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Abstract

Recent estimates of Mercury’s rotational state yield different obliquity values, resulting in normalized polar
moment of inertia values of either 0.333 or 0.346. In addition, recent measurements of Mercury’s tidal response, as
expressed by its Love number k2, are higher than previously reported. These different measurements have
implications for our understanding of Mercury’s interior structure. We perform a comprehensive analysis of
models of Mercury’s interior structure using a Markov Chain Monte Carlo approach, where we explore models that
satisfy the various measurements of moments of inertia and mean density. In addition, we explore models that
either have Mercury’s tidal response as a measurement or predict its tidal response. We find that models that match
the lower polar moment value also fit or predict the recent, higher Love number. Models that match the higher
polar moments predict Love numbers even higher than current estimates. For the resulting interior structure
models, we find a wide range of viscosities at the core–mantle boundary, including low values that could be
consistent with the presence of partial melt, with higher viscosities also equally allowed in our models. Despite the
possibility of low viscosities, our results do not show a preference for particularly high temperatures at the core–
mantle boundary. Our results include predicted values for the pressure and temperature of Mercury’s core, and the
displacement Love numbers.

Unified Astronomy Thesaurus concepts: Planetary interior (1248); Planetary structure (1256); Mercury (planet)
(1024); Markov chain Monte Carlo (1889); Tides (1702)
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1. Introduction

Mercury can be considered an end member of formation
processes in the solar system, in both a dynamic and a
compositional sense, because of its location and high average
density (e.g., Chapman 1988). Knowledge of Mercury’s
interior structure is thus of paramount importance to better
understand the formation and evolution of the solar system.
The Mariner 10 flybys in 1974 and 1975 (e.g., Dunne 1974)
provided us with the first close-up views of the planet, the first
clues about its interior, with the discovery of its magnetic
field (Ness et al. 1974), and the first measurements of its
gravitational field (Anderson et al. 1987). The next visit to the
innermost planet did not occur until 2008, when NASA’s
MErcury Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) spacecraft performed its first Mer-
cury flyby, which was followed by its insertion into a highly
eccentric orbit around Mercury in 2011. It carried seven
instruments and a radio science investigation, with the
goal of answering questions about Mercury’s formation,

geologic history, magnetic field, core, polar areas, and
exosphere (Solomon et al. 2007).
The quantities that we use to probe the planet’s interior are

moments of inertia, which depend on the radial density
distribution inside the planet. Peale (1976) showed that the
state of Mercury’s core can be derived from the values of its
polar moment of inertia for the entire planet C and its crust–
mantle polar moment Cm, which are themselves determined by
measuring several quantities concerning Mercury’s gravity
field and rotational state: (1) Mercury’s second-degree gravita-
tional harmonics; (2) the planet’s obliquity (the axial tilt of a
planet); and (3) the amplitude of its longitudinal librations (the
longitudinal oscillations in the planet’s spin rate), forced at the
88 day orbital period. This is possible because Mercury is
assumed to be in, or close to, an equilibrium Cassini state,
where its spin axis, its orbit normal, and the normal to the
invariable plane are coplanar (e.g., Colombo 1966; Peale 1969).
Peale (1976) and Peale et al. (2002) showed how to relate the
gravity and rotational quantities to the entire polar and crust–
mantle polar moments. The polar moment is computed as the
mass distribution of the entire planet around the z-axis, which is
assumed to be aligned with the rotation axis. We refer to the
entire polar moment simply as the polar moment, and it is
denoted by C. The crust–mantle polar moment comprises the
solid outer shell, and is expressed as the ratio between the polar
moment of the crust and mantle and the entire polar moment,
and hence becomes Cm/C. The entire polar moment is also
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often normalized as C/(MR2), with M being the mass of the
entire planet and R being the radius of the planet.

In Table 1, we present key measurements of Mercury’s
rotation and derived values for these moments from various
recent studies. We also include estimated values of Love
numbers: the parameter k2 (which is dimensionless) describes
how the gravitational potential field of a self-gravitating
planetary body changes in response to the second-order
spherical harmonic terms of the gravitational field of another
object, in this case the Sun. The quantity h2 (also dimension-
less) describes the vertical surface displacement, and it is also
included in Table 1.

Earth-based radar observations characterized Mercury’s
liquid core for the first time by providing measurements of
its forced librations at the 88 day period and of its
obliquity (Margot et al. 2007). MESSENGER provided the
first comprehensive measurements of Mercury’s gravitational
field (Smith et al. 2012) needed to complement the rotation
observations in order to be able to apply the formalism
of Peale et al. (2002). This yielded the first moment of inertia
estimates ofC/(MR2)= 0.353± 0.017 andCm/C= 0.452± 0.035
(Smith et al. 2012). A Monte Carlo analysis indicated a liquid
core radius of 2030± 37 km, and a density of the solid outer shell
of 3650± 225 kg m−3. The latter was higher than expected,
because of the relatively high value for Cm/C, and a solid FeS
layer on top of a liquid FeS layer at the top of the core was
invoked tomatch this density. Using additional Earth-based radar
measurements, Margot et al. (2012) provided updated values for
Mercury’s forced libration and obliquity angles. Together with
MESSENGER results, they provided updated estimates for
Mercury’s moments of inertia of C/(MR2)= 0.346± 0.014 and
Cm/C= 0.431± 0.025. These were used by Hauck et al. (2013)
to provide refined estimates of Mercury’s interior structure: the
liquid core radius was found to be 2020± 30 km, with a density
below the core–mantle boundary (CMB) of 6980± 280 kg m−3,
and a density just above the core of 3380± 200 kg m−3. With
this core density, it was concluded that Mercury must have a
significant amount of light elements such as S and/or Si in the

core, which is also required to maintain the core in a partially
molten state. Similar results were obtained by Rivoldini & van
Hoolst (2013), who also noted that the geodesy data, because of
relatively large error bars, could not distinguish between models
with a fully liquid core and models with a solid inner core
included.
The MESSENGER mission had several extended mission

phases where the spacecraft’s orbital altitude and the latitude of
its pericenter changed. Using three years of MESSENGER
data, Mazarico et al. (2014) provided an updated model of
Mercury’s gravity field and its obliquity, as well as the first
estimate of its potential Love number of degree 2
(k2= 0.451± 0.014). Mazarico et al. (2014) also tested the
estimation of the forced libration angle of Mercury, but found
the radio data not sensitive enough. Their results were later
confirmed through a separate analysis by Verma & Margot
(2016), although this obliquity solution is very different from,
and only marginally consistent with, that of Mazarico et al.
(2014). The updated values for the moments of inertia from
Mazarico et al. (2014) were C/(MR2)= 0.349± 0.014 and
Cm/C= 0.424± 0.024. With these values, Knibbe & van
Westrenen (2015) performed additional interior modeling.
They explored models of different composition, and also used
large new values for Mercury’s contraction in time due to
global cooling (Byrne et al. 2014) as an additional constraint.
They found a liquid core radius between 1985 and 2090 km,
and an inner core radius smaller than 1454 or 1543 km, for
cores rich in S or Si, respectively. They also found the
suggested solid FeS layer to be unlikely, because the solid part
would be denser than the liquid part underneath. In addition,
improved obliquity values decreased the initial C/(MR2) and
Cm/C values from Smith et al. (2012), reducing the density of
the solid shell (the crust and mantle, and the solid FeS layer, if
taken into account). Recent results using MESSENGER’s
X-Ray Spectrometer measurements of Ti/Si also argue against
the FeS layer, from a geochemical point of view (Cartier et al.
2020). Given the measurement of Mercury’s k2, Padovan et al.
(2014) and Steinbrügge et al. (2018a) investigated Mercury’s

Table 1
Values for Mercury’s Rotation Parameters, Moments of Inertia, and Love Numbers from Various Studies

Reference Forced Libration Obliquity C/(MR2) Cm/C Liquid Core Love Number
Angle (arcsec) (arcmin) (no unit) (no unit) Size (km) (no unit)

Margot et al. (2007)a 35.8 ± 2 2.11 ± 0.1 L L L L
Smith et al. (2012)b L 2.06 ± 0.1 0.353 ± 0.017 0.452 ± 0.035 2030 ± 37 L
Margot et al. (2012)c 38.5 ± 1.6 2.04 ± 0.08 0.346 ± 0.014 0.431 ± 0.025 1998 L-
Mazarico et al. (2014)d L 2.06 ± 0.16 0.349 ± 0.014 0.424 ± 0.024 2020 ± 30 k2 = 0.451 ± 0.014
Stark et al. (2015)e 38.9 ± 1.3 2.029 ± 0.085 0.346 ± 0.011 0.421 ± 0.0214 L L
Genova et al. (2019)f 40.0 ± 8.7 1.968 ± 0.027 0.333 ± 0.005 0.443 ± 0.019 1967 ± 23 k2 = 0.569 ± 0.025
Konopliv et al. (2020)g L 1.99 ± 0.12 0.337 ± 0.02 0.438 ± 0.03 L k2 = 0.53 ± 0.03

L 2.04 ± 0.1 0.345 ± 0.02 L
Bertone et al. (2021)h 39.03 ± 1.1 2.031 ± 0.03 0.343 ± 0.006 0.423 ± 0.012 2020 ± 50 h2 = 1.55 ± 0.65

Notes.
a Precise gravity not yet available.
b Forced librations from Margot et al. (2007) and a revised obliquity from Margot et al. (2011).
c Used gravity results from Smith et al. (2012). Core size from a two-layer constant density model. An error estimate for the core size was not provided.
d Forced librations not estimated, but used Margot et al. (2012). Core size from Hauck et al. (2013).
e Used laser altimeter data for rotational parameters; gravity from Mazarico et al. (2014).
f Estimated forced librations, but used Margot et al. (2012) values.
g No moments of inertia given; the values here are inferred from obliquity, and the forced librations are from Margot et al. (2012). Because of the discrepancy between
obliquity and pole coordinates (see the text), we list two different polar moment values.
h Analysis is based on altimetric crossovers. Gravity was not estimated.
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tidal response. In addition, Stark et al. (2015) updated
Mercury’s rotational state using data from the Mercury Laser
Altimeter (MLA) instrument (Cavanaugh et al. 2007). They
found values for the moments of inertia of C/(MR2)= 0.346±
0.011 and Cm/C= 0.421± 0.0214.

In the final year of its mission, the Sun’s gravity lowered
MESSENGER’s orbit down to altitudes around 25 km above
the surface. This greatly increased sensitivity with respect to
the gravity field, and Genova et al. (2019) provided the first
gravity field model using the entire data set. This analysis was
based on co-estimating Mercury’s orbit, its gravity field,
rotational parameters, and MESSENGER’s orbit (Genova et al.
2018). Their obliquity estimate unambiguously satisfies the
Cassini state, where other estimates show an offset but are
statistically consistent with the Cassini state. Genova et al.
(2019) found a lower obliquity than previously reported, which
resulted in a lower polar moment of inertia, with
C/(MR2)= 0.333± 0.005 and Cm/C= 0.443± 0.019. From
this lower moment of inertia, and its improved error, they
showed that Mercury likely has a solid inner core. They found
that the radius of the liquid core is much smaller than previous
analysis indicated, at 1967± 23 km for a model with an FeSi
core. They also provided an updated estimate of k2= 0.569±
0.025, larger than the previous estimate.

Additional analysis of MESSENGER tracking data by
Konopliv et al. (2020) yielded a similar reported estimate of
the obliquity, although it should be noted that Steinbrügge et al.
(2021) pointed out that the reported obliquity is not consistent
with the reported R.A. and decl. of the pole. If the reported pole
coordinates are used, an obliquity much closer to that of
Margot et al. (2012) is found, which means that the polar
moment of inertia is 0.345 instead of 0.337. Konopliv et al.
(2020) also provided an estimate of k2= 0.53± 0.03, con-
sistent with the higher value of Genova et al. (2019). Recent
analysis of MLA altimetric crossovers (Bertone et al. 2021)
yielded an additional measurement of Mercury’s obliquity that
is fully consistent with the Cassini state, but this value is higher
than that of Genova et al. (2019), resulting in a higher polar
moment of inertia of C/(MR2)= 0.343± 0.006, and in a value
of Cm/C= 0.423± 0.012 (using the degree 2 coefficients from
Genova et al. 2019). Multiple combinations of the R.A. and
decl. of the pole can satisfy the Cassini state requirement, as
can be seen in, for example, Bertone et al. (2021; Figure A1),
resulting in different obliquities, and hence the discrepancy
where two different obliquities satisfy the Cassini state.

These discrepancies in obliquity are intriguing, especially
since two recent results (Genova et al. 2019; Bertone et al.
2021) place Mercury in very close agreement with the Cassini
state. It should be noted that neither study constrains the
solution to do so. Both studies use different techniques and
data, with the Genova et al. (2019) study using radio science
data and the Bertone et al. (2021) study using altimetry data.
Both studies have similar errors on the obliquity (see Table 1).
This could indicate a difference between the orientation of the
gravity field, as obtained from the radio data (which can be
considered as a quantity describing the entire planet, as it is
related to the gravity field), and that of the outer layers. This
has already been suggested by Verma & Margot (2016), and
the possibility is also raised by Bertone et al. (2021). The
existence of a solid inner core itself can also influence the
Cassini state (Peale et al. 2016; Baland et al. 2017;
Dumberry 2021), yet the effects may be small, below the

current error levels. It is outside the scope of this analysis to try
and resolve this discrepancy.
Yet, clearly, the different moments of inertia have a large

effect on the determination of the parameters of Mercury’s
interior structure, most notably the size of the liquid core (see
Table 1). Steinbrügge et al. (2021) recently investigated interior
models of Mercury using these different moment of inertia
values. They computed models that match Mercury’s mean
density, its polar moment of inertia, and the amplitude of its
forced librations at the 88 day period. In their analysis, the
models that satisfy the lower polar moment of inertia pose
several challenges: they find a relatively large inner core, a
relatively high temperature at the CMB, low viscosities at this
boundary, and a low mantle density. They also indicate that the
low viscosities required to match k2 imply a significantly
weaker mantle.
Here, we investigate the different moments of inertia and

their influence on the interior structure parameters with a
different approach to that of Steinbrügge et al. (2021). Their
strategy was to investigate models that match the specific
moment of inertia values, and they explicitly stated that they
would not conduct a probability analysis. Yet they did indicate
that when they took into account the error on the forced
librations, some of the issues that they found with the lower
polar moment were alleviated. In contrast, we use a Markov
Chain Monte Carlo (MCMC) approach (e.g., Mosegaard &
Tarantola 1995), where we include k2 as an additional
observation, together with Mercury’s mean density and its
polar and crust–mantle polar moments of inertia. This allows us
to explore models consistent with these observations and their
quoted errors, by mapping the range of allowed values of the
estimated parameters that match the measurement within their
given errors. We believe that this provides a more complete
picture of the distributions of possible interior structure models
than focusing on models that match the central values. In
addition, we also explore models that only satisfy the moments
of inertia and the planet’s average density, where we predict the
k2 for those likely structures. This allows us to probe for any
inconsistencies between the models and measurements.
This paper is structured as follows. In Section 2, we

introduce our modeling and assumptions. We then show the
results for various different cases and measurements in
Section 3. We discuss these results and how they compare to
other studies in Section 4. We end with our conclusions in
Section 5.

2. Interior Structure Modeling

In this section, we describe our modeling method. We first
explain how we construct self-consistent models for Mercury’s
interior structure. We use the obtained structure to compute its
tidal response. We then combine these inputs in an MCMC
method to determine the a posteriori probability density
functions of the parameters that describe the interior structure
model.

2.1. Self-consistent Interior Structure Models

Our interior structure modeling follows the exact same
approach as presented in Genova et al. (2019), which was itself
based on earlier works (Hauck et al. 2007, 2013; Knibbe & van
Westrenen 2015). We assume a spherically symmetric planet in
hydrostatic equilibrium, where the density ρ varies only with
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the radius r in the planet. The differential equation for the local
pressure P in the planet as a function of density and local
gravitational acceleration g is given by (e.g., Turcotte &
Schubert 2002; Sohl & Schubert 2015)

( ) ( ) ( ) ( )r= -
dP r

dr
r g r , 1

where we indicate which parameters are functions of r. The
cumulative mass M(r) is defined as the integral over the
cumulative volume,

( ) ( )p=V r r
4

3
, 23

so that

( ) ( ) ( ) ( ) ( )ò òr p r= ¢ ¢ = ¢ ¢ ¢M r r dV r r r dr4 , 3
r r

0 0

2

or, in differential equation form,

( ) ( ) ( )p r=
dM r

dr
r r4 . 42

Finally, the local gravitational acceleration can be derived from

( ) ( ) ( ) ( )ò
p

r= = ¢ ¢ ¢g r
GM r

r

G

r
r r dr

4
, 5

r

2 2 0

2

where G is the universal gravitational constant. In differential
equation form, this reads

( ) ( ) ( ) ( )p r= -
dg r

dr
G r

g r

r
4 2 . 6

This gives a set of equations that can be integrated to give P(r).
In general, however, the density is dependent on both

pressure and temperature, so that an equation of state (EOS)
relating these three, and a temperature profile, are required.
Following Hauck et al. (2013) and Knibbe & van Westrenen
(2015), we use the third-order Birch–Murnaghan EOS
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where K0 and ¢K0 are the isothermal bulk modulus and its
pressure derivative, ρ0 is the reference density, α0 is the
reference volumetric coefficient of thermal expansion, and T
and T0 are the local temperature and reference temperature,
respectively. We list the values for these parameters in Table 2.
For the temperature profile, we follow earlier works (Hauck
et al. 2007, 2013; Rivoldini & van Hoolst 2013; Knibbe & van
Westrenen 2015) and assume an adiabatic profile within the
liquid part of the core, resulting in

( )a
r

=
dT

dP

T

C
, 8

P

with CP being the specific heat capacity at constant pressure.
The coefficient of thermal expansion α can be found from

( )a a=K K, 90 0

knowing that the equation for the bulk modulus K is given by

( )r
r

=K
dP

d
. 10

We assume an isothermal temperature for the solid inner core,
following earlier studies (Hauck et al. 2007, 2013; Knibbe &
van Westrenen 2015; Steinbrügge et al. 2021), and considering
that the moment of inertia is not very sensitive to the thermal
state of the inner core (Rivoldini et al. 2009; Rivoldini & van
Hoolst 2013). We obtain the inner core temperature in the
following way: Equations (8)–(10) are integrated from the
CMB radius toward the center. When the inner core boundary
(ICB) is reached, the temperature remains constant, which is
then the inner core temperature, TICB. The boundary condition
for the temperature profile is given by the temperature TCMB at
the CMB, which is a free parameter in our analysis (see
Section 2.3).
For the crust and mantle, we assume (separate) constant

densities, and thus no EOS or temperature profiles are
necessary. This is reasonable given the low-pressure regime
(∼5 GPa) and relatively small thickness of both Mercury’s
crust and mantle. Temperature changes in the thin mantle only
affect the density profile by a small amount (Hauck et al. 2013;
Knibbe & van Westrenen 2015). For the computation of the
tidal response, however, we will specify a temperature profile
(see Section 2.2), due to the high sensitivity of tides to viscosity
as a proxy for temperature.
In our modeling, the solid inner core radius is a parameter,

which could lead to thermodynamical inconsistencies, such as
enforcing a solid phase, while local pressure and temperature
might not allow this, for a given composition. We enforce
density discontinuities at the boundaries (by rejecting models
that do not have such an increase), which should mitigate this
effect. We also deem our parameter space wide enough (see
Section 2.3) to cover most configurations. This choice is similar
to earlier works by Hauck et al. (2013) and Knibbe & van
Westrenen (2015). The latter indicate that while temperature
inconsistencies can be large, the resulting density inconsisten-
cies are on the order of 2.5%, which is about the same order of
magnitude as the effect of the uncertainties in the parameters
for the EOS. Such an error can be accommodated by subtle
changes in related parameters as a result of our MCMC analysis
without affecting the resulting parameter distributions signifi-
cantly. In Section 4.3, we discuss determining the liquid–solid
boundary from local conditions, and the effects on our results
in more detail.
In order to solve the EOS, we first need to specify the

composition of the core, since this will determine the values of
the various material coefficients. While Genova et al. (2019)
explored different models with different light elements in the
core and with different layering, here we focus on Mercury
models that only have Si as the light element in the core. While
the core can also contain S as a light element (for example, Tao
& Fei 2021 studied the Fe–Si–S system, and showed that Si
preferentially partitions in the inner core, whereas S remains in
the liquid outer core; and a recent analysis by Knibbe et al.
2021 considered C as an addition to Si), it at least contains
Si (Chabot et al. 2014), and S may not even be a required
element (Knibbe & van Westrenen 2018). We do not consider
additional layers, such as the solid FeS top layer to the core
suggested by Smith et al. (2012), but later deemed unnecessary
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by Knibbe & van Westrenen (2015) and subsequent papers, so
that our Mercury models consist of a solid FeSi inner core, a
liquid FeSi outer core, a mantle, and a crust. The core
composition is then specified by the fraction of the element Si.
In order to specify the EOS parameters for a given weight
fraction of Si, we linearly interpolate (and extrapolate) between
values for pure iron and values for FeSi with 17 wt% Si, for
both the liquid and solid phases, following Knibbe & van
Westrenen (2015).

The Si weight fractions for the solid and liquid parts of the
core are often taken to be the same (Hauck et al. 2013; Knibbe
& van Westrenen 2015), because experiments have demon-
strated that, at a pressure of 21 GPa, a solid precipitate from a
liquid Fe–FeSi alloy has the same composition as that
alloy (Kuwayama & Hirose 2004). However, possible compo-
sitional contrasts between the solid and liquid layers have also
been noted (Fischer et al. 2014). While this may occur at
pressures much higher than in Mercury’s core, we leave open
the option of having different weight fractions.

In Table 2, we list the EOS parameters that we used for FeSi.
We solve the EOS using a Levenberg–Marquardt method that
we implemented using the freely available MINPACK software
library (More et al. 1984). The set of equations describing the
interior structure is iteratively integrated, starting with the
boundary condition that the pressure at the planet’s surface (we
assume a radius of 2440 km for Mercury) is zero. We iterate the
integration to ensure that the gravitational acceleration at the

center of the planet is zero. For the numerical integration, we
divide the planet into layers of 1 km in thickness.
Once we have computed a consistent structure from a set of

starting parameters (such as the radii for the inner and outer
core, the thickness of the crust, and several others that we will
discuss in Section 2.3), we can compute the polar moment of
inertia from (Turcotte & Schubert 2002)

( )ò
p

r= ¢ ¢C r dr
8

3
. 11

R

0

4

For the crust–mantle polar moment Cm, the integration starts at
the CMB. With the mass for the model also computed, we can
readily compute C/(MR2) and also Cm/C. These can then be
compared to the measured quantities.

2.2. Viscoelastic Tidal Deformation Modeling

A world that is viscoelastic will express a complex-valued
k̄2. The real portion describes the ratio between the unperturbed
and perturbed gravitational potential, while the imaginary
portion quantifies the planet’s ability to dissipate energy into its
interior via tidal friction. This latter value is often described by
a geometric phase lag between where a tidal bulge is pointing
and where it would be pointing if it were perfectly elastic. For
Mercury, we currently cannot discern observationally between
the real and imaginary parts, so for the purposes of this paper
we will use the term k2 to signify ∣ ¯ ∣k2 , which is approximately
equal to [ ¯ ]R k2 .

Table 2
Equation of State Parameters Used to Model the FeSi Core

Parameter Value Unit Reference

FeSi liquid (17 wt% Si)

Bulk modulus K0 73 GPa
Bulk modulus pressure derivative ¢K0 4.0 L
Reference density ρ0 6000 kg m−3 Sanloup et al. (2004); Yu & Secco (2008)
Coefficient of thermal expansion α0 9.2 × 10−5 K−1

Reference temperature T0 1723 K

FeSi solid (17 wt% Si)

Bulk modulus K0 199 GPa Lin et al. (2003)
Bulk modulus pressure derivative ¢K0 5.66 L
Reference density ρ0 7147 kg m−3

Coefficient of thermal expansion α0 6.4 × 10−5 K−1

Reference temperature T0 300 K

Fe liquid

Bulk modulus K0 87 GPa
Bulk modulus pressure derivative ¢K0 5.0 L
Reference density ρ0 7019 kg m−3 Anderson & Ahrens (1994); Balog et al. (2003)
Coefficient of thermal expansion α0 9.2 × 10−5 K−1

Reference temperature T0 1770 K

Fe solid

Bulk modulus K0 165 GPa
Bulk modulus pressure derivative ¢K0 5.5 L
Reference density ρ0 8170 kg m−3 Komabayashi & Fei (2010)
Coefficient of thermal expansion α0 6.4 × 10−5 K−1

Reference temperature T0 293 K

Additional parameter (used for all materials above)

Specific heat capacity CP 825 J K−1 kg−1 Beutl et al. (1994)
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We compute the multilayer solid tidal response of Mercury
in order to obtain values for k2 for a given internal structure
with the ALMA software (Spada 2008). This software
computes the potential and displacement Love numbers for a
spherically symmetric, viscoelastic planet that is considered
incompressible. Because of Mercury’s relatively small size, it
can be treated as such. We made several changes to the
software for it to be applicable to our case, and to include more
rheological laws. We replace ALMA’s Laplace variable s with
its Fourier counterpart iω, where ω is the tidal forcing
frequency (which we assume is equal to Mercury’s orbital
motion) and i2=−1. In this context, the Laplace and Fourier
approaches are formally identical (Peltier 1974), each having
certain advantages depending on the case (e.g., Jara-
Orue 2016). We add the Andrade (Andrade 1910) and
Sundberg–Cooper (Sundberg & Cooper 2010) rheological laws
for use in ALMA. The Andrade model has been used
extensively in tidal studies of Mercury, and increasingly for
many other bodies as well. We add the recently developed
Sundberg–Cooper rheology because it shows excellent corre-
spondence with laboratory experiments on materials relevant to
Mercury’s mantle in particular (Renaud & Henning 2018). We
use the formulations of these rheological laws as given in
Renaud & Henning (2018) to express them in terms of the
complex shear modulus m̄, as used in ALMA Spada (2008),
Table 7. Table 3 shows the explicit formulas as used in ALMA,
along with a list of the additional parameters that we use in our
viscoelastic tidal deformation modeling, together with their
values.

We pass the parameters of our self-consistent interior
structure models to ALMA to compute the Love number k2.

The ALMA software assumes a uniform core, so it is either
solid or liquid, and we assume, for the tidal response, an
entirely liquid core. We use the average core density from our
models as the density of this uniform core. This does not affect
our results because the contribution of the solid inner core (and
the density stratification within the core) to the Love number is
deemed negligible (Padovan et al. 2014). Steinbrügge et al.
(2018a) also show only a minor influence on the Love number,
and indicate that a linear combination, or the ratio, of the
vertical surface displacement Love number h2 and the potential
Love number k2 cancel the ambiguity to some extent. We do
not use h2 as a constraint in this analysis, and we thus do not
take the solid inner core into account. The liquid core is
assigned zero rigidity.
For the mantle, we make a detailed model because the Love

number is strongly determined by the mantle’s structure and
properties. We assume a conducting mantle, following earlier
works (Padovan et al. 2014; Steinbrügge et al. 2018a, 2021).
Padovan et al. (2014) remarked that a convecting mantle can be
mimicked to some extent by varying the temperature at the
CMB in a conducting model. Higher CMB temperatures would
have a similar effect as the more deformable convecting
mantle, where the temperature would be relatively constant,
and approximately equal to the CMB temperature. In our
modeling, higher constant temperatures in the mantle will
likely affect the resulting k2 value by increasing it, but this can
be counteracted by other parameters in our MCMC analysis.
We will thus use a wide range of CMB temperatures in our
analysis. We will discuss a case that mimics a convecting
mantle in Section 4.2.

Table 3
Andrade and Sundberg–Cooper Rheological Laws and Parameter Values

Rheological Law Complex Shear Modulus m̄ Expressiona

Andrade
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Parameter Symbol Value Unit Reference

Shear rigidity μ varies GPa L
Shear rigidity defectb m¢ 5μ GPa Henning et al. (2009); Renaud & Henning (2018)
Viscosity η varies Pa s L
Voigt–Kelvin viscosity h¢ 0.02η Pa s Henning et al. (2009); Renaud & Henning (2018)
Andrade empirical exponent α 0.3 L Jackson et al. (2002); Renaud & Henning (2018)
Andrade empirical timescale ζ 1.0 L Efroimsky (2012); Renaud & Henning (2018)

Additional parametersc

Reference grain size dref 3.1 × 10−6 m
Grain size exponent m 1.31 L
Reference temperature Tref 1173 K Jackson et al. (2010); Padovan et al. (2014)
Reference pressure Pref 0.2 GPa
Activation energy Eact 303 × 103 J mol−1

Activation volume Vact 10−5 m3 mol−1

Gas constant Rg 8.314 J K−1 mol−1 Tiesinga et al. (2020)

Notes.
a In ALMA, we replace s with iω (see the text), where ω = 88 days.
b In Renaud & Henning (2018), compliance J (the inverse of shear rigidity μ) is used. The defect is defined such that relaxed compliance JR = JU + δJ.
c Used to relate viscosity to pressure and temperature via the Arrhenius relation, see Equation (14).

6

The Planetary Science Journal, 3:37 (26pp), 2022 February Goossens et al.



For the conducting mantle temperature profile, we solve the
radial heat conduction equation for a sphere (e.g., Turcotte &
Schubert 2002):

⎛
⎝

⎞
⎠

( )r+ =k
r

d

dr
r

dT

dr
H

1
0, 12

2
2

where k is the thermal conductivity and H is the heat
generation. We follow Padovan et al. (2014), where heat
production in the crust Hc and mantle Hm are constant, with
Hm=Hc/2.5. We use Hc= 2.2× 10−11 W kg−1, which is the
heat production at the surface as derived from MESSENGER
measurements (Peplowski et al. 2011). As boundary condi-
tions, we set the temperature at the surface to be 440 K, and we
use the value from our interior models for the temperature at
the CMB. The thermal conductivity is set to 3.3 W m−1

K−1 (Michel et al. 2013; Padovan et al. 2014), for both the
crust and mantle. With constant densities in the mantle and
crust, and constant heat production, the conduction equation
can be solved analytically, which results in a temperature
profile Ti(r) in a layer with constant density ρi and constant heat
production Hi of
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2

where C1
i and C2

i are integration constants. These constants are
different for the crust and mantle profiles, and can be obtained
from the boundary conditions—the surface temperature of 440
K and the CMB temperature—and from assuming a continuous
temperature profile so that, at the crust–mantle boundary, the
temperatures and their first derivative are equal for both
profiles.

The viscosity η in the mantle is given through an Arrhenius
law that takes into account temperature, pressure, and grain size
(e.g., Jackson et al. 2004, 2010; Padovan et al. 2014):
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where d is the grain size (which is homogeneous throughout the
mantle in our analysis), Eact is the activation energy, Rg is the
gas constant, and Vact is the activation volume. The subscript
“ref” indicates reference values. We use the values from
Padovan et al. (2014), which are listed in Table 3. We also set
the unrelaxed rigidities μ for the mantle and crust, and have
them vary in our analysis. The crust itself has an infinite
viscosity, as it is considered perfectly elastic. We tested this
implementation against existing tidal codes in our group, such
as the propagator matrix method used in Henning &
Hurford (2014).

2.3. Markov Chain Monte Carlo Method for Determining
Likely Interior Models

The previous two sections explained how we generate self-
consistent models of Mercury’s interior, and how we can
compute the moments of inertia, average density, and tidal
response for each model. We now use this modeling together

with an MCMC method to determine the probability density
functions of the parameters of these interior structure models
that satisfy the geodetic measurements. We follow the exact
same procedure as detailed in Genova et al. (2019). We use the
Metropolis–Hastings scheme (Metropolis et al. 1953; Hastings
1970) to explore the parameter space.
We list the parameters that we vary, together with the bounds

that we impose, in Table 4. We have 11 parameters, but only
three to four target properties (with the bounds set on the
parameters as additional constraints). We thus use MCMC to
explore the parameter space, and do not expect to find all
parameters equally well-determined. As in Genova et al.
(2019), we start off with a set of parameter values that we
randomly perturb, and then we compute a number of models
(in our case, 500,000). We start this same procedure several
times, with each being called a chain. We run 20 chains, after
which we randomly mix the results from these chains. We skip
the first 20,000 models (the burn-in period) because the
randomized start models may be so perturbed as to not even be
from the target distribution. We choose one model each time
from the 20 chains, so we end up with ∼480,000 models in
total, randomly taken from each chain of 480,000 remaining
models. In total, for each run, 10,000,000 self-consistent
models are thus created and evaluated. We do this in order to
ensure a mapping of the parameter space as complete as
possible, in case one or more chains get stuck on a local
minimum of the target metrics.
For each model in each chain, we compute the deviation of

three to four target properties, weighted by their errors, to
compute a probability that is used in the MCMC method either
to accept or reject a model when it is tested against a uniform
distribution, according to the Metropolis–Hastings scheme.
Assuming a Gaussian distribution for each target, we compute
the probability function p( j) for the j-th model as

⎛
⎝

⎞
⎠

( ) ( )= -dx C dxp j exp
1

2
, 15T 1

with dx being the 3× 1 (or 4× 1) vector of differences of the
model and target property, and C being the target property
covariance matrix, which here we assume to be diagonal, with
the diagonal elements being the square of the target property
errors (see also Section 3.1). If the probability ratio p( j)/p

Table 4
Parameters and Bounds Used in the MCMC Method

Parameter Lower Bound Upper Bound

Inner core radius 0 Outer core radius
Outer core radius Inner core radius Planet radius minus crustal

thickness
Crustal thickness 0 150 km
Mantle density Crustal density 3600 kg m−3

Crustal density 2600 kg m−3 Mantle density
Temperature at CMB 1600 K 2000 K
Weight fraction Sia 0% 20%
Unrelaxed crustal rigidity 50 GPa 60 GPa
Unrelaxed mantle rigidity 55 GPa 75 GPa
Grain size 1 mm 3 cm
Mantle reference viscosity 1020 Pa s 2 × 1023 Pa s

Note.
a Weight fractions for the inner and outer core are nominally the same, but can
be separate. If separate, we enforce a smaller fraction for the inner core.
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( j− 1) is larger than a draw from a uniform distribution, then
the model is accepted.

As target properties, we include the polar and crust–mantle
moments of inertia, the global average density, and, optionally,
a fourth measurement constraint through the tidal response
characterized by k2. The results below are labeled as to whether
they include k2 as a fourth measurement constraint, or instead
derive it freely as a prediction. We use the different
measurement values from Table 1 in order to explore the
influence of the different moment of inertia measurements. For
all of the studies listed there, we use a 0.2% error on the
planet’s average density. In this way, we compute a large
quantity of models, with the underlying goal of mapping out
the parameter space that satisfies the measurements and their
errors. Taking the error on the measurements into account is an
important aspect of the MCMC method, because it allows for
the determination of the probability distributions of the interior
model parameters, which focusing on models consistent with
only the central values does not. In addition to the parameters
listed in Table 4, we also collect information on Mercury’s
interior for each model, such as the isothermal inner core
temperature TICB, the core pressure at r= 0, Pcenter, and the
displacement Love numbers h2 and l2.

3. Results

We focus here on two sets of measurements from Table 1:
those by Genova et al. (2019), as an example of the lower polar
moment of inertia, and those by Mazarico et al. (2014). The
latter’s normalized polar moment of inertia is 0.349, which is
close to the value from more recent studies, such as those by
Stark et al. (2015) and Bertone et al. (2021), that also find an
obliquity larger than that of Genova et al. (2019). We use the
results of Mazarico et al. (2014) here because they also co-
estimated k2. Other more recent results have similar polar
moment of inertia values, but did not estimate k2 because they
used measurements, such as radar or laser altimetry, tied to the
surface, and hence it would not be readily clear which k2
estimate from the analyses based on tracking data to use. We
analyzed other measurements (by Hauck et al. 2013, Konopliv
et al. 2020, and Bertone et al. 2021), and throughout this
section we will mention results from those analyses to further
illustrate certain points. All analyses were performed using the
MCMC method, as described in Section 2.3.

Our results of course depend on the set of parameters that we
varied in our MCMC analysis (see Table 4). While we focus on
a subset of parameters in this section, in the figure set we show
the a posteriori distributions for the measurements that we used
(Figures A3.1–A3.4), for the set of parameters that we varied
(Figures A3.5–A3.15), and for the parameters, such as core
densities, that are derived (Figures A3.16–A3.18).

In this section, we will first focus on how well the different
measurement sets are mapped, by using k2 both as a
measurement and by predicting it. We then illustrate how the
estimate of the CMB radius is affected by the different
measurement sets. In addition, we revisit the existence of the
solid inner core. We also show results for crust and mantle
properties, and for the composition of the core, expressed as
weight percentages of Si. Finally, we show additional
parameters derived from our solutions. All of the results in
this section are performed with the Andrade rheology, and we
leave a discussion of the influence of rheology for Section 4.4.

3.1. Distributions of the Measured Quantities

The MCMC analysis explores the parameter space, given the
measurements and their errors. Here, we inspect how well our
MCMC analysis maps out the measurements of the different
studies. In Figure 1, we show the polar moment versus crust–
mantle polar moment, and polar moment versus k2, for the
models from our MCMC analysis. Models are binned for the
heat map from the point cloud of all of the models. Each point
in the cloud represents one model that was accepted in our
MCMC run. Each point in that cloud is thus consistent with the
measurements, within their given errors. Each model itself is,
of course, defined by the parameter values as described in
Table 4. The target ellipse is constructed as an ellipse centered
on the central value, with axes scaled by the quoted error. This
constitutes the target that the models should match. We also
include the ellipse of the ensemble average, constructed from
the average and the standard deviation around this average. If
the measurements are consistent, the target and ensemble
ellipses should overlap for all measurements. For all of the
cases (irrespective of the measurement set used), the planet’s
average density is always matched.
Figure 1 shows that when using the measurements of

Genova et al. (2019), we can map the measurements of
C/(MR2), Cm/C, and k2 very well. Even when we do not
include k2 as a measurement, its prediction (Figure 1(G)) is still
very close to the actual measured value. This is different when
we use the measurements from Mazarico et al. (2014). When
we include k2 as a measurement, the polar moment C/(MR2)
cannot be mapped well, and a smaller moment of inertia is
preferred. However, k2 itself (Figure 1(F); vertical axis) is
mapped well, because the ensemble k2 range matches the target
k2 range; the offset in the target and ensemble ellipses comes
solely from not matching the polar moment. This indicates that
this solution is clearly dominated by the k2 measurement,
because of its tighter error. Moreover, the k2 and C/(MR2)
measurements are incompatible because the ensemble and
target ellipses do not overlap (Figures 1(B) and (F)). When we
do not include k2 as a measurement, we can map the moments
of inertia (Figure 1(D)), as the ellipse for the ensemble average
is within that of the target. The predicted k2 for these models
has an average value of 0.63 (Figure 1(H)) and is in general
higher than the Genova et al. (2019) value of 0.569, which was
already higher than the 0.451 value of Mazarico et al. (2014),
although the results show a wide range of likely k2 values. We
reiterate that the k2 estimate of Genova et al. (2019) is based on
the entire MESSENGER data set, including the low-altitude
data, which were not included in the estimate from Mazarico
et al. (2014).
All of the results show clear concentrations of models around

the central values, as indicated by the warmer colors in
Figure 1, except for the case where we used the results from
Mazarico et al. (2014) for the polar moment versus the crust–
mantle polar moment when we predict k2. This is due to a
larger spread in the polar moments, possibly due to the larger
error.
We also note that when we predict k2, there is a correlation

between C/(MR2) and k2, as indicated from the slope of the
point clouds in Figures 1(G) and (H). We could readily include
covariance information in our analysis (by using a full
covariance matrix C in Equation (15)), but for the purposes
of simplicity and comparison with earlier works we opted
not to do this. However, Figure 1(G) shows that we still
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map the measurements well without this additional covariance
information.

We also used the measurements of Hauck et al. (2013) and
Bertone et al. (2021) in our analysis. We show similar heat
maps as shown in Figure 1 in the Appendix in Figure A1. Both
of these studies had polar moment values closer to that of
Mazarico et al. (2014). Figure A1 shows that we can readily
match the observations. Neither of the studies estimated k2, and

our predictions for k2 (Figures A1(C) and (D)) show values
higher than 0.569 in general, the same as we show for the
results using Mazarico et al. (2014) in Figure 1(H).
Finally, we also performed an analysis with the measure-

ments of Konopliv et al. (2020). We used two sets of
measurements because of the discrepancy between their
obliquity and pole coordinates. We show heat maps for these
results in Figure A2. We can match the observations for both

Figure 1. Results from the MCMC analysis, where we plot the entire polar moment vs. the crust–mantle polar moment (A–D) or the entire polar moment vs. k2 (E–H).
We indicate the concentrations of the models with colors. We include ellipses for the measurements (the “target”) as well as for the ensemble average. We use the
measurements from Genova et al. (2019), indicated as G19, or Mazarico et al. (2014), indicated as M14. We include k2 in the analysis as a measurement (indicated
with “k2 measurement”), or do not include it as a measurement but instead predict it (“k2 predicted”).
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the lower (Figure A2(C)) and higher (Figure A2(D)) polar
moment values when we do not include k2 as a measurement.
When we do include k2 as a measurement in our MCMC
analysis, we find a preference for lower polar moment values,
even when the targeted polar moment of inertia has the higher
value of 0.345 (see Figures A2(A), (B), (E), and (F)). This is
because the quoted error on the polar moment is relatively
large, and the MCMC analysis thus mostly fits the k2
measurement. When we predict k2, we can match the higher
polar moment (Figure A2(D)), but this results in a higher k2
value than reported (k2= 0.611; see Figure A2(H)). This is
consistent with our finding that using the result of Mazarico
et al. (2014) without k2 results in a predicted value of k2 that is
higher than the current estimate of 0.569. The k2 value from
Konopliv et al. (2020) is close to the k2 value from Genova
et al. (2019), and our analysis shows that it is more consistent
with the lower polar moment value.

3.2. CMB Radius

Previous studies have already indicated that the parameter
that is best determined from measurements of moments of
inertia is the CMB radius (e.g., Hauck et al. 2013; Knibbe &
van Westrenen 2015; Margot et al. 2018; Steinbrügge et al.
2021). We show the a posteriori distributions for the CMB
radius for various MCMC analyses in Figure 2. Two distinct
peaks are visible in the CMB radius distributions. The lower
polar moment values result in smaller CMB radii, and the
higher polar moment values result in larger CMB radii. These
results are entirely consistent with earlier analysis by Hauck
et al. (2013) and Knibbe & van Westrenen (2015), when using
the higher polar moment value from Mazarico et al. (2014), and
with Genova et al. (2019) when using the lower polar moment
value (see also Table 1). For the result using the measurements
from Mazarico et al. (2014), we also find a smaller CMB radius

when we include k2 as a measurement, despite their higher
polar moment value. As we showed in Figure 1(B), this
particular case also results in a preference for a lower polar
moment because of the tight constraint on k2: the MCMC
analysis is entirely dominated by satisfying the k2 measurement
over the polar moment one. When we use the measurements of
Genova et al. (2019), we find a CMB radius of 1955± 20 km.
When we use the higher polar moment value of Mazarico et al.
(2014), we find a CMB radius of 2015± 31 km.
Steinbrügge et al. (2021) indicated that the smaller core size

is not consistent with recent estimates from magnetic induction.
Indeed, Wardinski et al. (2019) found a value of 2060± 22 km.
However, other magnetic studies found much larger error bars
on their core radii. Johnson et al. (2016) found values between
1900 and 2060 km, and a more recent study by Katsura et al.
(2021) found a value of 2011± 180 km. Both these results
cover the CMB radius from both polar moment values. We thus
consider that the results from magnetic studies to date do not
strongly constrain the allowed range of CMB radii.
In general, k2 is sensitive to the CMB radius because it

defines the thickness of the mantle. The thickness, and
stiffness, of the mantle (and crust) then determine the extent
of the tidal response. Hence, a lower k2 value, as reported by
Mazarico et al. (2014; and confirmed by Verma & Margot 2016
using the same data), is indeed expected to result in a lower
CMB radius value. Conversely, higher polar moment of inertia
values are expected to result in larger CMB radius values. Our
modeling results show both of these behaviors. This is also
pointed out in Steinbrügge et al. (2021), when they raise the
issue and the possible incompatibility of the lower polar
moment of Genova et al. (2019) and the higher k2 value of
0.569. Importantly, our results indicate that these measure-
ments are actually compatible. Our results are also still
consistent with this dependence of k2 on the CMB radius, as

Figure 2. Results from the MCMC analysis for the liquid outer core radius (CMB radius), when using different measurements. We include cases where k2 was used as
a measurement (the solid lines), and cases where it was predicted (the dotted lines). We now also include measurements from Hauck et al. (2013; H13), and Bertone
et al. (2021; B21), with k2 predicted.
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shown by the predicted k2 values in Figures 1(G) and (H), and
by the CMB radii from Figure 2. For the larger moment of
inertia values, we find larger CMB radii, and generally higher
k2 values. Our results show that the discrepancy may not be in
the moment of inertia and k2 results of Genova et al. (2019), but
rather in the incompatibility of the higher moment of inertia
values from other studies and the earlier, lower value for k2,
which was not based on the entire MESSENGER data set.
Other parameters, such as viscosity, temperature, and grain
size, also have an effect on the resulting k2 (e.g., Padovan et al.
2014; Steinbrügge et al. 2018a, 2021). We discuss this further
in Section 4.

3.3. Existence of the Solid Inner Core Revisited

Our interior models include a solid inner core of variable
size, and because our viscoelastic tidal deformation modeling
does not take into account a solid inner core, as explained
above in Section 2.2, we do not expect the results to change
from those reported in Genova et al. (2019), although of course
correlations with other parameters now determined from the
tidal response could have an effect. In Figure 3, we show the
ratio between the solid inner core and liquid outer core radii.
This result is similar to that of Genova et al. (2019) for a
structure with an FeSi core, and this indeed shows that our
modeling that now includes k2 still indicates evidence for the
existence of a solid inner core.

In addition, we investigated the average densities of the
cores of our solutions. In Figure 4, we show the average density
of the solid and liquid parts of the core for each MCMC model,
plotted against the resulting ratio between inner and outer core
radii. We obtain the average core density through integration
over the layers once the model has been constructed. Figure 4
shows a clear difference between the densities of the solid and
liquid parts, except for the large inner cores, where the inner
core densities are close to liquid core values. They are never
smaller, however, because we enforce this. A low core density

is due to a high weight fraction of Si (we discuss the Si weight
fractions in more detail in Section 3.5).
For inner cores larger than∼ 0.6 times the radius of the

CMB, the densities of the inner core are in the range of liquid
values. We note, however, that the inner core local density is
derived with a solid EOS, and thus is consistent with a solid
value at the given pressure and temperature. We discuss the
effects of local pressure and temperature on the state of the core
in Section 4.3. On the other hand, the density of the liquid core
becomes lower as well. This is because we only accept models
that have a density contrast at the boundary of the inner and
outer cores.
The lower polar moment makes it more likely that a solid

inner core is present, as it indicates denser materials toward the
center. We find again a clear indication of a solid inner core, as
shown in Figure 3.

3.4. Crust and Mantle Properties

Several of our estimated parameters (recall that we show
their distributions in the figure set in Figures A3.5–A3.15)
show flat distributions, indicating that our results are not
sensitive to their values in our modeling. This includes the
crustal density and crustal thickness, as well as the temperature
at the CMB, the grain size, and the rigidities. For the mantle
(and crust) rigidities, we allow a range of values, since we opt
to remain agnostic about the mineralogy of the mantle. The flat
distributions for these parameters indicate our results are not
particularly sensitive to them.
Although it appears that our results favor lower crustal

densities (Figure A3.8) and higher crustal thicknesses (Figure
A3.9), it should be kept in mind that the crustal density
especially trades with the mantle density. We enforce a higher
density for the mantle compared to the crust, so the crustal
density distribution shows fewer models as the crustal density
approaches the mantle density. For the crustal thickness, the

Figure 3. The ratio of the radii of the inner core and outer core when using the measurements of Genova et al. (2019), now including k2 as a measurement.
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distribution is skewed toward thick crusts, but we find no
dependencies with other parameters.

Our mantle densities are lower than those from the earlier
analysis by Hauck et al. (2013; see Figure A3.7). We find an
average value of 3089± 135 kg m−3 from our distribution. The
earlier analysis by Genova et al. (2019) found an average value
for the mantle density of 3145± 154 kg m−3. These values are
consistent at the level of one standard deviation, but our value
is on the lower end. While most of our results are consistent or
very similar to those presented in Genova et al. (2019), we do
find some differences (in the CMB radius, weight fractions of
Si in the core, and mantle density), which are due to our strict
enforcing of density contrasts at the ICB.

Low mantle density values are also discussed by Steinbrügge
et al. (2021), who state that they could risk an inconsistency
between the expected composition of the mantle and the
resulting density from the interior modeling. We indeed find
similar results to Steinbrügge et al. (2021) for the mantle, with
lower values for the lower polar moments. The spread that we
find would still allow many models with higher values,
however. When we use the higher polar moment values, the
mantle density increases to 3237± 186 kg m−3 (when using
the values from Bertone et al. 2021), or to 3317± 181 kg m−3

(when using the polar moment from Mazarico et al. 2014). We
also find higher mantle densities for larger weight fractions of
Si in the core (see Figure A3.19), as larger amounts of Si bring
down the average core density.

3.5. Composition of the Core

Core composition is determined in our models by the weight
fraction of Si. This is an important quantity because it can
connect Mercury formation conditions and models to the
measured surface abundance of Si (e.g., Chabot et al. 2014;
Boujibar et al. 2021). In Figure 5, we show the a posteriori
distributions for the weight fraction of Si in the core for various
MCMC analyses. When we use the measurements of Genova
et al. (2019), we find generally lower weight fractions in the
core. The mean and median are 5.6% and 5.2%, respectively,
with a peak showing in Figure 5 at around 4%. We also note
that there is a relationship between the weight fraction of Si in

the core and the CMB temperature, just like there was between
the weight fraction of Si in the core and the mantle density, as
discussed in Section 3.4. We show this in Figure A3.20, and
find that lower weight fractions generally mean higher CMB
temperatures.
In our analysis, we assumed the weight fraction of Si to be

the same in the solid and liquid core. However, as remarked
earlier, because of the noted compositional contrasts between
the solid and liquid layers (e.g., Fischer et al. 2014), we also
include an analysis where we varied these weight fractions
separately, with the only constraint being that the weight
fraction of the inner core is smaller than that of the outer core.
This analysis thus had an extra estimated parameter, as two
weight fractions are now included. We include that result in
Figure 5, and we note that this shifts the distribution peaks: the
inner core has a lower weight fraction, whereas a higher weight
fraction for the liquid core is allowed. From the histogram, it
appears that the differences can be substantial, which is likely
not in accordance with the experimental data, as the difference
may amount to only several percent (Fischer et al. 2014).
However, a heat map of the inner core weight fraction versus
the outer core weight fraction (Figure A4(A)) shows that most
solutions have a limited range in weight fractions, thus also
limiting the difference between the two. If we further enforce a
limit on the difference, the results are closer to those assuming
the same weight fractions, and large Si weight fractions in the
liquid outer core are generally not found (see Figure A4(B),
where a maximum difference of 3% was used). We also note
that when we use the higher polar moment of inertia in our
analysis, the weight fraction for Si tends to come out higher
(∼15%; see Figure 5), consistent with the results from Hauck
et al. (2013).

3.6. Results for Derived Interior Quantities

For each MCMC model, we also compute a set of additional
values that characterize the interior. In Figure 6, we show
a posteriori distributions for the displacement Love numbers h2
and l2, and for the inner core temperature and pressure. A first
data-based estimate for the radial displacement Love number h2
was recently published by Bertone et al. (2021). Their result for
h2 is 1.55± 0.65, and was derived using altimetric crossovers
using MLA data. Due to the sparsity of crossovers from an
elliptical orbit, this parameter is difficult to estimate. Their
quoted error is based on a careful analysis of various effects,
such as the variations in the constraint factor used, the start
values used in their modeling, and the use of subsets of data.
They then derived their error by taking into account the range
of h2 estimates from all of these various solutions, and it thus
reflects a much more comprehensive analysis of the expected
error than a straightforward formal error obtained from an
inversion. Their value is higher than what our modeling
predicts, although our value of 1.02± 0.04 is within their one-
sigma bound. Future analysis using laser altimetry from the
BepiColombo mission to Mercury may provide improved h2
measurements (Steinbrügge et al. 2018b; Thor et al. 2020;
Genova et al. 2021; Thomas et al. 2021), against which our
predicted value can be tested. Alternatively, an estimate of h2
can then serve as an additional measurement to better constrain
the properties of Mercury’s inner core (Steinbrügge et al.
2018a). The horizontal displacement Love number l2 can likely
only be measured from a lander (e.g., Ernst et al. 2021), but we
include it here for completeness.

Figure 4. The ratio of the radii of the inner core and outer core vs. the liquid or
solid core density. These results are from the MCMC analysis using the
measurements of Genova et al. (2019), including k2.
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The inner core is assumed to be isothermal, so we obtain the
inner core temperature for our models as the temperature of the
liquid core at the ICB, as explained in Section 2.1. Together
with the pressure, these variables can inform us of the core
conditions important for studies of the formation, crystal-
lization, and dynamo action of the core (e.g., Chabot et al.
2014; Dumberry & Rivoldini 2015), and hence we include their
resulting values here as histograms (while we will show
pressure versus temperature for the inner core in Figure 10).
The core pressures from our models are consistent with those
reported by Hauck et al. (2013), with a higher average value in
our case because of the inclusion of the inner core, and higher
densities toward the center as a result of the lower polar
moment. Our core temperatures are consistent with those that
have been discussed in earlier studies (e.g., Malavergne et al.
2010).

4. Discussion

Our MCMC analysis indicates that we can correctly map the
observations of Genova et al. (2019), and that in principle there
appears to be no incompatibility between the lower polar
moment value of 0.333 and the higher k2 values in the
0.53–0.57 range. Indeed, our results indicate that the higher
polar moment value of around 0.346 should result in an even
higher k2 value. These results of course depend on the set of
parameters that we varied in our MCMC analysis, the results of
which we showed in the previous section. Here, we discuss
additional characteristics of our solutions. We investigate the
viscosity at the CMB, considerations about a convecting
mantle, and modeling aspects of the inner core. Finally, we
discuss the influence of rheological laws on our results.

4.1. Viscosity at the CMB

In this study, the viscosity profile of the mantle
(Equation (14)) has a big influence on the resulting k2 value.
We show this dependency in Figure A5(A) and note that k2
changes rapidly in the viscosity range of roughly 1016–1020 Pa s.
Steinbrügge et al. (2021) discussed such low viscosity values in
detail, and indicated that, in order to match the higher k2 values,
the base of the mantle may have a very low viscosity, which
could be interpreted, for example, as Mercury’s mantle having a
basal layer of silicate partial melt. We thus also investigated the
viscosity at the base of the mantle for our MCMC models. As
Equation (14) indicates, this depends on the pressure at the
CMB, the temperature at the CMB, and the grain size. The latter
two are parameters in our analysis, and because we use constant
densities for the crust and mantle the pressure can be readily
computed analytically. In Figure 7, we show the viscosity at the
CMB versus the outer core radius, the temperature at the CMB,
the grain size, and k2.
We first note that, like Steinbrügge et al. (2021), we find a

wide range of viscosity values in our models that are
compatible with the geodetic measurements of Genova et al.
(2019), including the lower range that they highlighted. Larger
k2 values require lower viscosities, and because of the
temperature dependence, higher CMB temperatures also result
in lower CMB viscosities. We only find a very weak
dependence on the grain size, and our models do not seem to
favor small or large grain sizes (see also Figure A3.12),
contrary to Steinbrügge et al. (2021).
While our results include models with low CMB viscosities,

we also find plenty of models with higher CMB viscosities
(Figure 7(A)). The count of the number of models in bins, as
shown in Figure 7, does indicate a concentration at values
between 1014–1016 Pa s, but many models also have higher

Figure 5. Weight fractions of Si in the core for the results from the MCMC analysis. We used the measurements from Genova et al. (2019; G19), where we either set
the weight fractions of the inner core and outer core to be the same (labeled “inner and outer core fraction”), or separate (indicated by “inner” and “outer”). We also
used the measurements from Mazarico et al. (2014; M14), where the weight fractions were set to be the same. The solid lines indicate where we included k2 as a
measurement (the G19 cases), and the dotted line indicates where we did not include k2 as a measurement (the M14 case).
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Figure 6. Predicted parameters from our MCMC analysis using the measurements from Genova et al. (2019), including k2. We present results for the vertical tidal
displacement Love number h2 (A), the horizontal displacement Love number l2 (B), the inner core temperature (C), and the pressure at the center of the core (D).

Figure 7. Viscosity at the CMB vs. the CMB radius (A), the CMB temperature (B), the grain size (C), and k2 (D), from the results of our MCMC analysis using the
measurements of Genova et al. (2019). We also indicate the number of models in bins (with a width of 0.1 in log space for viscosity, 5 km for CMB radius, 5 K for
CMB temperature, 1 cm for grain size, and 0.001 for k2) to highlight concentrations of models in the point cloud.
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values. There is of course also a straightforward relationship
between CMB viscosity and the reference viscosity. Our
analysis seems to prefer slightly higher reference viscosities
(Figure A3.15), although one should also note their wide range,
spanning several orders of magnitude. Lower reference
viscosities (see Equation (14) for how this influences the
viscosity profile) also result in larger values for k2.

We also do not find a preference for high CMB temperatures
(Figure A3.10). While there seems to be a slight favoring of
values on the higher end of our range, the distribution is very
flat. The bounds for the CMB temperatures of 1600–2000 K
(see Table 4) are based on earlier studies (Hauck et al.
2007, 2013), but this may be considered too limiting in the
light of the results of Steinbrügge et al. (2021). Expanding the
bounds to 1200–2400 K does not change the results, however.
We find a wider distribution as a result (see Figure A6), which
allows the higher values of Steinbrügge et al. (2021), but there
is no preference for higher values as the peak in the distribution
is still around 1800 K. We also do not find strong dependencies
between the CMB temperature and other parameters, although
lower CMB temperatures result in only slightly higher mantle
densities and weight fractions of Si. Steinbrügge et al. (2021)
found CMB temperatures of around 2100 K, and indicated that
this can be problematic for a number of reasons, such as mantle
melting, the presence of S, and volcanism. Our models do not
show indications that such high temperatures are favored, or
needed to fit the measurements, and our models thus avoid such
issues.

4.2. Considering a Mantle with a Constant Temperature

While a conducting mantle is deemed most likely for
Mercury (Tosi et al. 2013), a convecting mantle is not necessarily
excluded (Michel et al. 2013; Tosi et al. 2013). As stated above, a

convecting mantle can be mimicked by selecting a range of CMB
temperatures in our models. However, the temperature profile
would still be conductive, whereas a convecting mantle’s
temperature would be relatively constant.
While certainly not a complete model, we also performed an

MCMC analysis with the measurements of Genova et al.
(2019) by using a constant temperature in the mantle, which we
set equal to the CMB temperature (we do not include a thermal
boundary layer above the CMB). In this case, we extend the
CMB temperature range to include values between 1200–2200
K, where we mostly expect to fall on the lower values, as a
mantle at a constant high temperature will result in higher k2
values than a conducting mantle with the same CMB
temperature.
In Figure 8, we show the results from an MCMC analysis

with a constant mantle temperature. We find that this model has
more difficulty in mapping the combination of moment of
inertia and k2, as the ensemble ellipse (Figure 8(A)) is offset
toward lower moment of inertia values, whereas the ensemble
ellipse for the conducting mantle case is entirely within the
target ellipse (on the other hand, the ensemble ellipse for the
convecting case covers more of the target ellipse). We do find
lower CMB temperatures around 1500 K (Figure 8(B)), and
also lower inner core temperatures, as a consequence
(Figure 8(C)). We again find no clear dependence on the grain
size (Figure 8(D)), for which we now also include values below
1 mm.
When we investigate the viscosity at the CMB (Figure 9,

which is similar to Figure 7, but now for the convecting mantle
case), we find higher values, with concentrations now at
viscosities of 1017–1018 Pa s. The bulges with low CMB
viscosity values in the scatter plot are related to the higher
CMB temperatures in the model ensemble (Figure 9(B)). A
convecting mantle, as modeled with a constant temperature,

Figure 8. Ensemble and target ellipses for the results of our MCMC analysis using the measurements from Genova et al. (2019), where we now also include a
convecting mantle, together with the results for a conducting mantle for comparison (A), and the resulting distributions for the CMB temperature (B), the inner core
temperature (C), and the grain size (D).
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can thus alleviate the issues of low CMB viscosities, as found
by Steinbrügge et al. (2021). On the other hand, it also results
in a mapping of the target values that centers on lower polar
moment of inertia values, slightly offset from the target of
C/(MR2)= 0.333 (see Figure 8(A)).

4.3. Considerations on Determining the Inner Core Size

As mentioned in Section 2.1, the choice to use the solid inner
core as a parameter may result in thermodynamical incon-
sistencies. Using local pressure and temperature, and a melt
curve, it can be determined whether the inner core indeed is
solid at these local conditions for a given core size. We
explored this for our set of models from the MCMC analysis
using the results from Genova et al. (2019). We used melt
curve information from Anzellini et al. (2013) for pure Fe, from
Fischer et al. (2012) for FeSi at 16 wt% Si, and from Fischer
et al. (2013) for FeSi at 9 wt% Si. For a given weight
percentage of a model, we interpolate the melt curves to
generate a new melt curve for a specific weight percentage. We
then take the pressure at the inner core radius for the model
under investigation, and the inner core temperature, and use the
melt curve to test whether the material is solid. We do this after
the MCMC run has been completed, not during.

We find that about 30,000 models out of our set of
480,000 are excluded in this way. This, however, does not
affect the parameter distributions at all. In Figure 10, we show
the pressure at the ICB versus the inner core temperature for
our set of MCMC models. We also include the three melt
curves that we used. Models where local conditions indicate
that the core is still liquid, while it was assumed to be solid, are
excluded. Figure 10 indicates the range of pressures and
temperatures in the core. Models with lower weight percen-
tages of Si in general have smaller inner cores, and hence the

pressure at the ICB is higher, or they have higher CMB
temperatures (because the melt temperature for lower weight
percentages of Si is higher).
Figure 10 indicates the presence of models with a low

weight percentage of Si in the core and a low ICB temperature.
Such models, especially those with temperatures far below the
melt temperature of pure iron, as indicated by the melt curve
from Anzellini et al. (2013), are deemed unrealistic, as they
would likely need large amounts of other light elements, such
as S, to bring down the temperature. As we do not model our
core with an Fe–Si–S composition, it is thus possible that this
could bias our results toward unrealistically cool end members.
However, such models have high ICB pressures (as Figure 10
indicates), meaning they are models with small inner cores.
Figure 3 (where the ratio between the inner and outer core radii
is shown) and Figure A3.5 (where the inner core radius itself is
shown) indicate that these models are not preferred in our set
of solutions. We further illustrate this in Figure A7(A), where
we turn Figure 10 into a heat map to indicate the number of
models related to each pressure and temperature configuration.
This shows that there are only a few models with high
pressure, low temperature, and a low weight percentage of Si.
This can also be seen in Figure A3.20, where there are only a
few models with a low weight percentage and low CMB
temperature, while most of the models show a trend with
higher temperatures for low weight percentages.
If we exclude models that have weight percentages of Si less

than 4% and that have a CMB temperature less than 1900 K,
our parameter distribution does not change significantly,
despite removing the substantial number of 82,771 models
from our set (amounting to almost 20% of the number of
remaining models). The average value for the mantle density
increases from 3089 to 3103 kg m−3, and the polar moment of
inertia appears to be mapped slightly better, with an average of

Figure 9. Viscosity at the CMB vs. CMB radius (A), CMB temperature (B), the grain size (C), and k2 (D), from the results of our MCMC analysis using the
measurements of Genova et al. (2019). For the results presented here, we modeled the mantle with one constant temperature when computing the tidal response, to
mimic a convecting mantle. This temperature is equal to the CMB temperature, which is a parameter in the MCMC analysis. We extended the viscosity range, the
CMB temperature range, and the grain size range, when compared to the results for the conducting mantle (Figure 7). We again indicate the number of models to
highlight concentrations of models in the point cloud.
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0.3324 versus 0.3318 before. In Figure A7(B), we show a new
pressure versus temperature plot, without these models. This
now leaves hotter models at higher pressures, but we note again
that such models with small cores are not preferred in our
solution set.

It is also possible to use these melt curves to determine the
inner core size from local conditions entirely. The results
above exclude certain models because the conditions indicate
that the core should be liquid and not solid, as we assume. It is
also possible that, according to the melt curves, the transition
from liquid to solid should occur at a larger radius (lower
pressure), and that the solid core should thus be larger than
assumed in our model. Determining the solid core size from
local conditions and a melt curve would reduce the number of
parameters, since now the inner core size would be determined
from pressure and temperature, instead of being forced to
occur at a certain radius. However, we chose not to pursue
this for this study, as the temperature profiles in the core
would become a strong driver for the size of the inner core.
Several studies of the FeSi system indicate relatively large
differences in melt temperatures for various weight percen-
tages of Si (Asanuma et al. 2010; Fischer et al. 2012,
2013, 2014; Morard et al. 2014; Ozawa et al. 2016; Sakairi
et al. 2017). With the current uncertainties on Mercury’s
composition, the uncertain influence of impurities in Mer-
cury’s core, and the uncertainties of the temperature profile in
general, we find it more prudent to decouple the size of the
inner core from the local conditions. The pressure–temperature
range in Figure 10 may be conservative, but it shows the range
of inner core pressures and temperatures in our set of models
that match the observations of Genova et al. (2019), and can
thus be of use in future analysis of core conditions (e.g., Tao &
Fei 2021).

4.4. The Influence of Rheological Laws

Finally, we investigated the influence of rheology on our
results. As stated in Section 2.2, we added the Sundberg–
Cooper rheology to our tidal analysis. The rheology has an
effect on the k2 value through viscosity (see Figure A5(A)), and
thus could potentially have an effect on the recovered
parameters. We performed an additional MCMC analysis using
the measurements of Genova et al. (2019) with this rheology
instead of Andrade. Despite the possible differences in k2, we
cannot distinguish between these rheological laws. For
example, the mapped k2 a posteriori distributions are nearly
identical (Figure A5(B)). This indicates that the differences in
tidal response expressed by the choice of rheology are absorbed
in the parameter variations that we find. Because our results are
not very sensitive to parameters that may have an influence
through the rheology, such as the CMB temperature, we do not
note a remarkable difference in the results. Improved or future
measurements may result in better sensitivity with respect to
the chosen rheology (e.g., Bagheri et al. 2019). The choice of
rheology mostly remains based on performance compared to
laboratory experiments. The Sundberg–Cooper rheology in
effect adds the further mechanism of grain boundary sliding for
grain-scale viscoelastic motion to a background Andrade
model. However, this mechanism is only activated at certain
temperature and forcing frequency regimes. Insensitivity to the
Andrade versus the Sundberg–Cooper rheology choice may
suggest that Mercury’s mantle is simply in a temperature/tidal
forcing frequency domain reasonably well characterized by the
Andrade-component grain-scale mechanisms. This, however,
does not preclude the activation of grain boundary sliding in
cooler regions of the layer structure, such as below the crust,
where it may still be relevant for nonsynchronous spin tidal
heat production.

Figure 10. Pressure at the ICB vs. the temperature of the inner core, color-coded with the weight percentage of Si in the core for each MCMC model. Melt curves for
pure Fe, FeSi at 9 wt% Si, and FeSi at 16 wt% Si are also shown. The results here exclude models where the core is assumed to be solid, but local conditions indicate
that it is liquid.
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5. Conclusions

Recent results of MESSENGER data analysis efforts for
Mercury’s orientation, as given by its obliquity, yield different
values for its normalized polar moment of inertia C/(MR2),
with either a low value of 0.333 (Genova et al. 2019) or a
higher value of around 0.346 (Margot et al. 2012; Hauck et al.
2013). In addition, recent measurements of Mercury’s tidal
response, as expressed in its degree 2 tidal Love number k2,
yield a value in the range of 0.53–0.57 (Genova et al. 2019;
Konopliv et al. 2020), larger than the value of 0.451 reported
earlier (Mazarico et al. 2014). This has implications for
understanding the likely interior structure of Mercury. We
performed an extensive analysis of these different measure-
ments by applying a Markov Chain Monte Carlo (MCMC)
analysis. We use the polar and crust–mantle polar moment of
inertia, together with a constraint on Mercury’s average
density. We also either include k2 as an additional measurement
or predict it from our analysis.

We find in our analysis that models that match the lower
polar moment value of 0.333 also fit or predict the recent,
higher Love number of 0.569, as reported by Genova et al.
(2019). When we use the higher polar moment value of 0.346,
we cannot simultaneously fit the lower k2 of 0.451 within the
given error bounds. If we use the higher polar moment and
predict k2, we find an even higher value, 0.63, than the
currently reported value range of 0.53–0.57, although the
spread in predicted values is also large. This means that the
polar moment value of 0.346 is not consistent with the lower k2
of 0.451, and only marginally consistent with the higher range
of k2 values. This is entirely consistent with the general
observation that a higher polar moment results in a larger radius
of the core–mantle boundary (CMB) and that a larger CMB
radius results in a larger k2 value (due, in part, to a thinner and
thus more flexible crust–mantle shell).

The solid inner core radius in our modeling is a parameter,
and not derived from local temperature and pressure. This may
result in thermodynamical inconsistencies, and our enforcing of
density contrasts at the boundaries should mitigate this. The
difference in average density between the solid inner core and
the liquid outer core is stable, except when the inner core is
large itself. In those cases, for inner core radii that are larger
than ∼0.6 times the CMB radius, the inner core density
approaches the liquid densities.

Our results indicate a smaller CMB radius of 1955±20 km,
slightly smaller than but still consistent at one standard
deviation with the results of Genova et al. (2019). The
inclusion of k2 as a measurement in our MCMC analysis yields
results mostly consistent with theirs. The consistency between a
lower moment of inertia and higher k2 can occur for a mantle
with lower material strength, even if at the same time a thicker
mantle leads to less flexibility.

A recent comprehensive analysis of the implications of the
new measurements by Steinbrügge et al. (2021) indicated
challenges in matching the new observations, with implications
for the structure of the mantle and inner core. They reported the
need for low viscosities at the base of the mantle to match the
new observations. We also find a wide range of viscosities at
the CMB, because lower viscosities match well with higher k2
values. However, the range of viscosities that we find also
includes larger values, and we find trends expected from the
modeling (such that higher k2 values and higher CMB
temperatures result in lower CMB viscosities). We also do

not find a strong dependence on grain size. We find that our
results are mostly not very sensitive to other parameters in our
analysis, such as rigidities, or the thickness or density of the
crust.
Steinbrügge et al. (2021) found CMB temperatures around

2100 K, which can be problematic for interior models, as this
would imply mantle melting and extended volcanism. Our
models do not show that such high CMB temperatures are
needed to fit the measurements. If we model the mantle with a
constant temperature to mimic a convecting mantle, we find
lower CMB temperatures, and we find that the CMB viscosities
are higher. However, such a model does not match the polar
moment of inertia value as well asthe models with a conducting
mantle do.
The composition of the core is described by the weight

fraction of Si in our analysis. We find relatively small Si weight
fractions of 4%–5% for most of our models when we use the
measurements of Genova et al. (2019). If we use the higher
polar moment value, the weight fraction increases to above
10%. It is often assumed that the weight fractions of Si in the
solid and liquid core are the same, but we also performed an
analysis where we allowed them to be different, while
enforcing a smaller weight fraction in the solid core. We then
find the possibility of larger weight fractions of Si in the liquid
core, up to ∼10%, and only a few percent for the solid
inner core.
We present several additional parameters that are derived

from our interior models, such as values for the inner core
temperature and pressure, which are important for the further
characterization of Mercury’s core. We also include the tidal
displacement Love numbers. The radial displacement Love
number h2 was estimated for the first time from MESSENGER
altimetry data (Bertone et al. 2021). Their error analysis
carefully considered systematic and stochastic effects. Their
h2 value has relatively large error bars, due to limited
observability and sensitivity, and due to large correlations
with orbit parameters. Our predicted value, h2= 1.02± 0.04
(one standard deviation, computed from the a posteriori
distribution of our MCMC results), is just within their error
bounds.
Our analysis did not address the inconsistency between the

different obliquity measurements. Additional and combined
analysis of both MESSENGER gravity and altimetry may
further address this, but that is outside the scope of this
analysis. Future data from the BepiColombo mission to
Mercury will greatly benefit studies of the planet’s interior,
by providing improved and additional constraints on the deep
interior (e.g., Steinbrügge et al. 2018a; Genova et al. 2021).

The data used in this analysis is provided in previously
published work, and the sources are listed in Table 1. The
material presented here is partly based upon work supported by
NASA under the CRESST II cooperative agreement with
award number 80GSFC17M0002 (SG, SB), and partly
supported by NASA grant 80NSSC17K0218 (SG). Additional
support for this research was provided by NASA’s Planetary
Science Division Research Program (EM). We thank Laura
Lark (Brown University) for discussions. We thank Dr. Yuji
Harada and an anonymous reviewer for their comments, which
improved this paper. Data figures were generated with the
freely available software GMT (Wessel et al. 2013). Colors are
chosen from https://www.ColorBrewer.org by Cynthia A.
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Brewer, Geography, Pennsylvania State University. The
scientific color map “roma” (Crameri 2021) is used to prevent
visual distortion of the data and the exclusion of readers with
color vision deficiencies (Crameri et al. 2020). Additional data
files that are the result of this analysis, such as our collection of
models from our MCMC analysis, will be available from our
data archive, which can be found at https://pgda.gsfc.nasa.
gov/.

Appendix A
Results from the MCMC Analysis: Additional Figures

We include results from our MCMC analysis of the interior
structure of Mercury. We include additional results that show
how well we can map the measurements provided by Hauck
et al. (2013) and Bertone et al. (2021), in Figure A1, and by
Konopliv et al. (2020), in Figure A2.

In the figure set for Figure A3, we show the a posteriori
probability density functions from our main analysis using the
measurements from Genova et al. (2019). We include
distributions for the measurements that we used (A3.1–A3.4),
for the parameters that were varied in our analysis (A3.5–
A3.15), or those that derived from the resulting models
(A3.16–A3.18). We include two additional examples of
dependencies between parameters: in Figure A3.19 we show
the relationship between the mantle density and weight fraction
of Si in the core, and in Figure A3.20 we show the relationship

between the weight fraction of Si in the core and CMB
temperature.
We show weight fractions of Si in the core in Figure A4. We

use a heat map to indicate clusters in the solutions when
plotting the inner core weight fraction versus outer core weight
fraction in Figure A4(A). In Figure A4(B), we show the weight
fractions for the case where we have separate weight fractions
in the inner and outer core, but unlike the results shown in
Figure 5, here we limit the weight fraction difference between
the inner and outer core to be at most 3% (with the weight
fraction in the liquid core always being higher than that of the
inner core).
In Figure A5(A), we show how different rheological laws

influence the resulting Love number k2, and we include
a posteriori distributions for k2 using two different laws in our
analysis in Figure A5(B).
In Figure A6, we show results for the CMB temperature and

inner core temperature when we expand the CMB temperature
bounds from 1600–2000 K to 1200–2400 K.
In Figure A7(A), we show the pressure versus temperature at

the ICB, similar to Figure 10, but now color-coded as a heat
map, to indicate there are few models with high pressure, a low
weight percentage of Si in the core, and low temperature. In
Figure A7(B), we show the same pressure–temperature plot as
in Figure 10, but with models with weight percentages less than
4% and CMB temperatures less than 1900 K excluded.

Figure A1. Results from the MCMC analysis, where we plot the polar moment vs. the crust–mantle polar moment (A and B) or the polar moment vs. k2 (C and D).
We use the measurements of C/(MR2), Cm/C, and average density from Hauck et al. (2013), indicated as H13, or Bertone et al. (2021), indicated as B21. We include
ellipses for the measurements (“target”) as well as for the ensemble average. Because neither of these studies estimated k2, panels (C) and (D) show the predicted k2
results, and thus no target ellipse is included.
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Figure A2. Results from the MCMC analysis, where we plot the polar moment vs. the crust–mantle polar moment (A−D) or the polar moment vs. k2 (E–H). Here, we
use the measurements of Konopliv et al. (2020), where we make a distinction between the reported obliquity values, which result in a lower polar moment of inertia
(labeled “low MoI”), and the obliquity derived from the reported pole coordinates, which results in a higher polar moment of inertia (labeled “high MoI”). We make
the distinction to illustrate the influence on the mapping of the measurements. We show results for the analysis where we included k2 as a measurement and where we
did not include it, but predicted its value.
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Figure A3. Results of our MCMC analysis using the measurements from Genova et al. (2019) for C/(MR2). This is a measurement in the analysis. The complete
figure set (20 images) is available in the online journal.

(The complete figure set (20 images) is available.)
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Figure A4. Top (A): inner core weight fraction of Si vs. outer core weight fraction, with the count in bins of 0.5% shown to indicate clusters in the solutions. We used
the measurements from Genova et al. (2019), where the weight fractions in the inner core and outer core are different. Bottom (B): weight fractions of Si in the core for
the results from the MCMC analysis. We used the measurements from Genova et al. (2019; G19), where we either set the weight fractions of the inner core and outer
core to be the same (labeled “inner and outer core fraction”) or separate (indicated by “inner” and “outer”). Here, we limit the difference in weight fraction between the
inner and outer core to be at most 3%, as opposed to the results shown in Figure 8, where larger differences were allowed.
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Figure A5. Top (A): viscosity vs. k2 (which we assume is equal to ∣ ¯ ∣ [ ¯ ]R~k k2 2 ) for different rheological laws, showing how different laws can affect k2 as viscosity
varies. For this comparison, we assume a CMB radius of 2020 km, a rigidity of 54 GPa for both crust and mantle, a crustal thickness of 50 km, a core density of
7500 kg m−3, a mantle density of 3200 kg m−3, and a crustal density of 2800 kg m−3. Since we vary the viscosity as a parameter for this comparison, no temperature
information is necessary. Bottom (B): results for k2 from our MCMC analysis when we use the measurements of Genova et al. (2019) with either an Andrade or
Sundberg–Cooper rheology. The results are very close, despite possible differences in the viscosity–k2 relationship, as shown above. We include this merely to
illustrate that with the current measurements we cannot distinguish rheological laws.
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Figure A6. CMB and inner core temperatures for the results from the MCMC analysis using the measurements from Genova et al. (2019), where we expanded the
bounds of the CMB temperatures from our original range of 1600–2000 K to 1200–2400 K. The solid lines indicate CMB temperatures and the dashed lines indicate
inner core temperatures. While the temperature range increases with the expanded bounds, the results are very similar. We do not find preferences for higher CMB
temperatures, for example.

24

The Planetary Science Journal, 3:37 (26pp), 2022 February Goossens et al.



Figure A7. Top (A): similar to Figure 10, this panel shows the pressure at the ICB vs. the temperature of the inner core, this time as a heat map of counts of models
within bins. Bottom (B): the same as Figure 10, with models that have weight fractions of Si in the core less than 4% and CMB temperatures less than 1900 K
excluded. Melt curves for pure Fe, FeSi at 9 wt% Si, and FeSi at 16 wt% Si are also shown.
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