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Abstract

This thesis deals with second order parabolic differential equations and some
semi-Lagrangian methods to approximate their solutions. We start with a
brief survey of the main theoretical results concerning linear and nonlinear
parabolic equations, recalling some existence and uniqueness to the Cauchy
problem on Rd and to the Initial-Boundary value problem with Dirichlet and
Neumann type boundary conditions. In the following three chapters, we present
our approach to the numerical solution to three different problems. First, we
introduce a semi-Lagrangian method for advection-diffusion-reaction systems of
equations on bounded domains, with Dirichlet boundary conditions. Afterwards,
we present a semi-Lagrangian technique for approximating the solution to
Hamilton-Jacobi-Bellman equations on bounded domain, with Neumann-type
boundary conditions. Finally, we present a Lagrange-Galerkin approximation
of the Fokker-Planck equation, and we show how to apply such a method to
obtain a second-order accurate solution to Mean Field Games. Every method is
accompanied with numerical simulations.
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Introduction

In this thesis we focus on numerical methods for second order parabolic Partial
Differential Equations (PDEs), which are used for describing a wide variety of
time-dependent phenomena.

The work is divided into four parts and treats three different problems: in
the first chapter, we recall the main theoretical results for parabolic equations,
starting from the linear and semilinear ones, both in Rd and in a bounded
domain. We then briefly present the theory of viscosity solutions to nonlinear
parabolic equations and we conclude the chapter with a short rewiew on the
Fokker-Planck (FP) equation and its application to the theory of Mean Field
Games. In the second chapter we present a second order semi-Lagrangian (SL)
method for systems of advection-diffusion-reaction equations on a bounded
spatial domain, introducing a novel approach in the treatment of Dirichlet
boundary conditions. In the third chapter we focus on the approximation of a
second order Hamilton-Jacobi-Bellman (HJB) equations on a bounded spatial
domain, with generalized Neumann boundary conditions. Finally, in the fourth
and last chapter, we propose a second order Lagrange-Galerkin (LG) scheme
to approximate the solution to the Fokker-Planck equation, and we show how
to couple it with a second order semi-Lagrangian method for HJB equations in
order to obtain a second order scheme for Mean Field Games (MFGs).

Part I - Parabolic PDEs: linear and non linear type

In Chapter 1 we recall some classical results concerning parabolic equations.
Given a function u, we consider the linear operator Lt

(Ltu)(t, x) =
d∑

i,j=1
aij(t, x) ∂2u

∂xi∂xj
+

d∑
i=1

µi(t, x) ∂u
∂xi

+ c(t, x)u

and the differential equation
∂tu = Ltu.

We say that the operator Lt is parabolic if the matrix (aij(t, x)) is symmetric
and positive definite. Section 1.1 is devoted to a brief presentation of the results
concerning linear parabolic equations, collecting various results regarding the
Cauchy problem on unbounded domains and the Cauchy-Dirichlet problem on
spatially bounded domains. An important part is the one devoted to the results
concerning the link between stochastic differential equations and second-order
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parabolic equations. Both kind of equations represent, in Physics, diffusion-
type fenomena, and there exist some results, called Feynman-Kac formulae,
that link explicitly the solution to a parabolic equation to the solution to an
associated stochastic differential equation. These formulas are the starting point
to derive semi-Lagrangian methods. In Section 1.2 we present some results for
Hamilton-Jacobi-Bellman equations, a class of nonlinear parabolic equations of
the form {

∂tu+H(t, x, u,Du,D2u) = 0 in (0, T ]× Rd,
u(0, x) = u0(x) for x ∈ Rd.

We recall the definition of viscosity solutions and results about existence and
uniqueness for the Cauchy problem, with Dirichlet and Neumann boundary
conditions. We give a brief presentation of deterministic and stochastic optimal
control theories, showing that the value function of an optimal control problem
is the solution to an associated HJB equation. Section 1.3 deals with the FP
equation, a particular type of linear parabolic equation which has a great impor-
tance in many application, for example in Biology, Physics and, also, in Mean
Field Games problems. Also the Fokker-Planck equation has a representation
formula, which will be crucial in Chapter 4 to derive a scheme to approximate
its solution.

Part II - Second order fully semi-Lagrangian discretizations of
advection-diffusion-reaction systems

In Chapter 2 we deal with systems of advection–diffusion–reaction (ADR)
equations, which model the chemical or biochemical processes involving several
species transported by a fluid. These systems are responsible for most of the
computational cost of typical environmental fluid dynamics models, such as
those applied in climate, water and air quality and oceanic biogeochemistry
modeling for long term simulations [20, 47, 48]. Also in applications to medium
range weather forecasting, which consider shorter time ranges, the number of
interacting transported species can be quite large. This implies that a very large
number of ADR equations have to be solved simultaneously, in order to achieve
a complete description of the relevant physical processes. As a consequence,
even minor efficiency gains in the solution to this very classical problem are of
paramount practical importance. This explains why numerical methods that
allow the use of large time steps are favoured for these applications, see e.g. the
discussion in [108]. The standard ways to enhance efficiency for the solution
of the advection step are either the use of implicit schemes or the application
of SL techniques, [49, 102]. These are then coupled to implicit methods for
the diffusion and reaction step. As discussed in [47, 48], SL methods have the
advantage that all the computational work that makes them computationally
more expensive per time step than standard Eulerian techniques is indeed
independent of the number of tracers, which allows to achieve easily a superior
efficiency level in the limit of a large number of tracers.
In the recent papers [18, 19], a fully SL approach to both the advection and
diffusion steps was pursued, which combines the standard SL treatment of
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advection with SL-like schemes for diffusion. In particular, it was shown in [19]
that, even for a single advection–diffusion equation, the fully SL approach can
be more efficient than standard implicit techniques. SL methods for parabolic,
second order problems have also been studied, among others, in [26, 52, 84, 85,
86, 45, 14, 92]. A complete review of the earlier literature on this topic can be
found in [49, 72]. We remark that, among the proposals in the literature, the
formulation first introduced in [18] is an original contribution, since it allows
to treat straightforwardly parabolic problems in divergence form, such as those
usually encountered in computational fluid dynamics applications.
Since the technique under consideration stems from the Feynman–Kac stochastic
representation formula, it could also be possible to mix SL schemes with a Monte-
Carlo approach, as proposed, for instance, in [24]. However, while this latter
strategy might be more scalable on massively parallel architectures, on more
conventional platforms it suffers from a slow convergence with respect to the
number of sample trajectories. By exploiting the concept of weak convergence of
schemes for stochastic differential equations, the deterministic approach pursued
here usually results in a lower computational complexity.
The outline of the chapter is the following. In Section 2.2, at least in small space
dimensions, we introduce the PDE system

∂tu+ 〈µ,Du〉 − σ2

2 ∆u = f(u) (t, x) ∈ (0, T ]×O,

u (t, x) = b (t, x) (t, x) ∈ (0, T ]× ∂O,
u (0, x) = u0 (x) x ∈ O,

where O ⊂ R2 is a bounded domain. Section 2.3 describes the SL advection–
diffusion solver: we approximate the stochastic characteristics using a Crank-
Nicolson approach, then we reconstruct the numerical solution at the foot of
such approximated characteristics using a P2 interpolation operator. A stability
and convergence analysis of the method is outlined in Section 2.4. The possible
approaches to the treatment of boundary conditions are discussed in Section
2.5. A numerical validation of the proposed approach on both structured and
unstructured meshes is presented in Section 2.6, while some conclusions and
perspectives for future developments are outlined in Section 2.7.

Part III - A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman
equations with oblique boundary conditions

In Chapter 3 we deal with the numerical approximation of the parabolic Hamilton-
Jacobi-Bellman (HJB) equation on [0, T ]×O

∂tu+H
(
t, x,Du,D2u

)
= 0 in (0, T ]×O,

L(t, x,Du) = 0 on (0, T ]× ∂O,

u(0, x) = Ψ(x) in O,

(0.1)

where O ⊂ Rd is a bounded domain and H and L are nonlinear functions having
a specific form. The study of the numerical approximation of solutions to HJB
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and, more generally, fully nonlinear second order PDEs, has made important
progress over the last few decades. Most of the related literature consider the
case where O = Rd, or where a Dirichlet boundary condition is imposed on the
boundary ∂O. We refer the reader to [49, 50, 90] and the references therein for
the state of the art on this topic. By contrast, the numerical approximation
of solutions to (0.1) has been much less explored. Indeed, to the best of our
knowledge only the methods in [100, 1] can be applied to approximate (0.1)
in the particular first order case (σ ≡ 0). Moreover, in [100], where a finite
difference scheme is proposed, the function defining the boundary condition has
the particular form L(t, x, p, b) = 〈n(x), p〉. On the other hand, both references
consider Hamiltonians which are not necessarily convex with respect to p. Let
us also mention the reference [3], where, in the context of mean curvature
motion with nonlinear Neumann boundary conditions, the authors propose a
discretization that combines a SL scheme in the main part of the domain with a
finite difference scheme near the boundary.

The main purpose of this chapter is to provide a consistent, stable, monotone
and convergent SL scheme to approximate the unique viscosity solution to
(0.1). By the results in [6], the latter is well-posed in C([0, T ] × O) under
the assumptions in Section 3.1. Semi-Lagrangian schemes to approximate the
solution to (0.1) when O = Rd (see e.g. [26, 45]) can be derived from the optimal
control interpretation of (0.1) and a suitable discretization of the underlying
controlled trajectories. These schemes enjoy the feature that they are explicit
and stable under an inverse Courant-Friedrichs-Lewy (CFL) condition and,
consequentely, they allow large time steps. A second important feature is that
they permit a simple treatement of the possibly degenerate second order term in
H. The scheme that we propose for O 6= Rd preserves these two properties and
seems to be the first convergent scheme to approximate (0.1) with the rather
general asumptions in Section 3.1. In particular, our results cover the stochastic
and degenerate case. Consequently, from the stochastic control point of view,
our scheme allows to approximate the so-called value function of the optimal
control of a controlled diffusion process with possibly oblique reflection on the
boundary ∂O (see [22]). The main difficulty in devising such a scheme is to be
able to obtain a consistency type property at points in the space grid which
are near the boundary ∂O while maintaining the stability. This is achieved by
considering a discretization of the underlying controlled diffusion which suitably
emulates its reflection at the boundary in the continuous case. We refer the
reader to [83] for a related construction of a semi-discrete in time approximation
of a second order non-degenerate linear parabolic equation.

The remainder of this chapter is structured as follows. In Section 3.1 we
state our assumptions, we recall the notion of viscosity solution to (0.1) and
the well-posedness result. In Section 3.2 we provide the SL scheme as well
as its probabilistic interpretation (in the spirit of [83]). The latter will play
an important role in Section 3.3, which is devoted to show a consistency type
property and the stability of the SL scheme. By using the half-relaxed limits
technique introduced in [9], we show in Section 3.4 our main result, which is
the convergence of solutions to the SL scheme to the unique viscosity solution
to (0.1). The convergence is uniform in [0, T ] × O and holds under the same
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asymptotic condition between the space and time steps than in the case O = Rd.
Next, in Section 3.5 we first illustrate the numerical convergence of the SL
scheme in the case of a one-dimensional linear equation with homogeneous
Neumann boundary conditions. In this case the numerical results confirm that
the boundary condition in (0.1) is not satisfied at every x ∈ ∂O, but it is
satisfied in the viscosity sense recalled in Section 3.1 below. In a second example,
we consider a two dimensional degenerate second order nonlinear equation
on a circular domain with non-homogeneous Neumann and oblique boundary
conditions. In the last example, we consider a two-dimensional non-degenerate
nonlinear equation on a non-smooth domain. Due to the lack of regularity of
∂O, our convergence result does not apply. However, the SL scheme can be
successfully applied, which suggests that our theoretical findings could hold for
more general domains. This extension as well as the corresponding study in the
stationary framework remain as interesting subjects of future research. Finally,
we provide in section 3.6 some theoretical results concerning oblique projections
and the regularity of the distance to ∂O, which play a key role in the definition
of the scheme and in the proof of its main properties.

Part IV - A second order Lagrange-Galerkin scheme for Fokker-
Planck equations and applications to MFGs

The Fokker-Planck equations have broad areas of interest, starting with physics,
biology and chemistry. We refer the reader to [97] for the theory of linear
FP equations and their probabilistic interpretation. The main application we
have in mind is to approximate evolutive Mean Field Games problems, recently
introduced in [67, 75, 76], in order to model dynamic games with a large number
of indistinguishable small players. We consider a MFG problem consisting of a
backward HJB equation coupled with a forward FP equation. The two equations
are linked through the cost function of the HJB equation, depending on the
solution of the FP equation, and the drift of the FP, being the gradient of the
value function solving the HJB. The solution of the MFG problem is the fixed
point of the system.

The main purpose of Chapter 4 is to provide a Lagrange-Galerkin approxi-
mation scheme for the FP equations with constant diffusion, having the form∂tm−

σ2

2 ∆m+ div (µm) = 0 in (0, T ]× Rd,

m(0, ·) = m0 in {0} × Rd,
(0.2)

which is conservative, second-order accurate, explicit and stable with quite large
time steps. Furthermore we propose a scheme which, coupled with an accurate
second order semi-Lagrangian scheme for the HJ equation, approximates the
solution to MFG problems with second order of accuracy.

The numerical solution of Fokker-Planck equations has been widely studied.
There are several methods based on the popular finite difference scheme proposed
by Chang and Cooper [38], which, in order to be stable and explicit, requires a
parabolic CFL condition. Lagrange-Galerkin (LG) and SL methods have been
mostly developed for advection and advection-diffusion problems, see [88, 12, 49]
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and the references therein. The relation between SL and LG schemes have been
analyzed in [53].

The main idea here is to couple these two techniques in order to develop
a scheme for a particular class of FP equations. We begin in Section 4.1 with
a brief presentation of an existing first order SL method for such equations,
introduced in [34]. In Section 4.2 in order to derive our scheme, we first discretize
in time the representation formula, true in a time interval [t, s] ⊂ [0, T ],∫

Rd
φ(x)m(s, x)dx =

∫
Rd

E
(
φ(Xt,x(s))m(t, x)

)
dx,

where φ is a continuous function with compact support and Xt,x(s) is the
characteristic starting at x at time t. We apply a Crank-Nicolson approximation
to the Stochastic Differential Equation (SDE), whose probability density is the
solution of the FP. This first step is developed as in semi-Lagrangian schemes for
second order parabolic equations, see [17]. Then, in Section 4.2.1 we introduce
the symmetric Lagrangian basis of odd order to obtain a fully discrete and
exactly integrated scheme. The choice of odd degree basis functions is inspired by
the results in [53, 54], where the equivalence between semi-Lagrangian schemes,
based on odd symmetric Lagrange interpolation, with Lagrange-Galerkin schemes
has been analyzed. It has been shown that the symmetric odd basis have a
better behavior, in terms of stability, when applied to transport problems. In
all the simulations carried on during the work, the order of reconstruction has
always been chosen to be 3. We prove consistency, L2 stability and we provide
a convergence result to the unique classical solution of (0.2).

Section 4.3 presents the MFGs problem. We introduce a second order
semi-Lagrangian method for the HJB equation and we couple it with our
Lagrange-Galerkin scheme for the FP to obtain a second order method for
MFGs. In Section 4.4, we show a possible implementation when the spatial
dimension d = 1, in which we consider Simpson’s quadrature to approximate the
integral terms. Numerical simulations endorse this choice in terms of stability
and efficiency, compared to a more costly quadrature formula such as Gauss
Legendre. The resulting scheme is the adjoint of a second order accurate semi-
Lagrangian scheme applied to the backward equation, adjoint to the FP. We
conclude our work with three numerical simulations, one for the Fokker-Planck
in spatial dimension d = 2 and two Mean Field Games problems. For all these
tests we present an error analysis, both in L∞ and in L2 norms, that confirms
order two of convergence of our scheme.

The results presented in Chapter 2 have been published in 2021 on Journal of
Scientific Computing, while the results in Chapter 3 have been submitted to
Numerische Matematik in 2021.
The results presented in Chapter 4 are still a work in progress.
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Chapter 1

Parabolic PDEs: linear and
non linear type

This first chapter has the aim to collect some results on the well-posedness for
both linear and nonlinear equations of parabolic type. Let us first provide some
notation and recall some useful definitions. The norm of x = (x1, . . . , xd) ∈ Rd,
i.e. the distance of x from the origin, is defined as the standard Euclidean norm

|x| =
(

d∑
i=1

x2
i

)1/2

.

Definition 1. Given an open set S ⊆ Rd, a function f : S → R is Hölder
continuous of exponent α (0 < α ≤ 1) in S if there exists a constant A > 0 such
that

|f(x)− f(y)| ≤ A |x− y|α , for all x, y ∈ S. (1.1)

The smallest α for which (1.1) holds is called the Hölder exponent of f .

A function f is said to be locally Hölder continuous in S if (1.1) holds in
every bounded closed set B ⊂ S with constant A, which may depend on B.

If α = 1 in (1.1) the function f(x) is said to be Lipschitz continuous.

1.1 Linear parabolic PDEs
Let O ⊆ Rd be a bounded open domain and T > 0. Consider the operator Lt,
t ∈ [0, T ], defined on smooth functions u : [0, T ]×O → R as

(Ltu) (t, x) =
d∑

i,j=1
aij(t, x)∂

2u(t, x)
∂xi∂xj

+
d∑
i=1

µi(t, x)∂u(t, x)
∂xi

+ c(t, x)u(t, x) (1.2)

and the differential equation

∂tu− Ltu = 0. (1.3)

We assume that the matrix (aij(t, x)) is symmetric, i.e. for every (t, x) we have
aij(t, x) = aji(t, x). If the matrix (aij(t, x)) is positive definite, meaning that
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for every non-null real vector ξ = (ξ1, . . . , ξd) ∈ Rd,
∑
aij(t, x)ξiξj > 0, then we

say that the operator Lt is parabolic. If there exist two positive constants λ1
and λ2 such that

(∀(t, x) ∈ [0, T ]×O, ∀ξ ∈ Rd) λ1 |ξ|2 ≤
d∑

i,j=1
aij(t, x)ξiξj ≤ λ2 |ξ|2 ,

then Lt is said to be uniformly parabolic. From now on we will assume that
(A1) Lt is parabolic in [0, T ]×O;

(A2) the coefficients of Lt are continuous functions in [0, T ]×O and there exists
α ∈ (0, 1) such that, for all (t, x), (s, y) ∈ [0, T ] × O, there exists A > 0
such that

|aij(t, x)− aij(s, y)| ≤ A
(
|x− y|α + |t− s|α/2

)
, (1.4)

|µi(t, x)− µi(s, y)| ≤ A |x− y|α , (1.5)
|c(t, x)− c(s, y)| ≤ A |x− y|α . (1.6)

We can now give a definition of solution and fundamental solution of (1.3).
Definition 2. A smooth function u : [0, T ]×O → R is a solution to (1.3) in a
domain O if all the derivatives of u occourring in (1.3) are continuous function
in O and the equation (1.3) is satisfied at each (t, x) ∈ [0, T ]×O.
Definition 3. A fundamental solution to (1.3) in [0, T ] × O is a function
Γ(t, x; τ, ξ) defined for all (t, x), (τ, ξ) ∈ [0, T ]×O, t > τ , such that:
(i) for fixed (τ, ξ) ∈ [0, T ] × O it satisfies (1.3) as a function of (t, x), with

x ∈ O and τ < t ≤ T ;

(ii) for every f ∈ C(O) and x ∈ O, we have

lim
t↘τ

∫
D

Γ(t, x; τ, ξ)f(ξ)dξ = f(x). (1.7)

It is possible to construct a fundamental solution to (1.3) on a bounded
domain using a procedure called the parametric method. First, let (aij(t, x)) be
the inverse matrix of (aij(t, x)); for every (σ, y) ∈ [0, T ]×O, ξ, x ∈ O, t > τ we
define

ϑσ,y(x, ξ) =
d∑

i,j=1
(aij(σ, y))(xi − ξi)(xj − ξj), (1.8)

ωσ,y(t, x; τ, ξ) = (t− τ)−d/2 exp
{
ϑσ,y(x, ξ)
4(t− τ)

}
, (1.9)

Z(t, x; τ, ξ) =
(
2
√
π
)−d [det(aij(τ, ξ))

]1/2
ωτ,ξ(t, x; τ, ξ). (1.10)

For fixed (τ, ξ) the function Z(t, x; τ, ξ) in (1.10) satisfies

∂tu(t, x)−
d∑

i,j=1
aij(τ, ξ)

∂2u

∂xi∂xj
(t, x) = 0, for (t, x) ∈ (0, T ]×O. (1.11)

Moreover, the following holds:
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Theorem 4. Let f ∈ C([0, T ]×O). Then,

J(t, x, τ) =
∫
D
Z(t, x; τ, ξ)f(τ, ξ)dξ

is continuous in (t, x, τ), where x ∈ O and 0 ≤ τ < t ≤ T . Moreover,

lim
τ→t

J(t, x, τ) = f(t, x)

uniformly with respect to (t, x), O ⊇ S 3 x closed and 0 < t ≤ T .

From Theorem 4 and the fact that Z solves (1.11), it follows that Z is a
fundamental solution to (1.11). The idea under the parametric method is to
look upon (1.11) as an approximation of (1.3) and view Z as a principal part
of the fundamental solution Γ of (1.3). In the end, the method constructs a
fundamental solution for (1.3) in the form

Γ(t, x; τ, ξ) = Z(t, x; τ, ξ) +
∫ t

τ

∫
O
Z(t, x;σ, η)Φ(σ, η, τ, ξ)dηdσ, (1.12)

where, for each (τ, ξ), Φ(t, x; τ, ξ) is a solution of a Volterra integral equation
with kernel

LZ(t, x;σ, y) =
d∑

i,j=1
[aij(t, x)− aij(σ, y)] ∂

2Z(t, x;σ, y)
∂xi∂xj

+
d∑
i=1

µi(t, x)∂Z(t, x;σ, y)
∂xi

+ c(t, x)Z(t, x;σ, y), (1.13)

i.e.

Φ(t, x; τ, ξ) = LZ(t, x; τ, ξ) +
∫ t

τ

∫
O
LZ(t, x;σ, y) · Φ(t, x;σ, y)dydσ. (1.14)

Let us consider functions of the form

[0, T ]×O 3 (t, x)→W (t, x) =
∫ t

0

∫
O

Γ(t, x; τ, ξ)f(τ, ξ)dξdτ ∈ R, (1.15)

where f ∈ C([0, T ]×O)

Theorem 5. If f ∈ C([0, T ] × O), then W and ∂W/∂xi, i = 1, dots, d, are
continuous. If f is locally Hölder continuous in x ∈ O, then also ∂2W/∂xi∂xj
and ∂W/∂t are continuous in (0, T )×O and

∂Wt − LtW = f(t, x). (1.16)

Proofs of Theorems 4 and 5 can be found in [59] (respectively, Chapter 1,
Section 2, Theorem 1 and Chapter 1, Section 5, Theorem 9).
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1.1.1 The Cauchy problem

It is important to extend the previous results to the case of O unbounded, since
the case O = Rd is of particular interest in order to present the theory for the
Cauchy problem associated with (1.3). If O is unbounded, assumptions (A1)
and (A2) must be modified as follows:

(A1)’ Lt is uniformly parabolic in [0, T ]×O;

(A2)’ the coefficients a, µ and c are bounded continuous functions in [0, T ]×O
and (1.4), (1.5) and (1.6) hold in [0, T ]×O.

Definition 3 is still valid for O unbounded, with the additional requirement in
(ii) that

(∃h1, h2 > 0, ∀x ∈ O) |f(x)| ≤ h1 exp
{
h2 |x|2

}
. (1.17)

The existence of a fundamental solution in an arbitrary domain O ⊆ Rd is
ensured by the following result, which is an extension to an unbounded domain
of the one in Theorem 5.

Theorem 6. Let O be any domain in Rd and assume that (A1)’ and (A2)’ hold.
Then, there exists a fundamental solution Γ(t, x; τ, ξ) to (1.3) given by (1.12)
and (1.14). If f ∈ C([0, T ]×O) is such that (1.17) holds, then the function W
defined in (1.15) is uniformly continuous in [0, T ]×O. If, for all t ∈ [0, T ], f(t, ·)
is also locally Hölder continuous, then ∂W/∂xi, ∂2W/∂xi∂xj , ∂W/∂t exist, are
continuous functions and (1.16) holds.

We now recall some results concerning the Cauchy problem, defined as follows.
Given continuous functions f : [0, T ]× Rd → R and u0 : Rd → R, such that

|f(t, x)| ≤ h1 exp
{
h2 |x|2

}
, for (t, x) ∈ [0, T ]× Rd, (1.18)

|u0(x)| ≤ h1 exp
{
h2 |x|2

}
, for x ∈ Rd, (1.19)

with h1, h2 positive constants, find a smooth function u : [0, T ]× Rd → R such
that {

∂tu− Ltu = f(t, x) in [0, T ]× Rd,
u(0, x) = u0(x) in Rd.

(1.20)

Theorem 7. Suppose that Lt satisfies (A1)’, (A2)’, with O = Rd, let f and u0 be
continuous functions on [0, T ]× Rd and Rd, respectively, satisfying assumptions
(1.18) and (1.19). Assume also that, for all t ∈ [0, T ], f(t, ·) is locally Hölder
continuous with exponent α ∈ (0, 1). Then u : [0, T ]×O → R, defined by

u(t, x) =
∫
Rd

Γ(t, x; 0, ξ)u0(ξ)dξ −
∫ t

0

∫
Rd

Γ(t, x; τ, ξ)f(τ, ξ)dξdτ, (1.21)

is a solution to (1.20) and

|u(t, x)| ≤ k1 exp
{
k1 |x|2

}
, for all (t, x) ∈ [0, T ]× Rd (1.22)

for some k1 > 0 and k2 > 0.
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We conclude this section with a uniqueness result for the Cauchy problem.
The following additional assumption on the data is required:

(A3)’ the functions aij , ∂aij/∂xh, ∂2aij/∂xh∂xk, µi, ∂µi/∂xh, c, for i, j, h, k =
1, . . . , d, are bounded and continuous functions on [0, T ]×Rd. In addition,
they are uniformly Hölder continuous with exponent α ∈ (0, 1) with respect
to x ∈ Rd, and (1.4) holds in [0, T ]× Rd.

Theorem 8. Let the operator Lt in (1.2) satisfy (A1)’ and (A3)’. Then there
exists at most one solution to the Cauchy problem (1.20) satisfying∫ T

0

∫
Rd
|u(t, x)| exp

{
−k |x|2

}
dxdt <∞,

for some k > 0.

We refer to [59] for the proofs of Theorem 7 (Chapter 1, Section 7, Theorem 12)
and Theorem 8 (Chapter 1, Section 9, Theorem 16).

1.1.2 Initial-Boundary value problem

In this section, we deal with existence and uniqueness of solutions to the Initial-
Boundary value problem

∂tu− Lu = f(t, x) in [0, T ]×O,
u = g on (0, T ]× ∂O,
u(0, ·) = u0 on O,

(1.23)

where O ⊆ Rd is a bounded domain and f, u0 and g are given functions. In
this section, we will use the following notation for the initial and boundary
conditions: for (t, x) ∈ ((0, T ]× ∂O) ∪

(
{0} × O

)
we define Φ(t, x) as

Φ(t, x) =
{
g(t, x) if (t, x) ∈ (0, T ]× ∂O,
u0(x) if (t, x) ∈ {0} × O.

(1.24)

Let us recall some maximum principle satisfied by L. We list below some
assumptions that will be useful in the upcoming results:

(A) the coefficients of L in (1.2) are continuous on O.

(B) c(t, x) ≥ 0 in O.

For any point in P0 = (t0, x0) ∈ [0, T ]×O we denote by S(P0) the set of points
P = (t, x) ∈ [0, T ] ×O that can be connected to P0 by a continuous curve in
[0, T ]×O, along which the t-coordinate is nondecreasing from P to P0.

The strong maximum principle, which does not require [0, T ] × O to be
bounded, asserts the following.

Theorem 9. Assume (A), (B), and that L is parabolic. Then the following
hold:
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(i) If ∂tu − Lu ≤ 0 in [0, T ] × O and u attains a positive maximum over
[0, T ]×O at P0 = (t0, x0) ∈ [0, T ]×O, then u is constant on S(P0).

(ii) If ∂tu − Lu ≥ 0 in [0, T ] × O and u attains a negative minimum over
[0, T ]×O at P0 = (t0, x0) ∈ [0, T ]×O, then u is constant on S(P0).

The following result is known as the weak maximum principle.

Theorem 10. Assume (A), (B), that L is parabolic, that [0, T ]×O is bounded,
and that u ∈ C([0, T ]×O). Then the following hold:

(i) If ∂tu ≤ Lu in [0, T ] × O, then for each P = (t, x) such that u has a
positive maximum in S(P ), the maximum is obtained at some point in
S(P )c.

(ii) If ∂tu ≥ Lu in [0, T ] × O then for each P = (t, x) such that u has a
negative minimum in S(P ), the minimum is obtained at some point in
S(P )c.

For each P = (t, x), Theorem 10 does not exclude that the maximum
(minimum) can be reached also at points of S(P ). The results presented in
Theorem 9 and in Theorem 10 (proven in [59, Chapter 2, Section 2]) can be
used to show the uniqueness of the solution to (1.23).

Theorem 11. Let L be parabolic on [0, T ]×O and assume that (A) holds. Then
there exists at most one classical solution to the initial-boundary value problem
(1.23).

For the existence of the solution to (1.23) we need a different formulation of
the concept of Hölder continuity in Definition 1. Let us define OT = (0, T ]×O
and

d(P,Q) :=
(
|x− y|2 + |t− s|

)1/2
for P = (t, x), Q = (s, y) ∈ OT .

We will use the following notations, for α ∈ (0, 1), we set

|u|OT0 := sup
OT
|u| ,

H
OT
α (u) := sup

P,Q∈OT

|u(P )− u(Q)|
d(P,Q)α ,

|u|OTα = |u|OT0 +H
OT
α (u).

(1.25)

Notice that HOTα (u) < ∞ if and only if u is bounded and uniformly Hölder
continuous of exponent α. Since |·|OTα is a norm (see, e.g., [59]), we can denote
by Cα(OT ) the normed space defined as

Cα(OT ) := {u : OT → R
∣∣ |u|OTα <∞},

and by Dm any partial derivative of order m with respect to x ∈ Rd: if Du,D2u
and ∂tu exist, then we define

|u|OT2+α = |u|OTα +
∑
|Dxu|

OT
α +

∑
|D2

xu|
OT
α + |∂tu|OTα ,
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and the normed space

C2+α(OT ) := {u : OT → R
∣∣ |u|OT2+α <∞}.

We can now state the following existence result for (1.23) (see e.g [59]).

Theorem 12. Assume that OT is such that, for every (t, x) ∈ [0, T ]× ∂O there
exists a (d+ 1)-dimensional neighborhood V such that V ∩ [0, T ]× ∂O can be
represented, for some i = 1, . . . , d, in the form

xi = h(t, x1, . . . , xi−1, xi+1, . . . , xd),

with h, ∂xh, ∂2
xh, ∂th continuous. Suppose that L is uniformly parabolic and that

aij , µi, c, f are uniformly Hölder continuous of exponent α in O. Moreover, let
K > 0 be such that

|aij |
OT
α ≤ K, |µi|

OT
α ≤ K, |c|OTα ≤ K.

Suppose that Φ, defined in (1.24), belongs to C2+α(OT ) and that ∂tΦ− LΦ = f
on {0} × ∂O. Then there exists a unique classical solution u ∈ C2+α to the
Initial-Boundary value problem (1.23).

1.1.3 Feynman-Kac formulae

There are intrinsic relations between stochastic differential equations and second-
order parabolic equations because, from the physics point of view, both type of
equations describe diffusion-type phenomena. In this line, it is possible to use
the solution of some stochastic differential equations to represent the solutions
of some second-order PDEs: such results are called Feynman-Kac formulae. Let
us first consider the backward Cauchy problem:

∂tu+
d∑

i,j=1
aij

∂2u

∂xi∂xj
+

d∑
i=1

µi
∂u

∂xi
+ cu+ f = 0 in [0, T )× Rd,

u(T, x) = uT (x) on Rd,
(1.26)

with aij , µi, c, f : [0, T ] × Rd → R and uT : Rd → R. In this framework, the
operator L does not need to be uniformly elliptic, it is possible to prove the
following results also for degenerate diffusion terms. We also assume that, for
some r ∈ N, there exists σ : [0, T ]× Rd → Rd×r, with r ≤ d, such that

a(t, x) = (aij(t, x)) = 1
2σ(t, x)σ(t, x)>, for all (t, x) ∈ [0, T ]× Rd. (1.27)

Let us also assume that:

(F) the maps µ, c, f : [0, T ]×Rd → R, and σ : [0, T ]×Rd → Rd×r are uniformly
continuous, c is bounded and there exists a constant L > 0 such that, for
ϕ(t, x) = µ(t, x), σ(t, x), f(t, x)

|ϕ(t, x)− ϕ(t, y)| ≤ L |x− y| for all t ∈ [0, T ], x, y ∈ Rd,
|ϕ(t, 0)| ≤ L for all t ∈ [0, T ].
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Theorem 13. Assume that (F) hold. Then (1.26) admits a unique solution u
which has the following representation: for (t, x) ∈ [0, T )× Rd

u(t, x) = E
[∫ T

t
f(s,X(s; t, x)) exp

{
−
∫ s

t
c(r,X(r; t, x))dr

}
ds

+uT (X(T ; t, x)) exp
{
−
∫ T

t
c(r,X(r; t, x))dr

}]
,

(1.28)

where X(·) = X(·; t, x) is the unique strong solution to{
dX(s) = µ(s,X(s))ds+ σ(s,X(s))dW (s), for s ∈ [t, T ],
X(t) = x,

(1.29)

where W (·) is an r-dimensional Brownian motion starting at time t (W (t) = 0).

There exists an analogue result for the terminal-boundary value problem for a
parabolic equation:

∂tu+
∑d
i,j=1 aij

∂2u
∂xi∂xj

+
∑d
i=1 µi

∂u
∂xi

+ cu+ f = 0 in [0, T )×O,
u(t, x) = g(t, x) in [0, T )× ∂O,
u(T, x) = uT (x) on O,

(1.30)

where O ⊆ Rd is a bounded domain with smooth (C1) boundary ∂O.

Theorem 14. Assume that (F) holds with all the functions defined on [0, T ]×O
and let Ψ, defined as

Ψ(t, x) =
{
g(t, x) (t, x) ∈ [0, T )× ∂O,
uT (x) (t, x) ∈ {T} × O,

be continuous on ([0, T )× ∂O) ∪
(
{T} × O

)
. Then (1.26) admits a unique

solution u such that, for every (t, x) ∈ [0, T )× Rd,

u(t, x) = E
[∫ τ

t
f(s,X(s; t, x)) exp

{
−
∫ s

t
c(r,X(r; t, x))dr

}
ds

+Ψ(X(τ ; t, x)) exp
{
−
∫ τ

t
c(r,X(r; t, x))dr

}]
,

(1.31)

where X(·) = X(·; t, x) is the unique strong solution of (1.29) and

τ = τ(t, x) = inf {s ∈ [t, T ] |X(s; t, x) /∈ O} .

A proof for Theorems 13 and 14 can be found in [109]. The solutions of the
stochastic differential equation in (1.29) are called the characteristic curves of
equation (1.26).

We conclude this section with a representation formula for the initial-
boundary value problem with mixed boundary conditions of Neumann and
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Dirichlet types. Consider the problem

∂tu+
d∑

i,j=1
aij

∂2u

∂xi∂xj
+

d∑
i=1

µi
∂u

∂xi
+ cu+ f = 0 in [0, T )×O,

u(t, x) = g1(t, x) in [0, T )× ∂1O,
∂

∂n
u(t, x) = g2(t, x) in [0, T )× ∂2O,

u(T, x) = uT (x) on O,
(1.32)

where O ⊆ Rd is a convex bounded domain with a C2 boundary ∂O, ∂1O ⊂ ∂O
and ∂2O = ∂O \ ∂1O. For this problem, if µ and σ are uniformly Lipschitz
continuous in the space variable, the diffusion process with coefficients µ and
σ and normal reflection in O starting at x0 ∈ O is well defined. This means
that there exists a unique increasing stochastic process {ξ(s)}t≤s≤T called local
time and a unique stochastic proces {n(s)}t≤s≤T such that n(s) is a normalized
inward vector at X(s) ∈ ∂O and (X, ξ, n) satisfies

dX(s) = µ (s,X(s)) ds+ σ(s,X(s))dW (s) + n(s)dξ(s), s ∈ [t, T ],

ξ(s) =
∫ s

t
I∂O (X(r)) dξ(r), s ∈ [t, T ]

X(t) = x.
(1.33)

The following result holds (see e.g. [40] for a proof).

Theorem 15. Let u be a classical solution to (1.32) and suppose that O is
convex. Then, for every (t, x) ∈ [0, T ]×O it holds that

u(t, x) = E
[∫ τ

t
f(s,X(s; t, x)) exp

{
−
∫ s

t
c(r,X(r; t, x))dr

}
ds

+Ψ(X(τ ; t, x)) exp
{
−
∫ τ

t
c(r,X(r; t, x))dr

}
−
∫ min{τ,T}

t
g2(s,X(s; t, x)) exp

{
−
∫ s

t
c(r,X(r; t, x))dr

}
dξ(s)

]
,

(1.34)

where (X, ξ) solves (1.33) and τ is defined as

τ =
{

inf{s | t ≤ s ≤ T,X(s) ∈ ∂1O} if {s | t ≤ s ≤ T,X(s) ∈ ∂1O} 6= ∅,
+∞ otherwise.

1.1.4 The case of nonlinear source term: semilinear parabolic
equations

Let us now briefly recall some important results on the theory of semilinear
parabolic equations of the form

∂tu(t, x)− Ltu(t, x) = f(t, x, u) for (t, x) ∈ (0, T ]×O,
u(t, x) = g(t, x) for (t, x) ∈ (0, T ]× ∂O,
u(0, x) = u0(x) for x ∈ O,

(1.35)
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where

(Ltu)(t, x) =
d∑

i,j=1
aij(t, x) ∂2u

∂xi∂xj
+

d∑
i=1

µi(t, x) ∂u
∂xi

.

A procedure often used for to solve (1.35) is the following. Set w = Tv if w
solves

∂tw − Ltw = f(t, x, v)

with same initial condition as u. The idea is to prove that, if we restrict v to
an appropriate functional space, then the operator Tv is well-defined and has a
fixed point, which is the solution u to (1.35). We can now state some existence
and uniqueness results for the solution to (1.35), whose proofs can be found, for
instance, in [59, Chapter 7]. Let us start with the uniqueness results, for various
types of functions f .

Theorem 16. Let ∂t −Lt be a parabolic operator, with a and µ continuous and
bounded functions. Let f be such that, for all (t, x) ∈ [0, T ] × O, f(t, x, ·) is
nondecreasing. Then there exists al most one solution of problem (1.35).

Theorem 17. Let ∂t − Lt be a parabolic operator, with a and µ continuous
bounded functions, and let f be such that, for all (t, x) ∈ [0, T ]×O, f(t, x, ·) is
locally Lipschitz, uniformly with respect to (t, x). Then, there exists at most one
solution of problem (1.35).

If the function f satisfies more restrictive conditions, then it is also possible
to provide some esimates for the solution u to (1.35).

Theorem 18. Let ∂t−Lt be a parabolic operator, with a and µ continuous, and
let f be a continuous function satisfying that

vf(t, x, v) ≤ C1v
2 + C2, with C1, C2 ≥ 0,

for all (t, x) ∈ (0, T )×O and v ∈ R. Then, setting

Φ(t, x) =
{
g(t, x) if (t, x) ∈ (0, T ]× ∂O,
u0(x) if (t, x) ∈ {0} × O,

for any solution u to (1.35), the following estimate holds

|u(t, x)| ≤
[(

C2
k − C1

)1/2
+ sup
∂OT
{|Φ}

]
ekt,

where ∂OT = {0} × O ∪ (0, T ]× ∂O, for any (t, x) ∈ (0, T ]×O and k > C1.

We can now recall the existence results: first, we need to define some
notations that extend the ones defined in (1.25). Let 0 < δ < 1, and set

LD[v] = sup
(t,x),(t′,x′)∈(0,T )×O

|v(t, x)− v(t′, x′)|
|x− x′|+ |t− t′| ,



1.2 Hamilton-Jacobi-Bellman equations 17

and
|v|O1+δ := |v|Oδ +

∑
i

∣∣∣ ∂∂xiu∣∣∣Oδ ,
|v|O1−0 := |v|O0 + LD[v],

|v|O2−0 := |v|O1−0 +
∑
i

∣∣∣ ∂∂xiu∣∣∣Oδ .
(1.36)

Theorem 19. Suppose that ∂O can be parametrized with a function in C2−0 ∩
C2+α, that Lt is parabolic, that aij and µi are Hölder continuous of exponent α
and that ∑

i,j

|aij |
O
α +

∑
i

|µi|
O
α ≤ K

for some K ≥ 0. Moreover, assume that f is locally Hölder continuous and
that there exist two positive constants K,M0 such that, for any M ≥ M0,
2K|f(t, x, u)| ≤ M in (0, T ] ×O for all functions u such that |u|1+α ≤ M . If
g ∈ C2+δ for some α < δ < 1 and ∂tg − Ltg = f(t, x, g) on (0, T ) × ∂O, then
there exists a classical solution to problem (1.35).

Theorem 20. Suppose that the assumptions on Lt, (0, T ) × ∂O and g from
Theorem 19 hold. Moreover, assume that f is a Hölder continuous function such
that for all (t, x) ∈ (0, T )×O and v ∈ R

vf(t, x, v) ≤ C1u
2 + C2, with C1, C2 ≥ 0,

and
|f(t, x, v)| ≤ A(|v|),

with A being a positive increasing function. If ∂tg−Ltg = f(t, x, g) on {0}×∂O
then there exists a classical solution to problem (1.35).

For the proofs on Theorems 19 and 20 we refer to [59, Chapter 7, Section
4]. Without imposing any growth condition on f the existence of solutions for
(1.35) can only be proven in a restriction of the domain (0, T ]×O.

1.2 Hamilton-Jacobi-Bellman equations
In this section we recall some of the most important results concerning Hamilton-
Jacobi-Bellman equations. Most of the results presented in this section can be
found in [42], [101], and [44].

1.2.1 Viscosity solutions for first-order equations on [0, T ]× Rd

The notion of viscosity solution was first introduced by M.G. Crandall and P-L.
Lions in [44]: previously, the main obstacle in the study of Hamilton-Jacobi
equations was the lack of a notion of solution that had the good properties of
existence and uniqueness. The study of viscosity solutions has begun by studying
the following two classes of first-order problems: the stationary Dirichlet problem

H(x, u,Du) = 0 if x ∈ Rd, (1.37)
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and the time-dependent Cauchy problem{
∂tu+H(t, x, u,Du) = 0 for (t, x) ∈ (0, T ]× Rd,
u(0, x) = u0(x) for x ∈ Rd.

(1.38)

In (1.37) and (1.38), u0 is a given functions andH : Rd×R×Rd → R (respectively,
H : [0, T ]× Rd × R× Rd → R) is called the Hamiltonian. In (1.37) and (1.38)
the Hamiltonian depends nonlinearly on the gradient Du of u. It is well known
that, in general, these problems do not have classical solutions even if, in the
case of (1.38), the initial data u0 is smooth. It is possible to deal with this
problem by looking for a generalized solution in Sobolev spaces which satisfy
the equation only almost everywhere. However, in this approach, the problem
of uniqueness persists since it is possible to find several solutions to (1.37) and
(1.38) in the generalized sense. From now on we will focus on (1.38). First, we
recall the definition of upper and lower semi-continuous functions.

Definition 21. A function f : X → R is upper semi-continuous (USC(X)) if
{x ∈ X|f(x) < y} is an open set for every y ∈ R. A function f : X → R is
lower semi-continuous (LSC(X)) if {x ∈ X|f(x) > y} is an open set for every
y ∈ R.

In what follows we will use the notation BUC(X) to indicate the space of
bounded and uniformly continuous functions f : X → R. We can now introduce
the definition of viscosity sub- and supersolution to (1.38) (see e.g. [101]).

Definition 22. A function u ∈ USC([0, T ]× Rd) is a viscosity subsolution to
(1.38) if, for every ϕ ∈ C∞([0, T ]× Rd) such that u− ϕ has a local maximum
at (t0, x0) ∈ (0, T ]× Rd, we have

∂tϕ(t0, x0) +H(t0, x0, Dϕ(t0, x0)) ≤ 0 and u(0, x)− u0(x) ≤ 0 for x ∈ Rd.

A function u ∈ LSC([0, T ]×Rd) is a viscosity supersolution to (1.38) if, for every
ϕ ∈ C∞([0, T ]×Rd), such that u−ϕ has a local minimum at (t0, x0) ∈ (0, T ]×Rd,
we have

∂tϕ(t0, x0) +H(t0, x0, Dϕ(t0, x0)) ≥ 0 and u(0, x)− u0(x) ≥ 0 for x ∈ Rd.

A function u ∈ BUC([0, T ]× Rd) is a viscosity solution to (1.38) if it is both a
viscosity sub- and supersolution.

From now on, we will use the notation BR(z) for the d-dimensional ball of
radius R > 0 centered at z ∈ Rd. In [101], the following assumptions on the
data are considered.

(H0) The Hamiltonian H ∈ C([0, T ]× Rd × R× Rd) is uniformly continuous in
[0, T ]× Rd × [−R,R]× {x ∈ Rd| |x| < R}, for each R > 0.

(H1) There is a constant C > 0 such that

C = sup
[0,T ]×Rd

|H(t, x, 0, 0)| <∞.
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(H2) For R > 0 there exists γR ∈ R, such that H(t, x, r, p) − H(t, x, s, p) ≥
γR(r − s) for −R ≤ s ≤ r ≤ R, t ∈ [0, T ], p ∈ Rd.

(H3) If we define

ΛR(α) = sup{|H(t, x, r, p)−H(t, y, r, p)| | |x− y| ≤ α,
|p| ≤ R, |r| ≤ R, t ∈ [0, T ]},

then limα↓0 ΛR(α) = 0.

(H4) For R > 0 there exists CR > 0 such that

|H(t, x, r, p)−H(t, y, r, p)| ≤ CR(1 + |p|) |x− y|

for t ∈ [0, T ], |r| ≤ R, and x, y, p ∈ Rd.

(H5) There exists a differentiable Lipschitz function µ : Rd → [0,∞) and a
continuous function h : [0,∞) × [0,∞) → [0,∞), decreasing in both
arguments, such that h(0, ·) = 0, lim

|x|→∞
µ(x) = 0, and

H(t, x, r, p)−H(t, x, r, p+ λDµ(x)) ≤ h(λ, |p|)

for (t, x, r, p) ∈ [0, T ]× Rd × R× Rd and λ ∈ [0, 1].

(H6) There exist r0 > 0 and, for each ε > 0, a continuous function ωε :
[0, T ]×∆→ [0,∞), where

∆ = {(x, y) ∈ Rd × Rd| |x− y| < r0},

which is Lipschitz continuous and differentiable in [0, T ]×∆ and satisfies:

(i) for r ∈ R and (t, x, y) ∈ [0, T ]×∆

∂tωε(t, x, y) +H(t, x, r,Dxωε(x, y))−H(t, y, r,−Dyωε(x, y)) ≥ 0.

(ii) for (x, y) ∈ [0, T ]× ∂∆

ωε(t, x, y) ≤ ε for x ∈ Rd and ωε(t, x, y) ≥ 1/ε.

(iii) for 0 < r ≤ r0

lim
ε↓0

inf{ωε(0, x, y) = | |x− y| ≥ r} = +∞.

Under these assumptions it is possible to prove a comparison principle (see e.g.
[42, Theorem 2]).

Theorem 23 (Comparison principle). Assume that H is continuous and that
the map r → H(t, x, r, p) is nondecreasing for all (t, x, p) ∈ [0, T ] × Rd × Rd.
Assume that (H5) and (H6) hold. Let u and v ∈ C([0, T ] × Rd) be a viscosity
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sub- and supersolution to (1.38), respectively. Assume that C > 0 is a constant
such that, for (x, y) ∈ ∆ and t ∈ [0, T ] either

|u(t, x)− v(t, y)| ≤ C or |u(t, y)− v(t, x)| ≤ C (1.39)

holds, and that either u(0, ·) or v(0, ·) is uniformly continuous. If also

sup
[0,T ]×Rd

(u− v) <∞,

then
sup

[0,T ]×Rd
(u− v)+ ≤ sup

Rd
(u(0, ·)− v(0, ·))+. (1.40)

Notice that (1.39) holds if u or v is the sum of a bounded and a uniformly
continuous function.

Before presenting the results concerning the existence and uniqueness of a
viscosity solution to (1.38), we would like to briefly explain the term viscosity
solutions. If H and u0 are sufficiently smooth, it is possible to show that, given
ε > 0, if we add a viscous term −ε∆u to (1.38), then the classical solution to{

∂tuε − ε∆uε +H(t, x, uε, Duε) = 0 for (t, x) ∈ (0, T ]× Rd,
uε(0, x) = u0(x) for x ∈ Rd

(1.41)

converges, as ε→ 0, uniformly in [0, T ]×Rd to a function u which is the viscosity
solution of (1.38).

For a function u : [0, T ]× Rd → R we will use the notation C1,2([0, T ]× Rd)
to indicate that u is differentiable in the first variable and twice differentiable in
the second variable, with continuous derivatives, and the notation C2

b ([0, T ]×Rd)
if u ∈ C2([0, T ]× Rd) and is bounded.
Theorem 24. Assume that

• H ∈ C2([0, T ]× Rd × R× Rd),

• H is bounded,

• H satisfies (H1), (H2), and (H4), with γ = γR ≤ 0 for every R > 0.
For u0 ∈ C2

b (Rd) and ε > 0, let uε ∈ BUC([0, T ] × Rd) ∩ C1,2([0, T ] × Rd) be
the unique solution to (1.41). Then, there exists u ∈ BUC([0, T ]×Rd) viscosity
solution to (1.38) such that uε → u uniformly on [0, T ]×Rd as ε→ 0. Moreover,

sup
τ∈[0,T ]

sup
x∈Rd

|uε(τ, x)− u(τ, x)| ≤ K
√
ε, (1.42)

where K is a positive constant depending on supx∈Rd |u0| and supx∈Rd |Du0|.
Remark 25. The strategy of finding a solution to (1.38) starting from the solu-
tion to (1.41) and then passing to the limit as ε→ 0, is called vanishing viscosity
method. It may be natural to think of a numerical method for approximating the
viscosity solution to (1.38) starting from the solution to (1.41). However, even
though such a scheme would give the desired numerical approximation, relation
(1.42) gives an explicit estimate for the rate of convergence, which is only O(

√
ε).

Therefore, a numerical scheme based on the vanishing viscosity technique would
not be efficient.
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It is possible to prove the following existence result for viscosity solutions to
(1.38).

Theorem 26. Assume that H : [0, T ]× Rd × R× Rd → R satisfies (H0), (H1),
(H2), and either (H3) or (H4). Then, for every u0 ∈ BUC(Rd) there exists
T = T (supx∈Rd |u0|) > 0 and u ∈ BUC([0, T ] × Rd) such that u is the unique
viscosity solution to (1.38) in [0, T ]×Rd. Moreover, if γR in (H2) is independent
of R, then (1.38) has a unique viscosity solution in [0, T ]× Rd for every T > 0.

Theorem 27. Let u, v ∈ BUC([0, T ]× Rd) be viscosity solutions to (1.38) with
initial data u0 and v0, respectively. Assume that H satisfies (H0), (H2), and
either (H3) or (H4). Let R0 = max(supx∈Rd |u0| , supx∈Rd |v0|) and γ = γR0.
Then, for every t ∈ [0, T ],

sup
x∈Rd

|u(t, x)− v(t, x)| ≤ e−γt sup
x∈Rd

|u0(x)− v0(x)| .

Thorems 26 and 27, both proven in [101], imply that the viscosity solution
to (1.38) exists and is unique.

We conclude this section with a stability result.

Theorem 28. Let un ∈ C([0, T ]× Rd) be a viscosity solution to{
∂tu+Hn(t, x, u,Du) = 0 for (t, x) ∈ (0, T ]× Rd,
u(0, x) = u0n(x) for x ∈ Rd.

Assume that Hn → H uniformly on [0, T ] × Rd × [−R,R] × BR(0), for each
R > 0. If un → u locally uniformly in (0, T ]× Rd, then u is a viscosity solution
to

∂tu+H(t, x, u,Du) = 0, for (t, x) ∈ (0, T ]× Rd.

Moreover, if u0n → u0 uniformly on Rd and un → u uniformly on [0, T ]× Rd,
then u is a viscosity solution to (1.38).

1.2.2 Viscosity solutions for second-order equations on [0, T ]×Rd

We now present some results from the theory of viscosity solutions for parabolic
equations of the form{

∂tu+H(t, x, u,Du,D2u) = 0 in (0, T ]× Rd,
u(0, x) = u0(x) for x ∈ Rd,

(1.43)

where T > 0 and D2u is the Hessian matrix of u. The results in this section are
mainly taken from [61] and [110]. We now give the definition of viscosity sub-
and supersolution to (1.43).

Definition 29. A function u ∈ USC([0, T ]× Rd) is a viscosity subsolution to
(1.43) if for every ϕ ∈ C1,2([0, T ] × Rd) and a local maximum point (t0, x0) ∈
(0, T ]× Rd of u− ϕ:

∂tϕ(t0, x0) +H(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0)) ≤ 0
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and
u(0, x)− u0(x) ≤ 0 for x ∈ Rd.

A function u ∈ LSC([0, T ] × Rd) is a viscosity supersolution to (1.38) if for
every ϕ ∈ C1,2([0, T ]× Rd) and a local minimum point (t0, x0) ∈ (0, T ]× Rd of
u− ϕ:

∂tϕ(t0, x0) +H(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0)) ≥ 0

and
u(0, x)− u0(x) ≥ 0 for x ∈ Rd.

A function u ∈ BUC([0, T ]×Rd) is said to be a viscosity solution to (1.43) if it
is both a viscosity sub- and supersolution to (1.43).

From now on, Sd will denote the space of symmetric matrices in Rd×d. We
consider the following assumptions.

(F1) H is degenerate elliptic, meaning that H(t, x, r, p,X+Y ) ≤ H(t, x, r, p,X)
in (0, T ]× Rd × R× (Rd \ {0})× Sd if Y ≥ 0.

(F2) H : (0, T ]× Rd × R× (Rd \ {0})× Sd → R is continuous.

(F3) −∞ < H∗(t, x, r, 0, 0) = H∗(t, x, r, 0, 0) < +∞ for all (t, x, r) ∈ (0, T ] ×
Rd × R, where H∗ and H∗ are, respectively, the lower and upper semi-
continuous envelope of H.

(F4) H is uniformly bounded in (t, x, r), locally in X, i.e. for every R > 0,

cR = sup{|H(t, x, r, p,X)| | |p| , |X| ≤ R,

(t, x, r, p,X) ∈ (0, T ]× Rd × R× (Rd \ {0})× Sd} <∞,

where |X| = maxi,j |Xi,j |.

(F5) For every K > 0 there exists a constant c0 = c0(d, T,K) such that
for all (t, x, p,X) ∈ (0, T ] × Rd × (Rd \ {0}) × Sd, with |r| ≤ K, r →
H(t, x, r, p,X) + c0r is nondecreasing.

(F6) For every R > ρ > 0 there is a modulus of continuity ω = ωRρ such that

|H(t, x, r, p,X)−H(t, x, r, q, Y )| ≤ ωRρ(|p− q|+ |X − Y |)

for all (t, x, r) ∈ (0, T ]× Rd × R, ρ ≤ |p| , |q| ≤ R and |X| , |Y | ≤ R.

(F7) There exist ρ0 > 0 and a modulus of continuity ω1 such that

H∗(t, x, r, p,X)−H∗(t, x, r, 0, 0) ≤ ω1(|p|+ |X|),

H∗(t, x, r, p,X)−H∗(t, x, r, 0, 0) ≥ −ω1(|p|+ |X|)

if (t, x, r) ∈ (0, T ]× Rd × R and |p| , |X| ≤ ρ0.
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(F8) There exists a modulus of continuity ω2 such that

|H(t, x, r, p,X)−H(t, y, r, p,X)| ≤ ω2(|x− y| (|p|+ 1))

for y ∈ Rd, (t, x, r, p,X) ∈ (0, T ]× Rd × R× (Rd \ {0})× Sd.

The following result states that almost everywhere solutions are also viscosity
solutions.

Proposition 30. Assume (F1). If u ∈ C((0, T ]× Rd), u(·, x) ∈W 1,d+1((0, T ])
for all x ∈ Rd, u(t, ·) ∈W 2,d+1(Rd) for all t ∈ [0, T ] and

∂tu+H(t, x, u,Du,D2u) = 0 a.e. in (0, T ]× Rd,

then u is a viscosity solution to (1.43).

Given u : [0, T ]× Rd → R, let us define its upper semicontinuous envelope

u∗(t, x) = lim sup
(τ,y)→(t,x)

(τ,y)∈(0,T ]×Rd

u(τ, y), (1.44)

and its lower semicontinuous envelope

u∗(t, x) = lim inf
(τ,y)→(t,x)

(τ,y)∈(0,T ]×Rd

u(τ, y). (1.45)

Notice that u∗ = −(−u)∗, u∗ ∈ USC((0, T ]× Rd), and u∗ ∈ LSC((0, T ]× Rd).
The following comparison principle for (1.43) holds.

Theorem 31. Suppose that H satisfies (F1)-(F8). Let u and v be viscosity sub-
and supersolutions to (1.43), respectively. Assume that

(A1) there exists K > 0, independent of (t, x) ∈ (0, T ]×Rd, such that u(t, x) ≤
K(|x|+ 1) and v(t, x) ≥ −K(|x|+ 1) for all (t, x) ∈ [0, T ]× Rd,

(A2) there exists a modulus of continuity mT such that

u∗(0, x)− v∗(, y) ≤ mT (|x− y|) for all (x, y) ∈ Rd × Rd,

(A3) u∗(0, x)−v∗(0, y) ≤ K(|x− y|+1) on Rd×Rd for some K > 0 independent
of (x, y) ∈ Rd × Rd.

Then there is a modulus of continuity m such that

u∗(t, x)− v∗(t, y) ≤ m(|x− y|) for (t, x, y) ∈ (0, T ]× Rd × Rd. (1.46)

It is possible to prove the following stability result also for (1.43).
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Theorem 32. Let Qn be a sequence of sets, nondecreasing with respect to n,
and such that ∪n→∞Qn = (0, T ]× Rd.

Assume that un ∈ USC(Qn) is a viscosity subsolution to

∂tun +Hn(t, x, un, Dun, D2un) = 0 in Qn,

un converges uniformly to a function u on any compact subsets of (0, T ]×Rd. As-
sume the existence of a function H such that, for all sequences (t, xn, rn, pn, Xn) −→

n→∞
(t, x, r, p,X) we have

lim
n→∞

Hn(t, xn, rn, pn, Xn) ≥ H(t, x, r, p,X).

Then u is a viscosity subsolution of

∂tu+H(t, x, u,Du,D2u) = 0 in (0, T ]× Rd.

Assume that un ∈ USC(Qn) is a viscosity supersolution to

∂tun +Hn(t, x, un, Dun, D2un) = 0 in Qn,

un converges uniformly to a function u on any compact subsets of (0, T ] ×
Rd. Assume, also, that there exists a function H such that, for all sequences
(t, xn, rn, pn, Xn) −→

n→∞
(t, x, r, p,X) we have that

lim
n→∞

Hn(t, xn, rn, pn, Xn) ≤ H(t, x, r, p,X).

Then u is a viscosity supersolution to

∂tu+H(t, x, u,Du,D2u) = 0 in (0, T ]× Rd.

1.2.3 Viscosity solutions for parabolic Hamilton-Jacobi-Bellman
equations on bounded domains

First, consider the following initial-boundary value problem of Dirichlet type
∂tu+H(t, x, u,Du,D2u) = 0 in (0, T ]×O,
u(t, x) = g(t, x) on (0, T ]× ∂O,
u(0, x) = u0(x) for x ∈ O.

(1.47)

where O ⊂ Rd is an open domain, g : [0, T ]×∂O → R is the boundary condition
and u0 : O → R is the initial data. The notion of viscosity solution for problem
(1.47) can be found in [43] and is the following.

Definition 33. A function u ∈ USC([0, T ]×O) is a viscosity subsolution to
(1.47) if, for each ϕ ∈ C1,2([0, T ]×O), at each maximum point (t0, x0) of u−ϕ
we have that

∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ) ≤ 0 if (t0, x0) ∈ (0, T ]×O, (1.48)

min{ϕ(t0, x0)− g(t0, x0), ∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ)} ≤ 0

if (t0, x0) ∈ (0, T ]× ∂O,
(1.49)
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min{ϕ(t0, x0)− u0(x0), ∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ),

ϕ(t0, x0)− g(t0, x0)} ≤ 0 if (t0, x0) ∈ {0} × O.
(1.50)

A function u ∈ LSC([0, T ] × O) is a viscosity supersolution to (1.47) if, for
each ϕ ∈ C∞([0, T ]×O), at each minimum point (t0, x0) of u− ϕ we have that

∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ) ≥ 0 if (t0, x0) ∈ (0, T ]×O, (1.51)

max{ϕ(t0, x0)− g(t0, x0), ∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ)} ≥ 0

if (t0, x0) ∈ (0, T ]× ∂O,
(1.52)

max{ϕ(t0, x0)− u0(x0), ∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ),

ϕ(t0, x0)− g(t0, x0)} ≥ 0 if (t0, x0) ∈ {0} × O.
(1.53)

A function u ∈ C([0, T ] × O) is a viscosity solution to (1.47) if it is both a
viscosity sub- and supersolution.

It is possible to prove a maximum principle for (1.47) (see e.g. [93] for a
proof).

Theorem 34 (Maximum principle). Assume that u0 is bounded and that His
bounded and continuous. If u ∈ USC([0, T ]×O) is a subsolution to (1.47) and
u ∈ LSC([0, T ]×O) is a supersolution of (1.47), then

u− u ≤ sup
({0}×O)∪((0,T ]×∂O)

{u− u} in [0, T ]×O.

It is also possible to prove a comparison principle for (1.47) (a proof can be
found in [43]).

Theorem 35 (Comparison principle). Assume that H is continuous and proper,
meaning that the inverse images of compact sets are compact. Moreover, suppose
that there exists a modulus of continuity ω : [0,∞)→ [0,∞) such that for each
t ∈ [0, T ) and for all α > 0,

H(t, y, r, α(x− y), Y )−H(t, x, r, α(x− y), X) ≤ ω(α |x− y|2 + |X − Y |)

for x, y ∈ O, X,Y ∈ Sd, with X ≤ Y . If u ∈ USC([0, T ]×O) is a subsolution
of (1.47) and u ∈ LSC([0, T ]×O) is a supersolution to (1.47), then

u ≤ u in [0, T ]×O.

Let us now state an existence and uniqueness result for (1.47). For a proof,
we refer to [93].

Theorem 36 (Existence and uniqueness). Assume that H is smooth and bounded,
that the boundary condition g ∈ C1,2([0, T ] × O) and is compatible with u0 at
time t = 0, meaning that limt→0 g(t, x) = u0(x) for all x ∈ ∂O. Then, there
exists a unique continuous viscosity solution u to (1.47).
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Let us now focus on the boundary value problem of Neumann type,
∂tu+H(t, x, u,Du,D2u) = 0 in (0, T ]×O,
B(t, x, u,Du) = 0 on (0, T ]× ∂O,
u(0, x) = u0(x) for x ∈ O,

(1.54)

where O ⊂ Rd is an open domain, u0 : O → R is the initial data and
B(t, x, u,Du) = 0 on (0, T ] × ∂O is a non-linear boundary condition of the
Neumann type, meaning that B(t, x, r, p) is strictly increasing with respect to
p in the normal direction to ∂O at x. More precisely, we assume that for all
R > 0, there exists a constant νR > 0 such that

B(t, x, r, p+ λn(x))−B(t, x, r, p) ≥ νr, (N0)

for all (t, x, r, p) ∈ (0, T ]×∂O× [−R,R]×Rd and λ > 0, where n(x) denotes the
outward normal to ∂O at point x. It is possible to give a definition of viscosity
sub- and supersolution to (1.54) which is similar to Definition 33.

Definition 37. A function u ∈ USC([0, T ]×O) is a viscosity subsolution to
(1.54) if, for each ϕ ∈ C∞([0, T ]×O), at each maximum point (t0, x0) of u− ϕ
we have that

∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ) ≤ 0 if (t0, x0) ∈ (0, T ]×O, (1.55)

min{B(t0, x0, u,Dϕ), ∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ)} ≤ 0

if (t0, x0) ∈ (0, T ]× ∂O,
(1.56)

min{ϕ(t0, x0)− u0(x0), ∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ),

B(t0, x0, u,Dϕ)} ≤ 0 if (t0, x0) ∈ {0} × O.
(1.57)

A function u ∈ LSC([0, T ] × O) is a viscosity supersolution to (1.54) if, for
each ϕ ∈ C∞([0, T ]×O), at each minimum point (t0, x0) of u− ϕ we have that

∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ) ≥ 0 if (t0, x0) ∈ (0, T ]×O, (1.58)

max{B(t0, x0, u,Dϕ), ∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ)} ≥ 0

if (t0, x0) ∈ (0, T ]× ∂O,
(1.59)

max{ϕ(t0, x0)− u0(x0), ∂tϕ(t0, x0) +H(t0, x0, u,Dϕ,D
2ϕ),

B(t0, x0, u,Dϕ)} ≥ 0 if (t0, x0) ∈ {0} × O.
(1.60)

A function u ∈ C([0, T ] × O) is a viscosity solution to (1.54) if it is both a
viscosity sub- and supersolution.

We now present a list of properties which are needed in the main results for
(1.54).

(N1) For all R > 0, there exists a function mR ∈ C((0,∞),R) such that
mR(0+) = 0 and, for G = H and B,

G(t, x, r, p,X)−G(t, y, r, p, Y ) ≥ mR((1 + |p|) |x− y|+ α |x− y|2),
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if
−α

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ α

(
I −I
−I I

)
,

for all α ≥ 1, x, y ∈ O, |r| ≤ R, p ∈ Rd, X,Y ∈ Sd.

(N2) For all R > 0, there exists nR ∈ C((0,∞),R), such that nR(0+) = 0 and
for G = H and B

|G(t, x, r, p,X)−G(t, y, r, q, Y )| ≤ nR(|p− q|+ |X − Y |),

if x is in some neighnorhood V of ∂O, |r| ≤ R, p, q ∈ Rd, X,Y ∈ Sd.

(N3) for all R > 0, there exists γR ≥ 0 such that for G = H and B

G(t, x, r, p,X)−G(t, x, s, p,X) ≥ γR(r − s),

for all x ∈ O, p ∈ Rd, X ∈ Sd, −R ≤ s ≤ r ≤ R.

Under the previous properties we have the following comparison principle for
(1.54). For a proof we refer to [6].

Theorem 38 (Comparison principle). Assume that ∂O ∈W 3,∞ and that (N0),
(N1), (N2), and (N3) hold. Then, if u and v are, respectively, a bounded u.s.c.
viscosity subsolution and a bounded l.s.c. supersolution to (1.54), we have

u ≤ v on [0, T ]×O.

Theorem 38 is the fundamental result in order to get in the following result
the existence and uniqueness of a solution to (1.54), for the proof of which we
refer to [6].

Theorem 39 (Existence and uniqueness). Assume that ∂O ∈W 3,∞ and that
(N0), (N1), (N2), and (N3) hold. Then there exists a unique viscosity solution
to (1.54).

We conclude this section with a regularity result for the solution to (1.54),
under suitable assumptions on the initial data. For the proof we refer to [6].

Theorem 40. Assume that ∂O ∈W 3,∞ and that (N0), (N1), (N2), and (N3)
hold. Moreover, assume that u0 ∈W 2,∞(O). Then the unique viscosity solution
u ∈ C([0, T ]×O) to (1.54) is Lipschitz continuous.

1.2.4 Deterministic and stochastic optimal control

The solution to Hamilton-Jacobi-Bellman equations is related to the theory of
optimal control. Optimal control deals with the problem of finding a control law
for a given system such that a certain optimality criterion is achieved. A control
problem includes a cost functional that is a function of the state and the control
variables. The most popular methods to solve optimal control problems are
Pontryagin’s maximum principle and dynamic programming. Let us now give a
brief presentation of deterministic and stochastic optimal control problems and
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show their links to parabolic equations. We refer to [5, 57, 58] and [11] for the
proofs of the results in this section.

Consider the following controlled ordinary differential equation (ODE){
ẋ(t) = µ(x(t), α(t)) if t > 0,
x(0) = x0,

(1.61)

where x0 ∈ Rd and µ : Rd ×A→ Rd, with A ⊂ Rm (m ∈ N) being a non-empty
set and α : [0,∞)→ A is the control. The curve x is the response of the system.
The first problem is: given the initial point x0 and a target set S ⊂ Rd, is there
a control that steers the system to S in finite time? Given a control α, we define
its payoff by

P (α(·)) =
∫ T

0
r(x(t), α(t))dt+ g(x(T )), (1.62)

where T > 0, r : Rd × A → R is the running payoff such that r(x(·), α(·)) ∈
L1([0, T ]), g : Rd → R is the terminal payoff, and x is defined by (1.61). The
problem is to find a control α∗(·) such that

P (α∗(·)) = max
α(·)∈A

P (α(·)) . (1.63)

Definition 41. The function H : Rd × Rd ×A → R defined by

H(x, p, a) = 〈µ(x, a), p〉+ r(x, a), for x ∈ Rd, p ∈ Rd, a ∈ A, (1.64)

is called the control theory Hamiltonian.

Theorem 42 (Pontryagin maximum principle). Assume that α∗ is an optimal
control for problem (1.63) and define x∗ as its associated trajectory. Then there
exists p∗ : [0, T ]→ Rd such that

ẋ∗(t) = DpH(x∗(t), p∗(t), α∗(t)), (1.65)

ṗ∗(t) = −DxH(x∗(t), p∗(t), α∗(t)), (1.66)
and, for a.e. 0 ≤ t ≤ T

H(x∗(t), p∗(t), α∗(t)) = max
a∈A

H(x∗(t), p∗(t), a). (1.67)

Moreover, the map t → H(x∗(t), p∗(t), α∗(t)) is constant, and we have the
terminal condition p∗(T ) = ∇g(x∗(T )).

We can now show the link between optimal control and the Hamilton-Jacobi-
Bellman equation. First, let us parametrize (1.63) by the initial time t and the
initial condition x. Given (t, x) ∈ [0, T ]× Rd, define x as the solution to{

ẋ(s) = µ(x(s), α(s)) if t ≤ s ≤ T,
x(t) = x.

(1.68)

We can define the payoff for this problem as

Pt,x (α) =
∫ T

t
r(x(s), α(s))dts+ g(x(T )). (1.69)
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Definition 43. For (t, x) ∈ [0, T ]× Rd the value function v(t, x) is the greatest
payoff possible starting from x ∈ Rd at time t, i.e.

v(t, x) = sup
α∈A

Pt,x (α) , (1.70)

where A denotes the set of measurable control functions.

Notice that, by definition, v(T, x) = g(x) for x ∈ Rd.

Theorem 44. If v ∈ C1([0, T ]× Rd) then v solves the nonlinear partial differ-
ential equation∂tv(t, x) + max

a∈A
{〈µ(x, a), Dv(t, x)〉+ r(x, a)} = 0 if (t, x) ∈ [0, T ]× Rd,

v(T, x) = g(x) for x ∈ Rd.
(1.71)

To design optimal controls in feedback form it is possible to use the dynamic
programming method: first, find the value function v as a solution to the
Hamilton-Jacobi-Bellman equation, then construct α∗ as follows: select for each
(t, x) ∈ [0, T ]× Rd an α(t, x) such that

∂tv(t, x) + 〈µ(x, α(t, x)), Dv(t, x)〉+ r(x, α(t, x)) = 0.

Next, if possible, solve the ODE{
ẋ∗(s) = µ(x∗(s), α(x∗(s), s)) if t ≤ s ≤ T,
x(t) = x.

Then [0, T ] 3 s→ α(x∗(s), s) ∈ A is optimal.
A similar theory can be developed for controlled Stochastic Differential

Equations. Consider the SDE{
dX(s) = µ(X(s), α(s))ds+ σdW (s) if t ≤ s ≤ T,
X(t) = x,

(SDE)

where , σ > 0 is constant,W is a d-dimensional Brownian motion on a probability
space (Ω,F ,P) and α is a control process adapted with respect to the Brownian
filtration. The previous equation means that

X(s) = x+
∫ s

t
µ(X(r), α(r))dr + σ[W (s)−W (t)], for t ≤ s ≤ T .

The analogue of (1.69) in the stochastic setting is the expected payoff functional

Pt,x (α) = E
[∫ T

t
r(X(s), α(s))ds+ g(X(T ))

]
. (1.72)

For each (t, x) ∈ [0, T ]× Rd, v(t, x) is defined as in (1.70). The following result
relates the second order Hamilton-Jacobi-Bellman equation with the stochastic
optimal control theory.
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Theorem 45. If the value function [0, T ]× Rd 3 (t, x)→ v(t, x) ∈ R is regular
enough, then it solves the HJB equation∂tv(t, x) + max

a∈A
{〈µ(x, a), Dv(t, x)〉+ r(x, a)}+ σ2

2 ∆v(t, x) = 0,

v(T, x) = g(x),
(1.73)

for t ∈ [0, T ) and x ∈ Rd.

If the value function is sufficiently regular, then an optimal feedback control
can be constructed in a similar manner as in the deterministic case.

1.3 Fokker-Planck equations and Mean Field Games
Let µ : [0, T ]× Rd → R be a given vector field. The Fokker-Planck equation is{

∂tm(t, x)− σ2

2 ∆m(t, x)− div(m(t, x)µ(t, x)) = 0 for (t, x) ∈ (0, T )× Rd,
m(0, x) = m0(x) for x ∈ Rd,

(1.74)
were σ > 0, the vector field µ is continuous, uniformly Lipschitz with respect to
x ∈ Rd and bounded. The main properties of solutions to (1.74) are (see [91]):

• non negativity: if m0 ≥ 0 for all x ∈ Rd, then m(t, ·) ≥ 0 for all t ∈ (0, T ).

• Mass conservation:
∫
Rdm(t, x)dx =

∫
Rdm0(x)dx for all t ∈ (0, T ).

• Existence of a steady state m:

−σ
2

2 ∆m(x)− div(m(x)µ(t)) = 0 for all x ∈ Rd

with m(x) > 0.

It is possible to prove existence and uniqueness of a regular solution to (1.74).

Theorem 46. Suppose that µ : [0, T ] × Rd → Rd is bounded, with bounded
continuous spatial derivatives and Hölder continuous of exponent α in x uniformly
with respect to t. Then there exists a nonnegative function G such that

G(t, x, s, y) ≤ C1(t− s)−d/2 exp
(
−C2 |x− y|2

4(t− s)

)
, for t, s ∈ (0, T ), x, y ∈ Rd,

with C1, C2 > 0, and for any probability measure ν0 the formula

m(t, x) =
∫
Rd
G(t, x, 0, y)ν0dy

defines the unique solution in C1,2((0, T )× Rd) ∩ C([0, T )× Rd) to (1.74).

The proof of the existence can be found in [13, Chapter 6], while we refer to
[13, Chapter 9] for uniqueness.
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1.3.1 Representation formula for the Fokker-Planck equation

Solutions to (1.74) are closely related to the solution of the following SDE{
dXt = µ(t,Xt)dt+ σdWt,

X0 = x,
(1.75)

where µ : [0, T ]× Rd → Rd is bounded and Lipschitz. We define

Lt :=
∑
i

µi(t, ·)
∂

∂xi
+ σ2

2
∑
i

∂2

∂xi∂xi
,

so that (1.74) can be written as

∂tmt = L∗tmt,

where L∗t denotes the formal adjoint operator of Lt in L2(Rd). As in [56], using
Itô’s formula it is possible to prove that, if X ∈ L2([0, T ]×O×Ω) is a family of
solutions of (1.75) and X0 is distributed as m0, then the measure mt defined by

(∀f ∈ C0(Rd))
∫ d

R
f(x)dmt(x) =

∫ d

R
E [f (X(t, x, ω))] dm0(x),

is absolutely continuous with respect to the Lebesgue measure and its density,
also denoted m, is such that [0, T ] × Rd 3 (t, x) → m(t, x) ∈ R solves (1.74).
In order to better clarify the link between (1.75) and (1.74) we first need the
definition of martingale solutions of (1.75).

Definition 47. A measure νx,s on C([0, T ];Rd) is a martingale solution of
(1.75) starting from x at time s if:

(i) νx,s({f ∈ C([0, T ];Rd))|f(s) = x}) = 1.

(ii) For any ϕ ∈ C∞c (Rd), the stochastic process on C([0, T ];Rd)

ϕ(f(t))−
∫ t

s
(Lτϕ)(f(u))dτ

is a νx,s-martingale after time s.

A martingale problem is well-posed if, for any (s, x) ∈ Rd we have existence
and uniqueness of martingale solutions. Moreover, the existence and uniqueness
of martingale solutions for equation (1.75) is linked to the existence of solutions
to the Fokker-Planck equation. We recall the definition of measurable families
of probability measures.

Definition 48. A family of probability measures {νx}x∈Rd on a probability space
(Ω,F) is measurable if, for every A ∈ F , the real-valued map x → νx(A) is
measurable.

Lemma 49. Let µ be bounded and A ⊂ Rd be a Borel set. The following
properties are equivalent:
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(a) time marginals of martingale solutions of equation (1.75) are unique for
any x ∈ A.

(b) Finite non-negative measure-valued solutions of equation (1.74) are unique
for any non-negative Radon measure m0 concentrated in A.

If νx is a martingale solution of (1.75) starting from x at time t = 0, for
m0-a.e. x it is possible to give a representation formula for a non-negative
solution of (1.74).

Lemma 50. Let m0 be a locally finite measure on Rd, and let {νx}x∈Rd be
a measurable family of probability measures on C([0, T ];Rd) such that νx is a
martingale solution to (1.75) starting from x at time 0, for |m0|-a.e. x. Define
on C([0, T ];Rd) the measure ν :=

∫
Rd νxdm0(x) and assume that∫ T

0

∫
Rd×C([0,T ];Rd)

χBR(0)(f(t))dνxd |m0| (x)dt < +∞

for all R > 0. Then the measure mν
t on Rd defined by

〈mν
t , ϕ〉 :=

∫
Rd×C([0,T ];Rd)

ϕ(f(t))dνx(f)dm0(x)

for every ϕ ∈ C∞c (Rd) solves (1.74).

Proofs of Lemma 49 and 50 can be found in [56].

1.3.2 Second order MFG system

Let us analyze a control problem with infinitely many agents. The distribution
of the agents is given by the function m and each agent controls its own dynamic,
denoted by Xs(x) and defined as the solution to (SDE). At this stage m is
given, meaning that it is the anticipation made by the agents on their future
evolution, which depends on the distribution m itself. Let µ be smooth enough
for the solution (Xt) to exist and let P1(Rd) (respectively P2(Rd)) be the space
of probability measures on Rd with first (respectively second) bounded moments.
The cost of a single player is given by

J(t, x, α) = E
[∫ T

t
(L(s,Xs, αs) + f(Xs,m(s))) ds+ g(XT ,m(T ))

]
, (1.76)

where T > 0 , L : [0, T ] × Rd × A → R, f : Rd × P1(Rd) → R, and g :
Rd × P1(Rd)→ R are given and continuous. We define the value function

u(t, x) = inf
α∈A

J(t, x, α), (1.77)

which is the solution to the Hamilton-Jacobi-Bellman equation{
−∂tu+H(t, x,Du)− σ2

2 ∆u = f(x,m(t)) in (0, T )× Rd,
u(T, x) = g(x,m(T )) in Rd,

(1.78)
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with Hamiltonian

H(t, x, p) = sup
α∈A
{−L(t, x, α)− 〈p, µ(t, x, α)〉} . (1.79)

Let us introduce α∗(t, x) ∈ A as a maximum point in (1.79) when p = Du(t, x).
It results that µ(t, x, α∗) = −∂pH(t, x,Du(t, x)).

Let us now discuss the evolution of the population density m, firstly making
the assumptions that all the agents control the same dynamic Xs (with different
starting points) and minimize the same cost J . It results that optimal dynamics
of each player is given by

dX∗s = µ(s,X∗s , α∗(s,X∗s ))ds+ σdWs. (1.80)

The initial distribution at time t = 0 is m0 ∈ P1(Rd) and the distribution of
agents at time t is given by the law of (X∗s ), with Law(X∗0 ) = m0. Starting from
(1.80), using Itô’s formula and integrating by parts, we obtain that m satisfies,
in the sense of distributions,{

∂tm− σ2

2 ∆m− div(mµ(t, x, α∗)) = 0 in (0, T )× Rd,
m(0, x) = m0(x) for x ∈ Rd,

(1.81)

At the equilibrium we expect m(t, x) = m(t, x), so we get our MFG system
−∂tu− σs

2 ∆u+ 1
2 |Du|

2 = f(x,m(t)) in (0, T )× Rd,
∂tm− σ2

2 ∆m− div(m(t, x)∂pH(t, x,Du(t, x))) = 0 in (0, T )× Rd,
m(0, x) = m0(x), u(T, x) = g(x,m(T )) in Rd.

(1.82)

Under suitable assumptions it is possible to prove the existence of a classical
solution for (1.82).

Definition 51. A pair (u,m) is a classical solution to (1.82) if u,m ∈ C1,2([0, T ]×
Rd) and (u,m) satisfies (1.82) in the classical sense.

Definition 52. The Wasserstein distance between two probability measures
m1,m2 ∈ P1(Rd) is defined as

d1(m1,m2) = inf
γ∈Π(m1,m2)

{∫
Rd×Rd

|x− y|dγ(x, y)
}
,

where Π(m1,m2) denotes the collection of all the measures on Rd × Rd with
marginals m1 and m2.

We present an existence result for (1.82) (a proof can be found in [2]).

Theorem 53. Let us assume that:

• f and g are uniformly bounded by some positive constant C0 over Rd×P1.

• f and g are Lipschitz continuous, i.e. for each (x1,m1), (x2,m2) ∈ Rd×P1

|f(x1,m1)− f(x2,m2)| ≤ (|x1 − x2|+ d1(m1,m2))

and
|g(x1,m1)− g(x2,m2)| ≤ (|x1 − x2|+ d1(m1,m2)) .
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• The probability measure m0 is absolutely continuous with respect to the
Lebesgue measure and has a C2+α density, still denoted by m0, such that∫
Rd |x|

2m0(x)dx < +∞.

Then there is at least one classical solution to (1.82).

We conclude the section with a uniqueness result, proven in [77].

Theorem 54. Assume that either f and g are monotone in L2(Rd× (0, T )) and
H(t, x, ·) is strictly convex, or f and g are strictly monotone, i.e.∫

Rd
(f(x,m1(t, x))− f(x,m2(t, x))) (m1(t, x)−m2(t, x))dx ≤ 0⇒ m1 = m2,

for t ∈ [0, T ) and m1,m2 ∈ P1, and∫
Rd

(g(x,m1(T, x))− g(x,m2(T, x))) (m1(T, x)−m2(T, x))dx ≤ 0⇒ m1 = m2,

for m1,m2 ∈ P1. Then the uniqueness of solutions to (1.82) holds.
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Chapter 2

Second order fully
semi-Lagrangian
discretizations of
advection–diffusion–reaction
systems

We propose a second order, fully semi-Lagrangian method for the numerical
solution of systems of advection–diffusion–reaction equations, which is based
on a semi-Lagrangian approach to approximate in time both the advective
and the diffusive terms. The proposed method allows to use large time steps,
while avoiding the solution of large linear systems, which would be required
by implicit time discretization techniques. Standard interpolation procedures
are used for the space discretization on structured and unstructured meshes.
A novel extrapolation technique is proposed to enforce second-order accurate
Dirichlet boundary conditions. We include a theoretical analysis of the scheme,
along with numerical experiments which demonstrate the effectiveness of the
proposed approach and its superior efficiency with respect to more conventional
explicit and implicit time discretizations.

In the present work, we present a number of improvements to the fully SL
approach of [18], [19]. In particular, we show how second order accuracy in time
can be achieved. An improved treatment of Dirichlet boundary conditions is also
discussed and analysed. The resulting approach yields an efficient combination,
which is validated on a number of classical benchmarks, on both structured
and unstructured meshes. Numerical results show that the method yields good
quantitative agreement with reference numerical solutions, while being superior
in efficiency to standard implicit methods and to approaches in which the SL
method is only used for the advection term.
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advection–diffusion–reaction systems

2.1 Semi-Lagrangian schemes for linear parabolic
equations

Numerically, a semi-Lagrangian method mimics the method of characteristics,
tracking the foot of the characteristic passing through every node and following
it. What is needed is, basically, a technique for solving SDEs and track the
characteristics, then a reconstruction technique, such as an interpoplation
operator, to recover pointwise values of the numerical solution. We present a
first and a second order technique to approximate the solution to the Cauchy
problem (1.20). First of all, to sketch the ideas behind the method, we consider
the problem{
∂tu(t, x) + 〈Du(t, x), µ(t, x)〉 − σ2

2 ∆u(t, x) + f(t, x) = 0 (t, x) ∈ (0, T ]× R,
u(0, x) = u0(x), x ∈ R.

(2.1)
According to Theorem 13, the solution to this problem is given by the following
representation formula

u(t, x) = E
[∫ t

0
f(s,X(s; t, x))ds+ u0(X(0; t, x))

]
(2.2)

with characteristics solving{
dX(s) = µds+ σdW (s), s ∈ [t, T ],
X(0) = x.

(2.3)

Let us discretize the time interval [0, T ] using a step ∆t > 0, define N∆t =
bT/∆tc, the sets I∆t = {0, . . . , N∆t} and I∗∆t = I∆t \ {N∆t}, so that tk = k∆t
for k ∈ I∆t. We show how to construct a SL approximation using the technique
shown in [52] and [49]. First of all, an approximation of the solution of (2.3)
is required, using a stochastic scheme for SDEs. Using the notation yk for the
numerical approximation of Xk, we have that for each k = 0, . . . , N∆t − 1 the
time-discrete approximation of the characteristic can be written as{

yk+1 = yk + ρ(yk, yk+1,∆Wk),
y0 = x,

(2.4)

where ρ is defined according to the stochastic method implied for the approxi-
mation of (2.3). For example, using the stochastic forward Euler method, we
have

ρ(x, y,∆W ) = −∆tµ(t, x) + σ∆W

wich is has first order of accuracy in time, stochastic Heun method

ρ(x, y,∆W ) = −∆t
2 (µ(t, x) + µ(t, x−∆tµ(t, x) + σ∆W )) + σ∆W,

or stochastic Crank-Nicolson method

ρ(x, y,∆W ) = −∆t
2 (µ(t, x) + µ(t, y)) + σ∆W
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which are second order accurate in time. ∆W` is a Gaussian variable with zero
mean and variance equal to ∆t. In practice, the expectation with respect to
∆W is approximated by working on a finite number s ∈ N of realizations ∆`,
each one associated to a weight α`, such that the discrete probability density is

P (∆W` = ∆`) = α`, ` = 1, . . . , s,

with conditions
α` ≥ 0,

s∑
`=1

α` = 1

and assumptions
s∑
`=1

α`∆` = 0,
s∑
`=1

α`∆2
` = ∆t,

since the continuous variable has mean 0 and variance ∆t. This means that
the expected value in (2.2), using the above discrete approximation of ∆W ,
becomes a weighted average of the argument of E evaluated in the realizations
of yk. Using the notation F (x,∆i) for the approximation of the integral of f
using a quadrature rule, we obtain the time discrete approximation scheme for
(2.1) uk+1(x) =

∑s
`=1 α`

(
uk(x,∆i)) + F (x,∆i)

)
, k ∈ I∗∆t,

u0(x) = u0(x).
(2.5)

where uk(x) is the time-discrete approximated solution in x at time tk = k∆t.
In order to obtain a fully discrete scheme, let us now set a grid in the

computational domain: we discretize Rd using a space step ∆x > 0, so that
we get a set of nodes xj = j∆x for any multiindex j ∈ Zd. Given a function
g(t, x) we will denote by gk,j the approximation of g(tk, xj) and by gk the set of
nodal values at time tk. Analogously, given a function h(x), we will denote by
hj the approximation of h(xj) and by h the set of its nodal values. Let I[·] be
a polynomial interpolation operator such that I[v](xj) = vj , and if v ∈W q,∞,
then for any x ∈ Rd we have

|I[v](x)− v(x)| ≤ C(∆x)q. (2.6)

The fully discrete semi-Lagrangian scheme for (2.1) isuk+1,j =
∑s
`=1 α`

(
I[uk](xj ,∆i)) + F (xj ,∆i)

)
, k ∈ I∗∆t, j ∈ Zd

u0,j = u0(xj), j ∈ Zd
(2.7)

or, compactly,
uk+1 = S∆(uk). (2.8)

As shown in [52] it is possible to carry on a rigorous convergence analysis of
such schemes, performed in normalized Hölder norms:

‖v‖p :=


(
(∆x)d

∑
j |vj |

p
)1/p

, if p <∞,
maxj |vj | , if p =∞.

(2.9)

The scheme in (2.7) is stable if each addendum in the right hand side is stable.
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Theorem 55. Let

vik+1,j = I[vk](xj ,∆i) + F (xj ,∆i) (2.10)

for i = 1, . . . , s. If
‖vik+1‖p ≤ (1 + C∆t)‖vik‖p (2.11)

for a positive constant C independent of ∆t,∆x, then

‖uk+1‖p ≤ (1 + C∆t)‖uk‖p (2.12)

with uk solution of (2.7)

Theorem 56. Let µ be a smooth vector field and let u(·, ·) be a smooth solution
to (2.1). Assume also that (2.7) holds. Then, the local truncation error satisfies
the bound

1
∆t‖u(tk+1)− S∆(u(tk))‖p ≤ C

(
(∆t)q′ + (∆x)q

∆t

)
where q′ is the order of accuracy of the stochastic method used for the approxi-
mation in (2.4),

In conclusion, the following convergence result holds.

Theorem 57. For i = 1, . . . , s let (2.10) satisfy (2.11). Then, for any k ∈ I∆t,

‖uk − u(tk)‖p → 0

for ∆t→ 0,∆x = o((∆t)1/q). Moreover, if the order of accuracy of the stochastic
method used for the approximation in (2.4) is q′, and if for any t ∈ [0, T ],
u(t, ·) ∈ Cq(Rd), then

‖uk − u(tk)‖p ≤ C
(

(∆t)q′ + (∆x)q

∆t

)
. (2.13)

2.2 The model problem
We consider as a model problem the advection–diffusion–reaction equation with
Dirichlet boundary conditions

∂tu+ 〈µ,Du〉 − σ2

2 ∆u = f(u) (t, x) ∈ (0, T ]×O,
u (t, x) = b (t, x) (t, x) ∈ (0, T ]× ∂O,
u (0, x) = u0 (x) x ∈ O.

(2.14)

Here, T denotes the final time, O ⊂ R2 is an open bounded domain, µ :
O× [0, T ]→ R2 is a velocity field and b : ∂O× [0, T ]→ R denotes the boundary
value of the species u. The unknown u : O × [0, T ]→ R can be interpreted as
the concentration of a chemical species that is transported through the domain
O by the advection and diffusion processes, while undergoing locally a nonlinear
evolution determined by the source term f(u), which will be assumed to be
globally Lipschitz continuous, with Lipschitz constant Lf .
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In the simpler case of homogeneous boundary conditions and time indepen-
dent advection field and diffusion coefficient, equation (2.14) can be written
as

∂tu = Lu+ f(u), (2.15)

where L denotes a linear differential operator. We denote by Et the evolution
operator determining the solution to the associated homogeneous equation

∂tũ = Lũ (2.16)

with the same initial datum ũ(0, x) = u0(x) and boundary conditions as in
(2.14), so that ũ(t) = Et[u0]. By formal application of the variation of constants
formula, the solution of (2.15) can then be represented as

u(t, x) = Et[u0](x) +
∫ t

0
Et−s[f ◦ u](x) ds. (2.17)

If discrete time levels tk, n = 0, . . . , N are introduced, so that tk = n∆t and
∆t = T/N, the same representation formula on the interval [tk, tk+1] reads

u(tk+1, x) = E∆t[u(tk, ·)](x) +
∫ tk+1

tk

Etk+1−s[f ◦ u](x) ds. (2.18)

The construction of the scheme relies on the application to (2.18) of the Feynman–
Kac formula to represent the solution to (2.16) (see, e.g., [52]), so that

E∆t[u(tk, ·)](x) = E {u(yk, X(tk))} (2.19)

where E denotes the probabilistic expectation w.r.t. the Wiener measure, and
X(t) is the solution of the stochastic differential equation (SDE):{

dX = −µ(s,X(s))ds+ σdW (s),
X(tk+1) = x,

(2.20)

for s ∈ [tk, tk+1], with W (s) denoting a standard 2-dimensional Wiener process.
Note that, for σ = 0, (2.20) reduces to a deterministic ODE and the evolution
operator (2.19) can be approximated accordingly by the well-known method of
characteristics for transport problems.

While the proposed numerical method will be presented in this simpler
case, the target for more realistic applications are systems of coupled advection–
diffusion–reaction equations of the form

∂tun + 〈µ,Dun〉 − ∇ · (ADun) = fn(u1, . . . , uS) (t, x) ∈ O × (0, T ],
un(t, x) = bn(t, x) (t, x) ∈ ∂O × (0, T ],
un(0, x) = u0,n(x) x ∈ O, n = 1, . . . , S.

(2.21)
Here, A denotes a symmetric and positive semi-definite diffusivity tensor, possibly
dependent on space and time. As remarked in the Introduction, systems of this
kind, with a possibly large number of species S, are responsible for the largest
share of the computational cost of typical environmental fluid dynamics models,
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so that even minor increases in the efficiency of the discretization for this very
classical problem are of great practical relevance.

Notice that, while the use of a representation formula like (2.17) may recall
the procedure that it is followed to introduce exponential integrators (EI) (see e.g.
the review in [66]), there are substantial differences between SL and EI methods.
For example, EI are based on the approximation of a representation formula
for the solutions of a spatially discretized problem, while SL methods employ a
space-time representation formula. Furthermore, SL methods approximate the
evolution operator by a local approach based on trajectory computation, while
standard EI entail a global step for the computation of the matrix exponential,
which is computationally quite demanding, see e.g. the discussion in [60].

2.3 Fully semi-Lagrangian methods
A numerical method for the solution of equation (2.14) on the interval [tk, tk+1]
can then be derived heuristically from (2.18) by discretizing the time integral
using the trapezoidal rule, so that one obtains

u(tk+1, x) ≈ E∆t[u(tk, ·)](x) + ∆t
2 [E∆t[f ◦ u](x) + f(u(tk+1, x))] . (2.22)

If the diffusion term is dropped in equation (2.14), and the evolution operator
is approximated by a numerical version of the flow streamline together with an
interpolation at the departure point of the streamline, a numerical method based
on (2.22) can be interpreted as a semi-Lagrangian extension of the trapezoidal
rule with global truncation error of second order. Semi-Lagrangian methods
based on this formula have been successfully used in a large number of applica-
tions (see, among many others, [15],[37],[41],[103],[104],[106]). Due to a possible
stiffness of the reaction term, we might rather use a first order, off-centered
version of the above formula, defined, for θ ∈ [1/2, 1] as

u(tk+1, x) ≈ E∆t[u(tk, ·)](x)+(1−θ)∆tE∆t[f ◦u](x)+θ∆tf(u(tk+1, x)). (2.23)

In order to discretize (2.22) (or (2.23)), we introduce a space mesh G∆x = {xi :
xi ∈ O}, where ∆x denotes the mesh resolution. The mesh can be structured as
well as unstructured; the only necessary restriction is that it should be possible
to define a piecewise polynomial interpolation operator I of degree q, constructed
on the values of a grid function c defined on G∆x (we refer to [96] for a precise
definition of the general setting). We denote by I[uk](x) the value at x of the
interpolant I computed using the values of the grid function uk. The vector
uk collects the values uk,i of the numerical solution to (2.14) at the space-time
mesh nodes (tk, xi).

The discretization of (2.20), whenever aimed at approximating the expecta-
tion in (2.19), is performed via the so-called weak schemes for SDEs (see the
classical review [70]). At a generic node x = xi, weak schemes approximate the
expectation in (2.19) as

E {u(tk, X(tk))} =
∑
`

α`u(tk, y`k,i) +O(∆tq′) (2.24)
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for a suitable definition of the points y`k,i of the weights α`. For our purposes,
we will consider cases in which q′ = 1, 2, and set

y`k,i = xi + δ`k,i.

In the simplest case, a two-dimensional, first-order weak scheme (q′ = 1) which
generalizes the explicit Euler scheme, may be obtained for

δ`k,i = −∆tµ(tk+1, xi) +
√

2∆tσe`

for ` = 1, . . . , 4, with α1 = α2 = α3 = α4 = 1/4, and

e1 =
(

1
0

)
, e2 = −

(
1
0

)
, e3 =

(
0
1

)
, e4 = −

(
0
1

)
.

The discrete set of displacements
√

2∆tσe` and weights α` (k = 1, . . . , 4) is
constructed (see [70]) in order to approximate the probability density of the
2-dimensional Gaussian random variable

σ∆W := σ (W (∆t)−W (0))

with the discrete density

P
(
σ∆W =

√
2∆tσe`

)
= α`, (` = 1, . . . , 4)

up to a certain number of moments. More precisely, in this first-order case they
coincide up to the third moment (note that odd moments are always zero by
symmetry).

Introducing the space interpolation, and replacing (2.19) with its discretiza-
tion (2.24), a first order in time approximation uk of the solution to (2.14) can
then be defined as

uk+1,i = 1
4

4∑
`=1

I[uk]
(
y`k,i

)
(2.25)

+(1− θ)∆t14

4∑
`=1

f(I[uk])
(
y`k,i

)
+ θ∆tf(uk+1,i),

Notice that, for simplicity, we neglect in (2.25) the treatment of boundary
conditions. Possible approaches to handle Dirichlet boundary conditions will be
discussed in Section 2.5.

It is easy to show that (2.25) has a unique solution for ∆t small enough. In
fact, (2.25) is in the form of a set of decoupled fixed point equations for the
unknowns uk+1,i,

uk+1,i = Fi(uk) + θ∆tf(uk+1,i) (2.26)
and the Lipschitz constant of the right-hand side is θ∆tLf . Therefore, the
right-hand side is a contraction as soon as ∆t < 1

θLf
, regardless of the Courant

number. Moreover, since

|f(γ)| ≤ |f(γ)− f(0)|+ |f(0)|
≤ Lf |γ|+ |f(0)|
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we can obtain from (2.26)

|Fi(uk) + θ∆tf(γ)| ≤ |Fi(uk)|+ θ∆t(Lf |γ|+ |f(0)|)

(note that the right-hand side is increasing with |γ|). In order to obtain an
invariant set of the form |γ| ≤ R, we should therefore satisfy the condition

|Fi(uk)|+ θ∆t(LfR+ |f(0)|) ≤ R,

which gives, provided θ∆tLf < 1,

R ≥ |Fi(uk)|+ θ∆t|f(0)|
1− θ∆tLf

.

Under this condition, the interval [−R,R] is invariant, both assumptions of
the Banach fixed point theorem are satisfied, and (2.25) has a unique solution
uk+1,i ∈ [−R,R].

The method (2.25) will be denoted in what follows by SL1. This method
inherits the same stability and convergence properties of the parent methods, as
it will be discussed in Section 2.4. Notice that this approach can be extended to
spatially varying diffusion coefficients and that, while only first order in time,
its effective accuracy can be substantially superior to that of more standard
techniques, if higher degree interpolation operators are used, as shown in [18].

In order to derive a method of second order in time, we follow the main
steps of [52],[87]. Applying the implicit weak method of order 2 defined in [70]
for the approximation of the stochastic streamlines (2.20) (see also [87] for a
general theory of weak approximation for SDE), we define the points y`k,i as the
solutions of the nonlinear equations

y`k,i = xi −
∆t
2
(
µ(tk+1, xi) + µ(tk, y`k,i)

)
+
√

3∆tσe`. (2.27)

Here, the symbols e` denote the vectors:

e1 =
(

0
0

)
, e2 =

(
0
1

)
, e3 =

(
0
−1

)
,

e4 =
(

1
0

)
, e5 =

(
−1
0

)
, e6 =

(
1
1

)
,

e7 =
(

1
−1

)
, e8 =

(
−1
1

)
, e9 =

(
−1
−1

)
.

Accordingly, the weights α` are given by

α1 = 4/9, α2 = α3 = α4 = α5 = 1/9, α6 = α7 = α8 = α9 = 1/36.

In this case (see [70]) the increase in the order of approximation requires that
moments of the probability density of σ∆W are reproduced by the discrete
density up to the fifth moment. This motivates the introduction of further
displacements and weights.
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It is to be remarked that also method (2.27) can be rewritten in terms of
the displacements δ`k,i = y`k,i − xi as

δ`k,i = −∆t
2 (µ(tk+1, xi) + µ(tk, xi + δk,i)) +

√
3∆tσe`, (2.28)

thus yielding an implicit method that is a natural extension to stochastic differ-
ential equations of that introduced in [98] and commonly used in meteorological
applications for the computation of streamlines in SL methods.

A second order in time SL (SL2) scheme can then be defined by a Crank-
Nicolson approach ((2.23) with θ = 0.5) as

uk+1,i =
9∑
`=1

α`

(
I[uk](y`k,i) + ∆t

2 f(I[uk](y`k,i))
)

+ ∆t
2 f(uk+1,i). (2.29)

Solvability of (2.29) with respect to uk+1,i can be proved with the same arguments
used for (2.25).

Notice that, with respect to the simpler first-order in time variant (2.25),
nine interpolations at the foot of the streamlines must be computed, which
clearly makes this approach substantially more expensive. In applications to
systems of the form (2.21), the computational cost of scheme (2.29) can be
marginally reduced by setting

ũk,i =
9∑
`=1

α`I[uk](y`k,i)

and defining
uk+1,i = ũk,i + ∆t

2 f(ũk,i) + ∆t
2 f(uk+1,i), (2.30)

so as to reduce the number of the evaluations of a possibly costly nonlinear term.
Furthermore, when the coupling of the diffusion and advection term is weak, it
should be possible to decouple again the approximation of a single deterministic
streamline from that of the diffusive displacements, which could be added at
the end of each approximate streamline without increasing too much the error.
In particular, in [18],[19] explicit Euler or Heun methods were employed to
compute these approximations, coupled to a substepping approach along the
lines of [36],[99]. More specifically, given a positive integer m, a time substep
was defined as ∆τ = ∆t/m and, for n = 0, . . . ,m− 1, the Euler substeppingŷ

(n+1)
i = ŷ

(n)
i −∆τu(tk, ŷ

(n)
i ),

ŷ
(0)
i = xi

(2.31)

was computed, so that a y`k,i in (2.25) was modified with y`k,i = ŷmi +
√

2∆tσe`.
A decoupled substepping variant of (2.27) might in turn be obtained by

computing, for n = 0, . . . ,m− 1,ŷ
(n+1)
i = ŷ

(n)
i − ∆τ

2

[
µ(tk+1 − n∆τ, ŷ(n)

i ) + µ(tk+1 − (n+ 1)∆τ, ŷ(n+1)
i )

]
,

ŷ0
i = xi,

(2.32)
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and setting y`k,i = ŷ
(m)
i +

√
3∆tσe` in (2.29). We will denote this decoupled

variant with substepping by SL2s.
Notice that, in realistic problems, a major shortcoming of scheme (2.29) is

the fact that the Crank–Nicolson method, while A-stable, is not L-stable, see e.g.
[74]. Therefore, no damping is introduced by the method for very large values of
the time step and spurious oscillations may arise, see also the discussion in [21].
In order to reduce the computational cost and to address the L-stability issue,
different variants of the scheme (2.29) could also be introduced and compared,
along the lines proposed in [105] for the pure advection case. However, this
development goes beyond the scope of this paper and will not be pursued here.

Finally, even though achieving full second order consistency is quite compli-
cated in the variable diffusion coefficient case, the previously introduced schemes
can be nonetheless extended at least in the simpler configurations as suggested
in [18] for the first order case, even though full second order accuracy is not
guaranteed any more.

2.4 Convergence analysis

We present in this section a convergence analysis for scheme (2.29). For sim-
plicity, we assume a one-dimensional problem defined on [0, T ] × R, with a
time-independent drift term u:{

∂tu+ µ(x)ux − σ2

2 uxx = f(u) (t, x) ∈ (0, T ]× R,
u(0, x) = u0(x) x ∈ R.

(2.33)

The multidimensional case, as well as the time dependence of µ, require only
small technical adaptations. On the other hand, the convergence analysis on
bounded domains is still an open problem for high-order SL schemes, therefore
we will not address this problem here.
First, for i ∈ Z and k ∈ I∗∆t, we rewrite scheme (2.29) with the shorthand
notation

uk+1,i = S∆ (uk+1, uk, xi) , (2.34)

where xi = i∆x, and

S∆ (uk+1, uk, xi) = α+

[
I[uk](y+(xi)) + ∆t

2 f(I[uk](y+(xi))
]

+ α−

[
I[uk](y−(xi)) + ∆t

2 f(I[uk](y−(xi))
]

+ α0

[
I[uk](y0(xi)) + ∆t

2 f(I[uk](y0(xi))
]

+ ∆t
2 f (uk+1,i) .

In one space dimension, the three discrete characteristics are defined by the



2.4 Convergence analysis 45

equations

y+(x) = x− ∆t
2 [µ(x) + µ(y+(x))] +

√
3∆tσ,

y−(x) = x− ∆t
2 [µ(x) + µ(y−(x))]−

√
3∆tσ,

y0(x) = x− ∆t
2 [µ(x) + µ(y0(x))],

with corresponding weights α+ = α− = 1/6 and α0 = 2/3. In what follows, we
will use the symbol K to denote various positive constants, which do not depend
on ∆t, x, t. We will also assume that:

(H0) there exists a unique classical solution to (2.33);

(H1) f(x) ∈ C4(R) with |f (p)(x)| ≤ K for p ≤ 4;

(H2) µ(x) ∈ C2(R) with |µ(p)(x)| ≤ K for p ≤ 2;

(H3) for any v(x) ∈ Cq+1(R) with bounded derivatives, I[v] is a piecewise
polynomial interpolation operator such that for any x ∈ R

|I[v](x)− v(x)| ≤ K∆xq.

2.4.1 Consistency

First, we derive a consistency result via a Taylor expansion. The same kind of
result can be obtained by probabilistic arguments, see [85].

Proposition 58. Assume (H1)–(H3), and let u(t, x) be a smooth solution with
bounded derivatives of (2.33). Then, for each (k, i) ∈ I∗∆t × Z the consistency
error of the scheme (2.29), defined as

T∆t,∆x(tk, xi) = 1
∆t (u(tk+1, xi)− S∆ (u(tk), u(tk+1), xi))

where u(tk) = (u(tk, xi))i, is such that

T∆(t, x) = O

(
∆t2 + ∆xq

∆t

)
.

Proof. In what follows, we will omit the argument of functions computed at
(t, x). Consider a smooth solution u of (2.33). Since assumption (H1) holds, by
differentiating in time and space (2.33) we get that u is also solution to

utt + µ (x)uxt −
σ2

2 uxxt = f ′(u)ut, (2.35)

utx + µ′(x)ux + µ (x)uxx −
σ2

2 uxxx = f ′(u)ux, (2.36)

and hence, by differentiating again in space (2.36), of

utxx + µ′′(x)ux + µ′(x)uxx + µ′(x)uxx + µ (x)uxxx −
σ2

2 uxxxx

= f ′′(u)(ux)2 + f ′(u)uxx. (2.37)
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Using (2.36) and (2.37) in (2.35), we get :

utt = µµ′ux + µ2uxx − µ
σ2

2 uxxx −
σ2

2 µ
′′ux − 2σ

2

2 µ
′uxx

−µσ
2

2 uxxx +
(
σ2

2

)2

uxxxx

=
(
µµ′ − σ2

2 µ
′
)
ux +

(
µ2 − 2σ

2

2 µ
′
)
uxx − 2µσ

2

2 uxxx + σ2

2

2
uxxxx

+f ′(u)(ut − µux + σ2

2 uxx) + σ2

2 f
′′(u)(ux)2. (2.38)

Define now U±(x) = µ (x) + µ (z±(x)). By a Taylor expansion of u(t, z±(x)) in
space around (t, x), we obtain

u(t, z±(x)) = u+
(
±
√

3∆tσ − ∆t
2 U±

)
ux + 1

2

(
±
√

3∆tσ − ∆t
2 U±

)2
uxx

+1
6

(
±
√

3∆tσ − ∆t
2 U±

)3
uxxx

+ 1
24

(
±
√

3∆tσ − ∆t
2 U±

)4
uxxxx

+ 1
120

(
±
√

3∆tσ − ∆t
2 U±

)5
uxxxxx +O(∆t3) (2.39)

and, defining U0(x) = µ (x) + µ (y0(x)),

u (t, y0(x)) = u− ∆t
2 U0ux + 1

2

(
−∆t

2 U0

)2
uxx +O

(
∆t3

)
. (2.40)

Using (2.38),(2.39),(2.40) and the Taylor expansion

u(t+ ∆t, x) = u+ ∆tut + ∆t2

2 utt +O
(
∆t3

)
,

we obtain

u (t+ ∆t, x) −
∑
`

α`u(t, yk(x)) = ∆t(ut + µ (x)ux −
σ2

2 uxx)

+ ∆t2

2 (f ′(u)(ut − µux + σ2

2 uxx) + σ2

2 f
′′(u)(ux)2)

+ O
(
∆t3

)
(2.41)

(note that, here and in what follows, ` takes values in the set {+,−, 0}). Consider
now the nonlinear reaction term. By assumption (H3), we have that

f(u(t, y)) = f(u) + f ′(u)(u(t, y)− u) + 1
2f
′′(u)(u(t, y)− u)2

+1
6f
′′′(u)(u(t, y)− u))3 +O

(
(u(t, y)− u)4

)
(2.42)
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Using (2.41) in (2.42), and taking into account that u(y±, t) = u±
√

3∆tσux +
O(∆t) and u(t, y0(x)) = u+O(∆t), we obtain

∑
`

(α`f(u(y`(x), t)) = f ′(u)
(
u(t+ ∆t, x)−∆t(ut + µux −

σ2

2 uxx)− u
)

f(u) + f ′′(u)(∆tσ
2

2 u
2
x) +O(∆t2). (2.43)

By (2.43) and (2.41), we get the consistency error for the semi-discretization,

u(t+ ∆t, x) −
∑
`

α`

(
u(t, y`(x)) + ∆t

2 f(u(t, y`(x)))
)
− ∆t

2 f(u(t+ ∆t.x))

= ∆t(ut + µ(x)ux −
σ2

2 uxx − f(u)) +O
(
∆t3

)
. (2.44)

Introducing the interpolation error and using assumptions (H2) and (H1), we
finally prove the consistency error for the fully discrete scheme.

2.4.2 Stability

To prove stability, it is convenient to recast (2.34) in matrix form as

uk+1 −
∆t
2 f(uk+1) =

∑
`

α`

[
B`uk + ∆t

2 f
(
B`uk

)]
, (2.45)

where f(u) denotes the vector obtained by applying f elementwise to the
components of the vector u, while the matrices B` (which represent the operation
of interpolating uk at the points y`(xi)) have elements bij` defined by

b`ij = βj(y`(xi)), (2.46)

for a suitable basis of cardinal functions {βj}. The following proposition implies
stability for the linear part of the scheme with respect to the 2-norm.

Proposition 59. Assume (H2), and let the matrix B have elements defined by
(2.46), with (βj) basis functions for odd degree symmetric Lagrange or splines
interpolation. Then, for each k, there exists a constant KB > 0 independent on
∆x,∆t such that

‖B`‖2 ≤ 1 +KB∆t. (2.47)

Proof. Following [53], [54], we sketch the arguments to prove (2.47) for the cases
of symmetric Lagrange and splines interpolation. In these cases, the method
can be interpreted as Lagrange–Galerkin schemes with area-weighting. First,
we make explicit the dependence of the points y` on x and ∆t. We recall that
y`(x) = x+ δ`(x), with δ` solving the equation:

δ`(x) = −∆t
2
(
µ(x) + µ(x+ δ`(x))

)
+
√

3∆tσe`.
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Expanding the term u(x+ δ`(x)), we obtain therefore

δ`(x) = −∆t
2
(
µ(x) + µ(x) + δ`µ′(x) +O

(
(δ`)2

))
+
√

3∆tσe`,

and hence,

δ`(x)
(

1 + ∆t
2 µ′(x)

)
= −∆t µ(x) +

√
3∆tσe` +O

(
∆t(δ`)2

)
(note that, here and in what follows, assumption (H2) ensures that all the
remainder terms of the form O(·) are smooth and uniformly bounded wrt x).
Dividing now by 1 + ∆t µ′/2, and using the fact that δ` = O(

√
∆t), we get, for

∆t→ 0,
y`(x) = x−∆t µ(x) +

√
3∆tσe` +O

(
∆t3/2

)
. (2.48)

Due to the term
√

3∆tσe`, the form of (2.48) does not coincide with that used
in [53] for the points y`(x). However, for a generic couple of points x1, x2 ∈ R,
when considering differences y`(x1)− y`(x2) this additional term is cancelled, so
that

y`(x1)− y`(x2) = (x1 − x2)−∆t(µ(x1)− µ(x2)) +O
(
|x1 − x2|∆t3/2

)
= (x1 − x2)−∆t µ′(ξ)(x1 − x2) +O

(
|x1 − x2|∆t3/2

)
,

for a suitable point ξ ∈ [min(x1, x2),max(x1, x2)] (note that the remainder term
may be written in the form O(|x1−x2|∆t3/2), since it comes from the difference
of two remainders which have a smooth dependence on x). As a consequence,
the form (2.48) still satisfies the relevant properties used in the proof of (2.47).
In particular, using the triangle inequality in the form of a difference, we get

|y`(x1)− y`(x2)| ≥ |x1 − x2| −∆t‖µ′‖∞|x1 − x2|+O
(
|x1 − x2|∆t3/2

)
.

Therefore, the condition [53, Lemma 3]

|y`(x1)− y`(x2)| ≥ 1
2 |x1 − x2|

is satisfied as soon as

∆t‖µ′‖∞ +O
(
∆t3/2

)
<

1
2 .

On the other hand, we have

|y`(x1)− (x1 − x2 + y`(x2))| ≤ ∆t‖µ′‖∞|x1 − x2|+O
(
|x1 − x2|∆t3/2

)
≤ ∆t

(
‖µ′‖∞ +O

(
∆t1/2

))
|x1 − x2|,

which implies, for ∆t small enough, the condition [53, Theorem 4]

|y`(x1)− (x1 − x2 + y`(x2))| ≤ KX |x1 − x2|∆t,

for a suitable positive constant KX . Then, a careful replica of the arguments
used in [53] provides the estimate (2.47).
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For a formal definition of the basis functions ψj in the case of symmetric
Lagrange and spline interpolation, we refer the reader to [53], [54]. While these
two cases allow for a complete theory, at least in one space dimension, in the
numerical tests with unstructured grids we will also use P2 interpolants, for
which a first attempt of stability analysis in presented in [55].

2.4.3 Convergence

We now present a convergence result in the discrete 2-norm.

Theorem 60. Assume (H0)–(H3), and, in addition, that (2.47) is satisfied.
Let u(t, x) be the classical solution to (2.33), and uk be the solution to (2.34).
Then, for any k such that tk ∈ [0, T ] and for (∆t,∆x)→ 0,

‖u(tk)− uk‖2 ≤ KT

(
∆t2 + ∆xq

∆t

)
,

where KT is positive constant depending on the final time T .

Proof. While a mere convergence proof could be carried out with weaker regular-
ity assumptions, we will focus here on the error estimate above, which requires
the regularity assumptions (H0)–(H3). Define the vectors γk and εk, so that
γk,i = u(tk, xi), and εk = γk − uk. Then, by Proposition 58, we get

γk+1 −
∆t
2 f (γk+1) =

∑
`

α`

[
(B`)kγk + ∆t

2 f
(
(B`)kγk

)]
+O(∆t3 + ∆xq),

(2.49)
where the matrices (B`)k (which now represent the interpolation of uk at the
points y`k,i) have elements (b`ij)k defined by

(b`ij)k = βj(y`k,i).

Subtracting (2.34) from (2.49), using the Lipschitz continuity of f and the
triangle inequality, we obtain from the left-hand side:∥∥∥∥γk+1 −

∆t
2 f (γk+1)− uk+1 + ∆t

2 f (uk+1)
∥∥∥∥

2
≥
(

1− Lf∆t
2

)
‖εk+1‖2 .

Taking into account that
∑
` α` = 1, along with the bound (2.47), we also have

from the right-hand side:∥∥∥∥γk+1 −
∆t
2 f (γk+1)− uk+1 + ∆t

2 f (uk+1)
∥∥∥∥

2

≤
(

1 + Lf∆t
2

)
(1 +KB∆t) ‖εk‖2 +O(∆t3 + ∆xq).

Therefore, it turns out that(
1− Lf∆t

2

)
‖εk+1‖2 ≤

(
1 + Lf∆t

2

)
(1+KB∆t) ‖εk‖2+O(∆t3+∆xq). (2.50)



50
2. Second order fully semi-Lagrangian discretizations of

advection–diffusion–reaction systems

Now, for ∆t small enough to have 1 − Lf∆t/2 > C > 0, we have that there
exists a constant KT > 0 such that

1 + Lf∆t
2

1− Lf∆t
2

(1 +KB∆t) ≤ 1 +KT∆t,

and hence, using this bound in (2.50),

‖εk+1‖2 ≤ (1 +KT∆t) ‖εk‖2 +O(∆t3 + ∆xq), (2.51)

which, by standard arguments, implies that, for any k such that tk ∈ [0, T ],

‖εk‖2 ≤ KT

(
∆t2 + ∆xq

∆t

)
.

2.5 Boundary conditions
The treatment of Dirichlet boundary conditions (BCs) for this class of semi-
Lagrangian methods has been considered in [86], where two methods are proposed.
One approach has first order of consistency, but it does not seem possible
to generalize it to multiple dimensions. The second approach has order of
consistency 1/2. More recently, in [19], an easier treatment has been proposed
for the scheme SL1 with time-independent Dirichlet boundary condition, again
with order of consistency 1/2. This approach has been extended in [16] to
unstructured meshes.

We propose here a new approach to obtain second order consistency for the
scheme SL2 with Dirichlet boundary conditions. This technique is based on the
idea of using extrapolation to reconstruct the solution at feet of characteristics
falling outside O, much in the spirit of the so-called ghost-point techniques, see
e.g. [78]. We stress the fact that, while the emphasis in our presentation is on
the treatment of BCs for the SL approximation of diffusive problem, the same
technique and analysis also hold for the approximation of the pure advection
problem, for which accurate BCs for SL methods are by no means easy to derive.

2.5.1 Construction of the extrapolation grid

In addition to the standard mesh G∆x = {xi, xi ∈ O}, on which the numerical
solution is computed, we consider a second mesh Gh = {ξi, ξi ∈ O}, used only
for extrapolation, formed by a single layer of elements having their external
side along the boundary of O. This second mesh is constructed with a size
parameter h ∼

√
∆t, and the degrees of freedom are chosen in order to allow a

second-order interpolation. We point out that, as we will soon prove, stability
reasons force the parameter h to be at least of the same order of magnitude
of the maximum distance of outgoing characteristics form O. This prevents in
general from performing extrapolation via the same mesh used for interpolating
at interior points.
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Figure 2.1. Unstructured computational mesh (blue triangular elements) together
with boundary mesh Gh (black rectangular elements and red asterisks nodes)

In Fig. 2.1 we show, as an example, a square domain O = (−1, 1)× (−1, 1),
for which the standard mesh G∆x is formed by the blue triangular elements
and the mesh Gh is formed by the black rectangular elements. Note that, in
Fig. 2.1, the elements used for the extrapolation overlap at the corners, but
this does not preclude the construction of a stable extrapolation. The asterisks
in red denote the nodes of Gh, according to the standard Q2 element. The
values of the numerical solution on the nodes ξi are obtained by interpolation at
internal nodes, and by the Dirichlet boundary condition if the nodes lie along
the boundary ∂O.

We then denote by T∆x a given triangulation, with G∆x the set of the vertices
of the elementsK ∈ T∆x and define the polygonal domainO∆x := ∪K∈τ∆xK ⊂ O.
If, for some i and `, y`k,i /∈ O∆x, then its projection P (y`k,i) onto O∆x is computed,
defined as the point in O∆x at minimum distance from y`k,i. The value of the
numerical solution uk(y`k,i) is then approximated by a quadratic extrapolation
operator Ψ2. This operator is constructed via the Q2 interpolant associated to
the element of Gh to which the projection P (y`k,i) belongs:

uk(y`k,i) ' Ψ2[ûk](y`k,i),

where ûk corresponds to

ûk(ξi) =
{
I[uk](ξi) if ξi ∈ O,
b(tk, ξi) if ξi ∈ ∂O.

In the case of non-convex domain, the projection may not be unique and we
consider as P (y`k,i) the closest projection point to the starting grid node xi with
respect the euclidean distance. The method can be extended to more general
domains, by considering triangular elements for Gh. In what follows, we provide
a simplified analysis for this technique only for the one-dimensional problem,
while we present a numerical validation for more complex situations in Section
2.6.5.
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Figure 2.2. Boundary extrapolation: basic setting

2.5.2 Theoretical analysis

In order to carry out a first theoretical analysis for the extrapolated boundary
conditions, we set the problem in one space dimension, use a constant space step,
and assume that the computational domain is given by the positive half-line, as
in Fig. 2.2. We consider a scheme in the form

uk+1,i = I[uk](y`k,i) xi 6∈ [x0, x0 + ∆ex],
uk+1,i = Ψ[ûk](y`k,i) xi ∈ (x0, x0 + ∆ex],
uk+1,0 = bk+1,

(2.52)

with |bk| ≤Mb, and examine in turn stability and consistency in the treatment
of BCs. The form (2.52) is intended to represent a single term, for a given `, in
(2.45).

Stability We start for simplicity by using both a first-order interpolation
I[c] = I1[c] at internal points, and a first-order extrapolation Ψ[c] = Ψ1[c] at the
boundary, the latter being performed between the boundary node x0 = ξ0 and
an additional node ξ1 = ξ0 + h, which needs not coincide with any grid node.
We also denote by ∆ex the measure of the interval on which nodes has their
respective feet of characteristics falling outside of the computational domain
(and therefore use extrapolated values), so that

∆ex = max
{

∆i = xi − x0 : xi ∈ O, y`k,i /∈ O
}
.

In practice, we will soon show that, for the sake of stability, h must be chosen
as a function of ∆ex. In Fig. 2.2, we have marked in black the nodes used for
extrapolation, in grey the nodes which require extrapolation, and in white all
other nodes.

Consider a generic node xi ∈ (x0, x0 + ∆ex), the corresponding value uk,i of
the numerical solution, and the associated foot of characteristic y`k,i. Define

η =
y`k,i − x0

h

(note that η < 0 if and only if xi ∈ (x0, x0 + ∆ex)). Then, using a first-order
extrapolation, we have:

uk+1,i = Ψ1[uk](y`k,i) = ηI[uk](ξ1) + (1− η)bn,
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so that, taking absolute values in the above expression and using the nonexpan-
sivity of I and the boundedness of bk,

|uk+1,i| ≤ |η|‖uk‖∞ + |1− η|Mb.

Since for all the nodes outside the interval [x0, x0 + ∆ex] the ∞-norm does not
increase, we get

‖uk+1‖∞ ≤ max (‖uk‖∞ , |η|‖uk‖∞ + |1− η|Mb) ,

which leads to a uniform bound for ‖uk‖∞ as soon as |η| < 1, that is, for

h > max
i
|y`k,i − xi|,

where the maximum is taken among the nodes in the interval [x0, x0 + ∆ex].
Note that, in the case of pure advection, we would obtain h = O(∆t), whereas,
in presence of a diffusion, h = O(∆t1/2). In both cases, it is natural to choose h
of the same order of magnitude of ∆ex.

At a closer look, it turns out that the value |η|, which affects the stability of
the extrapolated values of the solution, is nothing but the absolute value of the
Lagrange basis function associated to the node ξ1. To treat a more general case,
we can assume that the extrapolation is of degree Nex, and uses x0 and Nex

more nodes at constant step h; in addition, we do not require the interpolation
I to be L∞-nonexpansive, so that possibly ‖B`‖∞ > 1.

Then, we can prove the following result:

Theorem 61. Consider the scheme (2.52), and let the extrapolation Ψ = ΨNex

be performed with Nex + 1 evenly spaced nodes ξk with step h and with ξ0 = x0.
Assume moreover that the corresponding values of the numerical solution are
computed via a possibly high-order interpolation I[uk]. Then, there exists a
constant C, depending only on Nex and I, such that, for any i for which
y`k,i ∈ (x0 − Ch, x0], the sequence uk,i remains bounded.

Proof. Denote by Lm(x) the Lagrange basis function associated to the extrapo-
lation node ξm. Using the I-interpolated values of the numerical solution at the
nodes ξm, we obtain for the extrapolated values of uk+1,i (second row of (2.52)):

uk+1,i = Ψ[ûk](y`k,i) =
Nex∑
m=0

I[ûk](ξm)Lm(y`k,i)

= bkL0(y`k,i) +
Nex∑
m=1

I[ûk](ξm)Lm(y`k,i).

Following now the same ideas applied above for the first-order case, and taking
into account the possible expansivity of I, we have

‖uk+1‖∞ ≤Mb|L0(zi)|+ ‖B`‖∞‖uk‖∞
Nex∑
m=1
|Lm(y`k,i)|,
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and therefore, in order to have stability of the extrapolated values, we should
require that

‖B`‖∞
Nex∑
m=1
|Lm(y`k,i)| < 1. (2.53)

On the other hand, replacing y`k,i with the variable x and using the fact that
the left-hand side of (2.53) is continuous, since Lm(ξ0) = 0 for all m 6= 0,

Nex∑
m=1
|Lm(ξ0)| = 0.

Then, it follows that

‖B`‖∞
Nex∑
m=1
|Lm(x)| < 1 (2.54)

in a suitable left neighbourhood of ξ0. By similarity arguments, this neighbour-
hood can be written in the form (x0 − Ch, x0] for some constant C depending
only on the degree Nex and on ‖B`‖∞ (that is, on the interpolation I).

As a consequence of the previous theorem, the step h should be chosen to
satisfy the condition

h >
1
C

max
i
|y`k,i − xi|, (2.55)

where i is indexing all the nodes in (x0, x0 + ∆ex]. Note that, for first-order
interpolation and extrapolation, we have already obtained C = 1. Mixing
for example a second-order extrapolation with a first-order interpolation, an
easy computation based on (2.54) would provide C = 1/3. In the numerical
tests, we will use a combination of second-order extrapolation and second-order
interpolation, for which it turns out that C ≈ 0.275.

Consistency In evaluating the accuracy of this technique, we should split
the error in two components – one associated to internal nodes, which has
already been analysed in the previous section, and one related the the treatment
of BCs, which comes into play only in the interval [x0, x0 + ∆ex]. A similar
analysis for the time-discrete case has been carried out in [86, Theorem 4.1] with
probabilistic arguments, and we will not repeat it here. For our purposes, the
central argument of this analysis is that, representing the numerical scheme as
a Markov chain, the expected number of steps spent by the chain in the interval
[x0, x0 + ∆ex] is bounded from above, and therefore the error introduced by the
treatment of BCs does not accumulate. In our case, this means obtaining a
consistency error bounded by the maximum between the internal truncation
error proved in Prop. 58 and the extrapolation error (in which the latter should
also include the error in reconstructing the values ξi). Then, the form of the
truncation error becomes:

T∆(t, x) = O

(
hNex+1 + ∆xq + ∆t2 + ∆xq

∆t

)
= O

(
hNex+1 + ∆t2 + ∆xq

∆t

)
, (2.56)
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where, in the last row, we have kept only the asymptotically relevant terms.
Thus, while the relationship between h and ∆t is set according to the stability
constraint (2.55), the degree Nex should be chosen to preserve the consistency
rate of the scheme. The choice of Nex provides a specific value for the constant
C and ultimately, using (2.55), for h. We obtain then two different situations:

• Purely hyperbolic problems (σ = 0). In this case, according to (2.55), we
have h ∼ ∆t, and therefore

T∆(t, x) = O

(
∆tmin(Nex+1,2) + ∆xq

∆t

)
.

In order to preserve second-order consistency wrt ∆t, it suffices to enforce
BCs with a linear extrapolation.

• Parabolic problems. Here, h ∼ ∆t1/2 and hence

T∆(t, x) = O

(
∆tmin((Nex+1)/2,2) + ∆xq

∆t

)
.

In order to have a second-order scheme, we should therefore apply an
extrapolation of degree three. Surprisingly, we will show in the numerical
tests that an extrapolation of second degree suffices to retain second-order
accuracy. We delay to a future work a deeper analysis of this effect, as
well as of other accuracy issues.

Remark 62. In the numerical tests, we will eventually use a structured grid
with centered cubic Lagrange interpolation, which requires a second frame of
nodes around the cell in which interpolation is performed. Although, in this
situation, interpolation in cells neighbouring the boundary would in principle
be performed in the “unstable” region of the interpolation stencil, we have not
detected any relevant instability in the numerical tests. A complete analysis of
this case is out of the scope of this paper, but we note nevertheless that the idea
that errors generated at the boundary do not accumulate, used for obtaining
the consistency estimate (2.56), also applies to this case, and might provide a
qualitative explanation for the stable behaviour of the scheme.

2.6 Numerical results

A number of numerical experiments have been carried out, in order to assess
the accuracy of the proposed methods on both structured and unstructured
meshes. We start with a simple heat equation, and we increase the level of
complexity on the next problems considering an advection- diffusion equation, a
reaction- diffusione equation, an advection-diffusion-reaction system and finally
an advection-diffusion equation on an non-convex domain.

In Subsections 6.1 and 6.2 , we approximate problems whose analytic solution
is known and this allows to compute the errors and to perform a numerical
convergence analysis. In Subsections 6.3 and 6.4, we compare the numerical
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solutions with approximate solutions, obtained with higher order method. We
define the errors, in the infinity and l2 discrete relative norms, as

E∞ = max
xi∈G∆x

|u(tN , xi)− uNi |/ max
xi∈G∆x

|u(tN , xi)|,

E2 =

 ∑
xi∈G∆x

|u(tN , xi)− uNi |2/
∑

xi∈G∆x

|u(tN , xi)|2
 1

2

,

and we denote by p∞ and p2 the corresponding convergence rates.
In the unstructured case, we have constructed a triangular mesh by the Mat-
lab2019 function initmesh, with a maximum mesh edge of ∆x, and used a P2
space reconstruction. In the structured Cartesian case, the bicubic polynomial
interpolation implemented in the Matlab2019 command interp2, has been used.
Since the goal is to evaluate the accuracy of time discretization, both choices
avoid to hide the time discretization error with the error introduced by a lower
order space reconstruction.

2.6.1 Pure diffusion

In a first, basic test, we consider equation (2.14) in the pure diffusion case, i.e.,
with zero advection and reaction terms, on the square domain O = (−2, 2)×
(−2, 2), with T = 1 and σ2/2 = 0.05. Based on the test case proposed in [95],
we assume a Gaussian initial datum centered in (0, 0), with σG = 0.1, so that
the exact solution in an infinite plane would be

u(t, x, y) = 1
1 + σ2t/σ2

G

exp
{
− x2 + y2

2(σ2
G + σ2t)

}
.

For this test case, we only consider structured meshes with constant steps
∆x = 4/N .

Following [18], we consider different time step values ∆t, which correspond
to different values of the parabolic stability parameter m = ∆tσ2/2∆x2. We
compare method SL1 (2.25) and method SL2, (2.29), and collect the results in
Table 2.1. Notice that, for method SL1, the value θ = 0.52. This corresponds
to a typical procedure in practical applications to realistic problems, see e.g.
[15], [106], in which a value of θ slightly above 1/2 is used to minimize the
amount of numerical dissipation introduced by the time discretization. It can be
observed that the expected convergence rates are recovered. Furthermore, it is
apparent that scheme SL2 yields a substantial accuracy improvement, without an
excessive increase in computational cost. Indeed, the SL2 runs require between
30% and 60% more CPU time, depending on the resolution, while leading to
corresponding error reductions between 140% and 730%. As a comparison, a
standard second order discretization in space coupled to an explicit second order
method in time yields at the finest resolution an error 5 times larger than that
of method SL2 at approximately the same computational cost.
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Resolution Relative error Convergence rates
∆x ∆t m E2 E∞ p2 p∞
0.08 0.1 0.84 3.34 · 10−2 5.10 · 10−2 - -
0.04 0.05 1.6 1.33 · 10−2 2.05 · 10−2 1.33 1.00
0.02 0.025 3.2 6.57 · 10−3 1.03 · 10−2 1.02 0.99

Resolution Relative error Convergence rates
∆x ∆t m E2 E∞ p2 p∞
0.08 0.1 0.84 2.66 · 10−3 4.76 · 10−3 - -
0.04 0.5 1.6 4.89 · 10−4 8.24 · 10−4 2.44 2.53
0.02 0.025 3.2 8.89 · 10−5 1.48 · 10−4 2.46 2.48

Table 2.1. Errors for the pure diffusion test, first order method SL1 (upper) and
second order method SL2 (lower) on a structured mesh.

2.6.2 Solid body rotation

Next, we consider the advection–diffusion equation (2.14) with coefficients
µ = (−ωy, ωx), ω = 2π, σ2/2 = 0.05 and f = 0 on the square domain O =
(−2, 2)× (−2, 2) and T = 1. Following [95], we assume a Gaussian initial datum
centered at (x0, y0) = (1, 0) with σG = 0.05, so that the exact solution in an
infinite plane would be

u(t, x, y) = 1
1 + σ2t/σ2

G

exp
{
−(x− x(t))2 + (y − y(t))2

2(σ2
G + σ2t)

}
, (2.57)

where x(t) = x0 cosωt− y0 sinωt, y(t) = x0 sinωt− y0 cosωt. We first consider
structured meshes with constant steps ∆x = 4/N . We consider again values of
∆t corresponding to different parabolic stability parameters m, as well as to
different Courant number λ = ∆tmax |µ|/∆x.

In the structured case, we compare method SL1, (2.25), again with θ = 0.52,
and Euler substepping as in (2.31), the decoupled variant SL2s of method (2.29)
with Heun substepping, and method SL2 (2.29) with the fully coupling (2.28).
The results are reported in Table 2.2, in which convergence rates are computed
with respect to the values in the first row. Furthermore, the convergence rate
estimation for the values in the last row takes into account that the time step has
been reduced by a factor 4. It can be observed that the expected convergence
rates with respect to the time discretization error are recovered, in the constant
∆x, constant C or constant m convergence studies. It can also be observed that
the decoupled variant SL2s, in spite of the loss of second order convergence, does
indeed improve the results with respect to the SL1 method and is competitive
with the full second order method SL2. As a comparison, a standard centered
finite difference, second order discretization in space coupled to an explicit
second order method in time yields at the finest resolution an error analogous
to that of method SL2 but requires approximately three times its CPU time.

In the unstructured case, the quadratic polynomial interpolation naturally
associated to P2 finite elements was employed and only the SL2s and SL2
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Resolution Relative error Convergence rates
∆x ∆t λ m E2 E∞ p2 p∞
0.04 0.05 16 1.62 0.15 0.16 - -
0.04 0.025 8 0.82 7.71 · 10−2 8.13 · 10−2 0.96 0.98
0.02 0.025 16 3.2 7.71 · 10−2 8.13 · 10−2 0.96 0.98
0.02 0.0125 8 1.6 3.92 · 10−2 4.13 · 10−2 0.97 0.97

Resolution Relative error Convergence rates
∆x ∆t λ m E2 E∞ p2 p∞
0.04 0.05 16 1.62 7.65 · 10−2 7.95 · 10−2 - -
0.04 0.025 8 0.82 3.89 · 10−2 4.02 · 10−2 0.98 0.98
0.02 0.025 16 3.2 3.89 · 10−2 4.02 · 10−2 0.98 0.98
0.02 0.0125 8 1.6 1.96 · 10−2 2.02 · 10−2 0.98 0.99

Resolution Relative error Convergence rates
∆x ∆t λ m E2 E∞ p2 p∞
0.04 0.05 16 1.62 0.11 0.11 - -
0.04 0.025 8 0.82 2.88 · 10−2 2.66 · 10−2 1.93 2.05
0.02 0.025 16 3.2 2.89 · 10−2 2.67 · 10−2 1.93 2.04
0.02 0.0125 8 1.6 7.35 · 10−3 6.64 · 10−3 1.95 2.03

Table 2.2. Errors for the solid body rotation test, methods SL1 (upper), SL2s (middle)
and SL2 (lower) on a structured mesh.

methods were considered. The triangular mesh used was chosen with maximum
triangle size ∆x approximately equal to the corresponding structured meshes.
The results are reported in Table 2.3. While the behaviour of the SL2 scheme is
entirely analogous to that of the structured mesh case, the SL2s method shows
in this case little error reduction when the spatial resolution is kept fixed.

2.6.3 Reaction–diffusion equations

Following [51], we consider the Allen–Cahn equation

∂tu = σ2

2 ∆u− u3 + u

on the domain O = (0, 1)× (0, 1), with periodic boundary conditions and for
t ∈ [0, 2]. As in [51], we take the initial datum c0(x, y) = sin (2πx) sin (2πy) and
a reference solution is computed by a pseudo-spectral Fourier discretization in
space, see e.g. [27], and a fourth order Runge–Kutta scheme in time with a
very large number of time steps. The results are reported in Table 2.4, for the
values σ2/2 = 0.01 and σ2/2 = 0.05 of the diffusion parameter, respectively.
In this case, only the SL2 scheme on unstructured meshes was considered and
the reference solution was interpolated onto the unstructured mesh nodes using
a higher order interpolation procedure. Both tests show a quadratic order of
convergence.
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Resolution Relative error Convergence rates
∆x ∆t λ m E2 E∞ p2 p∞
0.04 0.05 16 1.62 2.39 · 10−2 2.25 · 10−2 - -
0.04 0.025 8 0.82 2.72 · 10−2 2.84 · 10−2 0.19 0.34
0.02 0.025 16 3.2 7.20 · 10−3 6.32 · 10−3 1.73 1.83
0.02 0.0125 8 1.6 2.48 · 10−3 2.59 · 10−3 3.46 3.45

Resolution Relative error Convergence rates
∆x ∆t λ m E2 E∞ p2 p∞
0.04 0.05 16 1.62 0.129 0.139 - -
0.04 0.025 8 0.82 4.02 · 10−2 4.42 · 10−2 1.68 1.65
0.02 0.025 16 3.2 2.88 · 10−2 2.56 · 10−2 2.16 2.44
0.02 0.0125 8 1.6 7.70 · 10−3 8.08 · 10−3 2.38 2.45

Table 2.3. Errors for the solid body rotation test, methods SL2s (upper) and SL2
(lower) on an unstructured mesh.

Resolution Relative error Convergence rates
∆x ∆t m E2 E∞ p2 p∞
0.04 0.1 0.62 1.10 · 10−3 1.31 · 10−3 - -
0.02 0.05 1.25 2.72 · 10−4 2.98 · 10−4 2.02 2.14
0.01 0.025 2.5 6.53 · 10−5 7.06 · 10−5 2.06 2.08

Resolution Relative error Convergence rates
∆x ∆t m E2 E∞ p2 p∞
0.04 0.1 0.62 2.82 · 10−2 4.01 · 10−2 - -
0.02 0.05 1.25 7.13 · 10−3 8.47 · 10−3 1.98 2.24
0.01 0.025 2.5 1.97 · 10−3 2.20 · 10−3 1.86 1.94

Table 2.4. Error for the Allen–Cahn test with σ2/2 = 0.01 (upper) and σ2/2 = 0.05
(lower), second order method SL2 on an unstructured mesh.
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2.6.4 Advection–diffusion–reaction systems

We consider in this case a set of four coupled advection–diffusion–reaction
equations of the form (2.21)

∂uk
∂t

+ 〈µ,Duk〉 −
σ2

2 ∆uk = fk(u1, . . . , u4) k = 1, . . . , 4 (2.58)

on the square domain O = (−5, 5)× (−5, 5) and on the time interval t ∈ [0, 5].
The advection field is given by coefficients µ = (−ωy, ωx), ω = 2π/10, while the
diffusion coefficient is set as σ2/2 = 0.01. The reaction terms are given by

f1 = (u1 − u1u2)− (u1 − u3)/5
f2 = −2(u2 − u1u2)− (u2 − u4)/5
f3 = 2(u3 − u3u4)
f4 = −4(u4 − u3u4),

which represent two coupled Lotka–Volterra prey-predator systems. As initial
datum for u1, u3, the function

u0(x, y) =


cos (2π[(x+ 2.5)2 + y2)] for (x+ 2.5)2 + y2 ≤ 1

4

0 for (x+ 2.5)2 + y2 > 1
4

was considered, while the initial datum for u2, u4, was taken to be equal to
3u0. In this test, only a structured mesh was considered with constant step
∆x = 1/20. A reference solution is computed by a pseudo-spectral Fourier
discretization in space and a fourth order Runge–Kutta scheme in time, using
a very large number of time steps. The reference solution is reported for two
sample components in Figure 2.3, while the absolute error distributions obtained
for the same components with the second order method SL2 (2.29) using cubic
interpolation, using a timestep corresponding to λ ≈ 7 and m ≈ 1/2, are shown
in Figure 2.4. As a reference, the errors for a second order finite difference
approximation of (2.58) using a second order Runge–Kutta scheme in time with
a time step 20 times smaller are shown in Figure 2.5, while the errors obtained
using a fourth order finite difference approximation for the advection term in
(2.58) with a third order Runge–Kutta scheme in time are displayed in Figure
2.6, again computed with a time step 20 times smaller than that used for the
SL2 method. It can be seen that the SL2 method allows to achieve errors of the
same order of magnitude as those of the third order Runge–Kutta in time, while
allowing for a much larger time step without solving large algebraic systems.

2.6.5 Advection–diffusion equation, nonhomogeneous boundary
conditions

In this last set of numerical experiments, we consider nonhomogeneous, possibly
time-dependent Dirichlet boundary conditions in four cases: pure diffusion,
constant advection–diffusion, solid body rotation with diffusion and advection–
diffusion on a nonconvex domain. In all these tests, we have used the SL2
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Figure 2.3. Reference solutions for problem (2.58), a) component u3, b) component
u4 at time T = 5.
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Figure 2.4. Absolute errors of second order SL2 method for problem (2.58), a)
component u3, b) component u4 at time T = 5.
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Figure 2.5. Absolute errors of second order finite difference method for problem (2.58),
a) component u3, b) component u4 at time T = 5.
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Figure 2.6. Absolute errors of fourth order finite difference method for problem (2.58),
a) component u3, b) component u4 at time T = 5.

Resolution Relative error Convergence rates
∆x ∆t m h E2 E∞ p2 p∞
0.04 0.05 1.56 0.5 4.70 · 10−3 1.39 · 10−2 - -
0.04 0.025 0.78 0.5 3.18 · 10−3 1.06 · 10−2 - -
0.02 0.025 3.12 0.33 3.71 · 10−4 1.01 · 10−3 3.66 3.78
0.02 0.0125 1.56 0.33 4.35 · 10−4 9.57 · 10−4 2.87 3.47

Table 2.5. Errors and convergence rates for the pure diffusion problem with nonhomo-
geneous Dirichlet conditions, SL2 method, unstructured mesh

Resolution Relative error Conv. rates
∆x ∆t λ m h E2 E∞ p2 p∞
0.04 0.05 1.25 1.56 0.5 7.35 · 10−3 1.18 · 10−2 - -
0.04 0.025 0.625 0.78 0.5 8.35 · 10−3 1.32 · 10−2 - -
0.02 0.025 1.25 3.12 0.33 3.76 · 10−4 7.59 · 10−4 4.29 3.96
0.02 0.0125 0.625 1.56 0.33 2.64 · 10−4 5.58 · 10−4 4.98 4.56

Table 2.6. Errors and convergence rates for the advection–diffusion problem with
nonhomogeneous Dirichlet conditions, SL2 method, unstructured mesh.

scheme on an unstructured mesh. In the first three cases, we consider O =
(−1, 1) × (−1, 1), final time T = 1 and an initial condition in the form of a
Gaussian centered at (x0, y0) = (0.5, 0), with σG = 0.1. In Fig. 2.1, we show the
space meshes G∆x and Gh corresponding to the steps ∆x = 0.04, h = 0.5, which
were used to compute the results in the first two rows of Tables 2.5-2.7. In order
to have a reference solution to compare with, we compute the exact solution on
the whole of R2 and enforce its values at the boundary as boundary conditions,
so that b(t, x, y) = u(t, x, y) for (x, y) ∈ ∂O, t ∈ [0, T ]. For all the three cases,
we have set σ2/2 = 0.05 and T = 1. In the second and third test, the advection
field has been chosen as µ = (1, 0), and µ = (−2πy, 2πx), respectively. Tables
2.5-2.7 report the numerical errors obtained by the SL2 scheme in these tests,
showing in all cases at least a quadratic convergence.

We finally consider the advection–diffusion equation with σ2/2 = 0.001, on
the domain O = ([0, 1]× [0, 0.4])\Br0 (x0, y0), where Br0 (x0, y0) denotes a circle
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Resolution Relative error Conv. rates
∆x ∆t λ m h E2 E∞ p2 p∞
0.04 0.05 7.85 1.56 0.5 5.62 · 10−2 6.09 · 10−2 - -
0.04 0.025 3.92 0.78 0.5 1.49 · 10−2 1.60 · 10−2 - -
0.02 0.025 7.85 3.12 0.33 1.49 · 10−2 8.98 · 10−2 1.91 -
0.02 0.0125 3.92 1.56 0.33 3.43 · 10−3 3.61 · 10−3 2.12 2.15

Table 2.7. Errors and convergence rates for the solid body rotation problem with
nonhomogeneous Dirichlet conditions, SL2 method, unstructured mesh.

Figure 2.7. Unstructured mesh for the non-convex problem

with radius r0 = 0.05 centered in (x0, y0) = (0.1, 0.2). The initial datum is
u0 (x, y) = 0 and the boundary condition

b (t, x, y) =


y (0.4− y) 4

0.42 (x, y) ∈ {0} × [0, 0.4] , t ∈ [0, T ]
1 (x, y) ∈ ∂Br (x0) , t ∈ [0, T ]
0 otherwise.

The velocity field µ (x, y) is given by

µ (x, y) =
(
µ0 + µ0r

3
0

2r3 −
3µ0r

3
0 (x− x0)2

2r5 ,−3r3
0µ0 (x− x0) (y − y0)

2r5

)
,

where we set µ0 = 0.2 and r2 = (x− x0)2 + (y − y0)2. In Fig. 2.7, we show
the domain O, discretized using a Delaunay mesh G∆x with ∆x = 0.1, refined
around the circular hole. In Fig. 2.8, we show the numerical solution computed
with SL2 with time step ∆t = 0.005 for time t = 0.5, 1, 2, 3. The nonhomogeneus
boundary condition are computed by extrapolation with an extra grid Gh with
h = 1.5

√
∆t. In this case, the additional mesh Gh has been built around the

circular hole, as well as along the external rectangular boundary. Note that, even
though the wide stencil of the scheme might cause problems with discontinuous
initial/boundary data (see the discussion in [52]), the boundary condition is
smoothly propagated in the interior of the domain.
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Figure 2.8. Numerical solution at time t = 0.5, 1, 2, 3
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2.7 Conclusions
A family of fully semi-Lagrangian approaches for the discretization of advection–
diffusion–reaction systems has been proposed, which extend the methods outlined
in [18], [19] to full second order accuracy. A numerical treatment of Dirichlet
boundary condition, also with second order accuracy, has been proposed. The sta-
bility and convergence of the basic second order method have been analyzed.The
proposed methods have been validated on a number of classical benchmarks, on
both structured and unstructured meshes. Numerical results show that these
methods yield good quantitative agreement with reference solutions, while being
superior in efficiency to standard implicit methods and to approaches in which
the SL method is only used for the advection term. In future developments,
the proposed method will be extended to higher order discretizations along
the lines of [105] and will be applied to the development of second order fully
semi-Lagrangian methods for the Navier-Stokes equations along the lines of [16],
[19]. Efficiency improvement for the unstructured implementation of the scheme
is currently being studied in [25].
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Chapter 3

A semi-Lagrangian scheme for
Hamilton-Jacobi-Bellman
equations with oblique
boundary conditions

We investigate in this work a fully-discrete semi-Lagrangian approximation of
second order possibly degenerate Hamilton-Jacobi-Bellman (HJB) equations on
a bounded domain O ⊂ Rd with oblique boundary conditions. These equations
appear naturally in the study of optimal control of diffusion processes with
oblique reflection at the boundary of the domain.

The proposed scheme is shown to satisfy a consistency type property, it
is monotone and stable. Our main result is the convergence of the numerical
solution towards the unique viscosity solution of the HJB equation. The conver-
gence result holds under the same asymptotic relation between the time and
space discretization steps as in the classical setting for semi-Lagrangian schemes
on O = Rd. We present some numerical results that confirm the numerical
convergence of the scheme.

In this chapter we deal with the numerical approximation of the following
parabolic Hamilton-Jacobi-Bellman (HJB) equation

∂tu+H
(
t, x,Du,D2u

)
= 0 in (0, T ]×O,

L(t, x,Du) = 0 on (0, T ]× ∂O,

u(0, x) = Ψ(x) in O.

(3.1)

In the system above, T > 0, O ⊂ Rd is a nonempty smooth bounded open set
and H and L are nonlinear functions having the form

H(t, x, p,M) = sup
a∈A

{
−1

2 Tr
(
σ(t, x, a)σ(t, x, a)>M

)
− 〈µ(t, x, a), p〉−

f(t, x, a)} , (3.2)
L(t, x, p) = sup

b∈B
{〈γ(x, b), p〉 − g(t, x, b)} , (3.3)
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where A ⊂ RNA and B ⊂ RNB are nonempty compact sets, σ : [0, T ]×O×A→
RN×r, with 1 ≤ r ≤ N , µ : [0, T ] × O × A → Rd, f : [0, T ] × O × A → R,
γ : ∂O × V → Rd, with V ⊆ RNB being an open set containing B, g : [0, T ] ×
∂O ×B → R, and Ψ : O → R.

If A = {a} and B = {b}, for some a ∈ RNA and b ∈ RNB , and γ(x, b) =
n(x), with n(x) being the unit outward normal vector to O at x ∈ ∂O, then
(3.1) reduces to a standard linear parabolic equation with Neumann boundary
conditions. In the general case, and after a simple change of the time variable
in order to write (3.1) in backward form, the HJB equation (3.1) appears in the
study of optimal control of diffusion processes with controlled reflection on the
boundary ∂O (see e.g. [81] for the first order case, i.e. σ ≡ 0, and [80, 22] for
the general case). Since the HJB equation (3.1) is possibly degenerate parabolic,
one cannot expect the existence of classical solutions and we have to rely on the
notion of viscosity solution (see e.g. [43]). Moreover, as it has been noticed in
[79, 81], in general the boundary condition in (3.1) does not hold in the pointwise
sense and we have to consider a suitable weak formulation of it. We refer the
reader to [81, 8] and [43, 6, 7, 68, 23], respectively, for well-posedness results for
HJB equations with oblique boundary condition in the first and second order
cases.

3.1 Preliminaries

As mentioned in the introduction, it will be simpler to describe our approximation
scheme when (3.1) is written in backward form. This can be done by a simple
change of the time variable and a possible modification of the time dependency
of H. Let us set OT := [0, T )×O and OT = [0, T ]×O. We consider the HJB
equation

−∂tu+H
(
t, x,Du,D2u

)
= 0 in OT ,

L(t, x,Du) = 0 on [0, T )× ∂O,

u(T, x) = Ψ(x) in O,

(HJB)

where H and L are respectively given by (3.2) and (3.3).
For notational convenience, throughout this article, we will write γb(x) =

γ(x, b) for all x ∈ ∂O and b ∈ B. Our standing assumptions for the data in
(HJB) are the following.

(H1) O ⊆ Rd (1 ≤ N ≤ 3) is a nonemtpy, bounded domain with boundary ∂O
of class C3.

(H2) The functions σ, µ, f , g and Ψ are continuous. Moreover, for every a ∈ A,
the functions σ(·, ·, a) and µ(·, ·, a) are Lipschitz continuous, with Lipschitz
constants independent of a ∈ A.

(H3) The function γ is of class C1. We also assume that

(∀ (x, b) ∈ ∂O ×B) |γb(x)| = 1 and 〈n(x), γb(x)〉 > 0,
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where, for every x ∈ ∂O, we recall that n(x) denotes the unit outward
normal vector to O at x.

We now recall the notion of viscosity solution to (HJB) (see [6]). We need
first to introduce some notation. Given a bounded function z : (0, T )×O → R,
its upper semicontinuous (resp. lower semicontinuous) envelope is defined by

(∀ (t, x) ∈ OT ) z∗(t, x) := lim sup
(s,y)∈OT ,
(s,y)→(t,x)

z(s, y)

resp. z∗(t, x) := lim inf
(s,y)∈OT ,
(s,y)→(t,x)

z(s, y)

 .
(3.4)

Definition 63. [Viscosity solution] (i) An upper semicontinuous function
u1 : OT → R is a viscosity subsolution to (HJB) if for any (t, x) ∈ OT and
φ ∈ C2(OT ) such that u1 − φ has a local maximum at (t, x), we have

− ∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)) ≤ 0, (3.5)

if (t, x) ∈ OT ,

min
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), L(t, x,Dφ(t, x))

}
≤ 0, (3.6)

if (t, x) ∈ [0, T )× ∂O,
u1(t, x) ≤ Ψ(x), (3.7)

if (t, x) ∈ {T} × O.
(ii) A lower semicontinuous function u2 : OT → R is a viscosity supersolution
to (HJB) if for any (t, x) ∈ OT and φ ∈ C2(OT ) such that u2 − φ has a local
minimum at (t, x), we have

− ∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)) ≥ 0, (3.8)

if (t, x) ∈ OT ,

max
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), L(t, x,Dφ(t, x))

}
≥ 0, (3.9)

if (t, x) ∈ [0, T )× ∂O,
u2(t, x) ≥ Ψ(x), (3.10)

if
(t, x) ∈ {T} × O

. (iii) A bounded function u : OT → R is a viscosity solution to (HJB) if u∗ and
u∗, defined in (3.4), are, respectively, sub- and supersolutions to (HJB).

Remark 64. As shown in [23, Proposition 6], relation (3.7) can be replaced by

min
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), u1(t, x)−Ψ(x)

}
≤ 0, (3.11)

if (t, x) ∈ {T} × O, and

min
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), L(t, x,Dφ(t, x)),

u1(t, x)−Ψ(x)} ≤ 0,
(3.12)
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if (t, x) ∈ {T} × ∂O. Similarly, condition (3.10) can be replaced by

max
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), u2(t, x)−Ψ(x)

}
≥ 0, (3.13)

if (t, x) ∈ {T} × O, and

max
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), L(t, x,Dφ(t, x)),

u2(t, x)−Ψ(x)} ≥ 0,
(3.14)

if (t, x) ∈ {T} × ∂O.

The following well-posedness result for (HJB) has been shown in [6, Theorem
II.1] (see also [22]).

Theorem 65. Assume (H1)-(H3). Then there exists a unique viscosity solution
u ∈ C(O) to (HJB).

Remark 66. (i) [Comparison principle and uniqueness] The existence of at
most one solution to (HJB) follows from the following comparison principle
(see [6, Theorem II.1] and also [22, Proposition 3.4]). If u1 : OT → R is a
bounded viscosity subsolution to (HJB) and u2 : OT → R is a bounded viscosity
supersolution to (HJB), then

u1 ≤ u2 in OT .

(ii) [Existence] Once a comparison principle has been shown, the existence of a
solution to (HJB) follows usually from the existence of sub- and supersolutions to
(HJB) and Perron’s method. In Section 3.4, we construct sub- and supersolutions
to (HJB) as suitable limits of solutions to the approximation scheme that we
present in the next section. Together with the comparison principle, this yields
an alternative existence proof of solutions to (HJB).

An alternative and interesting technique to show the existence of a solution
to (HJB) is to consider a suitable stochastic optimal control problem, with
controlled reflection of the state trajectory at the boundary ∂O, and to show that
the associated value function is a viscosity solution to (HJB). This strategy has
been followed in [22].
(iii) [Continuity] The continuity of the unique viscosity solution to (HJB) follows
directly from the comparison principle and the continuity properties required in
the definition of sub- and supersolutions to (HJB). Notice that, as usual for
parabolic problems with Neumann type boundary conditions, we do not require
any compatibility condition between Ψ and the operator L at the boundary ∂O.

3.2 The fully discrete scheme

We introduce in this section a fully discrete SL scheme that approximates the
unique viscosity solution to (HJB). Throughout this section, we assume that
(H1)-(H3) are fulfilled.
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3.2.1 Discretization of the space domain O

Let us fix ∆x > 0 and consider a polyhedral domain O∆x ⊆ Rd such that
d(O,O∆x) = inf {|x− y| |x ∈ O, y ∈ O∆x} ≤ C(∆x)2, (3.15)

for some C > 0. A construction of such a O∆x can be found in [10, Section
3] when d = 2 or d = 3, which explain the dimension constraint in (H1).
However, the results in the remainder of this article can be extended to d > 3,
provided that a numerical domain O∆x satisfying (3.15) exists. Let T∆x be a
triangulation of O∆x consisting of simplicial finite elements T with vertices in
G∆x = {xi | i ∈ {1, . . . , N∆x}} (for some N∆x ∈ N). We assume that ∆x is the
mesh size, i.e. the maximum of the diameters of T ∈ T∆x, all the vertices on
∂O∆x belong to ∂O, at most one face of each element T ∈ T∆x, with vertices
on ∂O∆x, intersects ∂O∆x, and T∆x satisfies the following regularity condition:
there exists δ ∈ (0, 1), independent of ∆x, such that each T ∈ T∆x is contained
in a ball of radius ∆x/δ and contains a ball of radius δ∆x. As in [46], we
introduce an auxiliary exact triangulation T̂∆x of O with vertices in G∆x. The
boundary elements of T̂∆x are allowed to be curved and we have

O =
⋃

T̂∈T∆x

T̂.

Denoting by pT the projection on T ∈ T∆x, the projection p∆x : O → O∆x∩O
is defined by
p∆x(x) = pT(x) if x ∈ T̂ ∈ T̂∆x and T ∈ T∆x has the same vertices than T̂.

Set I∆x = {1, . . . , N∆x} and denote by {β1
i | i ∈ I∆x} the linear finite element

P1 basis function on T∆x. More precisely, for each i ∈ I∆x, ψi : O∆x → R is a
continuous function, affine on each T ∈ T∆x, 0 ≤ β1

i ≤ 1, β1
i (xi) = 1, β1

i (xj) = 0
for all i, j ∈ I∆x with i 6= j, and

∑N∆x
i=1 β1

i (x) = 1 for all x ∈ O∆x. For any
φ : G∆x → R its linear interpolation I[φ] on the mesh T̂∆x is defined by

I [φ] (x) :=
N∆x∑
i=1

β1
i (p∆x(x))φ(xi) for all x ∈ O. (3.16)

Lemma 67. Let φ ∈ C2(O) and denote by φ|G∆x its restriction to G∆x. Then
there exists a constant Cφ > 0, independent of ∆x, such that

sup
x∈O

∣∣φ(x)− I [φ|G∆x ] (x)
∣∣ ≤ Cφ(∆x)2. (3.17)

Proof. Let x ∈ O and let T ∈ T∆x and T̂ ∈ T̂∆x be two elements having the
same vertices and such that x ∈ T̂. By the triangular inequality

|φ(x)− I [φ|G∆x ] (x)| ≤ |φ(x)− φ(pT(x))|+ |φ(pT(x))− I [φ|G∆x ] (x)|.
Using that φ is Lipschitz, we deduce from (3.15) the existence of C1 > 0,
independent of ∆x and x ∈ O, such that |φ(x) − φ(pT(x))| ≤ C1(∆x)2. In
addition, by standard error estimates for P1 interpolation (see for instance
[39]) and (3.16), there exists C2 > 0, independent of ∆x and x ∈ O, such that
|φ(pT(x)) − I [φ|G∆x ] (x)| ≤ C2(∆x)2. Relation (3.17) follows from these two
estimates.
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Pixel info: (X, Y)  [R G B]

Figure 3.1. Reflection: reflected characteristic ỹsk,i(a) (red square) starting from xi
(black circle), which exits from O and arrives in ysk,i(a) (black square). The red
segment represents the oblique direction γb and the black circle the projected point
pγb(ysk,i(a)).

3.2.2 A semi-Lagrangian scheme

Let ∆t > 0, set N∆t := bT/∆tc, I∆t := {0, . . . , N∆t} and I∗∆t := I∆t\{NT }. We
define the time grid G∆t := {tk | tk = k∆t, k ∈ I∆t}. Given (k, i) ∈ I∗∆t × I∆x,
a ∈ A, and ` = 1, . . . , r, the characteristics are approximated using a forward
weak Euler method as follows. yk is approximated as

yk := x+ ∆tµ(x) +
√
r∆tσZ

where σ ∈ Rd×r and Z is a vector of r independent random variables, such that
for ` = 1, . . . , r,

P(Z` = e`) = P(Z` = −e`) = 1
2r .

and
P
(

∪
1≤`1<`2≤r

{Z`1 6= 0} ∩ {Z`2 6= 0}
)

= 0.

Then we get 2r realisation of yk, defined by the following two discrete fluxes

y+,`
k := x+ ∆tµ(tk, x) +

√
r∆tσ`(tk, x),

y−,`k := x+ ∆tµ(tk, x)−
√
r∆tσ`(tk, x),

(3.18)

for ` = 1, . . . , r. Let I = {+,−} × {1, . . . , r} and let c̄ > 0 be a fixed constant.
For any δ > 0 we set

(∂O)δ := {x ∈ Rd | d(x, ∂O) < δ}.

By Proposition 75 in the Appendix, there exist R > 0 and two C1 functions
(∂O)R × B 3 (x, b) 7→ pγb(x) ∈ ∂O and (∂O)R × B 3 (x, b) 7→ dγb(x) ∈ R,
uniquely determined, such that

x = pγb(x) + dγb(x)γb(pγb(x)) for all (x, b) ∈ (∂O)R ×B. (3.19)

Therefore, there exists ∆t > 0 such that for all ∆t ∈ [0,∆t], (k, i) ∈ I∗∆t × I∆x,
a ∈ A, b ∈ B, and s ∈ I, the reflected characteristic

ỹsk,i(a, b) :=
{
ysk,i(a) if ysk,i(a) ∈ O,
pγb(ysk,i(a))− c̄

√
∆tγb(pγb(ysk,i(a))) otherwise

(3.20)
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is well-defined. In Figure 3.1 we illustrate how the reflected characteristic is
computed from the projection pγb(ysk,i(a)) of ysk,i(a) onto ∂O parallel to γb. Let
us also set

d̃sk,i(a, b) :=
{

0 if ysi,k(a) ∈ O,
dγb(ysk,i(a)) + c̄

√
∆t otherwise,

(3.21)

g̃sk,i(a, b) :=

0 if ysk,i(a) ∈ O,
g
(
tk, p

γb
(
ysk,i(a)

)
, b
)

otherwise.
(3.22)

Notice that if ysk,i(a) /∈ O, then (3.19), (3.20), and (3.21) imply that

ỹsk,i(a, b) = ysk,i(a)− d̃sk,i(a, b)γb
(
pγb(ysk,i(a))

)
. (3.23)

For (k, i) ∈ I∗∆t × I∆x and φ : G∆x → R, let us define Sk,i[φ] : A×B → R by

Sk,i[φ](a, b) := 1
2r
∑
s∈I

[
I[φ](ỹsk,i(a, b)) + d̃sk,i(a, b)g̃sk,i(a, b)

]
+ ∆tf(tk, xi, a),

(3.24)
and set

Sk,i[φ] := inf
a∈A, b∈B

Sk,i[φ](a, b). (3.25)

In the remainder of this work, we will consider the following fully discrete
SL scheme to approximate the solution to (HJB).

uk,i = Sk,i
[
uk+1,(·)

]
, for (k, i) ∈ I∗∆t × I∆x,

uN∆t,i = Ψ(xi), for i ∈ I∆x.
(HJBdisc)

3.2.3 Probabilistic interpretation of the scheme

The fully-discrete SL to approximate the solution to (HJB) in the unbounded
case, i.e. O = Rd, has a natural interpretation in terms of a discrete time, finite
state, Markov control process (see e.g. [26, Section 3]). We show below that
a similar interpretation holds for (HJBdisc). The latter will play an important
role in the stability analysis of (HJBdisc) presented in the next section. Given
k ∈ I∗∆t and a ∈ A, b ∈ B, let us define the controlled transition law

pk,i,j(a, b) := 1
2r
∑
s∈I

β1
j (ỹsk,i(a, b)) for all i, j ∈ I∆x. (3.26)

We say that (πk)k∈I∗∆t is a N∆t-policy if for all k ∈ I∗∆t we have πk : G∆x → A×B.
The set of N∆t-policies is denoted by ΠN∆t . Let us fix k ∈ I∗∆t and, for notational
convenience, set Xk = GN∆t−k+1

∆x . Associated to xi ∈ G∆x and π ∈ ΠN∆t , there
exists a probability measure Pk,xi,π on 2Xk (the powerset of Xk) and a Markov
chain {Xm |m = k, . . . , N∆t}, with state space G∆x, such that

Pk,xi,π(Xk = xi) = 1 and Pk,xi,π(Xm+1 = xj | Xm = xi) = pm,i,j(πm(xi)),
(3.27)
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for m = k, . . . , N∆t − 1. Now, consider a family {ξk+1, . . . , ξN∆t} of Rr-
valued independent random variables, which are also independent of {Xm |m =
k, . . . , N∆t}, and with common distribution given by

P(ξm = ±e`) = 1
2r , for m = k + 1, . . . , N∆t and ` = 1, . . . , r,

where e` denotes the `-th canonical vector of Rr. By a slight abuse of notation
(see (3.18)), for m = k, . . . , N∆t − 1, xi ∈ G∆x, and a ∈ A, let us set

ym(xi, a) = xi + ∆tµ(tm, xi, a) +
√
r∆tσ(tm, xi, a)ξm+1. (3.28)

For m = k, . . . , N∆t−1, xi ∈ G∆x, a ∈ A, and b ∈ B, define the random variable

h(tm, xi, a, b) =

 0 if ym(xi, a) ∈ O,(
dγb(ym(xi, a)) + c̄

√
∆t
)
g(tm, pγb(ym(xi, a)), b) otherwise.

(3.29)
For all i ∈ IN∆x and π ∈ ΠN∆t , let us define

Jk,i(π) = EPk,xi,π
(∑N∆t−1

m=k
[
∆tf(tm, Xm, αm) + h(tm, Xm, αm, βm

)]
+Ψ

(
XN∆t

))
,

JN∆t,i(π) = Ψ(xi),

where, for notational convenience, we have denoted, respectively, by αm and
βm the first NA and the last NB coordinates of πm(Xm). Notice that, by
construction and (3.24), we have that

Jk,i(π) = Sk,i[Jk+1,(·)(π)](αk, βk).

Moreover, setting
Ûk,i = infπ∈ΠN∆t

Jk,i(π),
ÛN∆t,i = Ψ(xi),

for all i ∈ G∆x, the dynamic programming principle (see e.g. [65, Theorem
12.1.5]) implies that {Ûk,i | k ∈ I∆t, i ∈ I∆x} satisfies (HJBdisc). Since the latter
has a unique solution, we deduce that Uk,i = Ûk,i for all k ∈ I∆t and i ∈ I∆x.

Remark 68. Scheme (HJBdisc) can thus be interpreted as a Markov chain
discretization of an stochastic control problem with oblique reflection in the
boundary (see e.g. [22]).

3.3 Properties of the fully discrete scheme
In this section, we establish some basic properties of (HJBdisc).

Proposition 69. The following hold:
(i) (Monotonicity) For all u, v : G∆x → R with u ≤ v, we have

Sk,i[u] ≤ Sk,i[v] for k ∈ I∗∆t and i ∈ I∆x.

(ii) (Commutation by constant) For any c ∈ R and u : G∆x → R,

Sk,i[u+ c] = Sk,i[u] + c for k ∈ I∗∆t and i ∈ I∆x.
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Proof. Both assertions follow directly from (3.24) and (HJBdisc).

We show in Proposition 70 below a consistency result for (HJBdisc). For this
purpose, let us set

H(t, x, p,M, a) = −1
2 Tr

(
σ(t, x, a)σ(t, x, a)>M

)
− 〈µ(t, x, a), p〉 − f(t, x, a)

for (t, x, p,M, a) ∈ OT × Rd × Rd×r ×A,
L(t, x, p, b) = 〈γ(x, b), p〉 − g(t, x, b)

for (t, x, p, b) ∈ [0, T ]× ∂O × Rd ×B,

and for all k ∈ I∗∆t, i ∈ I∆x, s ∈ I, q ∈ Rd, a ∈ A, and b ∈ B, define

L̃sk,i(q, a, b) :=

 0 if ysk,i(a) ∈ O,

L
(
tk, p

γb(ysk,i(a)), q, b
)

otherwise.
(3.30)

Proposition 70 (Consistency). Let φ ∈ C3
(
O
)
and denote by φ|G∆x its re-

striction to G∆x. Then the following hold:

(i) For all k ∈ I∗∆t, i ∈ I∆x, a ∈ A, and b ∈ B, we have

Sk,i[φ|G∆x ](a, b)− φ(xi) = −∆tH(tk, xi, Dφ(xi), D2φ(xi), a)

− 1
2r
∑
s∈I

d̃sk,i(a, b)
(
L̃sk,i(Dφ(xi), a, b)−

√
∆tKs

k,i(a, b)
)

+O
(
∆t
√

∆t+ (∆x)2
)
, (3.31)

where the set of constants {Ks
k,i(a, b) | k ∈ I∗∆t, i ∈ I∆x, s ∈ I, a ∈ A, b ∈

B} is bounded, independently of (∆t,∆x).

(ii) For all k ∈ I∗∆t and i ∈ I∆x, we have

Sk,i[φ|G∆x ]− φ(xi) = − sup
a∈A, b∈B

{
∆tH(tk, xi, Dφ(xi), D2φ(xi), a)

+ 1
2r
∑
s∈I

d̃sk,i(a, b)
(
L̃sk,i(Dφ(xi), a, b)−

√
∆tKs

k,i(a, b)
)}

+O
(
∆t
√

∆t+ (∆x)2
)
. (3.32)

Proof. In what follows, we denote by C > 0 a generic constant, which is
independent of k, i, s a, b, ∆t and ∆x. Since assertion (ii) follows directly from
(i), we only show the latter.

For every s ∈ I, (3.18) and (3.21) imply that 0 ≤ d̃sk,i(a, b) ≤ C
√

∆t. Thus,
by (3.18), (3.23), and a second order Taylor expansion of φ around xi, for every
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` = 1, . . . , r, we have

φ
(
ỹ±,`k,i (a, b)

)
= φ (xi) + ∆t〈Dφ(xi), µ(tk, xi, a)〉

+ r∆t
2 〈D

2φ(xi)σ`(tk, xi, a), σ`(tk, xi, a)〉

±
√
r∆t〈Dφ(xi), σ`(tk, xi, a)〉

−d̃±,`k,i (a, b)
〈
Dφ(xi), γ̃±,`k,i (a, b)

〉
+
(
d̃±,`
k,i

(a,b)
)2

2

〈
D2φ(xi)γ̃±,`k,i (a, b), γ̃±,`k,i (a, b)

〉
∓
√
r∆td̃±,`k,i (a, b)

〈
D2φ(xi)γ̃±,`k,i (a, b), σ`(tk, xi, a)

〉
+O

(
∆t
√

∆t
)
,

where, for every s ∈ I,

γ̃sk,i(a, b) :=


0 if ysk,i(a) ∈ O,

γb
(
pγb(ysk,i(a))

)
otherwise.

This implies that

1
2φ
(
ỹ+,`
k,i (a, b)

)
+ 1

2φ
(
ỹ−,`k,i (a, b)

)
= φ(xi) + ∆t 〈Dφ(xi), µ(tk, xi, a)〉

+ r∆t
2

〈
D2φ(xi)σ`(tk, xi, a), σ`(tk, xi, a)

〉
−d̃+,`

k,i (a, b)
(〈
Dφ(xi), γ̃+,`

k,i (a, b)
〉
−
√

∆tK+,`
k,i (a, b)

)
−d̃−,`k,i (a, b)

(〈
Dφ(xi), γ̃−,`k,i (a, b)

〉
−
√

∆tK−,`k,i (a, b)
)

+O
(
∆t
√

∆t
)
,

(3.33)
where

K±,`k,i (a, b) :=
d̃±,`k,i (a, b)

2
√

∆t
〈D2φ(xi)γ̃±,`k,i (a, b), γ̃±,`k,i (a, b)〉

∓
√
r〈D2φ(xi)γ̃±,`k,i (a, b), σ`(tk, xi, a)〉.

Multiplying (3.33) by 1/r and taking the sum over s ∈ I, we obtain

1
2r
∑
s∈I

φ(ỹsk,i(a, b)) = φ(x) + ∆t〈Dφ(xi), µ(tk, xi, a)〉

+∆t
2 Tr

(
σ(tk, xi, a)σ(tk, xi, a)TD2φ(xi)

)
− 1

2r
∑
s∈I

d̃sk,i(a, b)
(〈
Dφ(xi), γ̃sk,i(a, b)

〉
−
√

∆tKs
k,i(a, b)

)
+O

(
∆t
√

∆t
)
,
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which, by Lemma 67, yields
1
2r
∑
s∈I

I[φ|G∆x ](ỹsk,i(a, b)) = φ(x) + ∆t〈Dφ(xi), µ(tk, xi, a)〉

+∆t
2 Tr

(
σ(tk, xi, a)σ(tk, xi, a)TD2φ(xi)

)
− 1

2r
∑
s∈I

d̃sk,i(a, b)
(〈
Dφ(xi), γ̃sk,i(a, b)

〉
−
√

∆tKs
k,i(a, b)

)
+O

(
∆t
√

∆t+ (∆x)2
)
.

The result follows from the previous expression, (3.24), (3.30) and (3.30).

For k ∈ I∗N∆t
and a ∈ A, let us define

(∀ k ∈ I∗N∆t
, ∀ a ∈ A) Γk(a) := {xi ∈ G∆x | ∃ s ∈ I, ysk,i(a) /∈ O}, (3.34)

and recall from Section 3.2.3 that given xi ∈ G∆x and a policy π ∈ ΠN∆t , the
Markov chain {Xm |m = k, . . . , N∆t} is defined by the transition probabilities
(3.27). As in Section 3.2.3, we denote by αm and βm (m = k, . . . , N∆t − 1),
respectively, the first NA and the last NB coordinates of πm(Xm). Finally, given
D ⊂ Rd, we denote by ID the indicator function of D, i.e. ID(x) = 1, if x ∈ O,
and ID(x) = 0, otherwise.

The following technical result will be useful to establish the stability of
(HJBdisc).

Lemma 71. The following holds:

sup
k∈I∗∆t, i∈I

∗
∆x,π∈ΠN∆t

EPk,xi,π

NT−1∑
m=k

IΓm(αm)
(
Xm

) ≤ C√
∆t

, (3.35)

where C > 0 is independent of (∆t,∆x) as long as ∆t is small enough and
(∆x)2/∆t is bounded.

Proof. The argument of the proof is inspired from [83, Lemma 1]. Let ε > 0, set

Dε = {x ∈ O | d(x, ∂O) > ε}, ∂Oε = {x ∈ O | d(x, ∂O) = ε},

Lε = {x ∈ O | d(x, ∂O) ≤ ε},
and define O 3 x 7→ wε(x) = d2 (x,Dε) ∈ R. By Lemma 76(v) in the Appendix,
there exists η > 0 such that wη ∈ C3(O \ ∂Oη) with bounded third order
derivatives on the connected components of O \ ∂Oη. Let us fix this η and, for
notational convenience, let us write w = wη. Let M > 0 and, for any k ∈ I∆t,
define

O 3 x 7→Wk(x) =
{
M(T − tk) + w(x) if k ∈ I∗∆t,
0 if k = N∆t

∈ R. (3.36)

By (3.24), with f ≡ 0 and g ≡ 0, for all a ∈ A and b ∈ B, we have

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) = −M∆t+ Sk,i[w|G∆x ](a, b)− w(xi), (3.37)

= −M∆t+ 1
2r
∑
s∈I

I[w](ỹsk,i(a, b))− w(xi). (3.38)
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Moreover, assumption (H2) implies the existence of C > 0 such that

sup
{
|ysk,i(a)− xi|

∣∣∣∣ k ∈ I∗∆t, i ∈ I∆x, a ∈ A, s ∈ I
}
≤ C
√

∆t. (3.39)

Now, let us fix k ∈ I∗∆t, i ∈ I∆x, a ∈ A, and b ∈ B. We have the following cases.
(i) xi /∈ Γk(a) and d(xi, ∂Oη) ≥ C

√
∆t. The first condition implies that

ysk,i(a) ∈ O, for any s ∈ I, and, hence, (3.20) yields ỹsk,i(a, b) = ysk,i(a). The
condition d(xi, ∂Oη) ≥ C

√
∆t, (3.39), and standard error estimates for P1

interpolation (see for instance [39]), imply that

I[w](ỹsk,i(a, b)) = w(ỹsk,i(a, b)) +O((∆x)2) = w(ysk,i(a)) +O((∆x)2).

Since, by second order Talyor expansion, 1
2r
∑
s∈I w(ysk,i(a))− w(xi) = O(∆t),

(3.38) yields

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) = −M∆t+O
(
∆t+ (∆x)2

)
. (3.40)

(ii) xi /∈ Γk(a) and d(xi, ∂Oη) < C
√

∆t. Condition d(xi, ∂Oη) < C
√

∆t and
(3.39) imply that w(xi) = O(∆t) and, for any s ∈ I, d2(ysk,i(a), ∂Oη) = O(∆t).
Since the cardinality of J := {j ∈ I∆x |ψj(ysk,i(a)) > 0} is independent of ∆x
and, for all j ∈ J , |ysk,i(a)− xj | = O(∆x), we deduce that

I[w](ysk,i(a)) =
∑
j∈J ψj(ysk,i(a))w(xj)

≤
∑
j∈J ψj(ysk,i(a))d2(xj , ∂Oη)

=
∑
j∈J ψj(ysk,i(a))d2(ysk,i(a), ∂Oη) +O((∆x)2)

= O(∆t+ (∆x)2).

Thus, since ỹsk,i(a, b) = ysk,i(a), (3.38) implies that (3.40) still holds.
(iii) xi ∈ Γk(a). Let 0 < δ < η. Since µ and σ are bounded, there exists

∆t > 0, independent of k, i and a, such that

Γk(a) ⊆ Lδ ⊂ Lη, (3.41)

if ∆t ≤ ∆t. By (3.37) and Proposition 70(i), with f ≡ 0 and g ≡ 0, we have

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) =

−M∆t− 1
2r
∑
s∈I

d̃sk,i(a, b)
〈
Dw(xi), γb

(
pγb

(
ysk,i(a)

))〉
+O

(
∆t+ (∆x)2

)
. (3.42)

By Lemma 76(v) in the Appendix, for any x ∈ Lη, we have d (x, ∂Oη) =
η − d(x, ∂O). Thus, Lemma 76(ii) implies that Dd (x, ∂Oη) = n(p∂O(x)), and
hence

Dw(xi) = 2d (xi, ∂Oη)Dd (xi, ∂Oη) = 2d (xi, ∂Oη)n(p∂O(x)). (3.43)
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On the other hand, in view of [63, Proposition 1.1(v)], there exists C > 0 such
that |dγb(xi)| ≤ Cd(xi, ∂O). Thus,

|pγb(xi)− p∂O(xi)| ≤ |pγb(xi)− xi|+ |xi − p∂O(xi)|
= |dγb(xi)|+ d(xi, ∂O) ≤ (C + 1)d(xi, ∂O).

Since xi ∈ Γk(a), we have d(xi, ∂O) = O(
√

∆t) and hence |pγb(xi)− p∂O(xi)| =
O(
√

∆t). Proposition 75 implies that γb and pγb are Lipschitz. Therefore, for
any s ∈ I,

γb
(
pγb

(
ysk,i(a)

))
= γb (pγb(xi)) +O

(√
∆t
)

= γb (p∂O(xi)) +O
(√

∆t
)
. (3.44)

Since, for all s ∈ I, d̃sk,i(a, b) = O(
√

∆t), from (3.42)-(3.44) we obtain

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) = −M∆t

− 1
r

∑
s∈I

d (xi, ∂Oη) d̃sk,i(a, b)
〈
n(p∂O(xi)), γb (p∂O(xi))

〉
+O

(
∆t+ (∆x)2

)
. (3.45)

Since xi ∈ Γk(a) there exists Ĩk,i ⊂ I 6= ∅ such that d̃sk,i(a, b) > 0 for any s ∈ Ĩk,i.
In addition, (3.41) implies that d (xi, ∂Oη) ≥ η− δ > 0. Thus, assumption (H3)
implies that

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) ≤ −M∆t−σ
2(η − δ)

2r
∑
s∈Ĩk,i

d̃sk,i(a, b)+O
(
∆t+ (∆x)2

)
,

and hence (3.21) yields the existence of C > 0, independent of k ∈ I∗∆t, i ∈ I∆x,
a ∈ A, and b ∈ B, such that

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) ≤ −M∆t− C
√

∆t+O
(
∆t+ (∆x)2

)
. (3.46)

As long as (∆x)2/∆t is bounded, we have that O
(
∆t+ (∆x)2) = O(∆t). Thus,

from cases (i)-(iii) we can choose M large enough such that
Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) ≤ −C

√
∆tIΓk(a)(xi). (3.47)

Now, set qk(xi, a, b) = Wk(xi) − Sk,i[Wk+1|G∆x ](a, b). Then the probabilistic
interpretation of the operator Sk,i (see Section 3.2.3) implies that, for any policy
π ∈ ΠN∆t ,

Wk(xi) = EPk,xi,π

NT−1∑
m=k

qm
(
Xm, αm, βm

)
+ w

(
XNT

)
Since (3.47) implies that qk(xi, a, b) ≥ C

√
∆tIΓk(a)(xi) for k ∈ I∗∆t, i ∈ I∆x,

a ∈ A and b ∈ B, we deduce that for any policy π ∈ ΠN∆t we have

EPk,xi,π
(∑NT−1

m=k IΓm(αm)
(
Xm

))
≤ 1

C
√

∆t
EPk,xi,π

NT−1∑
m=k

qm
(
Xm, αm, βm

)
=

Wk(xi)− EPk,xi,π
(
w
(
XNT

))
C
√

∆t
.

Finally, using that Wk and w are bounded, (3.35) follows.
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Proposition 72. (Stability) The fully discrete scheme (HJBdisc) is stable, i.e.
there exists C > 0 such that

max
k∈I∗∆t, i∈I∆x

|uk,i| ≤ C, (3.48)

where C is independent of (∆t,∆x) as long as ∆t is small enough and (∆x)2/∆t
is bounded.

Proof. Let us fix k ∈ I∗∆t and i ∈ I∆x. Then the probabilistic interpretation of
the scheme in Section 3.2.3 and the definition of h in (3.29) imply the existence
of a constant C > 0 such that

|uk,i| ≤ sup
π∈ΠN∆t

EPk,xi,π

N∆t−1∑
m=k

[
∆t
∣∣f(tm, Xm, αm)

∣∣
+
∣∣h(tm, Xm, αm, βm

)∣∣]+
∣∣Ψ(XN∆t

)∣∣)

≤ ‖Ψ‖∞ + T‖f‖∞ + C
√

∆t‖g‖∞ sup
π∈ΠN∆t

EPk,xi,π

N∆t−1∑
m=k

IΓm(αm) (Xm)

 .
(3.49)

Thus, (3.48) follows from Lemma 71.

3.4 Convergence analysis
In this section we provide the main result of this article which is the convergence
of solutions to (HJBdisc) to the unique viscosity solution to (HJB). The proof is
based on the half-relaxed limits technique introduced in [9] and the properties
of solutions to (HJBdisc) investigated in Section 3.3.

Let ∆t > 0, let ∆x > 0 and let (Uk)N∆t
k=0 be the solution to (HJBdisc) associated

to the discretization parameters ∆t and ∆x. Let us define an extension of
(Uk)N∆t

k=0 to OT by

(∀ (t, x) ∈ OT ) u∆t,∆x(t, x) := I[Ubt/∆tc](x), (3.50)

where we recall that the interpolation operator I[·] is defined in (3.16). Now,
let (∆tn,∆xn)n∈N ⊆ (0,+∞)2 be such that limn→∞(∆tn,∆xn) = (0, 0) and the
sequence (∆xn/∆tn)n∈N is bounded. For every (t, x) ∈ OT , let us define

u(t, x) := lim sup
n→∞

OT3(sn,yn)→(t,x)

u∆tn,∆xn(sn, yn),

u(t, x) := lim inf
n→∞

OT3(sn,yn)→(t,x)
u∆tn,∆xn(sn, yn).

(3.51)

From Proposition 72 we deduce that u : OT → R and u : OT → R are well-
defined and bounded. Moreover, from [5, Chapter V, Lemma 1.5], we have that
u and u are, respectively, upper and lower semicontinuous functions.
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Proposition 73. Assume that (∆xn)2/∆tn → 0, as n → ∞. Then u and u
are, respectively, viscosity sub- and supersolutions to (HJB).

Proof. We only show that u is a viscosity subsolution to (HJB), the proof that
u is a viscosity supersolution being similar. Let (t̄, x̄) ∈ OT and φ ∈ C∞(OT )
be such that u(t̄, x̄) = φ(t̄, x̄) and u − φ has a maximum at (t̄, x̄). Then by
[5, Chapter V, Lemma 1.6] there exists a subsequence of (u∆tn,∆xn)n∈N, which
for simplicity is still labeled by n ∈ N, and a sequence (sn, yn)n∈N ⊆ OT such
that (u∆tn,∆xn)n∈N is uniformly bounded, u∆tn,∆xn − φ has a local maximum
at (sn, yn), and, as n → ∞, (sn, yn) → (t̄, x̄) and u∆tn,∆xn(sn, yn) → u(t̄, x̄).
Moreover, by modifying the test function φ, we can assume that u∆tn,∆xn − φ
has a global maximum at (sn, yn), i.e. setting ξn := u∆tn,∆xn(sn, yn)−φ(sn, yn),
we have

(∀ (t, x) ∈ OT ) u∆tn,∆xn(t, x) ≤ φ(t, x) + ξn, with ξn → 0. (3.52)

We distinguish now the following cases.
(i) (t̄, x̄) ∈ [0, T )×O. In this case, for all n large enough, by (3.15), we have

yn ∈ O∆xn . Let k : N→ I∗∆tn be such that sn ∈ [tk(n), tk(n)+1). As n→∞, we
have tk(n) → t̄ and, from (3.50) and (3.52), with t = tk(n)+1, we have

(∀ x ∈ O) I[Uk(n)+1](x) ≤ φ(tk(n)+1, x) + ξn. (3.53)

From Proposition 69, we obtain

(∀ i ∈ I∆x) Skn,i[Uk(n)+1] ≤ Skn,i[Φk(n)+1] + ξn, (3.54)

where, for all k ∈ I∆t, we have denoted Φk := φ(tk, ·)|G∆xn
. In particular, by

(HJBdisc) we get

(∀ i ∈ I∆x) Uk(n),i ≤ Skn,i[Φk(n)+1] + ξn. (3.55)

The monotonicity of the interpolation operator (3.16) yields(
∀ x ∈ O

)
u∆tn,∆xn(sn, x) ≤

∑
i∈I∆xn

β1
i

(
p∆xn(x)

)
Skn,i[Φk(n)+1] + ξn, (3.56)

and, hence, by taking x = yn and using the definition of ξn, we get

φ(sn, yn) ≤
∑

i∈I∆xn

β1
i (yn)Skn,i[Φk(n)+1]. (3.57)

Since (t̄, x̄) ∈ [0, T ) × O and A,B are compacts, if n large enough, for all
a ∈ A, b ∈ B and for all s ∈ I we have d̃skn,i(a, b) = 0 for all i ∈ I∆x such that
β1
i (yn) > 0. Using Proposition 70(ii) and inequality (3.57), we get

φ(sn, yn) ≤
∑

i∈I∆xn

β1
i (yn)

[
φ(tk(n)+1, xi)

−∆tnsup
a∈A
H
(
tk(n), xi, Dφ(tk(n)+1, xi), D2φ(tk(n)+1, xi), a

)]

+O
(
∆tn
√

∆tn + (∆xn)2
)
.
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Then following the same arguments than those in [30, Theorem 3.1] (see also
[49, Theorem 4.22]) we conclude that

− ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0, (3.58)

and, hence, (3.5) holds.
(ii) (t̄, x̄) ∈ [0, T )× ∂O. If

L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0 or − ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0,

holds, then (3.6) holds. Thus, let us suppose that

L(t̄, x̄, Dφ(t̄, x̄)) > 0 and − ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) > 0.
(3.59)

Letting k : N→ {0, . . . , NT − 1} as in (i), we have tk(n) → t̄, (3.56) holds true,
and, hence,

φ(sn, yn) ≤
∑

i∈I∆xn

β1
i

(
p∆xn(yn)

)
Skn,i[Φk(n)+1]. (3.60)

On the one hand, from Proposition 70(ii) we get

0 ≤
∑

i∈I∆xn

β1
i (p∆xn(yn))

(
∆tn∂tφ(tk(n), xi)

−sup
a∈A,
b∈B

{
∆tnH(tk(n), xi, Dφ(tk(n)+1, xi), D2φ(tk(n)+1, xi), a)

+ 1
2r
∑
s∈I

d̃sk,i(a, b)
(
L̃sk(n),i(Dφ(tk(n)+1, xi), a, b)−

√
∆tnKs

k(n),i(a, b)
)}

+O
(
∆tn
√

∆tn + (∆xn)2
)
.

Therefore, for all a ∈ A and b ∈ B, we have
∑

i∈I∆xn

β1
i

(
p∆xn(yn)

){
−∆tn∂tφ(tk(n), xi)

+∆tnH(tk(n), xi, Dφ(tk(n)+1, xi), D2φ(tk(n)+1, xi), a)

+ 1
2r
∑
s∈I

d̃sk,i(a, b)
(
L̃sk(n),i)(Dφ(tk(n)+1, xi), a, b)−

√
∆tnKs

k(n),i(a, b)
)}

+O
(
∆tn
√

∆tn + (∆xn)2
)
≤ 0.

(3.61)
On the other hand, since A is compact, there exists ā ∈ A such that

H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) = H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄), ā)

and ∑
i∈I∆xn

β1
i

(
p∆xn(yn)

) (
−∂tφ(tk(n), xi)

+H(tk(n), xi, Dφ(tk(n)+1, xi), D2φ(tk(n)+1, xi), ā)
)

→ −∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)), as n→∞.

(3.62)
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Let us set d̃∗n = max
{
d̃skn,i(ā)

∣∣ s ∈ I, i ∈ I∆xn

}
and take a = ā and an arbitrary

b ∈ B in (3.61). If there exists a subsequence, still labelled by n, such that
d̃∗n = 0, then dividing (3.61) by ∆tn, and letting n→∞, (3.62) yields

−∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0,

which contradicts (3.59). Otherwise, by (3.21), for all n ∈ N, large enough, we
have d̃∗n ≥ c̄

√
∆tn. Notice that the second relation in (3.59) and (3.62) imply

that, for n ∈ N large enough,

0 <
∑

i∈I∆xn

β1
i

(
p∆xn(yn)

) (
−∂tφ(tk(n), xi)

+H(tk(n), xi, Dφ(tk(n)+1, xi), D2φ(tk(n)+1, xi), ā)
)
. (3.63)

Therefore, inequality (3.61) with a = ā implies that for all b ∈ B∑
i∈I∆xn

β1
i

(
p∆xn(yn)

){∑
s∈I

d̃skn,i(ā, b)
(
L̃skn,i(Dφ(tk(n)+1, xi), ā, b)

−
√

∆tnKs
k(n),i(ā, b)

)}
+O

(
∆tn
√

∆tn + (∆xn)2
)
< 0.

(3.64)

Since the set I = {+,−} × {1, . . . , d} is finite, there exist ŝ ∈ I, {qs | s ∈
I \ {ŝ}} ⊆ [0, 1], and i(n) ∈ I∆xn such that, up to some subsequence, d̃∗n =
d̃ŝk(n),i(n)(ā) and, for all s ∈ I \ {ŝ}, d̃sk(n),i(n)(ā)/d̃∗n → qs. Recall that d̃∗n ≥
c̄
√

∆tn and (∆xn)2/∆tn → 0 as n→∞. Dividing (3.64) by d̃∗n and taking the
limit n→∞ yields

(∀ b ∈ B)

 ∑
s∈I\{ŝ}

qs + 1

L(t̄, x̄, Dφ(t̄, x̄), b) ≤ 0

and hence
(∀ b ∈ B) L(t̄, x̄, Dφ(t̄, x̄), b) ≤ 0.

Thus, L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0, which contradicts (3.59).
(iii) (t̄, x̄) ∈ {T} × O. Let us first assume that (t̄, x̄) ∈ {T} × O. Thus, for

n ∈ N large enough, we have yn ∈ O. By taking a subsequence, if necessary, it
suffices to consider the cases sn ∈ [0, T ), for all n ∈ N, and sn = T for all n ∈ N.
In the first case, proceeding as in (i), we get

− ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0. (3.65)

In the second case, (3.50) implies that u∆tn,∆xn(sn, yn) = I[Ψ|G∆x ](yn) and
hence letting n→∞ we get

u(t̄, x̄) = Ψ(x̄). (3.66)

Now, assume that (t̄, x̄) ∈ {T} × ∂O. As before, it suffices to consider the
cases sn ∈ [0, T ), for all n ∈ N, and sn = T for all n ∈ N. If sn ∈ [0, T ), then,
proceeding as in (ii), we get

L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0 or −∂tφ(t̄, x̄)+H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0. (3.67)
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Finally, if sn = T for all n ∈ N, we have u∆tn,∆xn(sn, yn) = I[Ψ|G∆x ](yn) and
hence (3.66) holds.

Altogether, (3.65) and (3.66) imply that (3.11) holds if (t̄, x̄) ∈ {T} × O,
and (3.67) and (3.66) imply that (3.12) holds if (t̄, x̄) ∈ {T} × ∂O.

Thus, from cases (i)-(iii) and Remark 64 we obtain that u is a subsolution
to (HJB).

Theorem 74. Assume (H1)-(H3) and that (∆xn)2/∆tn → 0, as n → ∞.
Then

u∆tn,∆xn → u uniformly in OT ,

where u is the unique continuous viscosity solution to (HJB).

Proof. By (3.51) we have u ≤ u inOT and, by Proposition 73 and the comparison
principle for sub- and super solutions to (HJB) (see Remark 66(i)), we obtain
that u ≥ u in OT . Thus, u = u = u and the result follows from [5, Chapter V,
Lemma 1.9].

3.5 Numerical results

In this section, we present some numerical experiments in order to show the
performance of the scheme. We consider first a one-dimensional linear parabolic
equation, with homogeneous Neumann boundary conditions, and both the first
and second order cases. In the former, the boundary conditions are not satisfied
in the pointwise sense at every point in the boundary, but they hold in the
viscosity sense (see Definition 63). The second example deals with a degenerate
second order nonlinear equation on a smooth two-dimensional domain. We
consider both non-homogeneous Neumann and oblique boundary conditions.
In the last example, we approximate the solution to a non-degenerate second
order nonlinear equation with mixed Dirichlet and homogeneous Neumann
boundary conditions on a non-smooth domain. Because of the presence of
Dirichlet boundary conditions and corners, the scheme has to be modified and
the convergence result in Section 3.3 does not apply. However, the scheme can
be successfully applied to solve numerically the problem.

The problems in the first two tests have known analytic solutions. This
will allow to compute the errors of solutions to the scheme and to perform a
numerical convergence analysis. In the examples dealing with two-dimensional
domains, we have considered unstructured triangular meshes, constructed with
the Matlab2019 function initmesh.

In the simulations we have chosen time and space steps satisfying ∆t = ∆x
or ∆t = ∆x/2, which are in agreement with the assumption in Theorem 74.
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3.5.1 One-dimensional linear problem

Let ε > 0, set λ±ε = (1±
√

1 + 4ε)/2ε, and define

f(t, x) = 3− t
2

1 +
eλ

+
ε x
(
eλ
−
ε − 1

)
eλ

+
ε − eλ−ε

(
1− ελ+

ε

)
+
eλ
−
ε x
(
1− eλ

+
ε

)
eλ

+
ε − eλ−ε

(
1− ελ−ε

)
+1

2

x+
eλ

+
ε x
(
eλ
−
ε − 1

)
eλ

+
ε − eλ−ε

+
eλ
−
ε x
(
1− eλ

+
ε

)
eλ

+
ε − eλ−ε

 ,
uε(t, x) = 3− t

2

x+ eλ
−
ε − 1

λ+
ε

(
eλ

+
ε − eλ−ε

)eλ+
ε x + 1− eλ

+
ε

λ−ε
(
eλ

+
ε − eλ−ε

)eλ−ε x
 ,

for (t, x) ∈ [0, 1]2. Then uε is the unique classical solution to

−∂tu− ε∂2
xu+ ∂xu = f in [0, 1)× (0, 1),

∂xu(·, 0) = ∂xu(·, 1) = 0 in [0, 1),
u(1, ·) = uε(1, ·) in [0, 1].

(3.68)

Similarly to [43, Example 7.3], we have

uε(t, x) −→
ε→0

u0(t, x) := 3− t
2

(
x+ e−x

)
, uniformly on [0, 1]2

and u0 is the unique viscosity solution to

−∂tu+ ∂xu = f in [0, 1)× (0, 1),
∂xu(·, 0) = ∂xu(·, 1) = 0 in [0, 1),

u(1, ·) = u0(1, ·) in [0, 1].
(3.69)

Notice that for t ∈ [0, 1] we have −∂tu(t, 1) + ∂xu(t, 1) − f(t, 1) ≤ 0 and
∂xu(t, 1) > 0. Thus, at (t, 1) the boundary condition is satisfied in the viscosity
sense but not in the pointwise sense.

Using (HJBdisc), we approximate uε for ε = 0.05, ε = 0.03, and ε = 0. For
these choices, we plot in Figure 3.2 respectively the approximations of uε(1, ·)
and uε(0, ·), computed with the steps sizes ∆x = 3.125 · 10−3 and ∆t = ∆x/2.

We show in Tables 1 and 2 the errors

E∞ = max
i∈I∆x

|U0,i − u(0, xi)|, E1 = ∆x
∑
i∈I∆x

|U0,i − u(0, xi)|,

and the corresponding convergence rates p∞ and p1, for ε = 0.05 and ε = 0,
respectively. In all cases, an order of convergence close to 1 is obtained.

In the simulations, we have chosen c̄ := 0.025 + σ/2, where σ =
√

2ε is the
diffusion parameter. With this choice, the larger the value of σ, the more the
characteristics are reflected further into O.
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∆x ∆t = ∆x
E∞ E1 p∞ p1

5.00 · 10−2 3.99 · 10−2 2.57 · 10−2 - -
2.50 · 10−2 2.25 · 10−2 1.06 · 10−2 0.83 1.28
1.25 · 10−2 1.17 · 10−2 6.13 · 10−3 0.94 0.79
6.25 · 10−3 5.38 · 10−3 2.49 · 10−3 1.12 1.30
3.125 · 10−3 2.15 · 10−3 1.77 · 10−3 1.32 0.49

∆x ∆t = ∆x/2
E∞ E1 p∞ p1

5.00 · 10−2 2.16 · 10−2 2.03 · 10−2 - -
2.50 · 10−2 1.26 · 10−2 6.22 · 10−3 0.78 1.71
1.25 · 10−2 5.87 · 10−3 5.64 · 10−3 1.10 0.14
6.25 · 10−3 3.17 · 10−3 2.95 · 10−3 0.89 0.93
3.125 · 10−3 1.62 · 10−3 1.50 · 10−3 0.97 0.98

Table 3.1. Errors and convergence rates for problem (3.68) with ε = 0.05.

∆x ∆t = ∆x
E∞ E1 p∞ p1

5.00 · 10−2 2.83 · 10−2 1.95 · 10−2 - -
2.50 · 10−2 1.42 · 10−2 1.01 · 10−2 0.99 0.95
1.25 · 10−2 7.08 · 10−3 5.39 · 10−3 1.00 0.91
6.25 · 10−3 3.54 · 10−3 2.91 · 10−3 1.00 0.89
3.125 · 10−3 1.77 · 10−3 1.59 · 10−3 1.00 0.87

∆x ∆t = ∆x/2
E∞ E1 p∞ p1

5.00 · 10−2 2.26 · 10−2 1.86 · 10−2 - -
2.50 · 10−2 1.15 · 10−2 9.97 · 10−3 0.97 0.90
1.25 · 10−2 5.88 · 10−3 5.42 · 10−3 0.97 0.88
6.25 · 10−3 3.04 · 10−3 2.97 · 10−3 0.95 0.87
3.125 · 10−3 1.68 · 10−3 1.63 · 10−3 0.86 0.87

Table 3.2. Errors and convergence rates for problem (3.68) with ε = 0.

3.5.2 Nonlinear problem on a circular domain

Let T = 1, O = {x = (x1, x2) ∈ R2 | |x| < 1}, σ(t, x) =
√

2(sin(x1 +x2), cos(x1 +
x2)), and

f(t, x) =
(

1
2 − t

)
sin(x1) sin(x2)

+
(

3
2 − t

)(√
cos2(x1) sin2(x2) + sin2(x1) cos2(x2)

−2 sin(x1 + x2) cos(x1 + x2) cos(x1) cos(x2)
)
,

g(t, x) =
(

3
2 − t

)
(x1 cos(x1) sin(x2) + x2 sin(x1) cos(x2)) .
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Figure 3.2. Exact final condition uε(1, ·) (left) and numerical approximations of uε(0, ·)
(right) for ε = 0.05, ε = 0.03, and ε = 0, with step sizes ∆x = 6.25 × 10−3 and
∆t = ∆x/2.

Then OT 3 (t, x1, x2) 7→ ū(t, x1, x2) =
(

3
2 − t

)
sin(x1) sin(x2) is the unique

classical solution to
∂tu− 1

2Tr(σσ
>D2u) + |Du| = f in OT ,

〈n,Du〉 = g in [0, T )× ∂O,

u(0, x) = ū(0, x) in x ∈ O.

(3.70)

In Figure 3.3, we show the numerical solution at the final time T = 1 com-
puted on an unstructured triangular mesh G∆x with mesh size ∆x = 1.25 · 10−1.
On the left, we plot the result together with the contour lines. On the right, we
plot the approximation together with the mesh used to compute it.

Figure 3.3. Numerical solution at time T = 1 of problem in subsect.3.5.2 with
Neumann boundary condition, computed with ∆x = 0.125 and ∆t = ∆x/2.

Given an element T̂ of the triangulation, we denote by xT̂ its barycenter
and by |T̂ | its area. We show in Tables 3 and 4 the errors

E∞ = max
i∈I∆x

|UNT ,i − ū(tNT , xi)|, E1 =
∑

T̂∈T∆x

|T̂ |
∣∣I[UNT ,(·)](xT̂ )− ū(tNT , xT̂ )

∣∣,
(3.71)
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and the corresponding convergence rates p∞ and p1. In each table, we specify in
the first column the mesh size ∆x. To obtain the results shown in Tables 3 and
4, we have chosen c̄ in (3.20) and (3.21) as c̄ = 0.25 and c̄ = 0.5, respectively.
For both choices of c̄, we observe similar errors and an analogue behavior of the
convergence rates. As in the previous example, an order of convergence close to
1 is obtained.

∆x ∆t = ∆x
E∞ E1 p∞ p1

2.50 · 10−1 2.73 · 10−1 2.95 · 10−1 - -
1.25 · 10−1 1.24 · 10−1 1.12 · 10−1 1.14 1.40
6.25 · 10−2 5.55 · 10−2 4.72 · 10−2 1.16 1.24
3.125 · 10−2 2.49 · 10−2 2.16 · 10−2 1.16 1.13

∆x ∆t = ∆x/2
E∞ E1 p∞ p1

2.50 · 10−1 1.22 · 10−1 1.07 · 10−1 - -
1.25 · 10−1 5.54 · 10−2 4.57 · 10−2 1.14 1.24
6.25 · 10−2 2.39 · 10−2 2.11 · 10−2 1.21 1.11
3.125 · 10−2 1.22 · 10−2 1.10 · 10−2 0.97 0.94

Table 3.3. Errors and convergence rates for the approximation of (3.70) with c̄ = 0.25.

∆x ∆t = ∆x
E∞ E1 p∞ p1

2.50 · 10−1 2.65 · 10−1 2.55 · 10−1 - -
1.25 · 10−1 1.23 · 10−1 1.12 · 10−1 1.11 1.19
6.25 · 10−2 5.74 · 10−2 5.06 · 10−2 1.10 1.15
3.125 · 10−2 2.70 · 10−2 2.39 · 10−2 1.09 1.08

∆x ∆t = ∆x/2
E∞ E1 p∞ p1

2.50 · 10−1 1.18 · 10−1 1.02 · 10−1 - -
1.25 · 10−1 5.60 · 10−2 4.72 · 10−2 1.08 1.11
6.25 · 10−2 2.64 · 10−2 2.27 · 10−2 1.08 1.06
3.125 · 10−2 1.22 · 10−2 1.10 · 10−2 1.11 1.05

Table 3.4. Errors and convergence rates for the approximation of (3.70) with c̄ = 0.5.

Next, we consider the same problem but with oblique boundary conditions.
More precisely, for x = (x1, x2) ∈ ∂O we set

γ(x) = (x1 cos(π/6) + x2 sin(π/6), x2 cos(π/6)− x1 sin(π/6))

and

g̃(t, x) =
(

3
2 − t

) [
(x1 cos(π/6) + x2 sin(π/6)) cos(x1) sin(x2)

+ (x2 cos(π/6)− x1 sin(π/6)) sin(x1) cos(x2)
]

in [0, T )× ∂O.
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Then ū is the unique classical solution to the Neumann boundary condition in
(3.70) is changed to

∂tu− 1
2Tr(σσ

>D2u) + |Du| = f in OT ,

〈γ,Du〉 = g̃ in [0, T )× ∂O,

u(0, x) = ū(0, x) in x ∈ O.

(3.72)

The solution ū is approximated by using the same unstructured meshes as in the
previous case. We show in Tables 3.5 and 3.6 the errors (3.71) computed with
c̄ = 0.25 and c̄ = 0.5, respectively. As in the previous case, we observe similar
errors and an analogue behavior of the convergence rates for both choices of c̄.
We also observe a slight degradation of the errors and the convergence rates in
the more complicated case of oblique boundary conditions.

∆x ∆t = ∆x
E∞ E1 p∞ p1

2.50 · 10−1 3.06 · 10−1 4.38 · 10−1 - -
1.25 · 10−1 1.56 · 10−1 2.25 · 10−1 0.97 0.96
6.25 · 10−2 8.10 · 10−2 1.21 · 10−1 0.95 0.89
3.125 · 10−2 4.47 · 10−2 7.17 · 10−2 0.86 0.75

∆x ∆t = ∆x/2
E∞ E1 p∞ p1

2.50 · 10−1 1.50 · 10−1 2.08 · 10−1 - -
1.25 · 10−1 7.96 · 10−2 1.17 · 10−1 0.91 0.83
6.25 · 10−2 4.36 · 10−2 6.84 · 10−2 0.88 0.77
3.125 · 10−2 2.58 · 10−2 4.26 · 10−2 0.76 0.68

Table 3.5. Errors and convergence rates for the approximation of (3.72) with c̄ = 0.25

∆x ∆t = ∆x
E∞ E1 p∞ p1

2.50 · 10−1 2.94 · 10−1 3.81 · 10−1 - -
1.25 · 10−1 1.49 · 10−1 1.88 · 10−1 0.98 1.02
6.25 · 10−2 7.55 · 10−2 9.33 · 10−2 0.98 1.01
3.125 · 10−2 3.95 · 10−2 5.02 · 10−2 0.93 0.89

∆x ∆t = ∆x/2
E∞ E1 p∞ p1

2.50 · 10−1 1.42 · 10−1 1.69 · 10−1 - -
1.25 · 10−1 7.22 · 10−2 8.56 · 10−2 0.98 0.98
6.25 · 10−2 3.79 · 10−2 4.63 · 10−2 0.93 0.89
3.125 · 10−2 2.12 · 10−2 2.75 · 10−2 0.84 0.75

Table 3.6. Errors and convergence rates for the approximation of (3.72) with c̄ = 0.5.
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3.5.3 Nonlinear problem on a non-smooth domain with mixed
Dirichlet-Neumann boundary conditions

In this last example, we deal with a problem of exiting from a bounded rectan-
gular domain with an circular obstacle inside of it. We model this problem by
considering a modification of (3.1) including mixed Dirichlet-Neumann boundary
conditions, with a large time horizon T in order to reach a stationary solution.
We consider the space domain

O =
(

(−1, 1)× (−0.5, 0.5)
)
\ {x ∈ R2 | |x− (−0.5, 0)| ≤ 0.2},

a control set A = {a ∈ R2 | |a| = 1}, a drift µ(t, x, a) = a, a diffusion coefficient
σ(t, x, a) = 0.1I2, where I2 is the identity matrix of size 2, a running cost
f ≡ 1, and an initial condition Ψ ≡ 0. We impose constant Dirichlet boundary
conditions on some parts of ∂O, representing the exits of the domain, in order
to model some exit costs. More precisely, Dirichlet boundary conditions (or
exit costs) u = 0 and u = 0.2 are imposed on ∂O1 = {x = (x1, x2) ∈ ∂O |x1 =
−1, |x2| ≤ 0.2} and ∂O2 = {x = (x1, x2) ∈ ∂O |x1 = 1, |x2| ≤ 0.2}, respectively.
We also consider homogeneous Neumann boundary conditions on the remaining
part of the boundary.

We treat the Dirichlet boundary conditions by using an extrapolation tech-
nique. This approximation has been proposed in [17] and has been shown to
be more accurate with respect to the methods proposed in [86, 19]. We show
in Figure 3.4 the numerical approximation computed on an unstructured mesh
with mesh size ∆x = 0.01, a time step ∆t = ∆x and final time T = 3. Figure
3.5 diplays the quiver plot of −Du at time T = 3.

Figure 3.4. Solution at time T = 3 for ∆x = 0.01 and for ∆t = ∆x.

3.6 On the existence of the oblique projection

In this section we first study the existence of the projection of x onto ∂O
parallel to γb in a neighborhood of ∂O and for b ∈ B. These projections play an
important role in the construction of our scheme in Section 3.2. The following
result is an extension of a result in [63, Section 1.2] to the regularity that we
assume in this paper and, more importantly, to the dependence of γ on b. Recall
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Figure 3.5. Quiver plot of −Du at time T = 3.

that in (H3) ∂O is assumed to be of class C3. However, the result in Proposition
75 below is also valid if ∂O is only of class C2.

Proposition 75. There exists R > 0 such that, for any x ∈ Rd satisfying
d(x, ∂O) < R and for any b ∈ B, there exist a unique pγb(x) ∈ ∂O and a unique
dγb(x) ∈ R such that

x = pγb(x) + dγb(x)γb(pγb(x)). (3.73)

The mappings (x, b) 7→ pγb(x) and (x, b) 7→ dγb(x), called respectively the projec-
tion onto ∂O parallel to γb and the algebraic distance to ∂O parallel to γb, are
of class C1.

Proof. We use the same outline and, as much as possible, the same notations
than those in [63].

Let us fix (s, b0) ∈ ∂O ×B. Let gs : U s → ∂O be a C2 parameterization of
∂O in a neighborhood of s, with U s being an open subset of RN−1, z0 ∈ U s,
and gs(z0) = s. By (H3) the function

U s × R× V 3 (z, λ, b) 7→ Gs(z, λ, b) = (gs(z) + λγb(gs(z)), b) ∈ Rd × RNB

is of class C1. The Jacobian matrix of Gs has the form

Js(z, λ, b) =
(
Jz,λ(z, λ, b) Jb(z, λ, b)

0NB ,N INB

)
,

where Jz,λ(z, λ, b) coincides with J(z, λ) of the Appendix A of [63], that is

Jz,λ(z, λ, b) =∂z1gs(z) + λ∂z1γb(gs(z)) · · · ∂zN−1g
s(z) + λ∂zN−1γb(gs(z)) γb(gs(z))

 .
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In particular, for λ = 0,

Jz,λ(z, 0, b) =

∂z1gs(z) · · · ∂zN−1g
s(z) γb(gs(z))


is invertible since its N − 1 first columns span the tangent space to ∂O at gs(z)
and, since

〈n(gs(z)), γb(gs(z))〉 > 0,

its last column is non tangent to ∂O. It follows that Js(z, 0, b) is also invertible,
and we can therefore apply the inverse mapping theorem to Gs at (z0, 0, b0) to
obtain the existence of a neighborhood V s,b0 of (s, b0) and C1 mappings V s,b0 3
(x, b) 7→ pγb(x) ∈ ∂O and V s,b0 3 (x, b) 7→ dγb(x) such that (3.73) holds for
every (x, b) ∈ V s,b0 . The compactness of ∂O×B ⊂ ∪(s,b0)∈∂O×BV

s,b0 enables to
consider a finite number of (si, (b0)i), 1 ≤ i ≤ k, such that ∂O×B ⊂ ∪ki=1V

si,(b0)i .
Then there exists R̄ > 0 such that {y ∈ RN | d(y, ∂O) < R̄}×B ⊂ ∪ki=1V

si,(b0)i .
In particular for any x such that d(x, ∂O) < R̄ and any b ∈ B, there exist a
least a point pγb(x) and a scalar dγb(x) such that (3.73) holds. We claim that
there exists R ∈ (0, R̄) such that for any x satisfying d(x, ∂O) < R and any
b ∈ B, pγb(x) is unique (and as a consequence dγb(x) is also unique). Assume
that this is not the case. Then (considering for example R = 1

k ) one can build a
sequence (xk, bk)k∈N converging (after extraction a subsequence) to some point
(ŝ, b̂) ∈ ∂O × B and such that for all k ∈ N, xk has two distinct projections
p
γbk
i (xk) with associated algebraic distances dγbki (xk), i = 1, 2. At the limit point
ŝ, we consider Gŝ which is a local diffeomorphism on a neighborhood of (ẑ, 0, b̂)
(with gŝ(ẑ) = ŝ). Since xk → ŝ ∈ ∂O, then p

γbk
i (xk) → ŝ and d

γbk
i (xk) → 0,

i = 1, 2. Let zi,k be such that gŝ(zi,k) = p
γbk
i (xk) and λi,k = d

γbk
i (xk), i = 1, 2.

Then (zi,k, λi,k, bk)k, i = 1, 2, are distinct sequences that both converge to (ẑ, 0, b̂)
and have the same image Gŝ(zi,k, λi,k, bk) = (xk, bk). This contradicts that Gŝ
is a local diffeomorphism on a neighborhood of (ẑ, 0, b̂).

For any ε ≥ 0 let us define

Dε = {x ∈ O | d(x, ∂O) > ε}, (3.74)
∂Oε = {x ∈ O | d(x, ∂O) = ε}, (3.75)
Lε = {x ∈ O | d(x, ∂O) ≤ ε}. (3.76)

Now we focus on the existence of projections of x ∈ Lε onto ∂Oε and the
regularity of Lε 3 x 7→ d(x,Dε) ∈ R. These results are important in order
to show Lemma 71 which is the key to obtain the stability of the scheme in
Proposition 72.

Lemma 76. The following hold:

(i) There exists η > 0 such that on Lη, the projection p∂O onto ∂O is well-
defined and C1.

(ii) The distance function Lη 3 x 7→ d(x, ∂O) ∈ R is C3, and Dd(·, ∂O)(x) =
−n(p∂O(x)).
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Let δ ∈ [0, η]. Then the following hold:

(iii) ∂Oδ is of class C3 and, denoting by nδ(x) the unit outward normal at
x ∈ ∂Oδ, we have nδ(x) = n(p∂O(x)).

(iv) For every x ∈ Lδ, p = p∂O(x)− δn(p∂O(x)) is a projection of x onto ∂Oδ.

(v) The function x 7→ d(x, ∂Oδ) is of class C3 on Lδ and d(x, ∂O)+d(x, ∂Oδ) =
δ for every x ∈ Lδ.

Proof. (i)&(ii) See [62, Lemma 14.16].
(iii) This follows from (ii) and (3.75).
(iv)&(v) Let us first show that p ∈ ∂Oδ. We have d(p, ∂O) ≤ |p− p∂O(x)| = δ.
Thus, p ∈ Lδ and, by (i), p∂O(x) = p∂O(p), which implies that d(p, ∂O) = δ and
hence p ∈ ∂Oδ. Since

x = p∂O(x)− d(x, ∂O)n(p∂O(x)),

we obtain d(x, ∂Oδ) ≤ |p − x| = δ − d(x, ∂O). Assume that d(x, ∂Oδ) <
δ− d(x, ∂O). Then there exists p′ ∈ ∂Oδ such that |x− p′| < δ− d(x, ∂O). This
implies that

δ = d(p′, ∂O) ≤ |p′ − p∂O(x)| ≤ |p′ − x|+ |x− p∂O(x)| < δ,

which is impossible. Thus

|p− x| = d(x, ∂Oδ) = δ − d(x, ∂O).

The first equality above implies that p is a projection of x onto ∂Oδ. Since
x ∈ Lδ is arbitrary, the second equality above and (ii) imply that (v) holds.





95

Chapter 4

A second order
Lagrange-Galerkin scheme for
Fokker-Planck equations and
applications to MFGs

In physics, chemistry, or electrical engineering it is very important to study
the microscopic qualitative changes of systems, for example in state transitions.
When a transition takes place, fluctuation (modelised as random processes) have
an important role, and Fokker-Planck equations can be used in order to model
such problems. In general, problems wich involve a noise can be treated using
Fokker-Planck equations. In this chapter, after a brief presentation of an already
existing SL method for the FP equations, we present a novel LG approach for
the numerical approximation of such equations. We also show how to use this
method to numerically solve a Mean Field Games problem.

4.1 A first order semi-Lagrangian scheme for the
Fokker-Planck equation

We briefly recall a first order scheme for the nonlinear Fokker-Planck equation
presented in [34]. This scheme, coupled with an approximation method for the
Hamilton-Jacobi equation, can be implied for a first order approximation scheme
for Mean Field Games. We consider the equation

∂tm− 1
2

d∑
i,j=1

∂2

∂xi∂xj
(aijm) + div(µm) = 0 in (0, T ]× Rd

m(0, ·) = m0(x) in Rd,
(4.1)

where m0 ∈ P2(Rd), aij = (σ(x)σ(x)>)i,j , with σ : Rd → Rd×r. Suppose that:

(FP1) the coefficients b and σ are Lipschitz continuous;

(FP2) the initial measure m0 has a density, which we still denote by m0.
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Given x ∈ Rd and s ∈ [0, T ), consider the stochastic differential equation{
dX(s′) = µ(X(s′))ds′ + σ(X(s′))dW (s′),
X(s) = x,

(4.2)

for s′ ∈ (s, T ) and denote Xx,s its unique solution. For t ∈ (s, T ] the flow
Φs,t : Rd ×O → Rd is defined as

Φs,t(x, ω) := Xx,s(t, ω), (4.3)

where Φs,t is continuous and differentiable. Given a measure µ on Rd and a
function ψ : Rd → Rd, for all A ∈ B(Rd) we denote by ψ]µ the measure given
by ψ]µ(A) = µ(ψ−1(A)). The scheme is based on a representation formula for
the solution of (4.1).

Lemma 77. Under assumptions (FP1), (FP2), suppose that m is the unique
solution to (4.1). Then, for each t ∈ [0, T ],

m(t)(A) = E [Φ0,t(·)]m0(A)] for all A ∈ B(Rd), (4.4)

and for 0 ≤ s < t ≤ T

m(t)(A) = E [Φs,t(·)]m(s)(A)] for all A ∈ B(Rd). (4.5)

The proof can be found in [34]. First of all, the time interval [0, T ] is
discretized using a step ∆t > 0 and we set tk = k∆t for k = 1, . . . , bN/∆tc.
Differently than Section 2.1, the diffusion here is a matrix, with possible not
full rank. Then, the flow is approximated using a forward weak Euler method
as in Section 3.2.2, so that for ` = 1, . . . , r there are two time discrete fluxes

y+,`
k := x+ ∆tµ(tk, x) +

√
r∆tσ`(tk, x),

y−,`k := x+ ∆tµ(tk, x)−
√
r∆tσ`(tk, x).

(4.6)

Given ∆x > 0, define the uniform triangulation with vertices in the lattice

G∆x := {xj = j∆x, j ∈ Zd}.

We define the fully-discrete characteristics as

y+,`
k,j := xj + ∆tµ(tk, xj) +

√
r∆tσ`(tk, xj),

y−,`k,j := xj + ∆tµ(tk, xj)−
√
r∆tσ`(tk, xj).

(4.7)

Setting

Ej :=
[
x1
j − 1

2∆x, x1
j + 1

2∆x
]
× · · · ×

[
xdj − 1

2∆x, xdj + 1
2∆x

]
,

and defining βj(x) the basis of P1 defined on the standard triangulation with
vertices in G∆x, the scheme results in

mk,i = 1
2r
∑
j∈Zd

r∑
`=1

[βi(y+,`
k,j ) + βi(y−,`k,j )]mk,j ,

m0,i =
∫
Ei
m0(x)dx.

(4.8)
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Using the sequence {mk,i} computed in (4.8) it is possible to define the discrete
measure

dm̃(tk) :=
∑
i∈Zd

mk,iβi(x)dx.

Calling ∆ = (∆t,∆x), we define its extension, interpolating linearly in time, as

m∆(t) = tk+1 − t
∆t m̃(tk) + t− tk

∆t m̃(tk+1), (4.9)

which is a continuous measure. The following convergence result has been proved
in [35].
Theorem 78. The measure t ∈ [0, T ] → m∆(t) defined in (4.9) converges to
the solution m of (4.1) in the weak sense.
Remark 79. The basis functions (βi)i∈Zd of P1 are nonnegative; this implies
that the scheme preserves nonnegativity. In addition, since ∑i∈Zd βi(x) = 1 for
all x ∈ Rd, we get ∑

i∈Zd
mk+1,i =

∑
i∈Zd

mk,i =
∑
i∈Zd

m0,i = 1,

meaning that the scheme is conservative.

4.2 A second order Lagrange-Galerkin scheme for
the Fokker-Planck equation

We propose a second order accurate numerical method for linear Fokker-Plank-
Kolmogorov equations, based on the coupling of Lagrange-Galerkin techniques
with semi-Lagrangian methods. The method is conservative, explicit and stable
under rather large steps. We develop a convergence analysis for the exacted
integrated scheme, and we propose an implementable version with non-exact
integration. We consider application for time dependent Mean Field Games
problems, and we show numerical simulations.

In this section, we consider the following linear FP equation∂tm−
σ2

2 ∆m+ div (µm) = 0 in (0, T )× Rd,

m(0, ·) = m0 in Rd,
(FP)

where σ ∈ R \ {0}, µ : [0, T ]× Rd → Rd, and m0 : Rd → R.
In the following, for p ∈ N ∪ {∞}, Cp0 (Rd) denotes the sets of functions φ of

class Cp with support supp(φ) being compact.
(H1) We assume that:
(i) m0 is nonnegative, continuous, has compact support, and

∫
Rdm0(x)dx = 1.

(ii) µ is bounded, µ ∈ C∞([0, T ]× Rd), and there exists Cµ > 0 such that

|µ(s, x)− µ(t, y)| ≤ Cµ(|s− t|+ |x− y|) for s, t ∈ [0, T ] and x, y ∈ Rd.

In the following result, we summarize some important properties of equation
(FP).
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Theorem 80. Assume (H1). Then the following hold:

(i) Equation (FP) admits a unique classical solution m∗ ∈ C1,2([0, T ]× Rd).

(ii) m∗ ≥ 0.

(iii)
∫
Rdm

∗(t, x)dx = 1 for all t ∈ [0, T ].

(iv) m∗ is the unique solution in L2([0, T ]× Rd) to (FP) in the distributional
sense.

Proof. We refer the reader to [13, Theorem 6.6.1, Chapter 9.1] for the proofs of
(i)-(ii) and to [56, Proposition 4.4 and Theorem 4.3] for the proofs of (iii)-(iv).

Let us recall the probabilistic interpretation of the solution m∗ to (FP),
which will be useful in order to construct a LG scheme. LetW be a d-dimensional
Brownian motion defined on a probability space (Ω,F ,P) and let X0 : Ω→ Rd
be a random variable, independent of W , and whose distribution is absolutely
continuous with respect to the Lebesgue measure in Rd, with density given by
m0. Given (t, x) ∈ [0, T ]× Rd, we define Xt,x as the unique strong solution to
the stochastic differential equation

dX(s) = µ(s,X(s))ds+ σdW (s) for s ∈ (t, T )

X(t) = x.

Denote by E(Y ) the expectation of a random variable Y : Ω→ R. Assumption
(H1) implies that X0,X0(t) is well defined for all t ∈ [0, T ] and its distribution
is absolutely continuous with respect to the Lebesgue measure in Rd, with
density given by m∗(t, ·) (see e.g. [56]). From the P-a.s. equality X0,X0(s) =
Xt,X0,X0 (t)(s) for every 0 ≤ t ≤ s ≤ T , we deduce that for every continuous and
bounded function φ : Rd → R, we have∫

Rd
φ(x)m∗(s, x)dx =

∫
Rd

E
(
φ(Xt,x(s))

)
m∗(t, x)dx. (4.10)

4.2.1 A space-time Lagrange-Galerkin approximation

Let focus on the numerical approximation of (FP). Notice that, under (H1),
equation (FP) can be written as

∂tm−
σ2

2 ∆m+ 〈µ,Dm〉+ div(µ)m = 0 in (0, T )× Rd,

m(0, ·) = m0 in Rd.

In the form above, a semi-Lagrangian scheme can be implemented to approximate
m∗ (see e.g. [17]). However, such a scheme is not conservative, i.e. the discrete
solution does not satisfy the discrete analogous of Theorem 80(iii). The scheme
that we consider, which will be built from (4.10), will allow us to preserve this
property (see Theorem 59(ii) below).

Let us fix N∆t ∈ N, set I∆t = {0, . . . , N∆t}, I∗∆t = I∆t\{N∆t}, ∆t = T/N∆t,
and tk = k∆t (k ∈ I∆t). For k ∈ I∗∆t and x ∈ Rd, we denote by ytk,x a one-step
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second order Crank-Nicolson approximation of Xtk,x(tk+1) (see [70, Section 15.4]
and also [52, Section 2]). More precisely, for all ∆t small enough, we define ytk,x
is the unique solution to

y = x+ ∆t
2 (µ(tk, x) + µ(tk+1, y)) +

√
∆tσξ, (4.11)

where ξ is a Rd-valued random variable with i.i.d. components such that

P(ξi = 0) = 2/3 and P(ξi = ±
√

3) = 1/6 for i = 1, . . . , d. (4.12)

Let Id = {1, . . . , 3d}, define {e` | ` ∈ Id} ⊂ Rd as the set of possible values of ξ,
set ω` = P(ξ = e`), and denote by y`k(x) the unique solution to (4.11) for ξ = e`

(` ∈ Id). By standard estimates for the weak approximation of Xtk,x(tk+1) (see
e.g. [70, Theorem 14.5.2]), if the space derivatives of µ up to order six have
polynomial growth, for all φ : Rd → R smooth enough, we have that

∣∣ ∑
`∈Id

φ(y`k(x))ω` − E
(
φ(Xtk,x(tk+1))

) ∣∣ = O
(
(∆t)3

)
. (4.13)

Thus, in order to obtain a second order scheme, it is natural to approximate
(4.10) by the equation∫

Rd
φ(x)mk+1(x)dx =

∑
`∈Id

ω`

∫
Rd
φ(y`k(x))mk(x)dx, (4.14)

for all φ smooth enough and k ∈ I∆t, with m0 = m0 and unknowns {mk :
Rd → R | k ∈ I∆t \ {0}}. Note that the boundedness of µ and (4.11) implies the
existence of L∆t = O(1/

√
∆t) such that the solution m∆t to (4.14) satisfies

supp(m∆t,k) ⊂ [−L∆t, L∆t]d for all k ∈ I∆t. (4.15)

In order to construct a space discretization of (4.14), let us fix p ∈ N, set
q := 2p+ 1, and let β̂ : R→ R be defined by

(∀ ξ ∈ [0,∞)) β̂(ξ) =



p+1∏
k 6=0, k=−p

ξ − k
−k

if ξ ∈ [0, 1],

p+2∏
k 6=0, k=−p+1

ξ − k
−k

if ξ ∈ (1, 2],

...
2p+1∏
k=1

ξ − k
−k

if ξ ∈ (p, p+ 1],

0 if ξ ∈ (p+ 1,∞),

β̂(−ξ) if ξ ∈ (−∞, 0).

(4.16)
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Following [53], for ∆x ∈ (0,∞), we consider the symmetric Lagrange inter-
polation basis function {βi}i∈Zd defined as

(∀ z = (z1, . . . zd) ∈ Rd, i = (i1, . . . , id) ∈ Zd) βi(z) =
d∏
j=1

β̂

(
zj
∆x − ij

)
.

For all i ∈ Zd, let us set xi = i∆x. Notice that βi has compact support,
βi(xj) = 1 if i = j and βi(xj) = 0 otherwise, and, for all x ∈ Rd,

∑
j∈Zd βj(x) = 1.

Given f ∈W q+1,∞(Rd), we define the interpolant I[f ] : Rd → R by

(∀x ∈ Rd) I[f ](x) =
∑
i∈Zd

f(xi)βi(x), (4.17)

By [39, Theorem 16.1], the following estimate holds

(∃CI > 0) sup
x∈Rd

|f(x)− I[f ](x)| ≤ CI(∆x)q+1‖Dq+1f‖L∞ , (4.18)

with CI > 0 independent of f and ∆x. Notice that in the one dimensional case
(d = 1), I[f ] restricted to a given interval (xi, xi+1) (i ∈ Z) is the Lagrange
interpolating polynomial of degree q constructed on the symmetric stencil
xi−(q−1)/2, . . . , xi+1+(q−1)/2.

Let L∆t > 0 be as in (4.15), let N∆x ∈ N, and set I∆x = {−N∆x, . . . , N∆x}d.
From now on, we assume that ∆x = L∆t/N∆x, we set ∆ = (∆t,∆x), and we
consider the space domain O∆ = [−L∆t − p∆x, L∆t + p∆x]d. We look for an
approximation m∆ of the solution m∗ to (FP) such that, for all k ∈ I∆t,

m∆(tk, x) =
∑
i∈I∆x

mk,iβi(x) for x ∈ O∆, m∆(tk, x) = 0 for x ∈ Rd \ O∆,

(4.19)
where mk,i ∈ R (k ∈ I∆t, i ∈ I∆x) have to be determined. Notice that, by
definition of I∆x, for all k ∈ I∆t we have that supp{m∆(tk, ·)} ⊂ O∆. Replacing
m by m∆ and taking φ = βi (i ∈ I∆x) in (4.14) yields the following explicit
iterative scheme for the unknowns mk,i ∈ R (k ∈ I∆t, i ∈ I∆x)∑
j∈I∆x

mk+1,j

∫
O∆

βi(x)βj(x)dx =
∑
j∈I∆x

mk,j

∑
`∈Id

ω`

∫
O∆

βi(y`k(x))βj(x)dx

for k ∈ I∗∆t, i ∈ I∆x,∑
j∈I∆x

m0,j

∫
O∆

βi(x)βj(x)dx =
∫
O∆

m0(x)βi(x)dx.

(4.20)

Let A be the (2N∆x + 1)d× (2N∆x + 1)d real mass matrix with entries given
by

Ai,j =
∫
O∆

βi(x)βj(x)dx, for (i, j) ∈ I∆x × I∆x. (4.21)

For k ∈ I∗∆t and ` ∈ Id, let B`
k be the (2N∆x + 1)d × (2N∆x + 1)d real matrix

with entries given by

(B`
k)i,j =

∫
O∆

βi(y`k(x))βj(x)dx for (i, j) ∈ I∆x × I∆x. (4.22)
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Let m0,∆x be the (2N∆x + 1)d dimensional real vector with entries

(m0,∆x)i =
∫
O∆

m0(x)βi(x)dx for i ∈ I∆x.

Calling mk = (mk,i)i∈I∆x , the scheme (4.20) can be rewritten in matrix form:
find mk (k ∈ I∆t) such that

Amk+1 =
∑
`∈Id

ω`B
`
kmk for k ∈ I∗∆t,

Am0 = m0,∆x.
(4.23)

4.2.2 Properties of the space-time Lagrange-Galerkin scheme

We show below some properties of the scheme (4.20) and we assume that (H1)
are satisfied in the rest of the paper.

Theorem 81. Assume that (H1) holds. For fixed ∆ = (∆t,∆x) ∈ (0,∞)2,
there exists a unique solution (mk,i)k∈I∆t,i∈I∆x to (4.23) and, defining m∆ as in
(4.19), the following assertions hold true:

(i)[Initial condition] ‖m0 −m∆(0, ·)‖L2(Rd) = O((∆x)q+1) if m0 ∈ Hq+1(Rd).

(ii)[Mass conservation]
∫
O∆

m∆(tk, x)dx = 1 for k ∈ I∆t.

(iii)[L2-stability] maxk∈I∆t ‖m∆(tk, ·)‖L2 is uniformly bounded with respect to ∆
for ∆t small enough.

Proof. The well-posedness of (4.23) follows from the positive definiteness of A
(see e.g. [96, Proposition 6.3.1]) and assertion (i) is a consequence of Assumption
(H1)(i) and [96, Section 3.5]. In order to prove (ii), fix k ∈ I∗∆t and sum over
i ∈ Zd in the first equation of (4.20) to obtain

∑
j∈I∆x

mk+1,j
∑
i∈Zd

∫
O∆

βj(x)βi(x)dx =
∑
j∈I∆x

mk,j

∑
`∈I

ω`
∑
i∈Zd

∫
O∆

βj(x)βi(y`k(x))dx.

Recalling that, for every y ∈ Rd,
∑
i∈Zd βi(y) = 1, the cardinality {i ∈

Zd |βi(y) 6= 0} is bounded uniformly in y, and
∑
`∈Id ω` = 1, Fubini’s the-

orem yields ∫
O∆

m∆(tk+1, x)dx =
∑
j∈I∆xmk+1,j

∫
O∆

βj(x)dx

=
∑
j∈I∆xmk,j

∫
O∆

βj(x)dx

=
∑
j∈I∆xm0,j

∫
O∆

βj(x)dx

=
∫
O∆

m∆(0, x)dx.

(4.24)

Analogously, using the second equation in (4.20) and summing over i ∈ Zd, we
get ∫

O∆

m∆(0, x)dx =
∫
O∆

m0(x)dx = 1. (4.25)
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Assertion (ii) follows from (4.24) and (4.25). Finally, let us show assertion
(iii). For k = 0, (iii) follows from Assumption (H1)(i) and Theorem 81(i). For
k ∈ I∗∆t, (4.20) implies that

‖m∆(tk+1, ·)‖2L2 =
∑
`∈Id ω`

∑
i,j∈I∆xmk+1,imk,j

∫
O∆

βi(x)βj(y`k(x))dx

=
∑
`∈Id ωl

∫
O∆

m∆(tk, y`k(x))m∆(tk+1, x)dx,
(4.26)

and hence, by the Cauchy-Schwarz inequality,

‖m∆(tk+1, ·)‖L2 ≤ max
`∈Id

(∫
O∆

|m∆(tk, y`k(x))|2dx
)1/2

. (4.27)

In order to estimate the right-hand-side above, fix x ∈ Rd, ` ∈ Id and notice
that

Dy`k(x) = Id + ∆t
2

(
Dµ(tk, x) +Dµ(tk+1, y

`
k(x))Dy`k(x)

)
, (4.28)

where Id denotes the d× d identity matrix. Assumption (H1)(ii) implies the
existence of ∆t such that for all k ∈ I∗∆t and ∆t ∈ [0,∆t], y`k is one-to-one, and,
for all z ∈ Rd, the matrix Id − ∆t

2 Dµ(tk+1, z) is invertible. Therefore, by (4.28),

Dy`k(x) =
(
Id −

∆t
2 Dµ(tk+1, y

`
k(x))

)−1 (
Id + ∆t

2 Dµ(tk, x)
)
, (4.29)

from which we deduce that Dy`k(x) is invertible. Then, by the change of variable
formula, we get that∫

O∆

|m∆(tk, y`k(x))|2dx =
∫
y`
k
(O∆)

|m∆(tk, z)|2
∣∣det (Dy`k((y`k)−1(z))

) ∣∣−1dz.

(4.30)
On the other hand, by (4.29), Jacobi’s formula, and (H1)(ii), for all x ∈ Rd we
have [

det
(
Dy`k(x)

)]−1
= det(Id−∆t

2 Dµ(tk+1,y
`
k(x)))

det(Id+ ∆t
2 Dµ(tk,x))

= 1−∆t
2 Tr(Dµ(tk+1,y

`
k(x)))+O((∆t)2)

1+ ∆t
2 Tr(Dµ(tk,x)+O((∆t)2)

= 1−∆t
2 div(µ̄(tk+1,y

`
k(x)))+ O((∆t)2)

1+ ∆t
2 div(µ(tk,x))+O((∆t)2) .

(4.31)

Thus, by assumption (H1)(ii), there exists a constant C > 0, independent of x,
k, `, and ∆t, such that ∣∣∣∣ [det (Dy`k(x)

)]−1
∣∣∣∣ ≤ 1 + C∆t. (4.32)

Combining the previous inequality and (4.30) yields∫
O∆

|m∆(tk, y`k(x))|2dx ≤ (1 + C∆t)‖m∆(tk, ·)‖2L2 , (4.33)
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and hence, by (4.27),

‖m∆(tk+1, ·)‖L2 ≤ (1 + C∆t)
1
2 ‖m∆(tk, ·)‖2L2 .

Thus,

‖m∆(tk+1, ·)‖L2 ≤
(

1 + CT

N∆t

)N∆t/2
‖m∆(0, ·)‖L2 ≤ eCT/2‖m∆(0, ·)‖L2 ,

from which assertion (iii) follows.

Remark 82. Notice that Proposition 81(iii) and the Cauchy-Schwarz inequality
imply that, for any compact set K ⊆ Rd, there exists CK > 0, independent of
∆t and ∆x, such that

max
k∈I∆t

∫
K
|m∆(tk, x)|dx ≤ CK .

In the following, we still denote by m∆ its extension to [0, T ]×O∆, defined
as

m∆(t, x) = t− tk
∆t m∆(tk+1, x) + tk+1 − t

∆t m∆(tk, x) (4.34)

if (t, x) ∈ [tk, tk+1]×O∆ (k ∈ I∗∆t).
Notice that (4.34) and Theorem 59(ii)-(iii) imply that∫
O∆

m∆(t, x)dx = 1 for all t ∈ [0, T ] and max
t∈[0,T ]

‖m∆(t, ·)‖L2 ≤ C, (4.35)

for some C > 0, independent of ∆ for ∆t small enough.

Proposition 83. Under (H1), the following assertions hold true:
(i)[Equicontinuity] Let φ ∈ C∞0 (Rd) and ∆t0 > 0. Then there exists Cφ > 0 such
that for all ∆ = (∆t,∆x) satisfying ∆t ≤ ∆t0 and (∆x)q+1 ≤ ∆t, we have∣∣∣∣∫

Rd
φ(x)m∆(t, x)dx−

∫
Rd
φ(x)m∆(s, x)dx

∣∣∣∣ ≤ Cφ∆t for all s, t ∈ [0, T ].
(4.36)

(ii)[Consistency] Let φ ∈ C∞0 (Rd), then for any k ∈ I∗∆t and (∆t,∆x) ∈
(0,+∞)2, we have ∫

Rd
φ(x) (m∆(tk+1, x) − m∆(tk, x)) dx =

∫ tk+1

tk

∫
Rd

(
σ2

2 ∆φ(x) + 〈µ(s, x), Dφ(x)〉
)
m∆(s, x)dxds+O((∆x)q+1 + (∆t)2).

(4.37)

Proof. In the proof of both assertions, we fix φ ∈ C∞0 (Rd) and we will denote
by C a positive real number which can depend on φ but not on ∆t and ∆x. We
will also use the estimate∣∣∣∣∣∣
∑
`∈Id

ω`φ(y`k(x))−
[
φ(x) + ∆t

(
σ2

2 ∆φ(x) + 〈µ(x, tk), Dφ(x)〉
)]∣∣∣∣∣∣ ≤ C(∆t)2,

(4.38)
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for x ∈ Rd, which follows from the definition of y`k(x) and a Taylor expansion
(see for instance [17]).

(i) Let us first show the assertion for t = tk+1 and s = tk for some k ∈ I∗∆t.
Set ε := φ− I[φ] and fix k ∈ I∗∆t. Remark 82 yields the existence of C > 0 such
that ∣∣∣∣∫

Rd
φ(x) (m∆(tk+1, x)−m∆(tk, x)) dx

∣∣∣∣ ≤∣∣∣∣∫
Rd
I[φ](x) (m∆(tk+1, x)−m∆(tk, x)) dx

∣∣∣∣+ C‖ε‖L∞ .
(4.39)

Recalling that supp{m∆(tk, ·)} ⊂ O∆ and using the definition of the scheme in
(4.20), we have that ∫

Rd
I[φ](x) (m∆(tk+1, x)−m∆(tk, x)) dx

=
∫
O∆

∑
i∈Zd

φ(xi)βi(x)

 ∑
j∈I∆x

(mk+1,j −mk,j)βj(x)

 dx

=
∑
i∈Zd

φ(xi)

 ∑
j∈I∆x

(mk+1,j −mk,j)
∫
O∆

βi(x)βj(x)dx


which leads to ∫

Rd
I[φ](x) (m∆(tk+1, x)−m∆(tk, x)) dx

=
∑
i∈Zd

φ(xi)
[∑
`∈I

ω`
∑
j∈I∆x

mk,j

(∫
O∆

βi(y`k(x))βj(x)dx
∫
O∆

βi(x)βj(x)dx
)]

=
∑
`∈I

ω`
∑
j∈I∆x

mk,j

∫
O∆

[
I[φ](y`k(x))− I[φ](x)

]
βj(x)dx

=
∑
`∈I

ω`

∫
O∆

[
I[φ](y`k(x))− I[φ](x)

]
m∆(tk, x)dx.

(4.40)

On the other hand, since φ has a compact support, there exists C > 0 such that∥∥∥∥∥∥
∑
`∈I

ω`
(
I[φ](y`k(·))− φ(y`k(·))

)∥∥∥∥∥∥
L2

+ ‖φ− I[φ]‖L2 ≤ C‖ε‖L∞ (4.41)

and, by (4.38) and (H1)(ii), there exists C > 0 such that∥∥∥∥∥∥
∑
`∈I

ω`
(
φ(y`k(·))− φ

)∥∥∥∥∥∥
L2

≤ C∆t. (4.42)

Thus, by the triangular and the Cauchy-Schwarz inequalities, Theorem 81(iii),
(4.39), (4.40), (4.41), and (4.42), we get the existence of C > 0 such that∣∣∣∣∫

Rd
φ(x) (m∆(tk+1, x)−m∆(tk, x)) dx

∣∣∣∣ ≤ C (‖ε‖L∞ + ∆t)
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and hence it follows from (4.18) and the condition (∆x)q+1 ≤ ∆t the existence
of C > 0 such that (4.36) holds for t = tk+1 and s = tk. Using this relation
and the triangular inequality, we deduce that (4.36) holds for every s = tk and
t = tm with k, m ∈ I∆t.

Now, let us fix s, t ∈ [0, T ] and assume, without loss of generality, that t > s.
Let k1, k2 ∈ I∗∆t be such that s ∈ [tk1 , tk1+1] and t ∈ [tk2 , tk2+1]. By (4.34), we
have that ∣∣∣∣∫

Rd
φ(x) (m∆(tk1+1, x)−m∆(s, x)) dx

∣∣∣∣ ≤
tk1+1 − s

∆t

∣∣∣∣∫
Rd
φ(x) (m∆(tk1+1, x)−m∆(tk1 , x)) dx

∣∣∣∣ ≤ tk1+1 − s.

(4.43)

Similarly, ∣∣∣∣∫
Rd
φ(x) (m∆(tk2 , x)−m∆(t, x)) dx

∣∣∣∣ ≤ t− tk2 . (4.44)

Thus, (4.36) follows from the triangular inequality, (4.43), (4.44), and (4.36)
with t = tk2 and s = tk1+1.

(ii) By (4.18), Remark 82, and the definition of the scheme (4.20), for each
k ∈ I∗∆t we have∫

Rd
φ(x)m∆(tk+1, x)dx =

∫
Rd
I[φ](x)m∆(tk+1, x)dx+O((∆x)q+1)

=
∑
i∈Zd

φ(xi)
∑

j∈I∆xn

mk+1,j

∫
Rd
βi(x)βj(x)dx

+O((∆x)q+1)

=
∑
i∈Zd

φ(xi)
∑
j∈I∆x

mk,j

∑
`∈Id

ω`

∫
Rd
βi(y`k(x))βj(x)dx

+O((∆x)q+1)

=
∑

j∈I∆xn

mk,j

∑
`∈Id

ω`

∫
Rd
I[φ](y`k(x))βj(x)dx

+O((∆x)q+1)

=
∑

j∈I∆xn

mk,j

∫
Rd

∑
`∈Id

ω`φ(y`k(x))

βj(x)dx

+O((∆x)q+1).
(4.45)

Using (4.38) and Remark 82, we obtain∫
Rd
φ(x) (m∆(tk+1, x)−m∆(tk, x)) dx

= ∆t
∫
Rd

(
σ2

2 ∆φ(x) + 〈µ(tk, x), Dφ(x)〉
)
m∆(tk, x)dx

+O((∆x)q+1 + (∆t)2).
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By (4.34), Assumption (H1)(ii), and assertion (i), for every s ∈ [tk, tk+1], we
have∣∣∣∣∣
∫ tk+1

tk

∫
Rd

(
σ2

2 ∆φ(x) + 〈µ(tk, x), Dφ(x)〉
)

(m∆(s, x)−m∆(tk, x))dxds
∣∣∣∣∣

= O((∆t)2). (4.46)

Thus, by using Assumption (H1)(ii) again and Remark 82, we obtain
(4.37).

Let us denote by D′(Rd) the space of distributions, which we endow with
the weak∗ topology. In the following, for every ∆ ∈ (0,∞)2 and t ∈ [0, T ], we
identify m∆(t, ·) with the regular distribution

C∞0 (Rd) 3 φ 7→
∫
Rd
φ(x)m∆(t, x)dx ∈ R.

For every ∆ = (∆t,∆x) ∈ (0,∞)2, let us denote, with a slight abuse of nota-
tion, m∆ the map [0, T ] 3 t 7→ m∆(t, ·) ∈ D′(Rd). Notice that Proposition 83(i)
implies that m∆ ∈ C([0, T ];D′(Rd)).

Lemma 84. There exists ∆t0 > 0 such that the family M = {m∆ |∆t ≤
∆t0, (∆x)q+1 ≤ ∆t} is relatively compact in C([0, T ];D′(Rd)).

Proof. In view of the Arzelà-Ascoli theorem [69, Chapter 7, Theorem 18] (see
also [71, Section 4]) and Proposition 83(i), it suffices to show that the family
M is pointwise relatively compact. Let us consider the absolutely convex set
U0 := {φ ∈ C∞0 (Rd) | ‖φ‖L∞ < 1, suppφ ⊆ B(0, 1)}. This set is a neighborhood
of 0 in the standard topology of C∞0 (Rd) (see e.g. [107, Chapter 10]) and, for
any t ∈ [0, T ],

sup
φ∈U0

∣∣∣∣∫
Rd
m∆(t, x)φ(x)dx

∣∣∣∣ = sup
φ∈U0

∣∣∣∣∣
∫
B(0,1)

m∆(t, x)φ(x)dx
∣∣∣∣∣

≤ ‖m∆(t, ·)‖L1(B(0,1)) ≤ r,

where r := sup{‖m∆(t, ·)‖L1(B(0,1)) |∆ ∈ (0,∞)2} belongs to [0,+∞) by (4.35).
This proves that {m∆(t, ·) |∆ ∈ (0,∞)2} ⊂

{
T ∈ D′(Rd) | supφ∈U0 |T (φ)| ≤ r

}
which, by the Banach-Alaoglu-Bourbaki theorem (see e.g. [82, Theorem 23.5]),
is a compact subset of D′(Rd).

We now show a convergence result.

Proposition 85. Assume that m0 ∈ Hq+1(Rd) and that (H1) holds. Con-
sider a sequence (∆n)n∈N = ((∆tn,∆xn))n∈N ⊆ (0,∞)2 such that, as n → ∞,
(∆tn,∆xn)→ (0, 0) and (∆xn)q+1/∆tn → 0. Given n ∈ N, set mn := m∆n the
solution to (4.20). Then, up to subsequence, mn → m∗ in C([0, T ];D′(Rd)) and
weakly in L2

(
[0, T ]× Rd

)
as n→∞, where m∗ is the unique classical solution

to (FP).
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Proof. By Theorem 81(iii), the sequence (mn)n∈N is bounded in L2([0, T ]×Rd).
Thus, there exists m̂ in L2([0, T ] × Rd) such that, as n → ∞ and up to some
subsequence, mn converges weakly to m̂ in L2([0, T ]× Rd).

Let us first show that for any φ ∈ C∞0 ((0, T )× Rd), we have

∫ T

0

∫
Rd

[
∂tφ(t, x)− σ2

2 ∆φ(t, x)− 〈µ(s, x), Dφ(t, x)〉
]
m̂(t, x)dxdt = 0. (4.47)

Let η ∈ C∞0 ([0, T ]), ψ ∈ C∞0 (Rd) and define φ = ηψ ∈ C∞0 ([0, T ]× Rd). Denote
by K ⊂ Rd the support of ψ. By (4.34) and Proposition 83(i), we have

∫ T

0

∫
Rd
∂tφ(t, x)mn(t, x)dxdt =

N∆tn−1∑
k=0

∫ tk+1

tk

∫
K
∂tφ(t, x)mn(tk, x)dxdt

+
N∆tn−1∑
k=0

∫ tk+1

tk

∫
K
∂tφ(t, x)(mn(tk+1, x)−mn(tk, x)) t− tk∆tn

dxdt

=
N∆t−1∑
k=0

∫ tk+1

tk

∫
K
∂tφ(t, x)mn(tk, x)dxdt+O(∆tn).

(4.48)

On the other hand, by Remark 82

N∆tn−1∑
k=0

∫ tk+1

tk

∫
K
∂tφ(t, x)mn(tk, x)dxdt

=
N∆tn−1∑
k=0

∆tn
∫
K
∂tφ(tk, x)mn(tk, x)dx+O (∆tn)

=
N∆tn−1∑
k=0

∆tnη̇(tk)
∫
K
ψ(x)mn(tk, x)dx+O(∆tn)

=
N∆tn−1∑
k=0

(η(tk+1)− η(tk))
∫
K
ψ(x)mn(tk, x)dx+O(∆tn)

=
N∆tn−2∑
k=0

η(tk+1)
(∫

K
ψ(x)[mn(tk, x)−mn(tk+1, x)]dx

)
+O(∆tn).

(4.49)

By (4.48), (4.49) and using the fact that φ is equal to zero outside K we get∫ T

0

∫
Rd
∂tφ(t, x)mn(t, x)dxdt

=
N∆tn−2∑
k=0

η(tk+1)
(∫

Rd
ψ(x)[mn(tk, x)−mn(tk+1, x)]dx

)
+O(∆tn).

(4.50)



108
4. A second order Lagrange-Galerkin scheme for Fokker-Planck equations

and applications to MFGs

Using (4.50) and Proposition 83(ii) we have ∫ T

0

∫
Rd
∂tφ(t, x)mn(t, x)dxdt

=
N∆tn−1∑
k=0

η(tk+1)
∫ tk+1

tk

∫
Rd

(
σ2

2 ∆ψ(x) + 〈µ(s, x), Dψ(x)〉
)
mn(s, x)dxds

+O((∆xn)q+1/∆tn + (∆tn))

=
∫ T

0

∫
Rd

(
σ2

2 ∆φ(t, x) + 〈µ(s, x), Dφ(t, x)〉
)
mn(t, x)dxdt

+O((∆xn)q+1/∆tn + (∆tn)).

Thus, ∫ T

0

∫
Rd

[
∂tφ(t, x)− σ2

2 ∆φ(t, x)− 〈µ(s, x), Dφ(t, x)〉
]
mn(t, x)dxdt

= O((∆xn)q+1/∆tn + (∆tn))

and hence, passing to the weak limit in L2([0, T ]× Rd), we get∫ T

0

∫
Rd

[
∂tφ(t, x)− σ2

2 ∆φ(t, x)− 〈µ(s, x),∇φ(t, x)〉
]
m̂(t, x)dxdt = 0. (4.51)

Since the vector space spanned by {ηψ | η ∈ C∞0 ((0, T )), ψ ∈ C∞0 (Rd)} is dense
in C1,2

0 ((0, T )×Rd) (as in [89, Corollary 1.6.2 of the Weierstrass Approximation
Theorem]), we get that (4.47) holds for any φ ∈ C1,2

0 ((0, T )× Rd).
Finally, let us show that for any φ ∈ C0(Rd)∫

Rd
φ(x)(m̂(t, x)−m0(x))dx→ 0 as t→ 0. (4.52)

By Lemma 84, we have that m̂ ∈ C([0, T ];D′(Rd)). Moreover, by [56, Lemma
2.1], for any t ∈ [0, T ] and for every φ ∈ C0(Rd), it holds that

lim
s→t, s∈[0,T ]

∫
Rd
φ(x)m̂(s, x)dx =

∫
Rd
φ(x)m̂(t, x)dx. (4.53)

Since Theorem 81(i) implies that m̂(0, ·) = m0(·), (4.52) follows from (4.53)
with t = 0.

The result follows from (4.47), (4.52) and [56, Theorem 4.3].

Remark 86. The convergence of the sequence (mn)n∈N to m∗ in the previous
proposition is rather weak. On the other hand, to the best of our knowledge this
is the first convergence result of a high order LG scheme for equation (FP).
Notice that our proof does not depend on the smoothness of m∗ recalled in
Theorem 80(i), but it can be easily adapted to deal with equations whose second
order term are not uniformly elliptic (see e.g. [52, 31] and the numerical test in
Section 4.4.2 below).
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4.3 Application to Mean Field Games

Mean Field Game problems, introduced by Lasry and Lions in [75, 76, 77],
characterize Nash equilibria of symmetric stochastic differential games with an
infinite number of players.

Let (P1(Rd),d) be the metric space of Borel probability measures on Rd
with finite first order moment, endowed with the 1-Wasserstein distance d (see
e.g. [4, Section 7.1] for the definition of d).

In this section, we focus on the numerical approximation of the following
time-dependent second order MFG with nonlocal couplings (see e.g. [77, 76]):

−∂tv − σ2

2 ∆v +H(x,∇v) = F (x,m(t)) in [0, T )× Rd,

∂tm− σ2

2 ∆m− div
(
∂pH(x,∇v)m

)
= 0 in (0, T ]× Rd,

v(T, ·) = G(·,m(T )), m(0, ·) = m0 in Rd,
(MFG)

where σ ∈ R \ {0}, Rd × Rd 3 (x, p) 7→ H(x, p) ∈ R is convex and differentiable
with respect to p, F , G : Rd × P1(Rd) → R, and m0 : Rd → R. Notice that
(MFG) consists of a Hamilton-Jacobi-Bellman (HJB) equation, with a terminal
condition, coupled with a FP equation with an initial condition.

For the sake of simplicity, in what follows we will suppose that the Hamilto-
nian H is quadratic, i.e. H(x, p) = |p|2/2 for all x, p ∈ Rd.

(H2) We assume that:
(i) m0 is Hölder continuous and satisfies (H1)(i).
(ii) F and G are bounded and Lipschitz continuous. Moreover, for every
m ∈ P1(Rd), F (·,m) is of class C2 and

sup
x∈Rd,m∈P1(Rd)

{
‖DF (x,m)‖∞ + ‖D2F (x,m)‖∞

}
<∞.

Under (H2) system (MFG) admits at least one classical solution (see
e.g. [28, Theorem 3.1]). Moreover, if the coupling terms F and G satisfy a
monotonicity condition with respect to m, then the classical solution is unique
(see [77, Theorem 2.4]).

In the following, in order to obtain a second order scheme for (MFG), we
consider a second order Semi-Lagrangian (SL) scheme for the HJB equation,
which will be combined with the scheme (4.20) for the FP equation.

4.3.1 A semi-Lagrangian scheme for the HJB equation

Given m ∈ C([0, T ];P1(Rd)), we consider the HJB equation:

−∂tv − σ2

2 ∆v + 1
2 |∇v|

2 = F (x,m(t)) in (0, T )× Rd,

v(T, ·) = G(·,m(T )) in Rd.
(HJB)

Standard results for quasilinear parabolic equations (see e.g. [73, Chapter IV
and V]) yield that (HJB) admits a unique classical solution v[m]. Moreover,
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using that v[m] is the value function associated to a stochastic optimal control
problem (see e.g. [58, Chapters IV and V]), it is easy to check that (H2) yields
the existence of R > 0 such that

|∇v[m](t, x)| ≤ R for all t ∈ [0, T ], x ∈ Rd, m ∈ C([0, T ];P1(Rd).
We now describe a variation of the scheme in [17] to deal with the nonlinearity

of the Hamiltonian in (HJB) with respect to ∇v (see also [85, 92] for related
constructions). For a given m ∈ C([0, T ];P1(Rd)), let us define {vk,i | k ∈
I∆t, i ∈ I∆x} ⊂ R as the solution to

vk,i = S[m](v·,k+1, k, i) for all k ∈ I∗∆t, i ∈ I∆x,

vN∆t,i = G(xi,m(tN∆t)) for all i ∈ I∆x,
(4.54)

where, for a given f = {fi}i∈I∆x ⊂ R, k ∈ I∗∆t, and i ∈ I∆x,

S[m](f, k, i) = inf
α∈A

∑
`∈Id

ω`
(
I[f ](xi −∆tα+

√
∆tσe`)

+∆t
2 F (xi −∆tα+

√
∆tσe`,m(tk+1))

)
+ ∆t

2 |α|
2
]

+ ∆t
2 F (xi,m(tk)),

(4.55)

with A = {α ∈ Rd | |α| ≤ R} and I[f ] being defined by (4.17). The following
consistency result for S[m] follows from (4.55) and (H2).
Proposition 87. Let (∆tn,∆xn)n∈N ⊂ (0,+∞)2, (kn)n∈N ⊆ N, (in)n∈N ⊂ Zd,
(mn)n∈N ⊂ C([0, T ];P1(Rd)), and m ∈ C([0, T ];P1(Rd)). Assume that (H2)(ii)
holds and, as n→∞, (∆tn,∆xn)→ (0, 0), (∆xn)q+1/∆tn → 0, kn ∈ I∆tn , in ∈
I∆xn, tkn → t, xin → x, and mn → m. Then for every φ ∈ C1,3

b

(
[0, T ]× Rd

)
,

satisfying ‖∇φ‖L∞([0,T ]×Rd) ≤ R, we have

lim
n→∞

1
∆tn

[φ(tkn , xin)− S[mn](φkn+1, kn, in)] =

−∂tφ(t, x)− σ2

2 ∆φ(t, x) + 1
2 |∇φ(t, x)|2 − F (x,m(t)),

where φk = {φ(tk, xi)}i∈I∆x.
Proof. Let ∆t > 0, ∆x > 0, and α ∈ A. In the computations below, the big O
terms are uniform with respect to α ∈ A. Let us apply (4.38) to φ(tk+1, ·), with
b(t, x) = −α, to obtain ∑

`∈Id

ω`φ
(
tk+1, xi −∆tα+

√
∆tσe`

)
=

φ (tk+1, xi) + ∆t
(
σ2

2 ∆φ(tk+1, xi)− 〈∇φ(tk+1, xi), α〉
)

+O
(
(∆t)2

)
.

(4.56)

By (H2)(ii) and using the first-order Taylor expansion of F (·,m(tk)) around xi,
we get

1
2

∑
`∈Id

ω`F (xi −∆tα+
√

∆tσe`,m(tk+1)) + F (xi,m(tk))

 =

F (xi,m(tk+1)) +O(∆t+ d(m(tk+1),m(tk))).

(4.57)
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Thus, by (4.55), (4.56), (4.57), and (4.18), we obtain

S[m](φk+1, k, i) = φ (tk+1, xi)−∆t sup
α∈A

[
〈∇φ(tk+1, xi), α〉 −

|α|2

2

]

+∆tσ
2

2 ∆φ(tk+1, xi) + ∆tF (xi,m(tk+1))

+O
(
(∆t)2 + (∆x)q+1 + ∆td(m(tk+1),m(tk))

)
= φ (tk+1, xi)−

∆t
2 |∇φ(tk+1, xi)|2

+∆tσ2

2 ∆φ(tk+1, xi) + ∆tF (xi,m(tk+1))

+O
(
(∆t)2 + (∆x)q+1 + ∆td(m(tk+1),m(tk))

)
.

Finally, we get

1
∆t [φ(tk, xi)− S∆[m](φk+1, k, i)] =

−∂tφ(tk+1, xi)−
σ2

2 ∆φ(tk+1, xi) + 1
2 |∇φ(tk+1, xi)|2 − F (xi,m(tk+1))

+O
(

∆t+ (∆x)q+1

∆t + d(m(tk+1),m(tk))
)
,

from which the result follows.

4.3.2 The scheme for MFG

For m ∈ C([0, T ];P1(Rd)), let us define

v∆[m](t, x) := I[v[t/∆t]](x) for all (t, x) ∈ [0, T ]×O∆, (4.58)

where vk,i is given by (4.54). In order to get a differentiable function with
respect to x, given ε > 0 and a non-negative function φ ∈ C∞(Rd) such that∫
Rd φ(x)dx = 1, let us set φε(·) = 1

εd
φ(·/ε) and define

v∆,ε[m](t, ·) = (φε ∗ v∆[m])(t, ·) for all t ∈ [0, T ]. (4.59)

For ` ∈ Id and k ∈ I∗∆t, let us define y`k,ε[m](x) the unique solution to

y = x− ∆t
2 (∇v∆,ε[m](tk, x) +∇v∆,ε[m](tk+1, y) +

√
∆tσe`, (4.60)

where ∇v∆,ε[m](t, x) is the gradient of v∆,ε[m] with respect to x.

We propose the following scheme for (MFG): find {(vk,i,mk,i) ∈ R2 | k ∈
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I∆t, i ∈ I∆x} such that, for all k ∈ I∗∆t and i ∈ I∆x,

vk,i = S∆[m∆](vk+1, k, i),

vN∆t,i = G(xi,m),∑
j∈I∆x

mk+1,j

∫
O∆

βi(x)βj(x)dx =
∑
j∈I∆x

mk,j

∑
`∈Id

ω`

∫
O∆

βi(y`k,ε[m∆](x))βj(x)dx,

∑
j∈I∆x

m0,j

∫
O∆

βi(x)βj(x)dx =
∫
O∆

m0(x)βi(x)dx.

(4.61)
System (4.61) is solved by a fixed point method as in [32]. The iterations are
stopped as soon as the L1-norm, approximated by the Simpson’s Rule, of the
difference between two consecutive approximations of m is less than a given
tolerance τ > 0.

4.4 Numerical results

In this section, we show the performance of the proposed scheme on three
different problems: a linear FP equation in two spatial dimensions, a MFG
with non-local couplings and a explicit solution and, finally, a MFG with local
couplings and no explicit solutions. For each test, we measure the accuracy of
the scheme by computing the following relative errors in the discrete uniform
and L2 norms

E∞ = maxi∈I∆x |h∆(T, xi)− h(T, xi)|
maxi∈I∆x |h(T, xi)|

,

E2 =
(
IntO∆(|h∆(T, x)− h(T, x)|2)

IntO∆(|h(T, x)|2)

)1/2

,

where h = m, v, h∆ = m∆, v∆, and IntO∆ denotes the approximation of the
Riemann integral on O∆ by using the Simpson’s Rule. We denote by p∞ and p2
the rates of convergence for E∞ and E2, respectively. For these error measures,
the tables show rates of convergence greater than 2 in most of the cases. For
the exactly integrated scheme (4.20), the local truncation error is given by the
contributions of (4.13) and (4.18), which yields a global truncation error of order
(∆x)q+1/∆t+(∆t)2. As in [52], we get that the order of consistency is maximized
by taking ∆t = O((∆x)(q+1)/3). With respect to the space discretization step,
the previous choice suggests an order of convergence given by 2(q + 1)/3. In all
the simulations we take q = 3, which yields an heuristic optimal rate equal to
8/3.

4.4.1 An implementable version of the scheme (4.20) in dimen-
sion one

In order to obtain a implementable version of (4.23), an approximation of
the integrals therein has to be introduced. For simplicity, we consider the
one-dimensional case, we use Simpson’s Rule on each element [xj , xj + 2∆x]
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(j = 2m, m ∈ Z) and cubic symmetric Lagrange interpolation basis functions βj
(p = 1 in (4.16)). Recalling that βj has support in [xj−2, xj+2], letting δi,j = 1
if i = j and δi,j = 0 otherwise, the entries of the mass matrix A (see (4.21)) are
approximated by∫

O∆

βi(x)βj(x)dx =
∫ xj

xj−2
βi(x)βj(x)dx+

∫ xj+2

xj

βi(x)βj(x)dx ' 2∆x
3 δi,j

(4.62)
and the entries of B`

k (see (4.22)) are approximated by

(B`
k)i,j =

∫ xj+2

xj−2
βi(y`k(x))βj(x)dx ' 2∆x

3 βi(y`k(xj)). (4.63)

We observe that, as usual in Lagrange-Galerkin methods, the integrands in (4.62)
and (4.63) have not the necessary regularity in order to guarantee the standard
accuracy order of the quadrature rule. This can lead to fluctuations in the order
of convergence, as can be observed in some instances of the numerical tests
below. However, in those tests we will see that the aforementioned quadrature
rule provides an overall order of convergence close to 8/3.

Using (4.62) and (4.63), the scheme (4.23) is approximated by

mk+1 =
∑
`∈Id ω`B̃

`
kmk for k ∈ I∗∆t,

m0 = m̃0,
(4.64)

where B̃`
k is a (2N∆x + 1)× (2N∆x + 1) matrix with entries given by

(B̃`
k)i,j = βi(y`k(xj))

and m̃0 is vector of length 2N∆x + 1 given by

m̃0,i = m0(xi) for i ∈ I∆x.

Remark 88. Applied to a linearization of equation (HJB), scheme (4.64) is
the dual of the semi-Lagrangian scheme [52] when a Crank-Nicolson method
is used to discretize the characteristic curves, together with a cubic symmetric
Lagrange interpolation to reconstruct the values in the space variable. Moreover,
scheme (4.64) is also a natural higher-order extension of the scheme proposed
in [33, 31] to approximate second order MFGs.

4.4.2 Linear case: damped noisy harmonic oscillator

We consider the numerical approximation of a FP equation modeling an noisy
harmonic oscillator with damping coefficient γ > 2 and noise coefficient σ > 0.
For T > 0 and an initial condition x0 ∈ R2, the dynamics is described by the
following SDE in the interval (0, T )

dY1(t) = Y2(t)dt
dY2(t) = (−Y1(t)− γY2(t)) dt+ σdW (t),
Y (0) = x0.

(4.65)
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The associated (degenerated) FP equation is given by

∂tm−
σ2

2 ∂
2
x2,x2m+ ∂x1(x2m)− ∂x2((x1 + γx2)m) = 0 in (0, T ]× R2,

m(0) = δx0 in R2,
(4.66)

where δx0 denotes the Dirac measure at x0. It is shown in [111] that (4.66) has
a unique solution m∗ such that, for all t ∈ (0, T ], m∗(t) is absolutely continuous
with respect to the Lebesgue measure, with density m∗(t, ·) given by

m∗(t, x) = ν(t, x)∫
Rd ν(t, y)dy , for all x ∈ Rd, where ν(t, x) = eγt−sx0 (t,x)/2D(t)

2π
√
D(t)

,

(4.67)
with

sx0(t, x) = a(t)(ψ(t, x)− ψ(0, x0))2 + 2H(t) [ψ(t, x)− ψ(0, x0)] [η(t, x)

−η(0, x0))] + b(t)(η(t, x)− η(0, x0))2,

D(t) = a(t)b(t)−H(t)2,

and, setting

µ1 = −γ2 +

√
γ2

4 − 1, µ2 = −γ2 −

√
γ2

4 − 1,

a, ψ, H, η, and b are respectively given by

a(t) = σ2

2µ1
(1− e−2µ1t), ψ(t, x) = (x1µ1 − x2)e−µ2t,

H(t) = − σ2

µ1+µ2
(1− e−(µ1+µ2)t),

η(t, x) = (x1µ2 − x2)e−µ1t, and b(t) = σ2

2µ2
(1− e−2µ2t).

We apply scheme (4.64) to approximate m∗(t, ·) for t ∈ [t0, T ] = [1.5, 3].
We take γ = 2.1, two values for σ2/2 given by 0.1 and 0.05, respectively, and
x0 = (1, 1). Since the SDE (4.65) is autonomous, it is sufficient to apply (4.64)
to approximate (FP) in [0, 1.5] with initial condition m0(·) = m∗(1.5, ·), the
latter being computed by using (4.67). Since the diffusion term in (4.65) can be
written as (0, σ)dW (t), the scheme (4.64) cannot be directly applied, but, as in
[52], it can be simply modified by setting

Aγ =
(

0 1
−1 −γ

)
, e1 =

(
0
−1

)
, e2 =

(
0
0

)
, e3 =

(
0
1

)
,

and considering the discrete characteristics y`k(x) (` = 1, 2, 3), defined as the
unique solutions to

y = x+ ∆t
2 Aγ(x+ y) +

√
∆tσe`,

with corresponding weights ω` (` = 1, 2, 3) given by ω1 = 1/6, ω2 = 2/3, and
ω3 = 1/6. Since most of the support of the exact solution m is contained in
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O∆ = (−2, 2)2, we consider the solution of our scheme restricted to this domain
in order to obtain an implementable method. We consider homogeneous Dirichlet
boundary conditions, which are approximated by taking (B̃`

k)i,j = 0 in (4.64) if
the characteristic y`k(xj) exits from O∆. Tables 4.1 and 4.2 show the errors and
convergence rates in both norms. We have performed the simulations by taking
∆t = (∆x)4/3/8 in the case of σ2/2 = 0.1 (Table 4.1), and ∆t = (∆x)4/3/4
in the case of σ2/2 = 0.05 (Table 4.2). As for semi-Lagrangian schemes, the
scheme (4.64) performs better in the hyperbolic regime case (small diffusion).
In some simulations, the optimal rate of convergence 8/3 is reached.

∆x Errors on the FP equation
E∞ E2 p∞ p2

2.00 · 10−1 1.83 · 10−1 1.74 · 10−1 - -
1.00 · 10−1 5.57 · 10−2 3.86 · 10−2 1.72 2.17
5.00 · 10−2 8.38 · 10−3 5.51 · 10−3 2.73 2.81
2.50 · 10−2 1.14 · 10−3 6.67 · 10−4 2.88 3.05
1.25 · 10−2 3.18 · 10−4 1.07 · 10−4 1.84 2.64

Table 4.1. Errors and convergence rates for the approximation of (4.66) with σ2/2 =
0.1.

∆x Errors on the FP equation
E∞ E2 p∞ p2

2.00 · 10−1 3.05 · 10−1 3.22 · 10−1 - -
1.00 · 10−1 1.21 · 10−1 1.04 · 10−1 1.33 1.63
5.00 · 10−2 2.54 · 10−2 1.79 · 10−2 2.25 2.54
2.50 · 10−2 3.07 · 10−3 2.34 · 10−3 3.05 2.94
1.25 · 10−2 6.25 · 10−4 3.36 · 10−4 2.30 2.80

Table 4.2. Errors and convergence rates for the approximation of (4.66) with σ2/2 =
0.05.

4.4.3 Non local MFG with analytical solution

Consider a non-local Mean Field Game given by

−∂tv − σ2

2 ∆v + 1
2 |Dv|

2 = 1
2 [x−

∫
Rd(m(t, y)y)dy]2 in [0, T )× Rd,

∂tm− σ2

2 ∆m− div (Dvm) = 0 in (0, T ]× Rd,

v(T, ·) = 0, m(0, ·) = m0 in Rd.
(4.68)

The analytical solution of (4.68) can be computed as tensorial product of one
dimensional solutions. In what follows, we explicitly compute the analytical
formula for the couple (v,m), solution of the system (4.68) in space dimension
d = 1. Let us denote x(t) =

∫
Rd(m(t, y)y)dy. The analytical solution to the HJB

in (4.68) has the form v(t, x) = 1
2Π(t)x2 + s(t)x+ c(t) with Π(t), s(t) and c(t)
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time dependent functions solving the following ODEs:
−1

2Π̇(t) + 1
2Π2(t) = 1

2 t ∈ (0, T ),
−ṡ(t) + Π(t)s(t) = −x(t) t ∈ (0, T ),
−ċ(t)− σ2

2 Π(t) + 1
2s

2(t) = 1
2 (x(t))2 t ∈ (0, T ),

Π(T ) = 0, c(T ) = 0, s(T ) = 0.

(4.69)

The first one is a Riccati equation whose analytical solution has the following
expression

Π(t) = e2T−t − et

e2T−t + et
.

Then the gradient of v is Dv(t, x) = −Π(t)x− s(t) and the optimal state solves

dx(r) = (−Π(t)x(r)− s(r)) dr + σdW (r),

which implies

x(t) = x(0) +
∫ t

0
(−Π(r)x(r)− s(r)) dr + σW (t).

Taking the expectation and x(0) = x, we get

x(t) = E [x(t)] =
∫
Rd
xdm0 (x) +

∫ t

0
(−Π(r)x(r)− s(r)) dr,

which implies that x(t) solves{
ẋ(t) = −Π(t)x(t)− s(t) t ∈ (0, T ),
x(0) =

∫
Rd xdm0 (x) .

Therefore the couple (x(t), s(t)) solves the following boundary value problem
ẋ(t) = −Π(t)x(t)− s(t) t ∈ (0, T ),
−ṡ(t) + Π(t)s(t) = −x(t) t ∈ (0, T ),
x(0) =

∫
Rd xdm0 (x) , s(T ) = 0.

(4.70)

The solution to (4.70) is unique (see for instance [64]) and is given by

x(t) =
∫
Rd
xdm0 (x) , s(t) = −

(∫
Rd
xdm0 (x)

)
Π(t).

The last equation in (4.69) can be now explicitly solved, and c(t) gets

c(t) = 1
2

(∫
Rd
xdm0 (x)

)2
Π(t)− σ2

2 log
(

2eT

e2T−t + et

)
. (4.71)

The solution m(t, x) of the FP equation in (4.68) is a gaussian function with
mean x(t) and variance Var (x(t)). To compute Var (x(t)), we observe that
Var (x(t)) = E

(
x2(t)

)
− x2(t) and we recall Itô’s formula, for a given f : R→ R

f(x(t)) = f(x0) +
∫ t

0
f ′(x(r))dr + 1

2

∫ t

0
f ′′(x(r))σ2dW (r). (4.72)
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Now, choosing f(x(t)) = x2(t), we get that x2(t) solves

x2(t) = x2
0 −

∫ t

0
2x(r) (Π(r)x(r) + s(r)) dr +

∫ t

0
2x(r)σdW (r) + σ2t. (4.73)

Taking the expectation and x0 = x, we get

E
(
x2(t)

)
=
∫
Rd
x2dm0 (x)− 2

∫ t

0

(
Π(r)E

(
x2(r)

)
+ s(r)x(r)

)
dr+ σ2t. (4.74)

Calling M(t) = E
(
x2(t)

)
we have that M(t) solves the following ODE

{
Ṁ(t) = −2Π(t)M(t)− 2s(t)x(t) + σ2 t ∈ (0, T ),
M(0) =

∫
Rd x

2dm0 (x) .

with exact solution given by

M(t) =
(
e2T−t + et

)2
2

∫
Rd x

2dm0 (x)− 2x2(t) + σ2
(
e2T + 1

)
2(e2T + 1)2


−
(
e2T−t + et

)2
(

σ2

2(e2T + e2t)

)
+ x2(t).

Finally, we have that Var (x(t)) = M(t) − x2(t). Let us now solve system
(4.68) in a bounded domain in dimension d = 1, 2. We choose [0, T ] × O∆ =
[0, 0.25]× (−2, 2)d, with Dirichlet boundary conditions on ∂O∆, choosen equal
to the exact solution of (4.68) for the HJB and homogeneous for the FP. The
numerical approximation of the boundary conditions for the HJB is based on
the technique proposed in [17], and for the FP we apply the same method used
in the previous test. In this and the following test, to compute (4.60), we have
used a fourth-order finite difference approximation of the gradient of v∆[m], and
we have not introduced the mollifier φε.
For d = 1 we consider two cases, one with σ2/2 = 0.005 and one with σ2/2 = 0.05.
In all the simulations we choose ∆t = (∆x)4/3/4. Tables 4.3 and 4.4 show the
errors and the convergence rates for the approximation of the HJB and the FP
equations. In Table 4.4 the convergence rate tends to be close to the theoretical
optimal rate 8/3.
Table 4.5 shows errors and convergence rates for problem (4.68) with d = 2
and σ2/2 = 0.05, and Table 4.6 shows errors and convergence rates for the
approximated gradient of the value function in (4.68) with d = 2 and σ2/2 = 0.05.
In both Tables the order of convergence is mostly much larger than 2.
The tollerance τ for the stopping criterion is 10−9. In Fig. 4.1 we show the
solution to (4.68) on [0, T ]×O∆ = [0, 0.25]×(−2, 2) with σ2/2 = 0.005, computed
with ∆x = 1.25 · 10−2 and ∆t = (∆x)4/3/4. Fig. 4.2 displays the zoom of initial
condition, numerical and exact density of (4.68), computed with ∆x = 6.25·10−3

and ∆t = (∆x)4/3/4.
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∆x Errors on the HJB equation
E∞ E2 p∞ p2

2.00 · 10−1 6.20 · 10−5 7.40 · 10−5 - -
1.00 · 10−1 1.09 · 10−5 1.43 · 10−5 2.51 2.37
5.00 · 10−2 2.13 · 10−6 3.41 · 10−6 2.36 2.07
2.50 · 10−2 5.42 · 10−7 1.00 · 10−6 1.97 1.77
1.25 · 10−2 1.67 · 10−7 3.20 · 10−7 1.70 1.64
6.25 · 10−3 6.45 · 10−8 1.11 · 10−7 1.37 1.53

∆x Errors on the FP equation
E∞ E2 p∞ p2

2.00 · 10−1 2.22 · 10−2 2.32 · 10−2 - -
1.00 · 10−1 5.43 · 10−3 5.10 · 10−3 2.03 2.19
5.00 · 10−2 9.32 · 10−4 8.90 · 10−4 2.54 2.52
2.50 · 10−2 1.33 · 10−4 1.26 · 10−4 2.81 2.82
1.25 · 10−2 1.22 · 10−5 1.17 · 10−5 3.45 3.43
6.25 · 10−3 6.04 · 10−7 6.08 · 10−7 4.33 4.27

Table 4.3. Errors and convergence rates for problem (4.68) with σ2/2 = 0.05.

∆x Errors on the HJB equation
E∞ E2 p∞ p2

2.00 · 10−1 1.68 · 10−4 1.70 · 10−4 - -
1.00 · 10−1 3.56 · 10−5 3.48 · 10−5 2.24 2.29
5.00 · 10−2 5.86 · 10−6 5.75 · 10−6 2.60 2.60
2.50 · 10−2 1.06 · 10−6 1.04 · 10−6 2.47 2.47
1.25 · 10−2 1.80 · 10−7 2.13 · 10−7 2.56 2.29
6.25 · 10−3 3.75 · 10−8 5.24 · 10−8 2.26 2.02

∆x Errors on the FP equation
E∞ E2 p∞ p2

2.00 · 10−1 8.81 · 10−3 1.01 · 10−2 - -
1.00 · 10−1 3.06 · 10−3 2.53 · 10−3 1.53 2.00
5.00 · 10−2 8.01 · 10−4 5.56 · 10−4 1.93 2.19
2.50 · 10−2 1.81 · 10−4 1.14 · 10−4 2.15 2.29
1.25 · 10−2 3.62 · 10−5 2.05 · 10−5 2.32 2.48
6.25 · 10−3 5.75 · 10−6 3.27 · 10−6 2.65 2.65

Table 4.4. Errors and convergence rates for problem (4.68) with σ2/2 = 0.005.

4.4.4 Local MFG with reference solution

We consider a smooth problem, as in [94, Section 5.2]. We choose in (MFG)
the following data:

m0(x) =
{

4 sin2(2π(x)− 1
4) x ∈ [1

4 ,
3
4 ]

0 otherwise,

v(T, x) = 0, F (x,m(t, x)) = 3m0(x)−min(4,m(t, x)).
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Figure 4.1. Solution to (4.68) on [0, T ]×O∆ = [0, 0.25]× (−2, 2) with σ2/2 = 0.005.
Terminal condition, numerical and exact value function (left). Initial condition,
numerical and exact density (right).

Figure 4.2. Zoom of initial condition, numerical and exact density of (4.68) at time
T = 0.25.

∆x Errors on the HJB equation
E∞ E2 p∞ p2

2.00 · 10−1 3.93 · 10−2 4.85 · 10−2 - -
1.00 · 10−1 8.62 · 10−4 1.01 · 10−3 5.51 5.59
5.00 · 10−2 2.30 · 10−5 3.37 · 10−5 5.23 4.91
2.50 · 10−2 3.76 · 10−6 7.67 · 10−6 2.61 2.14

∆x Errors on the FP equation
E∞ E2 p∞ p2

2.00 · 10−1 1.20 · 10−1 1.40 · 10−1 - -
1.00 · 10−1 4.27 · 10−2 3.53 · 10−2 1.49 1.99
5.00 · 10−2 8.80 · 10−3 3.75 · 10−3 2.28 2.62
2.50 · 10−2 3.77 · 10−4 2.53 · 10−4 4.54 3.89

Table 4.5. Errors and convergence rates for problem (4.68) with d = 2 and σ2/2 = 0.05.

The domain is [0, T ] × O∆ = [0, 0.05] × (0, 1), the volatility σ2/2 = 0.05. We
suppose homogeneous Neumann boundary condition for both HJB and FP,
implemented as in [29]. We compute a reference solution, using ∆x = 6.67 · 10−4

and ∆t = (∆x)3/2/3. In Tables 4.7 and 4.8, we show errors and convergence
rates, with respect to the discrete infinite and 2 norms, for the value function v,
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∆x Errors on the first component
E∞ E2 p∞ p2

2.00 · 10−1 4.64 · 10−1 1.41 · 10−1 - -
1.00 · 10−1 1.65 · 10−2 3.52 · 10−3 4.81 5.32
5.00 · 10−2 4.45 · 10−4 1.04 · 10−4 5.21 5.08
2.50 · 10−2 9.12 · 10−5 2.32 · 10−5 2.29 2.16

∆x Errors on the second component
E∞ E2 p∞ p2

2.00 · 10−1 4.64 · 10−1 1.41 · 10−1 - -
1.00 · 10−1 1.65 · 10−2 3.52 · 10−3 4.81 5.32
5.00 · 10−2 4.45 · 10−4 1.04 · 10−4 5.21 5.08
2.50 · 10−2 9.12 · 10−5 2.32 · 10−5 2.29 2.16

Table 4.6. Errors and convergence rates for the gradient of the value function in
system (4.68) with d = 2 and σ2/2 = 0.05.

its gradient ∇v and the density m, computed with ∆t = (∆x)3/2/3. We observe
an order near two in most of the cases in both norms. The mass error is of the
order of 10−13 in all tests, this fact confirms that the scheme is mass preserving.
Fig. 4.3 shows the numerical density at time T , the numerical value function
and its gradient at time 0, computed with ∆x = 3.13 · 10−3.

∆x Errors on the HJB equation
E∞ E2 p∞ p2

5.00 · 10−2 5.38 · 10−2 3.80 · 10−2 - -
2.50 · 10−2 1.43 · 10−2 1.29 · 10−2 1.91 1.55
1.25 · 10−2 4.25 · 10−3 3.24 · 10−3 1.74 1.99
6.25 · 10−3 8.84 · 10−4 7.99 · 10−4 2.27 2.01
3.13 · 10−3 3.76 · 10−4 3.72 · 10−4 1.23 1.10
1.56 · 10−3 4.99 · 10−5 3.60 · 10−5 2.90 3.37

∆x Errors on the gradient of v
E∞ E2 p∞ p2

5.00 · 10−2 8.09 · 10−2 4.96 · 10−2 - -
2.50 · 10−2 1.37 · 10−2 1.19 · 10−2 2.53 2.05
1.25 · 10−2 3.94 · 10−3 2.79 · 10−3 1.80 2.09
6.25 · 10−3 8.34 · 10−4 7.07 · 10−4 2.37 1.98
3.13 · 10−3 3.72 · 10−4 3.25 · 10−4 1.16 1.12
1.56 · 10−3 5.25 · 10−5 3.16 · 10−5 2.82 3.36

Table 4.7. Errors and convergence rates for problem in Subsection 4.4.4.



4.4 Numerical results 121

∆x Errors on the FP equation
E∞ E2 p∞ p2

5.00 · 10−2 9.07 · 10−2 4.82 · 10−2 - -
2.50 · 10−2 1.81 · 10−2 6.79 · 10−3 2.32 2.82
1.25 · 10−2 4.81 · 10−3 1.36 · 10−3 1.91 2.32
6.25 · 10−3 7.64 · 10−4 2.06 · 10−4 2.65 2.72
3.13 · 10−3 1.82 · 10−4 6.96 · 10−5 2.07 1.55
1.56 · 10−3 6.28 · 10−5 1.24 · 10−5 1.53 2.49

Table 4.8. Errors and convergence rates for problem in Subsection 4.4.4.

Figure 4.3. Density m(T, x) (left), value function v(0, x) (center) and its gradient
Dv(x, 0) (right) in the problem of Subsection 4.4.4.
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