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Stratification of multiple sclerosis patients using unsupervised
machine learning: a single-visit MRI-driven approach

Giuseppe Pontillo1,2
& Simone Penna2 & Sirio Cocozza1 & Mario Quarantelli3 & Michela Gravina2 & Roberta Lanzillo4

&

Stefano Marrone2
& Teresa Costabile5

& Matilde Inglese6,7
& Vincenzo Brescia Morra4 & Daniele Riccio2

&

Andrea Elefante1
& Maria Petracca4 & Carlo Sansone2

& Arturo Brunetti1

Received: 16 November 2021 /Revised: 30 December 2021 /Accepted: 23 January 2022
# The Author(s) 2022

Abstract
Objectives To stratify patients with multiple sclerosis (pwMS) based on brain MRI-derived volumetric features using unsuper-
vised machine learning.
Methods The 3-T brain MRIs of relapsing-remitting pwMS including 3D-T1w and FLAIR-T2w sequences were retrospectively
collected, along with Expanded Disability Status Scale (EDSS) scores and long-term (10 ± 2 years) clinical outcomes (EDSS,
cognition, and progressive course). From the MRIs, volumes of demyelinating lesions and 116 atlas-defined gray matter regions
were automatically segmented and expressed as z-scores referenced to external populations. Following feature selection, baseline
MRI-derived biomarkers entered the Subtype and Stage Inference (SuStaIn) algorithm, which estimates subgroups characterized
by distinct patterns of biomarker evolution and stages within subgroups. The trained model was then applied to longitudinal
MRIs. Stability of subtypes and stage change over time were assessed via Krippendorf’s α and multilevel linear regression
models, respectively. The prognostic relevance of SuStaIn classification was assessed with ordinal/logistic regression analyses.
Results We selected 425 pwMS (35.9 ± 9.9 years; F/M: 301/124), corresponding to 1129MRI scans, along with healthy controls
(N = 148; 35.9 ± 13.0 years; F/M: 77/71) and external pwMS (N = 80; 40.4 ± 11.9 years; F/M: 56/24) as reference populations.
Based on 11 biomarkers surviving feature selection, two subtypes were identified, designated as “deep gray matter (DGM)-first”
subtype (N = 238) and “cortex-first” subtype (N = 187) according to the atrophy pattern. Subtypes were consistent over time (α =
0.806), with significant annual stage increase (b = 0.20; p < 0.001). EDSS was associated with stage and DGM-first subtype (p ≤
0.02). Baseline stage predicted long-term disability, transition to progressive course, and cognitive impairment (p ≤ 0.03), with
the latter also associated with DGM-first subtype (p = 0.005).
Conclusions Unsupervised learning modelling of brain MRI-derived volumetric features provides a biologically reliable and
prognostically meaningful stratification of pwMS.
Key Points
• The unsupervised modelling of brain MRI-derived volumetric features can provide a single-visit stratification of multiple
sclerosis patients.

• The so-obtained classification tends to be consistent over time and captures disease-related brain damage progression,
supporting the biological reliability of the model.

• Baseline stratification predicts long-term clinical disability, cognition, and transition to secondary progressive course.
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Introduction

Brain MRI abnormalities in multiple sclerosis (MS) represent
objective indicators of the patient’s biological status,
reflecting pathogenetic mechanisms underlying disease evo-
lution [1].

Although a massive body of evidence regarding the bio-
logical and clinical relevance of MRI biomarkers has been
provided through the years by large-N research studies, their
implementation in the single-subject setting and therefore in
clinical practice remains challenging [2]. Actually, MRI bio-
markers exhibit high variance, resulting from both non-
disease-related confounders (e.g., age, sex, other coexisting
CNS physiologic and pathologic conditions) and disease-
related phenotypic and temporal heterogeneity, thus hamper-
ing the definition of absolute cut points and limiting their
utility for effective patient stratification.

Over the years, technical advances and the emergence of
imaging guidelines [3, 4] have led to the widespread availabil-
ity of high-quality clinical MRI scans, including sequences
with isotropic voxel resolution suitable for volumetric quanti-
fications [5]. Unfortunately, this goldmine of information re-
mains largely unexploited due to the complexity of meaning-
fully modelling high-dimensional dataset and the frequent
lack of associated data reliably reflecting the patients’ clinical
status.

Unsupervised machine learning (ML) techniques model-
ling disease progression based solely on objective biomarker
changes, without reliance on a priori clinical information or
explicit biomarker thresholds, represent a valuable approach
to overcome these issues [6]. Recently, such methods have
been applied to primary neurodegenerative disorders of the
central nervous system [6–8] and showed promising results
when translated into the MS scenario with the aim to charac-
terize the disease-specific sequence of clinical and MRI
changes [9, 10] or to provide an MRI-driven definition of
disease phenotypes [11].

Based on these premises, we applied a recently developed
algorithm called Subtype and Staging Inference (SuStaIn),
which identifies data-driven subtypes characterized by distinct
trajectories of biomarker abnormality accumulation, to clinical
MRI scans of a large single-center cohort of relapsing-
remitting MS (RRMS) patients. We aimed to demonstrate
that, based on a fine-grained volumetric mapping of different
brain areas andMS lesions obtained from cross-sectional MRI
visits, such approach would provide an accurate patient strat-
ification which is both biologically reliable and prognostically
meaningful in the light of longitudinal MRIs and long-term
(10-year) motor and cognitive evaluations.

Materials and methods

Participants

In this monocentric retrospective study, brain MRI studies of
patients with an MS diagnosis revised according to the 2010
McDonald criteria [12] and a relapsing-remitting (RR) course
[13] were screened for eligibility from the radiological and
clinical research databases of the MS center of the
University of Naples “Federico II,” containing data collected
starting from October 2006. Inclusion and exclusion criteria
are shown in Fig. 1.

Brain MRI scans of healthy controls (HC) from the same
databases and an external population of RRMS patients from
the University of Genoa were also selected to develop norms
for z-score calculation and select MRI features.

The study was conducted in compliance with the ethical
standards and approved by the Ethics Committee “Carlo
Romano” of the host institution.

Clinical evaluation

For all patients, clinical disability within 1 week from MRI
was estimated using the Expanded Disability Status Scale
(EDSS). Patients for whom a long-term clinical and neuropsy-
chological evaluation was available were classified at follow-
up (10 ± 2 years from baseline MRI) according to the follow-
ing: (i) motor disability, ranging from 0 to 3 according to
ambulation benchmarks corresponding to EDSS scores <
4.0, ≥ 4.0 and < 6.0, ≥ 6.0 and < 7.0, ≥ 7.0 [14]; (ii) cognitive
disability, ranging from 0 to 3 and corresponding to the num-
ber of impaired (below 1.5 SD age-, sex- and education-
corrected normative values in the healthy population [15])
tests at the Brief International Cognitive Assessment of
Multiple Sclerosis (BICAMS) battery [16]; (iii) transition to
secondary progressive course [13].

MRI data acquisition and processing

Exams were acquired on the same 3-T scanner (Magnetom
Trio, Siemens Healthineers) and included a 3D T1-weighted
sequence (≤ 1-mm isotropic voxel size) for volumetric analy-
ses and a T2-weighted FLAIR sequence for the quantification
of total demyelinating lesion volume (TLV). Sequence param-
eters and image processing steps are detailed in the
Supplemental Material. Briefly, for all participants, demyelin-
ating lesions were automatically segmented, visually checked,
and where needed manually adjusted on FLAIR images to
compute TLV, while T1-weighted volumes were used for an
atlas-based parcellation of gray matter (GM) into 116 regions
defined by the Automated Anatomical Labeling (AAL) atlas
[17].
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Statistical analysis

A flowchart summarizing data processing and analysis steps is
depicted in Fig. 2.

SuStaIn modelling

SuStaIn is an unsupervised machine learning algorithm com-
bining ideas from clustering and event-based modelling,
which describes disease progression as the linear evolution
of biomarkers along discrete levels of cumulative alteration,
defined in terms of deviation from a reference norm (z-scores)
[8]. It simultaneously estimates subgroups characterized by
distinct patterns of biomarker evolution and the corresponding
trajectories, providing a probabilistic assignment of each sub-
ject to a specific subtype and stage within a subtype [8].
Methodological aspects of the SuStaIn algorithm are covered
in Young et al [8], while the details of the current analysis are
provided in the Supplemental Material.

Briefly, MRI-derived GM and lesion volumes were
expressed as z-scores with reference to the HC group and
the external RRMS population, respectively, with signs of
the z-scores flipped when appropriate so that higher values
always represented disease worsening. Baseline MRI scans
were used as the training set, while longitudinal visits were

reserved for the biological and clinical validation of the initial
classification [8].

Only variables associated with a moderate to large
(Cohen’s f > 0.25) difference between MS patients and HC
were selected and entered the SuStaIn algorithm.Models were
evaluated using 10-fold cross-validation (CV) in the training
cohort to estimate the optimal number of subtypes and the
consistency of the subtype progression patterns: the number
of subtypes maximizing the average out-of-sample log-
likelihood across CV folds was preferred; the similarity of
each subtype progression pattern across CV folds (CVS)
was measured using the Bhattacharyya coefficient [8].
Finally, the resulting model was fitted on all subjects of the
training cohort and applied to unseen longitudinal MRI scans
to assign a probable subtype and stage to each MRI visit.

Testing the biological reliability and clinical relevance
of SuStaIn classification

The stability of the SuStaIn subtypes over time was expressed
with Krippendorf’s α [18]. To assess the rate of change in
disease stage, we fit a multilevel linear regression model in
which the SuStaIn stage was the dependent variable and
follow-up time (nested within subjects) the predictor, with
intercepts and slopes allowed to vary across subjects (random

Fig. 1 Flowchart showing
inclusion and exclusion criteria.
Overall, 861 MS patients were
considered for this study. After
application of the inclusion and
exclusion criteria, a total of 425
patients were selected,
corresponding to 1129MRI scans
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effects). The possible effect of baseline subtype and stage on
the slope of longitudinal stage change was assessed by sepa-
rately adding them (and the corresponding interactions with
follow-up time) to the model and testing the significance of
interaction terms. Similar models were set up for individual
MRI-derived biomarkers.

The clinical relevance of the SuStaIn classification was
assessed in relation to both baseline EDSS and long-term clin-
ical outcomes with ordinal/logistic regression (as appropriate)
analyses, in which baseline subtype and stage and their inter-
action, age, and sex were the independent variables. Follow-
up time, baseline EDSS, and disease-modifying therapy were
included as additional covariates for longitudinal analyses.

Statistical analyses were carried out using the Statistical
Package for Social Science (SPSSv25.0, IBM corp.).

Results

Participants

Four hundred and twenty-five RRMS patients (baseline age:
35.9 ± 9.9 years; F/M: 301/124) were selected, corresponding
to a total of 1129 MRI visits (2.7 MRI visits per patient, on
average; range: 0–9), and a mean follow-up (FU) time of 2.1
years.

MRI scans of 148 HC (age: 35.9 ± 13.0 years; F/M: 77/71)
were also selected, along with those of an external population
of 80 MS patients (age: 40.4 ± 11.9 years; F/M: 56/24).

Demographic and clinical characteristics of the studied
population are reported in Table 1.

Long-term clinical outcomes were available for 178 pa-
tients (level of motor disability: 0 = 121, 1 = 35, 2 = 16, 3 =
6; level of cognitive disability: 0 = 81, 1 = 42, 2 = 24, 3 = 31;
transition to secondary progressive course: 29 subjects).

Fig. 2 Workflow illustrating the main data processing and analysis steps.
Volumes of demyelinating lesions and 116 atlas-defined gray matter
regions were automatically segmented based on FLAIR-T2w and T1-w
images, respectively. Then, the corresponding volumes were expressed as
z-scores with reference to external populations of patients and healthy
controls that were also used to select the most altered MRI-derived
volumes. Following feature selection, baseline MRI biomarkers entered
the Subtype and Stage Inference (SuStaIn) algorithm, using 10-fold cross-
validation to determine the optimal number of subtypes and the

consistency of progression patterns. Models of up to a maximum of 4
subtypes with z-scores of 1, 2, or 3 for each biomarker were tested
(excluding z-score events reached by fewer than 5% of the subjects),
corresponding to interpretable levels of mild, moderate, and severe
abnormality (color coded from blue to red). The trained model was then
fit on all training data and applied to longitudinal MRIs. Finally, the
biological reliability and clinical relevance of the SuStaIn classification
were assessed in the light of longitudinal MRI scans and clinical
outcomes
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SuStaIn model

The volumes of 10 GM regions, including the bilateral ante-
rior cingulate cortices, the right middle cingulate cortex, the
bilateral insulae and cunei, the right putamen, and the bilateral
thalami, were associated with a moderate to large difference
compared with the HC group and were thus fed into the
SuStaIn algorithm along with TLV, for a total of 11 biomark-
ers (Fig. 3, Supplementary Table 1).

The two-subtype model yielded the highest average
log-l ikelihood across CV folds (Supplementary

Figure 1) and was therefore chosen as the best fitting
model for subsequent analyses. When looking at the
trajectories of brain damage progression in each sub-
type, we designated them as follows: (1) the deep gray
matter (DGM)-first subtype (56% of subjects, n = 238),
characterized by the initial volume loss of subcortical
gray matter structures followed by lesion accrual and
cortical atrophy; and (2) the cortex-first subtype (44%
of subjects, n = 187), characterized by cortical volume
loss preceding DGM atrophy and lesion accumulation
(Fig. 4).

Table 1 Demographic, clinical,
and MRI characteristics of the
studied population

MS HC MS (external site)

Number of subjects 425 148 80

Number of MRI scans 1129 148 80

Age (y) 35.9 ± 9.9 35.9 ± 13.0 40.4 ± 11.9

Female Sex* 301 (70.8) 77 (52.0) 56 (70.0)

DD (y) 12.7 ± 8.3 - 10.3 ± 7.4

EDSS** 2.5 (2.0 - 3.5) - 2.0 (1.5 - 3.0)

TLV (mL) 10.1 ± 13.4 - 3.4 ± 5.3

WBV (mL) 1328.8 ± 127.9 1385.1 ± 147.4 1370.4 ± 153.3

*Data are the number of subjects, with percentages in parentheses.

**Data are medians, with interquartile ranges in parentheses.

MS, multiple sclerosis;HC, healthy controls;DD, disease duration;EDSS, ExpandedDisability Status Scale; TLV,
total lesion volume; WBV, whole brain volume

Fig. 3 Results of the feature selection procedure. Gray matter regions
whose volume survived the feature selection procedure (i.e., associated
with a moderate to large effect size at the comparison with healthy
controls) are presented, along with a lesion probability map (obtained

by summing all the binary lesion masks and dividing by the number of
patients, thresholded at 10% probability), all superimposed on axial slices
of the average T1w volume in the standard space. Images are in
radiological orientation
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Both progression patterns demonstrated high stability
across CV folds, with CVS of 0.91 ± 0.03 and 0.91 ± 0.04
for the DGM-first and cortex-first subtypes, respectively
(Supplementary Figure 2).

Patients assigned to the two subtypes had comparable age,
sex, and whole brain volume (WBV), while the DGM-first
subtype was associated with longer DD (p < 0.001) and higher
baseline EDSS score (p = 0.004), SuStaIn stage (p = 0.01),
and TLV (p < 0.001) (Table 2).

Biological reliability and clinical relevance

Disease subtypes tended to be consistent over time
(Krippendorf’s α = 0.806; CI = 0.752, 0.821), with subtype

stability increasing as the probability threshold for the baseline
subtype assignment was raised at 95% (177 subjects; α =
0.990; CI = 0.973, 0.998) or 99% (114 subjects; α = 0.990;
CI = 0.973, 0.998).

In patients who retained the initial subtype, there was a
significant annual increase in disease stage (b = 0.20; SE =
0.05; CI = 0.09, 0.30; p < 0.001), supporting the biological
reliability of SuStaIn’s staging, with no significant between-
subtype difference (interaction term subtype*follow-up time:
b = −0.08; SE = 0.11; CI = −0.29, 0.13; p = 0.48). A signif-
icant moderation effect of baseline stage on the relationship
between follow-up time and disease stage was observed (in-
teraction term baseline stage*follow-up time: b = −0.05; SE =
0.01; CI = −0.08, −0.02; p = 0.001), corresponding to slopes
getting flatter as the baseline stage increased and probably
reflecting a plateau effect.

When looking at individual MRI-derived biomarkers, all
the GM volumes significantly decreased over time (p ≤ 0.03)
(Supplementary Table 2), with significant between-group dif-
ferences for the left thalamus, corresponding to greater longi-
tudinal atrophy rates in the DGM-first subtype (interaction
term subtype*follow-up time: b = 0.05; SE = 0.01; CI =
0.02, 0.07; p = 0.001), and significant plateau effects (the
higher the baseline stage, the flatter the slope of longitudinal
changes) for the right thalamus (interaction term
subtype*follow-up time: b = 0.007; SE = 0.003; CI = 0.002,
0.013; p = 0.006) and the right anterior cingulate cortex (in-
teraction term subtype*follow-up time: b = 0.002; SE = 0.001;
CI = 0.001, 0.003; p = 0.002).

As for the relationship with clinical outcomes, baseline
EDSS score was positively related with both SuStaIn stage
(b = 0.042; p < 0.001) and the DGM-first subtype (b =
−0.280; p = 0.02), with baseline stage that also predicted
long-term disability (b = 0.030; p = 0.007) and transition to
SP course (b = 0.079; p = 0.03). Long-term cognitive impair-
ment was associated with higher baseline stages (b = 0.048; p
< 0.001), the DGM-first subtype (b = −0.442; p = 0.005), and
their interaction (b = −0.080; p = 0.002) (Table 3).

Fig. 4 Positional variance diagrams for the two MRI-driven subtypes.
Each entry describes the probability for each biomarker of reaching the
color-coded z-score at each SuStaIn stage. The colors represent the degree
of abnormality based on the z-score level (blue = mild, z-score of 1; violet

=moderate, z-score of 2; red = severe, z-score of 3), while the color shade
reflects the uncertainty associated with the corresponding biomarker
event. CVS, cross-validation similarity; TLV, total lesion volume

Table 2 Demographic, clinical and MRI characteristics of the MRI-
driven subtypes

DGM-first
(56%, n = 238)

Cortex-first
(44%, n = 187)

p-value***

Age (y) 35.9 ± 10.1 35.9 ± 9.5 0.98

Female Sex* 160 (67.2) 141 (75.4) 0.36

DD (y) 9.4 ± 7.8 6.5 ± 6.1 < 0.001

EDSS** 2.5 (2.0-3.5) 2.5 (2.0-3.0) 0.004

SuStaIn stage 4 (1-12) 4 (1-8) 0.01

TLV (mL) 14.0 ± 15.1 5.5 ± 8.9 < 0.001

WBV (mL) 1325.3 ± 126.8 1333.0 ± 129.5 0.65

Unless otherwise indicated, data are expressed as mean ± standard devi-
ation. Between-group differences were tested with either Student t (age
and DD), Pearson Chi-square (sex), Kruskal-Wallis (EDSS and SuStaIn
stage), or age-, sex-, and TIV-corrected ANCOVA (TLV and WBV)
tests.

*Data are the number of subjects, with percentages in parentheses.

**Data are medians, with interquartile ranges in parentheses.

***Significant between-group differences are reported in bold.

DGM, deep gray matter; DD, disease duration; EDSS, Expanded
Disability Status Scale; TLV, total lesion volume; WBV, whole brain
volume.
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Table 3 Results of the regression analyses for the prediction of clinical
outcomes. For both ordinal (baseline and long-term EDSS and long-term
BICAMS) and logistic (transition to SP course) regression analyses, the
overall fit (R2 and F-statistic for ordinal, Nagelkerke R2 and -2LL for
logistic regression) and associated significance level of the model are

presented, along with the estimated parameters (and corresponding
5000-resamples bootstrap 95% CI and SE) and associated test statistic
(t for ordinal, z for logistic regression) and significance level of both the
intercept and individual predictors

Model Predictor

R2/Nagelkerke R2 F/-2LL p b (95% CI) SE t/z p

Baseline EDSS 0.256 27.245 < 0.001

Constant 1.597 (1.243, 1.952) 0.180 57.333 < 0.001

SuStaIn subtype −0.280 (−0.460, −0.100) 0.092 −3.056 0.02

SuStaIn stage 0.042 (0.027, 0.058) 0.008 5.368 < 0.001

SuStaIn subtype x stage −0.012 (−0.042, 0.018) 0.015 −0.703 0.43

Age 0.033 (0.023, 0.042) 0.005 6.639 < 0.001

Sex −0.120 (−0.305, 0.066) 0.095 −1.263 0.21

Long-term EDSS 0.291 6.253 < 0.001

Constant 0.654 (−0.330, 1.637) 0.498 1.311 0.19

SuStain subtype −0.059 (−0.287, 0.170) 0.116 −0.507 0.61

SuStaIn stage 0.030 (0.008, 0.052) 0.011 2.726 0.007

SuStaIn subtype x stage −0.016 (−0.059, 0.028) 0.022 −0.707 0.48

Age 0.015 (0.002, 0.028) 0.006 2.353 0.02

Sex 0.004 (−0.248, 0.256) 0.128 0.029 0.98

FU time −0.112 (−0.207, −0.016) 0.049 −2.296 0.02

DMT** 0.280 (0.102, 0.457) 0.090 3.113 0.002

Long-term BICAMS 0.287 13.492 < 0.001

Constant −0.269 (−1.798, 1.259) 0.774 −0.248 0.73

SuStain subtype −0.442 (−0.751, −0.133) 0.157 −2.824 0.005

SuStaIn stage 0.048 (0.024, 0.072) 0.012 3.946 < 0.001

SuStaIn subtype x stage −0.080 (−0.130, −0.030) 0.025 −3.160 0.002

Age 0.001 (−0.017, 0.020) 0.009 0.120 0.90

Sex 0.196 (−0.140, 0.532) 0.170 1.151 0.25

FU time 0.110 (−0.040, 0.261) 0.076 1.450 0.15

DMT** 0.093 (−0.160, 0.346) 0.128 0.726 0.47

Long-term SP course* 0.299 121.230 < 0.001

Constant −2.973 (−7.442, −1.496) 2.280 −1.304 0.19

SuStain subtype 0.422 (−0.556, 1.399) 0.499 0.846 0.40

SuStaIn stage 0.079 (0.009, 0.149) 0.036 2.204 0.03

SuStaIn subtype x stage 0.044 (−0.103, 0.191) 0.075 0.586 0.56

Age 0.095 (0.035, 0.155) 0.031 3.091 0.002

Sex −0.926 (−2.116, 0.263) 0.607 −1.526 0.13

FU time −0.301 (−0.694, 0.092) 0.200 −1.503 0.13

DMT** 0.571 (0.006, 1.135) 0.288 1.980 0.048

For all analyses, the DGM-first subtype was coded as 0 and the Cortex-first as 1.

Significant values are reported in bold

*Long-term course was coded as follows: SP course = 1, RR course = 0.

**DMT was coded as follows: no therapy = 0 (13 patients, 7.3%), interferon = 1 (140 patients, 78.7%), glatiramer acetate = 2 (5 patients, 2.8%),
natalizumab = 3 (20 patients, 11.2%).

SP, secondary progressive; RR, relapsing remitting; LL, log-likelihood; CI, confidence interval; SE, standard error; FU, follow-up; DMT, disease-
modifying therapy.
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Discussion

The ambition towards personalized medicine has stimulated
increasing efforts to disentangle the inter-subject variability of
neurological disorders, integrating information from different
biomarkers to identify distinct underlying biological drivers
(i.e., biotypes), up to the level of individual patients [19]. In
this work, we obtained a biologically consistent and
prognostically relevant stratification of RRMS patients based
on the unsupervised modeling of brain volumetric features
derived from cross-sectional MRI visits.

Using the SuStaIn algorithm, two distinct MRI-driven sub-
types were identified, with a latent pattern in which early
DGM atrophy and T2 lesion accumulation precede cortical
atrophy separated from one in which cortical volume loss
precedes DGM atrophy and lesion accrual. These results are
essentially in line with the recent work by Eshaghi et al [11],
with slight dissimilarities most probably due to the different
choices of input features. Indeed, the apparent discrepancy in
terms of the number of subtypes is most likely explained by
the lack of MRI-derived measures of normal appearing white
matter damage in our study, which limited the sensitivity to
capture the phenotypic heterogeneity associated with extra-
lesional microstructural injury.

On the other hand, the application of a more fine-grained
brain parcellation scheme led to a more anatomically precise
modelling of GM atrophy, highlighting regions most promi-
nently involved in MS such as the thalami and anterior cingu-
late, insular, and visual cortices [9]. Interestingly, the fact that
distinct disease subtypes remain distinguishable based on the
patients’ MRIs even within a relatively clinically homoge-
neous population confirms the scarce correspondence be-
tween clinical and MRI-driven phenotyping, with the latter
more closely reflecting disease-related pathogenic mecha-
nisms [11].

Indeed, while patients assigned to the two subtypes did not
significantly differ in terms of age, sex, or WBV, the DGM-
first subtype was associated with higher DD, stage, and TLV,
consistent with the idea of distinct pathogenic mechanisms
underpinning cortical and DGM atrophy [20–22]. In particu-
lar, based on the closer association with TLV, subcortical GM
might be more sensitive to the secondary effects of focal de-
myelination through anterograde/retrograde degeneration,
with a prominent role of primary GM neuroinflammation
and neurodegeneration in determining cortical atrophy
[21–23]. Also, the longer DD suggest an earlier diagnosis in
patients of the DGM-first subtype, possibly reflecting a
shorter prodromal phase [11, 24].

The biological reliability of the MRI-driven classification
was further confirmed by the analysis of longitudinal MRI
scans, with high subtype stability and significant stage in-
crease over time, reflecting actual temporal progression of
brain damage along the estimated paths. Also relevant in terms

of biological consistency, moderation analyses suggested pla-
teau effects in the longitudinal trajectories of SuStaIn stage
and individual biomarkers (i.e., right thalamus and anterior
cingulate cortex atrophy), in line with known temporal pat-
terns of MS-related brain atrophy [25, 26], with steeper tha-
lamic shrinkage rates in the DGM-first subtype.

When assessing the clinical relevance of the SuStaIn clas-
sification, higher baseline EDSS scores were independently
associated with both higher stages, corresponding to more
pronounced brain structural damage, and the DGM-first sub-
type, a finding consistent with prior evidence pointing at the
prominent role of subcortical GM (thalamic, in particular)
atrophy in driving disability [27, 28].

As for the prognostic meaning of the MRI-driven stratifi-
cation, patients in a more advanced position along the damage
progression trajectory were more likely to enter the clinically
progressive phase in the long term, as well as to suffer greater
degrees of motor and cognitive disability, with more severe
cognitive impairment also independently associated with the
DGM-first subtype. These findings further corroborate the
idea that, although cross-sectional in nature, the baseline
MRI-driven classification encodes relevant information about
future disease evolution, also substantiating the role of sub-
cortical GM atrophy as a relevant anatomical correlate of cog-
nitive disability in MS [29, 30].

Overall, the proposed approach provides insights into MS-
related disease mechanisms, confirming and expanding the
existing knowledge on MS physiopathology. But even more
interestingly, it condenses this complex information at the
patient level in simple and intuitive measures which are easily
obtainable from single-visit conventional MRI scans and cor-
relate with clinical measures of disease severity and progres-
sion. Contextualizing the information contained in individual
brain MRIs in the frame of disease patterns estimated in a
reference population of MS patients, such stratification holds
potential for effectively linking MS research to the single-
subject setting, with relevant implications for both clinical
trials and routine practice.

Our work is not without limitations.While the monocentric
nature of the study reduces the data heterogeneity related to
scanner/center effects, it also limits the model generalizability,
prompting larger studies on multicentric datasets.
Furthermore, increasing the sample size would also allow
for a higher dimensional (and more accurate) representation
of MS pathology, possibly including additional biomarkers
from spinal cord imaging or from other advanced MRI tech-
niques encoding relevant information about the brain micro-
structure (e.g., diffusion MRI, quantitative MRI) [20, 31] or
function (e.g., functional MRI) [32].

In conclusion, through the unsupervised modelling of vol-
umetric features derived from brain MRI scans, we obtained a
biologically reliable and prognostically meaningful single-
visit classification of MS patients, potentially offering a
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powerful tool for subjects’ stratification in both trial design
and clinical practice.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08610-z.

Funding The authors state that this work has not received any funding.

Declarations

Guarantor The scientific guarantor of this publication is Giuseppe
Pontillo, MD.

Conflict of interest The authors of this manuscript declare no relation-
ships with any companies whose products or services may be related to
the subject matter of the article.

Statistics and biometry One of the authors has significant statistical
expertise.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• retrospective
• observational
• performed at one institution

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Filippi M, Brück W, Chard D et al (2019) Association between
pathological and MRI findings in multiple sclerosis. Lancet
Neurol 18:198–210

2. Vermersch P, Berger T, Gold R et al (2016) The clinical perspec-
tive: how to personalise treatment in MS and how may biomarkers
including imaging contribute to this? Mult Scler 22:18–33

3. Traboulsee A, Simon JH, Stone L et al (2016) Revised recommen-
dations of the Consortium of MS Centers Task Force for a stan-
dardized mri protocol and clinical guidelines for the diagnosis and
follow-up of multiple sclerosis. AJNR Am J Neuroradiol 37:394–
401

4. Wattjes MP, Rovira A, Miller D et al (2015) Evidence-based guide-
lines: MAGNIMS consensus guidelines on the use of MRI in mul-
tiple sclerosis–establishing disease prognosis and monitoring pa-
tients. Nat Rev Neurol 11:597–606

5. Pontillo G, Cocozza S, Di Stasi M et al (2020) 2D linear measures
of ventricular enlargement may be relevant markers of brain atro-
phy and long-term disability progression in multiple sclerosis. Eur
Radiol 30:3813–3822

6. YoungAL, Oxtoby NP, Daga P et al (2014) A data-drivenmodel of
biomarker changes in sporadic Alzheimer's disease. Brain 137:
2564–2577

7. Fonteijn HM, Modat M, Clarkson MJ et al (2012) An event-based
model for disease progression and its application in familial
Alzheimer's disease and Huntington's disease. Neuroimage 60:
1880–1889

8. Young AL,Marinescu RV, Oxtoby NP et al (2018) Uncovering the
heterogeneity and temporal complexity of neurodegenerative dis-
eases with Subtype and Stage Inference. Nat Commun 9:4273

9. Eshaghi A, Marinescu RV, Young AL et al (2018) Progression of
regional grey matter atrophy in multiple sclerosis. Brain 141:1665–
1677

10. Dekker I, Schoonheim MM, Venkatraghavan V et al (2021) The
sequence of structural, functional and cognitive changes in multiple
sclerosis. Neuroimage Clin 29:102550

11. Eshaghi A, Young AL, Wijeratne PA et al (2021) Identifying mul-
tiple sclerosis subtypes using unsupervised machine learning and
MRI data. Nat Commun 12:2078

12. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic
criteria for multiple sclerosis: 2010 revisions to the McDonald
criteria. Ann Neurol 69:292–302

13. Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clin-
ical course of multiple sclerosis: the 2013 revisions. Neurology 83:
278–286

14. Confavreux C, Vukusic S (2006) Age at disability milestones in
multiple sclerosis. Brain 129:595–605

15. Goretti B, Niccolai C, Hakiki B et al (2014) The Brief International
Cognitive Assessment for Multiple Sclerosis (BICAMS): norma-
tive values with gender, age and education corrections in the Italian
population. BMC Neurol 14:171

16. Benedict RH, Amato MP, Boringa J et al (2012) Brief International
Cognitive Assessment for MS (BICAMS): international standards
for validation. BMC Neurol 12:55

17. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002)
Automated anatomical labeling of activations in SPM using a mac-
roscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage 15:273–289

18. Hayes AF, Krippendorff K (2007) Answering the call for a standard
reliability measure for coding data. Communication Methods and
Measures 1:77–89

19. Gibbs RM, Lipnick S, Bateman JW et al (2018) Toward precision
medicine for neurological and neuropsychiatric disorders. Cell
Stem Cell 23:21–24

20. Pontillo G, Cocozza S, Lanzillo R et al (2019) Determinants of deep
gray matter atrophy in multiple sclerosis: a multimodal MRI study.
AJNR Am J Neuroradiol 40:99–106

21. Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R,
Martin R (2015) Exploring the origins of grey matter damage in
multiple sclerosis. Nature Reviews Neuroscience 16:147–158

22. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple
sclerosis. Lancet Neurol 7:841–851

23. Ruggieri S, Petracca M, Miller A et al (2015) Association of deep
gray matter damage with cortical and spinal cord degeneration in

Eur Radiol

https://doi.org/10.1007/s00330-022-08610-z
http://creativecommons.org/licenses/by/4.0/


primary progressive multiple sclerosis. JAMA Neurol 72:1466–
1474

24. Wijnands JMA, Kingwell E, Zhu F et al (2017) Health-care use
before a first demyelinating event suggestive of a multiple sclerosis
prodrome: a matched cohort study. Lancet Neurol 16:445–451

25. Pagani E, Rocca MA, Gallo A et al (2005) Regional brain atrophy
evolves differently in patients with multiple sclerosis according to
clinical phenotype. AJNR Am J Neuroradiol 26:341–346

26. Fisher E, Lee JC, Nakamura K, Rudick RA (2008) Gray matter
atrophy in multiple sclerosis: a longitudinal study. Ann Neurol
64:255–265

27. Eshaghi A, Prados F, Brownlee WJ et al (2018) Deep gray matter
volume loss drives disability worsening in multiple sclerosis. Ann
Neurol 83:210–222

28. Minagar A, Barnett MH, Benedict RH et al (2013) The thalamus
and multiple sclerosis: modern views on pathologic, imaging, and
clinical aspects. Neurology 80:210–219

29. Houtchens MK, Benedict RH, Killiany R et al (2007) Thalamic
atrophy and cognition in multiple sclerosis. Neurology 69:1213–
1223

30. Petracca M, Pontillo G, Moccia M et al (2021) Neuroimaging cor-
relates of cognitive dysfunction in adults with multiple sclerosis.
Brain Sci 11:346

31. Pontillo G, Petracca M, Monti S et al (2021) Unraveling deep gray
matter atrophy and iron and myelin changes in multiple sclerosis.
AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A7093

32. Cocozza S, Pontillo G, Russo C et al (2018) Cerebellum and cog-
nition in progressive MS patients: functional changes beyond atro-
phy? J Neurol 265:2260–2266

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Affiliations

Giuseppe Pontillo1,2
& Simone Penna2 & Sirio Cocozza1 &Mario Quarantelli3 &Michela Gravina2 & Roberta Lanzillo4

&

Stefano Marrone2
& Teresa Costabile5 &Matilde Inglese6,7

& Vincenzo Brescia Morra4 & Daniele Riccio2
&

Andrea Elefante1
&Maria Petracca4 & Carlo Sansone2

& Arturo Brunetti1

1 Department of Advanced Biomedical Sciences,

University “Federico II”, Via Pansini 5, 80131 Naples, Italy

2 Department of Electrical Engineering and Information Technology

(DIETI), University “Federico II”, Naples, Italy

3 Institute of Biostructure and Bioimaging, National Research

Council, Naples, Italy

4 Department of Neurosciences and Reproductive and

Odontostomatological Sciences, University “Federico II”,

Naples, Italy

5

Multiple Sclerosis Centre, II Division of Neurology, Department of

Clinical and Experimental Medicine, “Luigi Vanvitelli” University,

Naples, Italy

6

Department of Neuroscience, Rehabilitation, Ophthalmology,

Genetics, Maternal and Child Health (DINOGMI), University of

Genoa, Genoa, Italy

7

Ospedale Policlinico San Martino IRCCS, Genoa, Italy

5

6

7

Eur Radiol

https://doi.org/10.3174/ajnr.A7093
http://orcid.org/0000-0001-5425-1890

	Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Participants
	Clinical evaluation
	MRI data acquisition and processing
	Statistical analysis
	SuStaIn modelling
	Testing the biological reliability and clinical relevance of SuStaIn classification


	Results
	Participants
	SuStaIn model
	Biological reliability and clinical relevance

	Discussion
	References


