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Abstract. The relationship between applied and pure mathematics is of utmost concern for
Klein. Examples from Volume Il of his “Elementarmathematik” illustrate how, starting from an
intuitive and sometimes practical approach, Klein develops abstract concepts working in rich
“mathematical environments”. The examples concern the concept of empirical function, point
sets obtained through circular inversion, and the “continuous” transformation of curves.

The lecture course of Felix Klein

Felix Klein’s “Prizisions- und Approximationsmathematik”, appeared in 1928 as volume III
of the seminal series of lecture notes on elementary mathematics from a higher standpoint
(Elementarmathematik von einem héheren Standpunkte aus; Klein, 1928). The 1928 edition was
in its turn a re-edition of a lecture course delivered by Klein in 1901 with the title “Anwendung
der Differential- und Integralrechnung auf die Geometrie: eine Revision der Prinzipien”,
published in 1902 in lithographic form (Klein, 1902; a reprint of 1908, edited by Conrad
Heinrich Miiller, left the text essentially unchanged).

In this third volume Klein explores the relationship between precision mathematics and
approximation mathematics. He crosses between various fields of mathematics — from functions
in one and two variables to practical geometry to space curves and surfaces — always underlining
the relationship between the exactness of the idealised concepts and the approximations to be
considered in applications.

The point of view is not that of mathematics as a service subject, rather that of

“... the heuristic value of the applied sciences as an aid to discovering new truths in
mathematics” (The Evanston colloquium, lecture VI; Klein, 1894, p. 46).

Of course there is also “a universal pedagogical principle to be observed in all mathematical
instruction”, namely that

“It is not only admissible, but absolutely necessary, to be less abstract at the start, to have
constant regard to the applications, and to refer to the refinements only gradually as the student
becomes able to understand them” (ibid., p. 50).

Therefore, the logical procedures that lead to theorems are confronted with the way in which
concepts are formed starting from observations.

The final part of the book concerns gestalt relations of curves and surfaces, and shows how
Klein masters the art of describing geometrical forms; Klein appeals
to intuition leading the reader to think at continuous transformations
of the geometric objects considered.
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Figure 1. The 2016 edition of Precision Mathematics and Approximation Mathematics, translated from the
third German edition (1928) by Marta Menghini with Anna Baccaglini-Frank as collaborator and Gert Schubring as
advisor.

Volume III was translated for the first time in English in 2016 (Klein, 2016; see Fig. 1). It is
not clear why it was not translated jointly with the first two volumes in the 1930s. Maybe its
value for the training of teachers, clearly recognized as concerns the two first volumes, had not
yet been understood (see Kilpatrick, this volume, Menghini & Schubring, 2016). Or, maybe, the
decision was made because of the different role played by Klein in the 1928 edition of the third
volume: Klein participated, together with Fritz Seyfarth, in the whole project of re-editing the
three volumes on Elementary mathematics from a higher standpoint, but he died in 1925, after
the first two volumes had appeared. The third volume was, therefore, edited only by Seyfarth;
changes and insertions had been nevertheless discussed with Klein, as Seyfarth writes in his
preface to the third edition (see Klein 2016, xiii). Probably for this same reason the third volume
contains no particular indications of its importance for the training of the future mathematics
teachers.

A translation after nearly a century, joined with a new edition of the two first volumes, must
not be considered strange: this translation has an historical value, since Klein is one of the
greatest mathematicians of history (books by Felix Klein are still in use today: Klein’s Nicht-
euklidische Geometrie has been re-edited in 2006, the English version of the Lectures on the
Ikosahedron re-edited in 2007, and his Development of mathematics in the nineteenth century
was translated in 1979); it also has a mathematical value — because of the interesting approaches
and the links to applications. But, above all, it has a didactical value, concerning the training of
mathematics teachers, for the reasons given at the beginning of this chapter, which we will try to
explain more in depth through some examples.

The third volume focuses on precision and approximation mathematics, that is on the link
between mathematics and its applications:

Precision mathematics includes all the propositions that can be logically deduced from the
axioms of geometry or of analysis — obtained by abstraction from experience;

Approximation mathematics includes the results that can be obtained from experience with a
certain degree of approximation.

Klein starts by considering those properties that applied mathematicians take for granted
when studying certain phenomena from a mathematical point of view. These properties must be
seen as supplementary conditions for the ideal objects of pure mathematics. In the meantime,
these very properties prove to be the more intuitive ones. Therefore the comparison moves
towards another field: it is a comparison between properties that can be considered only in the
theoretical field of abstract mathematics and properties that can be grasped by intuition. This
distinction still has repercussions in mathematics education today.

First example: empirical and idealised curve.

Klein makes an important distinction between functions arising out of applications of
mathematics and functions as abstractions in their own right. This topic had been introduced by
Klein in his American conferences of 1984:

“In imagining a line, we do not picture to ourselves “length without breadth”, but a strip
of a certain width. Now such a strip has of course always a tangent (Fig. 2); i.e. we can
always imagine a straight strip having a small portion (element) in common with the
curved strip; similarly with respect to the osculating circle. The definitions in this case are
regarded as holding only approximately, or as far as may be necessary (Klein, 1984, p.
98)”.



Figure 2. Taken from: Klein, 1984, pag. 98.

So we need to examine which restrictions we have to put to an idealized curve y = f{x) so as
to obtain that it corresponds to the concept of an empirical curve.

We have the perception that the empirical curve

a) is connected in its smallest parts, that is, it takes on all values between the ordinates of two
of its points

b) encloses a specific area between the x-axis and the ordinates of two of its points

¢) has everywhere a slope (and a curvature, ...)

d) has a finite number of maxima and minima

Abb. 4.
Figure 3. Taken from Klein, 1928, p. 22

How can we translate these intuitive properties into mathematical properties of f{(x) (Fig. 3)?
The connectedness of point a) can be expressed by saying that £(x) must be “continuous” (even
if there is not a complete equivalence of the two meanings); point b) is simply translated into the
fact that f(x) is integrable; point c) means that £ (x) has a first (and second, ...) derivative at any
point; finally point d) is expressed by the property that f (x) must split — in the given interval —
into a finite number of monotonous parts.

So, for instance, a function as y = sin 1/x (Fig. 4) exists only in the ideal field: it belongs only
to precision mathematics.

Figure 4. The function y = sin 1/x

But the properties (theorems) that we can study mathematically on our idealized curve f(x) —
once we have considered the restrictions suggested by our experience — can then apply also to
our empirical curve. So we go back from abstraction to applications.

In 1913/14 the Italian geometer Guido Castelnuovo gave a series of lectures at the University
of Roma entitled “Matematica di precisione e matematica delle approssimazioni”. The course
was explicitly inspired by the course delivered by Felix Klein in 1902.



Castelnuovo states clearly at the beginning of his lecture course that the teaching and learning
of mathematics would be more successful if it included, besides the logical procedures that lead
to the theorems, also the way in which concepts are formed starting from observations, and how
they can be verified in practice.

In 1911 the Liceo Moderno was established (Legge, 21 July 1911, n. 860), which effectively
started in 1913. In this school, the preparation towards university studies (not necessarily of a
scientific nature) was achieved through the study of Latin, modern languages, and the sciences
(Marchi & Menghini, 2013). Mathematics is presented as an apt language for describing natural
phenomena and a part of the programmes is concerned with approximation mathematics and its
heuristic nature. Its mathematics programs were ascribed to Castelnuovo (see Castelnuovo,
1912):

“The renovation of the mathematics of the 17th century is linked to the blooming of the
natural sciences. Within this context, the teacher will have to explain how the fundamental
concepts of modern mathematics, particularly the concept of function, are implied by the
observational sciences, and — being then rendered precise by mathematics — have in turn had a
positive influence on the development of the latter (Castelnuovo, 1912, p. 124)”.

Castelnuovo’s course on precision and approximation mathematics is therefore very apt to
train the teachers of his modern lyceé, which he hopes to become widespread. In particular, the
comparison between empirical and idealized function describes very well the reciprocal aid of
observational sciences and pure mathematics mentioned in the above quotation.

Second example: Iterated inversion with respect to three touching circles.

One of the reasons for putting applications at the beginning of a teaching sequence is, as
already said, the heuristic value of applied sciences. Even when starting from a practical
approach Klein develops more abstract concepts working in rich “mathematical environments”,
which form the core of a pertinent program for mathematics teacher education. In this case we
are not necessarily interested in going back to applications: we take the idea from applications,
and we work as mathematicians in the ideal field.

Let us start from an example taken from physics:

The method of image charges (also known as the method of images or method of mirror
charges) is a technique to solve problems in electrostatics. The name comes from the fact that
charged objects in the original problem are replaced with equivalent imaginary discrete point-
charges, still satisfying the boundary conditions associated with the problem.

A simple case of the method of image charges is that of a point charge g, which we can
consider located at the point (0, 0, a) above an infinite grounded (i.e.: V' =0) conducting plate in
the xy-plane. The problem can be simplified by replacing the plate of equipotential with a charge
—q, located at (0, 0, -a).

The method of images may also be applied to a sphere or to a cylinder. In fact, the case of
image charges above a conducting plate in a plane can be considered as a particular case of
images for a sphere. In this case a point-charge g lying inside the sphere at a distance I from the
origin has as its image another point-charge lying outside the sphere at a distance of R/ I from
the origin. So, the relation between the two charges is given by circular inversion. The potential
produced by the two charges is zero on the surface of the sphere (Fig. 5).



Figure 5.

Klein states that already in 1850 William Thomson and Bernhard Riemann, when studying
the equilibrium of charges on three rotating cylinders with parallel axes, observed that the
“method of image charges” leads to the generation of a certain point set (see Thomson, 1853; we
could not find anything explicit on this topic in Riemann’s legacy).

We leave now the field of applications and turn completely to the ideal field considering three
disjoint circles (which correspond to the normal section of the three rotating cylinders).

We consider the point set obtained from the points of a given region (the one outside the 3
circles) by applying any combination of the inversions in the three given circles, that is applying
to the region the whole group of “transformations” that arises from the three “generators”.

The text of Klein contains wonderful and clear drawings on this subject, but the use of a
software like Geogebra, which has circular inversion in its menu, helps in following the probable
development of the explanation that was delivered to Klein’s students during the lecture course.
In the following the drawings are either taken from the text of Klein or made with Geogebra. In
this second case the “historic overview” of the various constructions is didactically important.
Here we can only show some snapshots.

So, let us start from two circles (Fig. 6). In the first step we apply circular inversion with
respect to the left circle, that is we reflect in the left circle the whole region outside, including the
right circle. All the points of the infinite region outside the left circle are transformed in the
points internal to the circle, and the right circle is transformed in a smaller circle inside the left
circle.

To simplify our language we will from now on only speak of the reflection of the circles,
without mentioning all the points of the regions contained in or outside them. So, the next step is
the reflection of the left circle into the right one

\9 -
Now we can proceed in any order, for instance reflecting again the right circle with its
internal circle into the smaller circle at the the left (Fig. 7)

Figure 6
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It is easy to understand that we obtain a configuration made by chains of circles each inside
the other (Fig. 8).

Figure 7

Figure 8

We then add the third circle, and continue to apply the circular inversion reflecting the whole
configuration in the new circle, and also reflecting the new circle in the two former ones. We see
that many chains of circles are appearing. In fact, an infinite number of chains (Fig. 9).
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And now we have the fundamental transition from an empirical construction to the idealised
field. We use the axiom of the nested intervals: For every indefinitely decreasing sequence of
closed intervals (segments, parts of curves, plane regions, parts of spaces), each of which
contains all the following ones, there exists one and only one point common to all the intervals.
This point is therefore univocally defined by the interval sequence.

The axiom of the nested intervals allows us to say that each chain (sequence) has a limit
point.

Speaking again of the regions transformed, we can say that we obtain a net of regions that fill
the plane except for an infinite set of limit points: What can we say about this limit point set? We

Figure 9



find out that it is nowhere dense, but nevertheless perfect (it contains all of its accumulation
points) and has the cardinality of the continuum (like the Cantor set).

Now we continue the joke and consider three fouching circles. And again we repeat the
inversions. In the first step (Fig. 10) each circle contains the image of the two others. Each circle,
as well as the external regions, contains curvilinear triangles.
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Figure 10.
Taken from Klein, 1928, p. 140 Figure 11.
Taken from Klein, 1928, p. 141

The points of contact of the arising curvilinear triangles (and of the arising circles)
accumulate on the orthogonal circle, that is the circle that is orthogonal to the three given ones
(Fig. 10 and Fig. 11), as was also suggested by Fig. 9. Proceeding with the construction, the
orthogonal circle is filled more and more densely with the points of contact of two circles (Fig.
12)

Figure 12

The next question is then: What can be said about the set of points of contact? It is easy to
understand that in the set of the points of contact each point is an accumulation point for the
others, and that the set is everywhere dense on the periphery of the orthogonal circle.

“Until now I have spoken of these things in a somewhat indeterminate manner, because I did
not refer to any quantitative relations but only to the figure as such. However, it is easy to give to
the figure a form that allows an arithmetic interpretation of everything” (Klein 2016, p. 157).

Following the idea of Klein, let us consider a circle with its centre on the contact point of two
of the three touching circles. If we reflect the two circles in it, these are transformed into lines,
due to the rules of circular inversion. The third circle is instead transformed into a smaller circle
(Fig. 13). Now we add the orthogonal circle, which is in its turn reflected into a line,
perpendicular to the former two (fig. 14), which divides the smaller circle in two parts.



Figure 13 Figure 14

We thus obtain a curvilinear triangle delimited by two parallel straight lines and by a semi-
circle touching these lines (Fig. 15).
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Abb. 83. Figure 15. Taken from

Klein, 1928, p. 143
Figure 16. Taken from Klein, 1928, p. 144

Now we choose the line QQ (as called by Klein in Fig. 16) as x-axis, and the origin and the
scale so that the points x =0, x = 1 fall at the two finite vertices. Then the whole figure is easy to
construct, mirroring the figure 15 unlimitedly on the right and on the left, and reflecting the
sequence of infinitely many triangles such obtained in each of the occurring semi-circles. In this
way all the points of contact can be found on the x-axis, and it is easy to calculate exactly
arithmetically what had been explained in our first figure only with the help of our immediate
geometric sense. Indeed, the formulas of the circular inversion indicate that a circle with rational
centre and rational radius is transformed in another circle with rational centre and rational radius:

More precisely, given the equation of circular inversion in its simple vector form
OPe* OP =r

Where Ois the centre of the circumference, rits radius, Pand P two corresponding points
collinear with O. It is clear that a point on the circumference corresponds to itself. Moreover, the
image of the centre is a point at infinity, and — since the correspondence is an involution — all
points at infinity have the centre as their image point.

Let us consider the circle C whose diameter is the segment [0;1] on the number line. Its
centre has abscissa %. The straight line x = 0 (circle with infinite radius), perpendicular to the
line QQ’, has as its correspondent with respect to C, the circle C., which has as end points of its
diameter 0 and %. In its turn, the image of C with respect to C is a circle C, whose diameter has
as endpoints 0 and 1/3, and so on (Fig. 17 and 18).
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Figure 18

Therefore all the points of contact have rational abscissas x and every point with a rational x
becomes a contact point. So, there is not only an analogy between the set of the points of contact
and the set of the rational points on the x-axis, but there exists an identity. In particular it turns
out that the set of the points of contact is denumerable. We have found a method of construction
of the rational numbers on the real line, which provides a wonderful mental image of the
relationship between rational numbers and real numbers on the number line.

Third example: Gestalt relations of curves

The final part of Volume III concerns gestalt relations of curves in space and surfaces and
shows Klein to be the master of the art of description of geometric forms. In part II, concerning —
as above - the free geometry of plane curves (that is a geometry independent from a coordinate

system), Klein discusses “the possibility to deduce properties of the idealised curve from the
empirical shape” (Klein, 2016, p. 189) Klein considers again the relation between an empirical
and an idealised curve and poses the question:

Can I now deduce from the gestalt relations of the empirical curve, which I see before my
eyes, the corresponding properties of the idealised curve?

To answer this question, Klein’s conception is necessarily decisive, that the idealised curve is
something that goes beyond sensorial intuition and exists only on the base of definitions. So we
cannot appeal only to intuition. “Rather, we always need to reflect on whether, respectively why,
things that we roughly see — so to speak — before our eyes in an empirical construction can be
rigorously transferred to the idealised object thanks to the given definitions.”

As an example Klein considers the following figure (Fig. 19), namely a closed convex curve
cut by a straight line:
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Figure 19. Taken from Abb. 103. Klein, 1928, p. 176

In our mind, we substitute the straight line of the figure by an idealised straight line, and the
drawn curve — at first — by a regular curve (a Jordan-curve). Intuition teaches us that the
idealised straight line passes inside and outside the Jordan curve, giving rise to two intersection
points. But, even admitting that the drawn curve is a continuous curve, we cannot deduce from
the figure that any closed curve has two intersections with a straight line. It is, for instance,
possible that in the neighbourhood of the point in which the empirical figure shows only one
intersection, the idealised figure presents three or five of them. This is in fact not excluded, if we
do not further limit with definitions the type of curve.

Now we pass to considering an algebraic curve and let us suggest general properties of the
algebraic curves by looking at some of them, starting from simple representations, and passing
from one curve to the other by continuous transformations. As Klein says, we perform a proof by
continuity. What do we mean by continuous transformation of a curve? Let us follow Klein’s
interesting idea:

The general equation of a curve of the n-th degree C. has "("TH) constants. For instance, the
general equation of a conic section has 2(2+3)/2 = 5 constants (in fact, six parameters which can
be multiplied or divided by one of them):

ax+by +cxy+dx+ey+ =0
We consider these as coordinates of a point in a higher dimensional space and call this point
the “representational point” belonging to the curves C.. If the C, assumes all possible shapes, that
is if the coefficients vary arbitrarily, the representational point varies in the whole nn+3)
dimensional space.

It is very useful to choose for support such a space and to consider it alongside all the C.
Indeed, Klein states, we do not know exactly what it means that a curve varies with continuity,
but we can easily imagine a point moving continuously in the space.

To help furthermore imagination, let us take as a first example (which is not present in Klein)
a conic section centred in the origin (with only three constants):

ax(+by =c.

In this case the representational point Phas coordinates a, b, ¢ and varies in the 3D-space. We
realise, with the help of Geogebra', a simulation in which the point P moves in space while the
conic section takes on the coefficients of the point P (Fig. 20 a, b)

According to the values of a, b, c we get all kind of conic sections, but not the parabola as we
do not have a term of the first degree.

We can also observe that we have the degenerate conics (a point or two lines) when the point

P crosses the xy plane (that is, the constant c is = 0,asin
Fig. 20 c). During this transition a hyperbola L becomes
an ellipse or vice-versa. This can be used in - schools to
show the way in which conic sections are e N -
transformed one into the other by continuity. e
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c Figure 20 a, b, c

A second example is considered by Klein himself. It is a quartic. Klein is not worried about
the number of constants: even if the representational space is of higher dimension Klein wants to
stimulate our intuition: we have to imagine point P moving in the space, we have to understand
how the quartic varies accordingly, understand that we find double points when P crosses certain
surfaces, and that we have higher singularities (which can be avoided in our “walk in the space”)
crossing certain curves on the surfaces.

Nevertheless we tried to simulate the situation with the help of Geogebra using, once again,
only three coordinates. This does not change Klein’s example.

(@ax2+by*-ab)(bx2+ay*-ab)=c

The starting point, corresponding to ¢ = 0, is constituted by two ellipses (Fig. 21).

Abb, 116.



Figure 21. Taken from Klein, 1928, p. 191

Moving Pin space, the quartic takes on various forms (Fig. 22). For instance, when ¢
becomes negative, the quartic becomes like the one of Fig. 23.

Figure 22 Figure 23
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Abb, 127,

Abb. 126.

Figure 24 Taken from Klein, 1928, p. 202 Figure 25
Taken from Klein, 1928, p. 202

Klein observes how inflection points, double points or bitangents (namely tangents to two
points of the curve) change when transforming the quartic, in particular Klein proves by
continuity certain regularities concerning their number. For instance, the number of real
inflection points (8 in figure 24) added to twice the number of isolated bitangents (4 in figure 25)
is constant.

But from a didactic point of view, to look at the continuous transformation of such a quartic is
sufficient.

Conclusion

The history of mathematics education presents at different times and in different countries
“utilitarian” periods in which applications of mathematics are considered an end of the
curriculum, and even mathematical subject matter which cannot be linked to external use comes
under attack (Niss, 2008). On the other hand, applications can be regarded as a means to support
learning, by providing interpretation and meaning. When considering the two aspects of applied
mathematics, a means or an aim, we are not faced with a contradiction but, as Niss states, with a



duality. Klein tries to support an even stronger conception of a continuous exchange between
empirical observation and formalised objects.
The third part of Klein’s work has the interesting title “About the perception of idealised

structures by means of drawings and models”. In this last section Klein presents the collection of
models in Gottingen with the related explanations. Klein continues to reason by continuity,
appealing to intuition. He writes, at the beginning of this section, that a main theme within the
topics treated in his lecture course has been the distinction between empirical space intuition,
with its limited precision, and the idealised conceptions of precision geometry. As soon as one
becomes aware of this difference, one can choose his way unilaterally in one or in the other
direction. But both directions seem to be equally unfruitful.

Klein strongly advocates the need to maintain a connection between the two directions, once
their differences are clear in one’s mind:

“A wonderful stimulus seems to lay in such a connection. This is why I have always fought in
favour of clarifying abstract relations also by reference to empirical models”.

The examples shown above surely support this statement.
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