-EW contribution to the inclusive Higgs
production cross section is

σðα
2
sα

2Þ
gg→HþX ¼ 0.68739þ23.4%þ2.0%

−17.3%−2.0% pb; ð3Þ

σðα
2
sα

2þα3sα
2Þ

gg→HþX ¼ 1.467ð2Þþ18.7%þ2.0%
−14.6%−2.0% pb: ð4Þ

The resulting pure NLO QCD correction of order Oðα3sα2Þ
is 0.780(2) pb and was obtained from 50 000 evaluations of
the real-emission matrix element in our private imple-
mentation of the COLORFUL NLO subtraction scheme. The
gluon-initiated cross section with exact EW-boson mass
dependence in the virtual contributions and the real con-
tribution treated in the soft-gluon, the massless, and the
infinite mass approximations increase the pure gluon-
induced HEFT NLO cross section by 5.4% [49], 5.4%
[50], and 5.2% [50], respectively, whereas our exact

computation, with μR ¼ μF ¼ 1
2
MH and α−1 ¼ 128.0 as

in Refs. [49,50] yields 5.1%. Our result therefore lies within
the original uncertainty assigned to the factorization estimate
of 5%� 1% given in Ref. [20] and used in Ref. [24]. We
furthermore notice the small reduction of the scale uncer-
tainty when including NLO corrections. This slow conver-
gence is a known feature of gluon-fusion Higgs production.
We present the two most relevant differential predictions

in Figs. 3 and 4. First, in Fig. 3, we show the NLO-accurate
Higgs rapidity distribution, which reveals the expected flat
differential K factor, both for the EWeffects with respect to
the HEFT approximation and for the QCD corrections.
Second, in Fig. 4, we show the Higgs transverse momen-
tum distribution, which is accurate at leading order, and
which we compare to its HEFT counterpart whose spec-
trum is harder. We stress that Fig. 4 has no direct
phenomenological relevance, given that quark mass effects
are poised to affect the shape of the Higgs transverse
momentum distributions [81]. Even though we provide an
estimate of these mass effects on the fully inclusive level, to
obtain the correct high pT-tail of the distribution, the quark
mass effects in the EW amplitudes would also need to be
considered. These amplitudes are beyond the current state
of the art in multiloop computations.
We also report in Fig. 5 on the shape of the kinematic

dependence ofMðα3sα2Þ
gg→Hg relative to that ofM

ðα3sαÞ
gg→Hg. We find

that the dependence of this ratio on z is more marked. In
particular, we see that the ratio stabilizes rapidly as we
approach the production threshold z → 1, which amounts
to the bulk of the relevant phase space. This is in line with
the observation that factorization-like approximations
provide a good approximation of the total cross section.
For l ∼ 0.5, the limit z → 0 corresponds to larger values of
the Higgs transverse momentum, where we see that the

TABLE I. Standard Model parameters used for obtaining all
numerical results presented in this work. Dimensionful param-
eters are given in GeV unless indicated otherwise. All particle
widths are set to zero.

Parameter Value Parameter Value

PDF set PDF4LHC15_nlo_30 μR ¼ μF MH
αSðμRÞ As per PDF set. GF

παffiffi
2

p
M2

Wð1−M2
W=M2

ZÞffiffiffî
s

p
13 TeV α−1 132.507

MZ 91.1876 VCKM
ij δij

MW 80.3845 MH 125.09
10-3

10-2

10-1

Higgs rapidity

σ  
pe

r 
bi

n 
[p

b]

HEFT @ NLO QCD x 0.055
HEFT @ LO x 0.1
EW @ NLO QCD

EW @ LO

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-3 -2 -1  0  1  2  3

( HEFT@NLOQCD x 0.055, EW@NLOQCD, HEFT@LO x 0.1 ) / EW@LO

[-]

FIG. 3. Differential prediction for theOðα3sα2Þ correction to the
Higgs rapidity distribution.
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two-loop EW matrix element is of smaller magnitude
than that of its tree-level HEFT counterpart, as anticipated
from the transverse momentum distribution shown
in Fig. 4.
The factorization hypothesis of the Higgs cross section is

σ
ð
P

i
αiþ2
s ðαþα2ÞÞ

gg→HþX ¼ C2ðσ̃ðα2sαÞgg→HþX þ σ̃ðα
3
sαÞ

gg→HþX þ � � �Þ; ð5Þ

with

C ¼
X
i¼0

�
αs
π

�
i
ðCðiÞ

QCD þ λEWC
ðiÞ
w Þ ð6Þ

and Cð0Þ
w ¼ Cð0Þ

QCD ¼ 1, Cð1Þ
QCD ¼ 11=4. In terms of our

quantities from Eqs. (1)–(4), we have

σ̃ðα
2
sαÞ

gg→HþX ¼ σðHEFT;α
2
sαÞ

gg→HþX ; ð7Þ

σ̃ðα
3
sαÞ

gg→HþX ¼ −2Cð1Þ
QCDσ

ðHEFT;α2sαÞ
gg→HþX þ σðHEFT;α

3
sαÞ

gg→HþX ; ð8Þ

λEW ¼ σðα
2
sα

2Þ
gg→HþX

2σðHEFT;α
2
sαÞ

gg→HþX

; ð9Þ

Cð1Þ
w ¼ Cð1Þ

QCD þ
�
αs
π

�
−1
 
σðα

3
sα

2Þ
gg→HþX

σðα
2
sα

2Þ
gg→HþX

−
σðHEFT;α

3
sαÞ

gg→HþX

σðHEFT;α
2
sαÞ

gg→HþX

!
: ð10Þ

For μR ¼ μF, our exact computation thus yields

λEW ¼ 0.026; ð11Þ

Cð1Þ
w jμR¼1

2
MH

¼ −1.700; Cð1Þ
w jμR¼MH

¼ −2.072; ð12Þ

which is quite different from Cð1Þ
w ¼ 7=6 as estimated in the

infinite boson-mass approximation; however, it is still
within the uncertainty estimate of Ref. [24].
Remaining corrections to our computation: We identify

three main contributions still unaccounted for in our
computation of the mixed QCD-EW cross section. We
provide here an estimate for each, together with an
associated uncertainty:
(1) Heavy-quark (mass) effects in the QCD amplitudes

can be estimated by using

KQCD
ðNÞLOÞ;MQ

¼
VððNÞLOÞ
FIN;MQ

VððNÞLOÞ
FIN;HEFT

; ð13Þ

where the subscript MQ denotes the QCD back-
ground of a heavy quark of mass MQ, yQ ¼ MQ=v,
and VFIN as defined in the Appendix. The two-
loop virtual QCD amplitude is renormalized in a
five-flavor decoupling scheme. We account for
heavy quark-mass effects in the QCD amplitudes
by rescaling with KQCD

ðNÞLOÞ;MQ
, listed in Table II, and

we assign an uncertainty of �50% of the estimated
NLO effect based on the unknown (hard) real-
emission contributions.

(2) Top quark effects in the LO EW amplitudes were
studied in Refs. [44,45] and amount to −1.8% of the
LO cross section. We assign an uncertainty of the

FIG. 5. Plot of the quantity
ðMðα3sα2Þ

gg→Hg=M
ðα3sαÞ
gg→Hg−R

NLOÞ
RNLO with

RNLO ¼ σðα
3
sα

2Þ
gg→HþX=σ

ðHEFT;α3sαÞ
gg→HþX , in terms of the rescaled kinematic

invariants z ¼ M2
H=s and l ¼ t=ðM2

H − sÞ, for a sample of
∼150 000 phase-space points. The lines of constant deviation
span the range ½−0.75; 0.15� in increments of 0.05.

10-2

10-1

100

101

Higgs pT
 p

er
 b

in
 [p

b]
HEFT @ NLO QCD

EW @ NLO QCD

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  20  40  60  80  100  120  140  160

EW @ NLO QCD / HEFT @ NLO QCD

[GeV]

FIG. 4. Differential prediction for theOðα3sα2Þ EW contribution
to the Higgs transverse momentum distribution, compared to its
LO HEFT counterpart.
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same size based on the unknown top quark con-
tribution in the NLO EW amplitudes.

(3) Higher-order QCD corrections can be accounted for
under the assumption that the EW form factor
receives the same QCD correction as the HEFT
operator:

σðα
4
sþα5sÞα2

gg→HþX ¼ σðα
2
sþα3sÞα2

gg→HþX

σðα
4
sþα5sÞα

gg→HþX

σðα
2
sþα3sÞα

gg→HþX

; ð14Þ

and we assign an uncertainty Δfact as

Δfact ¼ �δfactσ
ðα4sþα5sÞα2
gg→HþX ð15Þ

with

δfact ¼

���������

σ
ðα2sα2Þ
gg→HþX

σ
ðHEFT;α2sαÞ
gg→HþX

σðHEFT;α
3
sαÞ

gg→HþX

σðα
3
sα

2Þ
gg→HþX

− 1

���������
¼
�
0.15; μR=F ¼ MH

0.17; μR=F ¼ MH
2

; ð16Þ

based on testing this EW-QCD factorization hypoth-
esis on our exact NLO correction. We compute the
higher orders in QCD with the program iHixs 2 [82].

When combining the additional contributions and uncer-
tainties above in the setup of Table I, we arrive at our best
estimate for the EW contribution of gluon-initiated Higgs
production:

σðEW;bestÞ
gg→HþX ¼ σðHEFT;α

2
sαþα3sαÞ

gg→HþX × ð4.81% ðour computationÞ
þ 0.15� 0.04% ðtop mass effects in QCD ampÞ
− 0.27� 0.09% ðbottom quark effects in QCD ampÞ
− 0.07� 0.02% ðcharm quark effects in QCD ampÞ
− 0.04� 0.04% ðtop quark effects in EWÞ
þ 2.5� 0.4% ðQCD higher ordersÞÞ

¼ σðHEFT;α
2
sαþα3sαÞ

gg→HþX × ð7.11� 0.6%Þ ð17Þ

¼ 2.17� 0.18 pb: ð18Þ

A similar computation for μR=F ¼ 1
2
MH yields σðEW;bestÞ

gg→HþX ¼
2.02� 0.14 pb.
Quark-induced and other EW contributions: The PDF

suppression from qq production channels renders them
negligible, and we only consider here qg-induced channels.
We identify the following two categories of quark-induced
contributions:
(1) One-loop EW contributions start at Oðα2sα2Þ for the

process qg → Hq and involve one-loop EW triangle
and box diagrams interfering with the one-loop
QCD Higgs amplitude with exact top and bottom
quark mass dependence. They can be computed
exactly using the loop-induced module [83] of
MG5aMC together with the loop-ready EW UFO

model of Ref. [84]. We, however, use here the result
of Table 3 of Ref. [47], which includes all one-loop
EW contributions in the gg and qg channels (in-
cluding Higgs-strahlung), and we refer to them for
drawings of the relevant diagram classes. We assign
a theoretical uncertainty to this contribution based
on the 38% μR scale variation of its qg component of
order Oðα2sα2Þ, and we obtain

σðEWÞ
1-loop ¼

�
0.025� 0.052 pb; μR=F ¼ MH

0.031� 0.062 pb; μR=F ¼ MH
2

:

The large uncertainty assigned here reflects the
accidental cancellation found among all contribu-
tions considered in Ref. [47].

(2) Quark corrections to EW form factors correspond to
qg contributions stemming from the QCD evolution
of the initial-state gluon entering the EW two-loop
form factor as shown in Fig. 6. We estimate this
contribution by rescaling our LO mixed QCD-EW
result by the qg K factor of the HEFT contribution.
This rescaling does not capture the nonuniversal
unknown (hard) real emission contribution, and we
assign 30% uncertainty based on these effects at
NLO. However, the factorization-scale dependence
of the qg channel will be captured well, since it
effectively amounts to replacing the reduced matrix
element, as indicated in Fig. 6. After combining
both qg and gg channels, the factorization-scale
dependence is reduced, and we assign an uncertainty
of 10% based on the relative difference of the μF
dependence of the NLO EWand NLO HEFT gluon-
induced contributions. To estimate the higher-order
QCD corrections, we perform the same rescaling
and assign an uncertainty of 50% based on the fact
that we do not know if they are captured well by a
factorization ansatz. We obtain

σðEWÞ
qg→HþX ¼

�−0.10� 0.05 pb; μR=F ¼ MH

0.12� 0.05 pb; μR=F ¼ MH
2

;

TABLE II. K factors defined as in Eq. (13) for different heavy
quark masses MQ ¼ Mc;Mb;Mt.

Quark MQ [GeV] KQCD
LO;MQ

KQCD
NLO;MQ

Charm 1.3 −0.010 −0.018
Bottom 4.2 −0.042 −0.069
Top 173 1.032 1.031
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where we used the program iHixs 2 to compute the
QCD corrections beyond NLO. Notice that, as

expected, including σðEWÞ
qg→HþX helps to reduce the

difference in the quantity σðEW;bestÞ
gg→HþX when computed

with μF ¼ MH and μF ¼ MH
2
.

(3) Higher-order EW contributions are estimated by
reweighting our cross section with

Kpure-EW
ðNÞLOÞ ¼ VððNÞLOÞ

FIN;pure-EW

VððNÞLOÞ
FIN;mixed-QCD-EW

; ð19Þ

where we compute VððNÞLOÞ
FIN;EW by squaring (interfering)

the relevant two- and three-loop EW virtual ampli-
tudes and assign a 50% uncertainty on the NLO
result based on the unknown (hard) real radiation:

σðsquared EWÞ
gg→HþX ¼

�
0.018� 0.005 pb; μR=F ¼ MH

0.020� 0.005 pb; μR=F ¼ MH
2

:

Together with the gluon-induced contributions of Eq. (18),
we finally construct our best estimate for the overall
contributions of EW origin to Higgs hadroproduction with
the parameters given in Table I:

σðEW;bestÞ
pp→HþX

¼
� ð6.91� 0.9%Þ × σðHEFT;α

2
sαþα3sαÞ

gg→HþX ; μR=F ¼ MH

ð6.43� 0.8%Þ × σðHEFT;α
2
sαþα3sαÞ

gg→HþX ; μR=F ¼ MH
2

¼
�
2.11� 0.28 ðtheoryÞ pb; μR=F ¼ MH

2.19� 0.26 ðtheoryÞ pb; μR=F ¼ MH
2

: ð20Þ

IV. CONCLUSION

We evaluated the NLO QCD correction to the mixed
EW-QCD light-quark contribution to Higgs production
via gluon fusion. Unlike previous computations of this
quantity, we retained the exact dependence on the weak

boson masses. The two-loop real-emission amplitudes
were computed by solving differential equations for the
relevant scalar integrals at runtime in terms of one-
dimensional generalized power series. We implemented
the resulting matrix elements in a flexible manner by
encoding them as form factors of a UFO model, which
we made publicly available as a MadGraph5_aMC@NLO

plugin. We performed the phase-space integration numeri-
cally in two separate implementations of the FKS and
COLORFUL subtraction scheme using an offline paralleliza-
tion model in order to accommodate the evaluation speed of
our matrix elements.
We presented the distribution of the Higgs rapidity, which

shows a flat differentialK-factor, and of the Higgs transverse
momentum, whose spectrum is softer than its HEFT
counterpart when ignoring quark mass effects.
When related to the NLO-accurate HEFT cross section,

we find the EW contribution from light quarks to be 5.1%
for μR ¼ μF ¼ 1

2
MH, which is very close to the result of

5.2% obtained in the infinite weak boson mass limit
[20,24,50]. Our result therefore allows us to reduce the
uncertainty of �1% assigned thus far to the mixed QCD-
EW contribution in order to reflect the absence of an exact
weak boson mass treatment at NLO. We also conclude
that violations to the factorization of EW and QCD
contributions are modest. This gives further confidence
in the rescaling of our cross section with higher-order QCD
corrections computed in HEFT which, together with the
estimate of other partially unknown effects, yields our best
estimate of 6.91� 0.93% (relative to the gluon-induced
NLO HEFT) for the overall contribution of EW origin to
Higgs production at the LHC. The LO and NLO quark-
induced EW contributions now stand as an important
remaining source of uncertainty, and they can be computed
in the future using the same methods as those presented in
this work.
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APPENDIX: BENCHMARK NUMERICAL
MATRIX ELEMENT EVALUATIONS

In order to facilitate the reproduction of our work, we
report here benchmark numerical results of our matrix

FIG. 6. Representative diagram of the qg-initiated contribution
to the NLO mixed EW-QCD cross section. Curly lines denote
gluons, wavy lines correspond to massive weak gauge bosons,
continuous straight lines denote massless quarks, and the dashed
line represents the Higgs boson.
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elements, summed/averaged over helicity and color con-
figurations, evaluated for specific kinematic configurations
with αSðMZÞ ¼ 0.118 and all other SM parameters as in
Table I. For the virtual matrix element, we only report the
finite part as defined in Eq. (B.2) of Ref. [73] or Eq. (A.1)
of Ref. [85]. The gg → H matrix elements are

VðLOÞ
FIN ¼

X
h;c

2ℜ½Að2-loopÞ
gg→H AðtreeÞ⋆

HEFT �

¼ 5.1508192663885 × 10−4 ½GeV2�; ðA1Þ

VðNLOÞ
FIN ¼

X
h;c

2ℜ½Að3-loopÞ
gg→H AðtreeÞ⋆

HEFT þAð2-loopÞ
gg→H Að1-loopÞ⋆

HEFT �
FIN

¼ 3.6824078313996 × 10−4 ½GeV2�: ðA2Þ

We also provide the relation of VðNLOÞ
FIN above with the

matrix element MFIN;I1 obtained from the finite amplitudes
computed with the methods of Refs. [48,72]:

VðNLOÞ
FIN ¼ MFIN;I1 þ CAπ

2VðLOÞ
FIN ; ðA3Þ

where CA ¼ 3 denotes the number of colors. Finally, we
give the two-loop gg → Hg matrix elements evaluated at
two different benchmark kinematic points specified with
the two Mandelstam invariants s ¼ ðpg1 þ pg2Þ2 and
t ¼ ðpg2 − pHÞ2:
X
h;c

2ℜ½Að2-loopÞ
gg→Hg A

ðtreeÞ⋆
HEFT �ðs ¼ 5M2

H; t ¼ −3M2
HÞ

¼ 9.0303320385123 × 10−6 ½GeV0�; ðA4Þ

X
h;c

2ℜ½Að2-loopÞ
gg→Hg A

ðtreeÞ⋆
HEFT �ðs ¼ 5M2

H; t ¼ −2M2
HÞ

¼ 5.8988801633472 × 10−6 ½GeV0�: ðA5Þ
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