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Abstract
Aglobal optimization approach for solving non-monotone equilibriumproblems (EPs) is pro-
posed. The class of (regularized) gap functions is used to reformulate any EP as a constrained
global optimization program and some bounds on the Lipschitz constant of such functions
are provided. The proposed global optimization approach is a combination of an improved
version of the DIRECT algorithm, which exploits local bounds of the Lipschitz constant of
the objective function, with local minimizations. Unlike most existing solution methods for
EPs, no monotonicity-type condition is assumed in this paper. Preliminary numerical results
on several classes of EPs show the effectiveness of the approach.
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1 Introduction

Given a bifunction f : Rn × R
n → R and a closed convex set C ⊆ R

n , we consider the
following equilibrium problem:

find x∗ ∈ C such that f (x∗, y) ≥ 0, for any y ∈ C. (EP)
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This framework is a general mathematical model which includes several problems such as
scalar and vector optimization, variational inequality (VI), complementarity, saddle point,
Nash equilibrium problems in non-cooperative games and inverse optimization [3,6].

Several classes of iterativemethods to solve EPs have been proposed in the literature: fixed
point approaches [32,35,36], extragradient methods [17,25,26,40], descent algorithms [8,11,
22,31], proximal point methods [7,21,34]. All these approaches need, directly or indirectly,
some monotonicity-type assumption on the bifunction f (e.g. strong or weak monotonicity,
pseudomonotonicity,∇-monotonicity, etc.) in order to guarantee the convergence to a solution
of (EP). On the other hand, it is well known that, without any need of monotonicity-type
assumptions on f , (EP) can be reformulated as an equivalent global optimization problem
via merit functions [38]. This fact suggests to use global optimization approaches to solve
non-monotone EPs. Global optimization techniques have been considered in the literature
only for two special classes of EPs: linear complementarity problems [1,39] and VI problems
(a branch and bound method was proposed in [29] and a meta-heuristic algorithm in [30]).

In this paper, we propose a DIRECT-type global optimization approach for solving gen-
eral EPs, without assuming any monotonicity-type condition on f . In particular, we first
reformulate (EP) as a global optimization problem via the well-known gap functions. We
analyze the Lipschitz continuity of gap functions and give simple estimates of the Lipschitz
constant for some special classes of EPs. Then, we combine the improved version of the
DIRECT algorithm developed in [12], which exploits local bounds of the Lipschitz constant
of the objective function with local searches to find a global minimum point of the gap func-
tion, i.e., a solution of (EP). Finally, we show the effectiveness of our approach with some
preliminary numerical experiments on instances coming from the literature and randomly
generated instances.

We remark that a possible alternative approach to solve non-monotone EPs relies on the
use of simplicial algorithms for fixed point problems. In fact, it is well known that (EP) can
be equivalently reformulated as a fixed point problem and the class of simplicial algorithms
for fixed point problems does not require any monotonicity assumption to get convergence.
In the seminal paper [41], Scarf proposed a constructive proof of the Brouwer’s fixed point
theorem on the unit simplex. This algorithm, based on a simplicial decomposition of the
unit simplex and on integer labeling techniques, generates a sequence of adjacent simplices
and stops after a finite number of iterations with a completely labeled simplex yielding and
approximate fixed point (see also [23,42,43]). Later, improved simplicial algorithms, based
on homotopy functions that deform trivial fixed point problems into the original one, allowed
for successively finer approximations of fixed points (see, e.g., [9,10,14,15,24,44,45]).

The rest of the paper is organized as follows. In Sect. 2, we recall some preliminary notions
for (EP) and themain properties of gap functions for (EP). In Sect. 3, we provide some general
results on the Lipschitz continuity of gap functions and give explicit bounds of the Lipschitz
constant for four classes of problems: affine VIs, VIs with trigonometric terms, affine EPs
and EPs with trigonometric terms. Section 4 presents the DIRECT-type global optimization
approach and recalls the convergence properties of both the standard version of the DIRECT
algorithm and its improved version proposed in [12]. Section 5 reports the results of some
preliminary numerical tests and shows that the improved version of DIRECT is more efficient
than its standard version on most of the considered instances. Section 6 shows a numerical
comparison between the proposed DIRECT-type approach and a widely used local solver for
mixed complementarity problems and variational inequalities. Section 7 shows a numerical
comparison between the proposed DIRECT-type approach and two simplicial algorithms for
fixed point problems. Conclusions are finally drawn in Sect. 8.
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Throughout the paper we will assume that the feasible set C is compact, the bifunction f
is continuous, f (x, ·) is convex and f (x, x) = 0 for any x ∈ C. It is well known that under
these assumptions the existence of at least one solution of (EP) is guaranteed (see, e.g., [16]).

2 Preliminary background

First, we briefly recall how someoptimization relatedmathematicalmodels can be formulated
in the general format (EP) (see [3,4] for more details).

– Scalar and vector optimization problems: finding a global minimizer of a function ψ :
R
n → R over a closed set C ⊆ R

n is equivalent to solve (EP) with f (x, y) = ψ(y) −
ψ(x).
Given m scalar functions ψi : Rn → R, a weak Pareto global minimum of the vector
function ψ = (ψ1, . . . , ψm) over a closed set C ⊆ R

n is any x∗ ∈ C such that there is
no y ∈ C such that ψi (y) < ψi (x∗) for any i = 1, . . . ,m. Finding a weak Pareto global
minimum is equivalent to solve (EP) with f (x, y) = max

i=1,...,m
[ψi (y) − ψi (x)].

– Variational inequality and complementarity problems: given a closed convex set C ⊆ R
n

and a map F : Rn → R
n , the variational inequality problem consists in finding x∗ ∈ C

such that 〈F(x∗), y − x∗〉 ≥ 0 holds for any y ∈ C . When C is a closed convex cone of
R
n , the variational inequality problem reduces to a complementarity problem. Solving

both problems is equivalent to solve (EP) with f (x, y) = 〈F(x), y − x〉.
– Fixed point problems: given a closed set C ⊆ R

n , a fixed point of a map F : C → C is
any x∗ ∈ C such that x∗ = F(x∗). Finding a fixed point of F is equivalent to solve (EP)
with f (x, y) = 〈x − F(x), y − x〉.

– Saddle point problems: given two closed sets C1 ⊆ R
n1 and C2 ⊆ R

n2 , a saddle point
of a function F : C1 × C2 → R is any x∗ = (x∗

1 , x
∗
2 ) ∈ C1 × C2 such that F(x∗

1 , y2) ≤
F(x∗

1 , x
∗
2 ) ≤ F(y1, x∗

2 ) holds for any y = (y1, y2) ∈ C1 ×C2. Finding a saddle point of
F is equivalent to solve (EP) with C = C1 ×C2 and f ((x1, x2), (y1, y2)) = F(y1, x2)−
F(x1, y2).

– Nash equilibrium problems: in a noncooperative game with N players, each player i
has a set of strategies Ci ⊆ R

ni and aims at minimizing a cost function ci : C → R

where C = C1 × · · · × CN . A Nash equilibrium is any x∗ ∈ C such that fi (x∗) ≤
fi (x∗(yi )) holds for any yi ∈ Ci and i = 1, . . . , N , where x∗(yi ) denotes the vector
obtained from x∗ by replacing x∗

i with yi . Finding a Nash equilibrium is equivalent to
solve (EP) with f equal to the so-called Nikaido–Isoda bifunction [37], i.e., f (x, y) =∑N

i=1 [ fi (x(yi )) − fi (x)].
– Inverse optimization problems: given a closed set C ⊆ R

n , m functions fi :
R
n → R and p functions g j : R

n → R, the inverse optimization problem
asks to determine a parameter λ∗ ∈ R

m+ such that at least one optimal solution
x∗ of the problem min

{ ∑m
i=1 λ∗

i fi (x) : x ∈ C
}
satisfies the constraints g j (x∗) ≤

0 for all j = 1, . . . , p. This problem is equivalent to a Nash equilibrium prob-
lem with three players: the first player controls the x variables and aims at solving
min

{ ∑m
i=1 λi fi (x) : x ∈ C

}
, the second player controls the auxiliary variables y and

aims at solving max
{ ∑p

j=1 g j (x)y j : y ≥ 0
}
, while the third player simply chooses

a vector λ ∈ R
m+ (or minimizes a constant objective function over Rm+). Therefore, also

this inverse optimization problem can be formulated in the (EP) format.

We now recall some monotonicity-type definitions for a bifunction f : Rn × R
n → R.
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Definition 1 Given a closed convex set C ⊆ R
n , f is called monotone on C if

f (x, y) + f (y, x) ≤ 0, ∀ x, y ∈ C;
f is called strongly monotone on C if there exists τ > 0 such that f (x, y) + f (y, x) ≤
−τ ‖y − x‖2 holds for any x, y ∈ C;

f is called pseudomonotone on C if the implication

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0

holds for any x, y ∈ C;
f is called weakly monotone on C if there exists τ > 0 such that f (x, y) + f (y, x) ≤

τ ‖y − x‖2 holds for any x, y ∈ C;
f is called ∇-monotone on C if 〈∇x f (x, y) + ∇y f (x, y), y − x〉 ≥ 0 holds for any

x, y ∈ C;
f is called strictly ∇-monotone on C if 〈∇x f (x, y) + ∇y f (x, y), y − x〉 > 0 holds for

any x, y ∈ C with x �= y;
f is called strongly ∇-monotone on C if there exists τ > 0 such that

〈∇x f (x, y) + ∇y f (x, y), y − x〉 ≥ τ ‖y − x‖2 holds for any x, y ∈ C.
The monotonicity is a key assumption to guarantee the convergence of extragradient,

proximal point and Tikhonov-Browder regularization methods; the strong monotonicity is
exploited in those algorithms based on the reformulation of (EP) as a fixed point problem;
pseudomonotonicity is mainly used in extragradient algorithms as well as in fixed point,
combined relaxation methods, convex feasibility and proximal point methods; weak mono-
tonicity has been used in proximal point algorithms; both strict and strong ∇-monotonicity
have been widely exploited to devise specific descent methods for (EP). A detailed descrip-
tion of the abovemonotonicity conditions and a comprehensive analysis of their relationships
can be found in [5].

Merit functions allow reformulating (EP) as a global optimization problem,whose optimal
value is known a priori. Several classes of merit functions for EPs have been introduced in
the literature in the last two decades [38]. In this paper, we focus on the class of (regularized)
gap functions that is an extension to EPs of the class introduced by Fukushima for VIs [18].

Theorem 1 [31] For any α ≥ 0 the gap function

ϕα(x) := max
y∈C

[
− f (x, y) − α

2
‖y − x‖2

]
(1)

has the following properties:

(a) ϕα(x) ≥ 0 for any x ∈ C;
(b) x∗ solves (EP) if and only if x∗ ∈ C and ϕα(x∗) = 0;
(c) If α > 0 and f is continuously differentiable on R

n × R
n, then ϕα is continuously

differentiable on Rn with

∇ϕα(x) = −∇1 f (x, yα(x)) − α(x − yα(x)), (2)

where ∇1 f (x, y) denotes the gradient of f (·, y) at x and yα(x) is the unique maximizer
of problem in (1).

Therefore, the solutions of (EP) coincide with the global minimum points of the optimiza-
tion problem

min ϕα(x)
x ∈ C,

(3)
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whose global minimum value is zero. We remark that evaluating the gap function ϕα at some
point x consists in maximizing a concave (when α = 0) or strongly concave (when α > 0)
function over the set C. Moreover, the regularization term ‖y − x‖2 can be replaced by a
more general bifunction satisfying suitable conditions (see [31]).

Several descent methods based on the gap function ϕα have been developed in the lit-
erature for solving EPs (see, e.g., [8,11,31]. However, their convergence to a solution of
(EP) is guaranteed provided that some monotonicity-type condition on the bifunction f is
assumed. In this paper, we propose a global optimization approach for solving problem (3)
that is not based on any monotonicity-type condition on f . More specifically, we consider
a DIRECT-type method (see, e.g., [20]) with local searches. DIRECT (DIvide RECTangle)
is a partitioning strategy that samples points in the domain and uses only objective function
evaluations to decidewhat to do next. The boosted versionwe use here, called L̄-DIRECT and
first proposed in [12], exploits overestimates of the Lipschitz constant related to the objective
function to improve the way the subsets to be further partitioned are selected. As we will see
in the next section, this choice is well-suited to our problem. Indeed, when our problem has
some specific structure, an overestimate of the Lipschitz constant for the function ϕα can be
easily calculated.

In the rest of the paper, we will consider the class of EPs where the bifunction

f (x, y) = 〈F(x, y), y − x〉
for some map F : R

n × R
n → R

n . This class of EPs includes two important particular
cases: (i) VIs, where the map F only depends on the variable x and (ii) affine EPs, where
F(x, y) = Px + Qy + r for some P, Q ∈ R

n×n and r ∈ R
n .

3 Lipschitz continuity of gap functions

In this section, we provide some general results on the Lipschitz continuity of gap function
ϕα and show some simple estimates of its Lipschitz constant for four special classes of EPs.
The knowledge of the Lipschitz constant of ϕα will be exploited by the global optimization
approach described in Sect. 4 for solving problem (3).

Theorem 2 Suppose that B ⊆ R
n is compact, F is continuous on R

n × R
n and F(·, y) is

Lipschitz continuous on B, uniformly with respect to y, with constant LF . Then, for any
α ≥ 0 the function ϕα is Lipschitz continuous on B with constant

L1 + L2 LF + α L2,

where
L1 = max

x∈B, y∈C ‖F(x, y)‖, L2 = max
x∈B, y∈C ‖x − y‖. (4)

Proof If x, y ∈ B, then the following chain of equalities and inequalities holds:

ϕα(x) − ϕα(y) = max
z∈C

[
〈F(x, z), x − z〉 − α

2
‖x − z‖2

]
− max

z∈C

[
〈F(y, z), y − z〉 − α

2
‖y − z‖2

]

≤ max
z∈C

[
〈F(x, z), x − z〉 − 〈F(y, z), y − z〉 − α

2
‖x − z‖2 + α

2
‖y − z‖2

]

= max
z∈C

[
〈F(x, z) − F(y, z), x − z〉 + 〈F(y, z), x − y〉 + α

2
〈y − x, y − z + x − z〉

]

≤ max
z∈C [‖F(x, z) − F(y, z)‖‖x − z‖ + ‖F(y, z)‖‖x − y‖
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+α

2
‖y − x‖(‖y − z‖ + ‖x − z‖)

]

≤ LF‖x − y‖ (max
z∈C ‖x − z‖) + L1‖x − y‖

+ α

2
‖y − x‖

[

max
z∈C ‖y − z‖ + max

z∈C ‖x − z‖
]

≤ (L1 + L2 LF + α L2) ‖x − y‖,

where the second inequality follows from the Cauchy-Schwarz inequality, the third one
from the Lipschitz continuity of F and the last one from the definition of L2. ��

Remark 1 Theorem 2 is a generalization of Lemma 2.1 proved in [29], which provides an
estimate of the Lipschitz constant of the gap function ϕ0 for a VI with Lipschitz continuous
operator. In fact, when (EP) reduces to a VI, the regularization parameter α = 0 and the set
B = C, then the value of the Lipschitz constant given in Theorem 2 coincides with that given
in [29, Lemma 2.1].

A further estimate of the Lipschitz constant of ϕα , with α > 0, can be obtained provided
that the map F is smooth.

Theorem 3 Suppose that B ⊆ R
n is a convex compact set and F is continuously differentiable

onRn ×R
n. Then, for any α > 0 the function ϕα is Lipschitz continuous on B with constant

L1 + L2 L3(α),

where L1 and L2 are defined in (4) and

L3(α) = max
x∈B, y∈C ‖α I − ∇1F(x, y)‖, (5)

where ∇1F(x, y) denotes the Jacobian matrix of F(·, y) at x.

Proof Theorem 1 guarantees that ϕα is continuously differentiable on Rn with

∇ϕα(x) = F(x, yα(x)) + [α I − ∇1F(x, yα(x))T ](yα(x) − x), x ∈ R
n,

where

yα(x) = argmax
y∈C

[
〈F(x, y), x − y〉 − α

2
‖y − x‖2

]
.

Let u, v ∈ B. The mean value theorem guarantees that there exists ξ ∈ (0, 1) such that

ϕα(u) − ϕα(v) = 〈∇ϕα(z), u − v〉,
where z := ξu + (1 − ξ)v ∈ B. Therefore, we get

|ϕα(u) − ϕα(v)| ≤ ‖∇ϕα(z)‖ ‖u − v‖
≤ [‖F(z, yα(z))‖ + ‖α I − ∇1F(z, yα(z))T ‖ ‖yα(z) − z‖] ‖u − v‖
≤ [L1 + L2 L3(α)] ‖u − v‖.

��

In the special case of a VI defined by a smooth map, a third estimate of the Lipschitz
constant of ϕα can be proved.
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Theorem 4 Suppose that (EP) is a VI, i.e., f (x, y) = 〈F(x), y − x〉 for some continuously
differentiable map F : Rn → R

n. If B ⊆ R
n is a convex compact set such that B ⊆ C, then

for any α > 0 the function ϕα is Lipschitz continuous on B with constant

L1 + α−1 L1 L3(α),

where L1 and L3(α), defined in (4) and (5) respectively, in this special case are equal to

L1 = max
x∈B ‖F(x)‖, L3(α) = max

x∈B ‖α I − ∇F(x)‖.

Proof Theorem 1 guarantees that ϕα is continuously differentiable and

∇ϕα(x) = F(x) + [α I − ∇F(x)T ](yα(x) − x), x ∈ R
n,

with

yα(x) = PC(x − α−1F(x)),

where PC denotes the Euclidean projection on the set C. If u, v ∈ B, then the mean value
theorem implies

ϕα(u) − ϕα(v) = 〈∇ϕα(z), u − v〉,
where z := ξu + (1 − ξ)v for some ξ ∈ (0, 1). Therefore, we get

|ϕα(u) − ϕα(v)| ≤ ‖∇ϕα(z)‖ ‖u − v‖
≤ [‖F(z)‖ + ‖α I − ∇F(z)T ‖ ‖yα(z) − z‖] ‖u − v‖
= [‖F(z)‖ + ‖α I − ∇F(z)‖ ‖PC(z − α−1F(z)) − PC(z)‖] ‖u − v‖
≤ [‖F(z)‖ + ‖α I − ∇F(z)‖ ‖z − α−1F(z) − z‖] ‖u − v‖
≤ [L1 + α−1 L1 L3(α)] ‖u − v‖,

where the third inequality holds since the projection map PC is nonexpansive, i.e., ‖PC(x)−
PC(y)‖ ≤ ‖x − y‖ holds for any x, y ∈ R

n . ��
In the rest of this section we analyze the Lipschitz constant of ϕα for some special classes

of EPs.

3.1 Affine VIs defined on a box

Suppose that (EP) is a VI defined by an affine operator F(x) = Px + r , for some P ∈ R
n×n

and r ∈ R
n , over a box C = [l, u], where l, u ∈ R

n . Consider a box B = [a, b], where
a, b ∈ R

n , such that B ⊆ C, i.e., l ≤ a ≤ b ≤ u. Then, Theorems 2, 3 and 4 guarantee that
ϕ0 is Lipschitz continuous on B with constant

L1 + L2 LF , (6)

while, for any α > 0, ϕα is Lipschitz continuous on B with constant

min
{
L1 + L2 LF + α L2, L1 + L2 L3(α), L1 + α−1 L1 L3(α)

}
. (7)

We now show that the exact values (or upper bound) of the constants involved in the above
formulas can be easily computed.

Estimate of L1. The exact value of L1 is

L1 = max
x∈B ‖Px + r‖ = max

x∈vert(B)
‖Px + r‖,
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where vert(B) denotes the set of vertices of B. Such a evaluation can be computationally
expensive since the vertices of B are exponentially many with respect to the number of
variables. However, the following upper bounds for L1 can be easily computed. If we denote
by P+ the Moore-Penrose pseudoinverse matrix of P , then we get

L1 = max
x∈B ‖Px + r‖

= max
a≤x≤b

‖P(x + P+r) + (I − PP+)r‖
≤ ‖(I − PP+)r‖ + max

a≤x≤b
‖P(x + P+r)‖

≤ ‖(I − PP+)r‖ + ‖P‖ max
a≤x≤b

‖x + P+r‖
= ‖(I − PP+)r‖ + ‖P‖ ‖c(a, b)‖
:= L ′

1,

where the i-th component of the vector c(a, b) is defined as ci (a, b) = max{|(a +
P+r)i |, |(b + P+r)i |}. Moreover, the following simple upper bounds hold:

L1 = max
a≤x≤b

‖P(x − a) + Pa + r‖ ≤ ‖Pa + r‖ + ‖P‖ ‖b − a‖ := L
′′
1,

L1 = max
a≤x≤b

‖P(x − b) + Pb + r‖ ≤ ‖Pb + r‖ + ‖P‖ ‖b − a‖ := L
′′′
1 .

Therefore, we have

L1 ≤ L̃1(P, r , a, b), where L̃1(P, r , a, b) := min{L ′
1, L

′′
1, L

′′′
1 }. (8)

Remark 2 In [29] the following upper bound for L1 is given:

L1 ≤ ‖P‖ ‖c(a, b)‖.
We remark that this inequality is not true in general, as the following counterexample

shows. Let n = 2,

P =
(
1 1
0 0

)

, r =
(
0
v

)

, wi th v �= 0, a =
(
0
0

)

, b =
(
1
1

)

.

Then, it is easy to check that ‖P‖ = √
2 holds and the pseudoinverse of P is

P+ =
(
1/2 0
1/2 0

)

,

hence ci (a, b) = max{|ai |, |bi |} = 1 for i = 1, 2. Therefore, ‖P‖‖c(a, b)‖ = 2. On the
other hand,

L1 = max
x∈B ‖Px + r‖ = max

0≤x≤1
‖(x1 + x2, v)‖ = ‖(2, v)‖ =

√
4 + v2 > 2 = ‖P‖‖c(a, b)‖.

Estimate of L2. The exact value of L2 = maxx∈B, y∈C ‖x − y‖ can be computed by
solving n independent optimization problems of the form

max
ai≤xi≤bi
li≤yi≤ui

(xi − yi )
2 = max{(ui − ai )

2, (li − bi )
2},

123



Journal of Global Optimization

for i = 1, . . . , n. Therefore, we have

L2 =
√
√
√
√

n∑

i=1

max{(ui − ai )2, (li − bi )2}. (9)

Estimates of L3(α) and LF . It is easy to check that L3(α) = ‖α I − P‖ and LF = ‖P‖.

3.2 Nonlinear VIs with trigonometric terms defined on a box

Suppose that (EP) is a VI defined over a box C = [l, u], with an operator which is the sum
of an affine map and a trigonometric map, i.e.,

F(x) = Px + r + T (x),

where Ti (x) = wi sin(vi xi ), for i = 1, . . . , n, P ∈ R
n×n and r , v, w ∈ R

n with v,w > 0.
Consider a box B = [a, b] ⊆ C, i.e., l ≤ a ≤ b ≤ u. Then, Theorems 2, 3 and 4 imply
that ϕ0 is Lipschitz continuous on B with constant (6), while ϕα , for any α > 0, is Lipschitz
continuous on B with constant (7).

Estimate of L1. An upper bound for L1 can be computed as follows:

L1 = max
x∈B ‖Px + r + T (x)‖

≤ max
x∈B ‖Px + r‖ + max

x∈B ‖T (x)‖
≤ L̃1(P, r , a, b) + ‖w‖,

where L̃1(P, r , a, b) is defined in (8).
Estimate of L2. Since L2 only depends on the B and C, its exact value is given by (9).
Estimate of L3(α). The following upper bound can be obtained:

L3(α) = max
x∈B ‖α I − P − ∇T (x)‖ ≤ ‖α I − P‖ + max

x∈B ‖∇T (x)‖.

The Jacobian matrix ∇T (x) is diagonal with

[∇T (x)]i i = wivi cos(vi xi ), i = 1, . . . , n,

hence, for any x ∈ B we get

‖∇T (x)‖ = max
1≤i≤n

{|wivi cos(vi xi )|} = max
1≤i≤n

{wivi | cos(vi xi )|} ≤ max
1≤i≤n

{wivi }.

Therefore, we have

L3(α) ≤ ‖α I − P‖ + max
1≤i≤n

{wivi }. (10)
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Estimate of LF . The Lipschitz constant of F can be estimated as follows:

‖F(x) − F(z)‖ = ‖P(x − z) + T (x) − T (z)‖
≤ ‖P‖‖x − z‖ + ‖T (x) − T (z)‖
= ‖P‖‖x − z‖ +

√
n∑

i=1
w2
i [sin(vi xi ) − sin(vi zi )]2

≤ ‖P‖‖x − z‖ +
√

n∑

i=1
w2
i v

2
i (xi − zi )2

≤ ‖P‖‖x − z‖ +
√[

max
1≤i≤n

{wivi }
]2 n∑

i=1
(xi − zi )2

= ‖P‖‖x − z‖ + max
1≤i≤n

{wivi }‖x − z‖
= (‖P‖ + max

1≤i≤n
{wivi })‖x − z‖,

where the second inequality holds because the sine function is Lipschitz continuous with
constant 1. Therefore, we have

LF ≤ ‖P‖ + max
1≤i≤n

{wivi }. (11)

3.3 Affine EPs defined on a box

Suppose that (EP) is defined by an affine operator F(x, y) = Px + Qy + r , for some
P, Q ∈ R

n×n and r ∈ R
n , over a box C = [l, u], where l, u ∈ R

n . Consider a box B = [a, b].
Then, Theorems 2 and 3 imply that ϕ0 is Lipschitz continuous on B with constant (6), while,
for any α > 0, ϕα is Lipschitz continuous on B with constant

min {L1 + L2 LF + α L2, L1 + L2 L3(α)} . (12)

Estimate of L1. The following bound can be easily obtained:

L1 = max
x∈B, y∈C ‖Px + Qy + r‖

≤ max
x∈B, y∈C(‖Px‖ + ‖Qy + r‖)

= max
x∈B ‖Px‖ + max

y∈C ‖Qy + r‖
≤ L̃1(P, 0, a, b) + L̃1(Q, r , l, u) := M1. (13)

Similarly to the previous bound, we get

L1 = max
x∈B, y∈C ‖Px + Qy + r‖

≤ max
x∈B, y∈C(‖Px + r‖ + ‖Qy‖)

= max
x∈B ‖Px + r‖ + max

y∈C ‖Qy‖
= L̃1(P, r , a, b) + L̃1(Q, 0, l, u) := M2. (14)

Finally, we have

L1 = max
x∈B, y∈C ‖Px + Qy + r‖

123



Journal of Global Optimization

≤ max
x∈B, y∈C(‖Px + r/2‖ + ‖Qy + r/2‖)

= max
x∈B ‖Px + r/2‖ + max

y∈C ‖Qy + r/2‖
= L̃1(P, r/2, a, b) + L̃1(Q, r/2, l, u) := M3, (15)

thus L1 ≤ min{M1, M2, M3}.
Estimates of L2, L3(α) and LF . It is easy to check that L2 is given by (9), L3(α) =

‖α I − P‖ and LF = ‖P‖.

3.4 Nonlinear EPs with trigonometric terms defined on a box

Suppose that (EP) is defined over a box C = [l, u], with a nonlinear operator given by the
sum of an affine map and a trigonometric map, i.e.,

F(x, y) = Px + Qy + r + T (x),

where P, Q ∈ R
n×n , r ∈ R

n , Ti (x) = wi sin(vi xi ), for i = 1, . . . , n, and v,w ∈ R
n with

v,w > 0. Consider a box B = [a, b]. Then, Theorems 2 and 3 imply that ϕ0 is Lipschitz
continuous on B with constant (6), while, for any α > 0, ϕα is Lipschitz continuous on B
with constant (12).

Estimate of L1. The following bound can be easily obtained:

L1 = max
x∈B, y∈C ‖Px + Qy + r + T (x)‖

≤ max
x∈B, y∈C ‖Px + Qy + r‖ + max

x∈B ‖T (x)‖
≤ min{M1, M2, M3} + ‖w‖,

where M1, M2, M3 are defined in (13)–(15).
Estimates of L2, L3(α) and LF . It is easy to check that L2 is given by (9), while the upper

bounds for L3(α) and LF are given by (10) and (11), respectively.

4 The DIRECT-type algorithms

We now describe a DIRECT-type approach to globally solve the optimization problem (3)
that is equivalent to (EP). In this section, we assume that the feasible region C is a box, i.e.,
C = {x ∈ R

n : l ≤ x ≤ u}.
More specifically, we focus on partition based algorithms, a class of methods with both

interesting theoretical properties and efficient computational behavior, and explain why those
algorithms represent a good option when dealing with non-monotone EPs.We start by giving
some useful details.

Partition based methods produce a sequence of finer and finer partitions {Hk} of the
feasible set C. At each iteration k, the k-th partition is described by:

Hk = {Ci : i ∈ Ik},
where

Ci = {x ∈ R
n : li ≤ x ≤ ui }, li , ui ∈ [l, u], xi = (li + ui )/2.
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We further notice that C = ∪{Ci : i ∈ Ik} and I nt(Ci ) ∩ I nt(C j ) = ∅ for all i, j . Then
the next partition Hk+1 is obtained by selecting and by further partitioning every element
of a “particular” subset {Ci : i ∈ I ∗

k } ⊆ Hk , where I ∗
k ⊂ Ik . A partition based algorithm

is characterized by the rules used to generate the subset of indices I ∗
k , and by the strategies

applied to further partition the subsets {Ci : i ∈ I ∗
k }.

In [29], the authors consider non-monotone VIs and use a Branch and Bound method
similar to the one described in [19] to tackle the considered global optimization problems.

Instead, as previously pointed out, we solve non-monotone EPs by means of an algorithm
derived from the well-known DIRECT method (see, e.g., [20]). This approach, called L̄-
DIRECT and first proposed in [12], differs from the standard version of DIRECT in the
way the set of indices I ∗

k are defined. In the standard version of DIRECT, I ∗
k consists of the

indices related to the subsets satisfying the definition reported below:

Definition 2 Given a partition Hk = {Ci : i ∈ Ik} of C and a scalar ε > 0, a subset Ch is
potentially optimal with respect to the function ϕα if a constant L̄h exists such that:

ϕα(xh) − L̄h

2
‖uh − lh‖ ≤ ϕα(xi ) − L̄h

2
‖ui − li‖, ∀ i ∈ Ik,

ϕα(xh) − L̄h

2
‖uh − lh‖ ≤ ϕmin − ε|ϕmin|,

where
ϕmin = min

i∈Ik
ϕα

(
xi

)
. (16)

In the L̄-DIRECT algorithm, I ∗
k is given by the indices related to those subsets satisfying:

Definition 3 Given a partition Hk = {Ci : i ∈ Ik} of C, a scalar ε > 0, a scalar η > 0 and a
scalar L̄ > 0 , a subset Ch is L̄-potentially optimal with respect to the function ϕα if one of
the following conditions is satisfied:

(i) A constant L̃h ∈ (0, L̄) exists such that:

ϕα(xh) − L̃h

2
‖uh − lh‖ ≤ ϕα(xi ) − L̃h

2
‖ui − li‖, ∀ i ∈ Ik, (17)

ϕα(xh) − L̃h

2
‖uh − lh‖ ≤ ϕmin − ε max{|ϕmin|, η}, (18)

where ϕmin is given by (16);
(ii) The following inequality holds:

ϕα(xh) − L̄

2
‖uh − lh‖ ≤ ϕα(xi ) − L̄

2
‖ui − li‖, ∀ i ∈ Ik . (19)

Remark 3 The difference between the two is that an overestimate L̄ of the Lipschitz constant
is used in Definition 3. This fact obviously enhances the way L̄-DIRECT selects the subsets
to be partitioned.

Remark 4 As L̄ → ∞, Definition 3 tends to Definition 2 and, hence, the strategy proposed
in [12] becomes the one proposed in [20].

We refer to [20] and [12] for detailed descriptions and discussions of the DIRECT algo-
rithm and the L̄-DIRECT algorithm. Similarly to any partition-based method, the asymptotic
behavior shown by the DIRECT and the L̄-DIRECT algorithms is characterized by the par-
tition sequences they produce. Those sequences can be represented equivalently by infinite
sequences of nested subsets {Cik }, defined as follows:
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– Given a set Cik at the iteration k, its predecessor Cik−1 is the unique set belonging to the
previous partition Hk−1 = {Ci : i ∈ Ik−1} such that Cik ⊆ Cik−1 .

Then, the analysis of theoretical properties of DIRECT algorithm and L̄-DIRECT algo-
rithm can be performed by studying the properties of the produced sequences {Cik }. The
partitioning strategy used by the DIRECT algorithm and the L̄-DIRECT algorithm guaran-
tees (regardless of the particular choice of set I ∗

k ) that the produced sequences {Cik } satisfy
one of the following properties (see [27]):

– Property 1: an index k̄ exists such that Cik̄ = Cik for all k ≥ k̄;

– Property 2:
∞⋂

k=0

Cik = {x̄}, where x̄ ∈ C.

Then the so-called everywhere dense convergence can be stated by the following propo-
sition.

Proposition 1 DIRECT algorithm has the following properties:

(i) All the sequences of sets {Cik } produced satisfy Property 2;
(ii) For every x̃ ∈ C, the DIRECT algorithm produces a sequence of sets {Cik } satisfying

Property 2 and such that

∞⋂

k=0

Cik = {x̃}.

The properties of the L̄-DIRECT algorithm also depend on the choice of the scalar
L̄ included in the definition of L̄-potentially optimal subsets. In particular, the following
assumption can be introduced.

Assumption 1 For every global minimum point x∗ of problem (3), there exists an index k̄
(possibly depending on x∗) such that, if C jk̄ ∈ {Ci : i ∈ Ik̄} is the subset satisfying x∗ ∈ C jk̄ ,
then

L̄ < L,

where L is the local Lipschitz constant of the function ϕα over the subset C jk̄ .
Now it is possible to state the following result.

Proposition 2 If Assumption 1 holds, then L̄-DIRECT algorithm has the following proper-
ties:

(i) Every sequence of sets {Cik } produced by the algorithm which satisfies Property 2 is
such that

∞⋂

k=0

Cik = {x∗},

where x∗ is a global minimum of problem (3);
(ii) For every global minimum x∗ of problem (3), the algorithm produces a sequence of sets

{Cik } satisfying Property 2 and

∞⋂

k=0

Cik = {x∗};
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(iii) Let k̄ be the index introduced in Assumption 1. Then, for all k ≥ k̄, the following
inequality holds

ϕα(xhk ) − ϕ∗
α ≤ L̄

2
‖uhk − lhk‖, (20)

where the index hk is given by:

ϕα(xhk ) − L̄

2
‖uhk − lhk‖ = min

i∈Ik

{

ϕα(xi ) − L̄

2
‖ui − li‖

}

.

Points i) and ii) of the previous proposition guarantee that, as the number of iterations
increases, L̄-DIRECT generates points that are more and more clustered around the global
minima of problem (3). Point iii) gives a practical stopping criterion for the algorithm. The
right-hand side of (20) indeed provides an optimality gap.

Remark 5 Proposition 2 highlights the main difference between the Branch and Bound algo-
rithmused in [29] and the L̄-DIRECT algorithm. In order to guarantee convergence to a global
minimum of the Branch and Bound, an overestimate for the Lipschitz constant of ϕα over
the whole feasible set C is needed from the beginning. On the other hand, convergence of the
L̄-DIRECT algorithm can be guaranteed by an overestimate of the local Lipschitz constant
of ϕα over the subset C jk̄ (keep in mind that this local constant is usually much smaller than
the global one). Furthermore, this overestimate is needed only for sufficiently large values
of the indices k. Hence, the information obtained from the function values calculated in the
first iterations of the algorithm can be exploited to get an overestimate of the required local
Lipschitz constant.

Propositions 1 and 2 imply the following corollary.

Corollary 1 The DIRECT Algorithm and, if Assumption 1 holds, also the L̄-DIRECT algo-
rithm satisfy the following property:

For every global minimum point x∗ of problem (3) and for every neighborhood B(x∗) of
x∗, an index k̄ exists such that both the algorithms produce a point xik̄ satisfying

xik̄ ∈ B(x∗).

The previous result points out that the two DIRECT-based methods can be efficiently
combined with local searches within a multistart strategy.

5 Numerical results

In this section, we describe our numerical experience. The goal is twofold: on the one side, we
would like to see how DIRECT strategies behave on this class of problems; on the other side,
we would like to understand the importance of embedding the Lipschitz constant estimates
in those algorithmic schemes. We thus consider two different algorithms in the experiments:

• DIRECT: the standard version of the method with local searches;
• L̄-DIRECT: the modified version with Lipschitz constant estimates and local searches.

In both cases we used the SDBOX algorithm [28] to perform the local search. All algo-
rithms were implemented in Matlab and tests were performed with Matlab v2019b.

We first considered 5 affine VI problems coming from the literature. Then, we considered
randomly generated instances for four different classes of problems: affine VIs, nonlinear
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VIs with trigonometric terms, affine EPs and nonlinear EPs with trigonometric terms. In the
analysis of those randomly generated instances we used performance and data profiles [33]
with a gate parameter τ = 10−3. Specifically, let S be a set of algorithms and P a set of
problems. For each s ∈ S and p ∈ P , let tp,s be the number of function evaluations required
by algorithm s on problem p to satisfy the condition

f (xk) ≤ fL + τ( f (x0) − fL) (21)

where 0 < τ < 1 and fL is the best objective function value achieved by any solver on
problem p. Then, performance and data profiles of solver s are the following functions

ρs(α) = 1

|P|
∣
∣
∣
∣

{

p ∈ P : tp,s
min{tp,s′ : s′ ∈ S} ≤ α

}∣
∣
∣
∣ ,

ds(κ) = 1

|P|
∣
∣
{
p ∈ P : tp,s ≤ κ(n p + 1)

}∣
∣

where n p is the dimension of problem p. In our plots we hence show the values α and
κ on the x axis, and ρs(α) and ds(κ) on the y axis, respectively for performance and data
profiles. It is important to notice that the limiting value ofρs(α) asα → ∞ is the percentage of
problems that can be solved with the available budget of function evaluations. Hence we have
ds(κ̂) = limα→∞ ρs(α), where κ̂ is the maximum number of simplex gradients performed
with the available budget of function evaluations. This indicates how reliable a solver is
for the given tolerance τ (see [33] for further details). We can thus use performance and
data profiles to have some insights on the relative performances of the compared algorithms.
More specifically, we need to pay attention to how steeply and how high those profiles rise,
to respectively understand how efficient and reliable a solver is.

In all the experiments, we considered the gap function ϕα defined in (1) with α = 1. The
detailed results are reported in the next subsections.

5.1 Results onVI problems from the literature

We here show results on the Problems 2–6 from paper [29]. In order to consider only affine
VIs, we dropped the absolute value in the operator F(x) of Problems 4 and 5. In Table 1, we
report, for each problem, the number of function evaluations needed by the two algorithms to
reach a certain gap value (we chose 10−1, 10−3, 10−5). As we can easily see, the number of
function evaluations is usually smaller for L̄-DIRECT (we report in bold the cases where L̄-
DIRECT needs a higher number of evaluations). In Fig. 1, we further report the plots related
to the gap reduction with respect to the number of function evaluations used for Problems 3
and 4. We indicate with ϕmin the gap value (reported on the y axis) and with Fcn Evals
the number of function evaluations (reported on the x axis). As we can see, the use of the
Lipschitz constant estimate significantly speeds up the algorithm.

5.2 Results on randomly generated affine VIs

We now describe in depth the results obtained on randomly generated affine VI problems.We
generated 100 instanceswith 5 variables. For each instance, the affine operator F(x) = Px+r
was randomly built by choosing a matrix P with uniformly distributed random numbers in
the interval [0, 3] and a vector r with uniformly distributed random numbers in the interval
[−2, 2]. The box constraints {x ∈ R

n : l ≤ x ≤ u} were generated by considering two
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Table 1 Comparison between
DIRECT and L̄-DIRECT on VI
Problems from [29] (# of f.e. to
reach a given gap)

Problem n DIRECT L̄-DIRECT

10−1 10−3 10−5 10−1 10−3 10−5

2 3 125 431 977 97 313 749

3 4 115 277 711 49 77 165

4 3 79 269 1479 97 223 891

5 5 383 1913 1969 365 1961 2000

6 10 1987 1987 1987 875 1341 1799

vectors l and u with uniformly distributed random numbers in the interval [−2, 0] and [1, 3],
respectively. We gave a budget of 600 function evaluations to the considered algorithms (500
for the DIRECT strategies and 100 for the local search). Performance and data profiles are
reported in Fig. 2. The performance profile plot shows that the L̄-DIRECT (red line) is both
much more efficient than DIRECT (blue line), since it gives better performance and satisfies
the stopping condition with a smaller number of function evaluations for the 70% of the
instances, and more reliable (indeed, the percentage of problems that can be solved with the
available budget of function evaluations is higher). If we observe the data profiles, we can
further see that L̄-DIRECT solves a higher percentage of problems nomatter what the budget
used is.

5.3 Results on randomly generated nonlinear VIs with trigonometric terms

In this subsection we report the results obtained on randomly generated VI problems with
trigonometric terms.We generated 100 instanceswith 5 variables in this case aswell. For each
instance, the operator F(x) = Px +r +T (x), where Ti (x) = wi sin(vi xi ), for i = 1, . . . , n,
was randomly built by choosing a matrix P with uniformly distributed random numbers in
the interval [0, 3] and vectors w, v and r with uniformly distributed random numbers in the
interval (0, 4], (0, 2], and [−2, 2], respectively. The box constraints {x ∈ R

n : l ≤ x ≤ u}
weregeneratedby considering twovectors l anduwithuniformlydistributed randomnumbers
in the interval [−2, 0] and [1, 3], respectively.We used the same budget of function evaluation
given for affine VIs. Performance and data profiles are reported in Fig. 3. It is easy to see,
by taking a look at the performance profile plot, that the L̄-DIRECT (red line) is again more
efficient than DIRECT (blue line), since it gives better performance and satisfies the stopping
condition with a smaller number of function evaluations for about the 75% of the instances,
and is also more reliable. Data profiles show that L̄-DIRECT solves a higher number of
instances no matter what the budget used is.

5.4 Results on randomly generated affine EPs

Here, we report the results obtained on random instances related to affine equilibrium prob-
lems. We generated 100 instances with 5 variables in this case as well. For each instance, the
operator

F(x) = Px + Qy + r was randomly built by choosing a matrix P with uniformly
distributed random numbers in the interval [0, 3], a symmetric positive semidefinite matrix
Q with uniformly distributed random numbers in the interval [0, 5], and r with uniformly
distributed random numbers in the interval [−2, 2]. The box constraints {x ∈ R

n : l ≤ x ≤
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Fig. 1 Comparison between DIRECT and L̄-DIRECT on Problems 3 and 4 from [29]

u} were generated by considering two vectors l and u with uniformly distributed random
numbers in the interval [−2, 0] and [1, 3], respectively. We used the same budget of function
evaluations given for the other problems. Performance and data profiles are reported in Fig.
4. It is easy to see, by taking a look at the performance profile plot, that the L̄-DIRECT (red
line) is again more efficient than DIRECT (blue line), since it gives better performance and
satisfies the stopping condition with a smaller number of function evaluations for almost 80%
of the instances, and is also more reliable. Data profiles show again that L̄-DIRECT solves
a higher number of instances no matter what the budget used is.
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Fig. 2 Performance and data profiles for randomly generated affine VI problems

5.5 Results on randomly generated nonlinear EPs with trigonometric terms

Here, we report the results obtained on random instances related to nonlinear equilibrium
problems with trigonometric terms. We generated 100 instances with 5 variables in this case
as well. For each instance, the operator F(x) = Px + Qy + r + T (x), where Ti (x) =
wi sin(vi xi ), for i = 1, . . . , n, was randomly built by choosing a matrix P with uniformly
distributed random numbers in the interval [0, 3], a symmetric positive semidefinite matrix
Q with uniformly distributed random numbers in the interval [0, 5], vectors w, v and r with
uniformly distributed random numbers in the interval (0, 4], (0, 2], and [−2, 2], respectively.
The box constraints {x ∈ R

n : l ≤ x ≤ u} were generated by considering two vectors l and
u with uniformly distributed random numbers in the interval [−2, 0] and [1, 3], respectively.
We used the same budget of function evaluations given for the other problems. Performance
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Fig. 3 Performance and data profiles for randomly generated nonlinear VI problems with trigonometric terms

and data profiles are reported in Fig. 5. It is easy to see, by taking a look at the performance
profile plot, that the L̄-DIRECT (red line) is more efficient than DIRECT (blue line), since
it gives better performance and satisfies the stopping condition with a smaller number of
function evaluations for more than 80% of the instances, and is also more reliable. Data
profiles show that L̄-DIRECT solves a higher number of instances for all the budgets.

6 Preliminary comparison with a local solver

In this section, we compare L̄-DIRECTwith PATH [13], a widely used local solver for mixed
complementarity problems and variational inequalities. The goal in this case is understanding
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Fig. 4 Performance and data profiles for randomly generated affine EPs

if the proposed approach can really make a difference when dealing with problems that do
not satisfy any monotonicity-type assumption. We hence consider once again random VIs
with trigonometric terms. The only difference we have with respect to the instances described
before is in the vectors w and v, whose components were respectively chosen in the interval
(0, 40] and (0, 20] for this experiment. This should make the problem more challenging for
the solvers. In the experiments, we ran PATH with its default parameters. Since PATH uses
first-order information while carrying out the optimization process, we decided to give a
budget of 1000 function evaluations to L̄-DIRECT (500 for the DIRECT strategy and 500
for the local search). Performance and data profiles are reported in Fig. 6. It is easy to see,
by taking a look at the performance profile plot, that PATH (blue line) is slightly better than
L̄-DIRECT (red line) when α = 0, but things quicky change as the α value increases. The
performance profile related to L̄-DIRECT is indeed always above the one related to PATH
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Fig. 5 Performance and data profiles for randomly generated nonlinear EPs with trigonometric terms

for values of α larger than 6, and the gap gets larger as α grows. Furthermore, the L̄-DIRECT
is more reliable than PATH, since it satisfies the stopping condition for more than 90% of
the instances, while PATH gets the condition satisfied for less than 60% of the instances in
the end. Data profiles show that L̄-DIRECT generally solves a higher number of instances.
In this case, L̄-DIRECT indeed satisfies the stopping condition for more than 90% of the
instances within a budget κ slightly larger than 100 (i.e., just 600 function evaluations),
while PATH needs to get a value of κ larger than 200 (that is 1200 function and Jacobian
evaluations) to satisfy the stopping condition for roughly 60% of the instances. The results
clearly show that L̄-DIRECT solves a much larger number of problems as soon as the budget
of function evaluations is large enough. As we might expect, PATH is efficient (thanks to the
use of first-order information), but not as reliable as L̄-DIRECT. It is interesting to notice
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Fig. 6 Comparison with PATH: performance and data profiles (n = 5)

that PATH, due to the non-monotonicity of the problems, struggles to find a solution, and
actually fails to find it in some cases. We can thus conclude that L̄-DIRECT is a good option
when we have no monotonicity-type assumptions on the problem we want to solve.

7 Preliminary comparison with simplicial methods for fixed point
problems

In this section, we compare our L̄-DIRECT with two different simplicial methods for fixed
point problems from the literature, in order to solve nonlinear equilibrium problems with
box constraints l ≤ x ≤ u. More specifically, we considered the seminal Scarf algorithm
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based on triangulation and labeling techniques (see [41–43]) and a prototype of the homotopy
simplicial algorithms which are referred to as sandwich or restart methods (see Algorithm 1
in [2]).

Since the Scarf algorithm finds an approximation of a fixed point of a continuous mapping
of the unit simplex into itself, we considered the following further fixed point reformulation
of (EP). Let S be the unit simplex in R

n+1, i.e.,

S =
{

(x0, x1, . . . , xn) ∈ R
n+1+ :

n∑

i=0

xi = 1

}

,

and G : S → S the mapping defined as follows:

G(x) = A−1
1 (A−1

2 (yα(A2(P[0,1]n (A1(x)))))),

where A1 maps S into the simplex conv{0, ne1, . . . , nen} ⊂ R
n containing the unit box

[0, 1]n , where e1, . . . , en are the unit vectors, and is defined as

A1(x0, x1, . . . , xn) = (nx1, . . . , nxn),

P[0,1]n is the Euclidean projection on the unit box [0, 1]n , A2 maps the unit box [0, 1]n into
the box [l, u] and is defined as

A2(x1, . . . , xn) = ((u1 − l1)x1 + l1, . . . , (un − ln)xn + ln),

and yα(x) is the unique maximizer of problem in (1). Since the solutions of (EP) coincide
with the fixed points of the mapping yα , it easy to check that x∗ solves (EP) if and only if
A−1
1 (A−1

2 (x∗)) is a fixed point of the mapping G. Hence, we applied the Scarf algorithm to
find an approximated fixed point of the mapping G. We considered the simplicial decom-
position of S given by points (k0/D, . . . , kn/D), where D is a large a positive integer and
k0, . . . , kn are non-negative integers summing D. We started the algorithm with D = 10n
from the barycenter of the face x0 = 0 of S, as suggested by the Kuhn’s method [23].
When a completely labeled simplex (with barycenter x) was found, then the gap function
was evaluated at A2(A1(x)): if its value was below the given tolerance, then the algorithm
stopped, otherwise we restarted the algorithm with a new simplicial decomposition given by
D′ = 5D.

The considered prototype of the homotopy simplicial algorithms was applied to find an
approximated fixed point of the mapping yα fromR

n into the box [l, u], i.e, an approximated
solution of (EP). We chose the starting point equal to the center (l + u)/2 of the box and
the grid size δ = 0.9. Similarly to the Scarf algorithm, the gap function was evaluated at the
barycenter of the completely labeled simplex found by the algorithm: if its value was below
the given tolerance, then the algorithm stopped, otherwise the grid size δ was replaced by
δ/2.

Differently from those classic simplicialmethods for fixed point problems, our L̄-DIRECT
approach tries to efficiently explore the feasible set by exploiting the structure of the problem.
In particular, it uses the Lipschitz constant of the objective function to generate points that
are clustered around the global minima of the function as the iterations go on (see Proposition
2).

We considered the random instances related to nonlinear equilibrium problems with
trigonometric terms described in Sect. 5.5 and generated two different sets of 100 instances
with n = 5 and n = 10. We gave to all the considered algorithms a budget of 600 function
evaluations for the first set of instances and 2400 for the second one. Performance and data
profiles are reported in Figs. 7 and 8. We can see, by taking a look at the performance profile
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Fig. 7 Comparison with triangulation and simplicial methods: performance and data profiles (n = 5)

plots, that the L̄-DIRECT (red line) is more efficient than the competitors, since it gives
better performance and satisfies the stopping condition with a smaller number of function
evaluations for almost 60% of the instances for n = 5, and about 80% for n = 10. We can
also see that our method is more reliable in both cases. Data profiles show that L̄-DIRECT
solves a higher number of instances for budgets larger than 40 simplex gradients with n = 5
and larger than 100 with n = 10.
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Fig. 8 Comparison with triangulation and simplicial methods: performance and data profiles (n = 10)

8 Conclusions

In this paper, we propose a global optimization approach for solving general EPs without
assuming any monotonicity-type condition on f . This approach is based on two phases: (i)
reformulate an EP as a global optimization problem via gap functions; (ii) use an improved
version of theDIRECT algorithm,which exploits local bounds of the Lipschitz constant of the
objective function, combined with local searches to solve the considered global optimization
problem.Moreover, we provide some general results on Lipschitz continuity of gap functions
and, for some special classes of EPs, show simple estimates of their Lipschitz constants that
can be exploited in the improved DIRECT algorithm. Preliminary numerical experiments
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on a set of instances from the literature and sets of randomly generated instances show the
effectiveness of our approach for solving non-monotone EPs.
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