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Abstract

We study the orientifold of the N = 1 superconformal field theories describing D3-branes probing the 
Suspended Pinch Point singularity, as well as the orientifolds of non-chiral theories obtained by a specific 
orbifold Zn of SPP. We find that these models realize a mechanism analogous to the one recently found 
for the orientifold of the complex Calabi-Yau cone over the Pseudo del Pezzo surface PdP3c : they all flow 
to a new IR fixed point such that the value of the a-charge is less than half the one of the oriented theory. 
We also find that the value of a coincides with the charge of specific orientifolds of the toric singularities 
L(n̄,n̄,n̄) with n̄ = 3n/2 for n even or L(n̄,n̄+1,n̄) with n̄ = (3n−1)/2 for n odd, suggesting the existence of 
an IR duality.
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1. Introduction

Gauge theories describing the world-volume of D3-branes probing the singularity of a toric 
Calabi-Yau (CY) cone [1] are quiver gauge theories, with unitary gauge groups and matter in bi-
fundamental representations. These theories are expected to have a superconformal fixed point in 
the infrared, and the AdS/CFT correspondence [2–4] relates this regime to IIB supergravity on an 
AdS background whose internal part is the base of the cone [5,6]. The geometry of the singularity 
defines, up to Seiberg dualities, the gauge theory, determining the amount of supersymmetry, the 
number of gauge groups, the matter content and the superpotential. At the conformal fixed point, 
the superconformal R-symmetry allows to determine the anomalous dimensions of all gauge 
invariant operators. In general, if additional U(1) flavor symmetries are present, the supercon-
formal R-charges are not determined by symmetry arguments alone, but they are uniquely fixed 
by the requirement that they maximize the central charge [7,8]

a = 3

32

(
3TrR3 − TrR

)
. (1)

In holographic models a = c ∼ N2, where N is the number of colors. At fixed N , a = c is 
inversely proportional to the volume of the base of the CY cone [9].

In string theory one can consider the additional possibility of including orientifold planes (�-
planes) [10–15], which induce a Z2 involution on the space and make the strings unoriented. 
On the gauge theory side, this gives rise to more general gauge theories, allowing orthogonal 
and symplectic groups, as well as matter content in symmetric and antisymmetric representa-
tions. The presence of �-planes modifies the RG flow, and two different scenarios have been 
investigated in the literature. In the first scenario there is a fixed point, and the R-charges of the 
operators that are not projected out by � are the same as the charges of the corresponding ori-
ented theory (the parent theory) in the large N limit. This results in a central charge a� that is 
half the a charge of the parent theory in this limit. In the second scenario the unoriented theory 
does not have a fixed point, and one can have a duality cascade [16] or conformal symmetry can 
be restored by the inclusion of flavor branes [17].

In [18] a third possibility, which was dubbed third scenario, was shown to occur. In a specific 
model, namely the gauge theory corresponding to D3-branes probing the third Pseudo del Pezzo 
singularity PdP3c [19–21], one can construct an � projection in such a way that the resulting 
theory flows for any N to an IR fixed point whose superconformal R-charges are different from 
those of the parent even at large N . The resulting central charge a�

PdP3c
is less than half aPdP3c

, 
the one of the oriented parent theory, in the large N limit. This occurs because the number of 
flavor U(1) charges that take part in determining the superconformal R-charge in the parent 
theory is larger than the analogous number in the orientifold. Specifically, in the parent theory 
the non-R symmetry which mixes with the R-charge is U(1)3, while in the orientifold one flavor
U(1) is broken and the remaining U(1)2 mixes with the R-symmetry.

Even more surprisingly, the analysis of [18] shows that the values of a�
PdP3c

and of the R-
charges coincide for any N with the ones of another unoriented theory, the one associated to 
PdP3b, which is another Pseudo del Pezzo singularity. In turn, the PdP3b orientifold realizes the 
first scenario above, i.e. a�

PdP3b
= 1

2aPdP3b
, in the large N limit, and the non-R symmetry which 

mixes with the R-charge is U(1)2 both in the parent theory and in the orientifold.
The orientifold projection is usually believed to modify the R-charges only at subleading or-

ders. In the specific model studied in [18] these subleading corrections break the superconformal 
symmetry of the parent theory and the fact that a-maximization gives a new fixed point suggests 
2



A. Antinucci, M. Bianchi, S. Mancani et al. Nuclear Physics B 976 (2022) 115695
that the theory flows to a new conformal fixed point in the infrared. In this sense, the third sce-
nario stands as a novel possibility not considered before, and it is natural to investigate whether 
such scenario can occur in other orientifold models.

Note that, even if a maximization gives an a-charge in agreement with this possibility, it is 
not necessarily guaranteed that this value corresponds to the endpoint of an allowed RG flow. As 
discussed in [22], what can invalidate the procedure is the emergence of some gauge-invariant 
chiral operator C such that the value of its R-charge, determined by a-maximation, is R(C) ≤ 2

3 . 
This implies that before the theory reaches the fixed point, C becomes a free field (�(C) = 1 =
3R(C)/2) and an accidental abelian symmetry is generated, therefore the whole maximization 
procedure has to be reconsidered. In a situation of this type, performing Seiberg dualities might 
lead to a better understanding of the physics. Unfortunately, in orientifold models, where there 
are gauge groups with matter in representations different from the (anti)fundamental and with 
specific superpotentials, the rules to construct Seiberg duals are not always known. Note that in 
the case of PdP3c the fact that the a charge and R-charges are the same as in the PdP3b case 
guarantees that such issues do not occur. Indeed, the two theories have the same superconformal 
index and they only differ in the superpotential.

As far as the gravity side of the correspondence is concerned, the geometric interpretation of 
the infrared duality emerging from the third scenario, that would put the construction on a firmer 
ground, is presently lacking due to the complexity of the geometry. It is therefore of great interest 
to find other examples in the third scenario, in the hope that a general geometric picture would 
emerge.

In this paper we show that an infinite class of unoriented toric theories, the orientifold projec-
tions of non-chiral theories resulting from orbifolds of the Suspended Pinch Point (SPP), realize 
the third scenario. We refer to them as SPP/Z′

n for the parent and (SPP/Z′
n)

� for the orien-
tifold. We first discuss the case of the orientifold of SPP, whose gauge symmetry is the product 
of a unitary group and a symplectic or an orthogonal group. By imposing the vanishing of the 
β-functions, we naively find a solution for arbitrary ranks of the two groups. We find that in 
general the resulting values of the R-charges lead to gauge invariant operators that become free 
fields and decouple from the dynamics, precisely as described above. We discuss the correction 
to the central charge a due to these operators becoming free. Fixing the rank of one of the gauge 
groups, we find that only for a finite number of choices of the other rank the resulting theory in 
the infrared has TrR = 0, while all other cases seem to escape a holographic description. Unfor-
tunately, to our knowledge in this case no Seiberg dualities are known with the superpotential at 
hand [23–26], which could have helped clarifying the existence of the conformal fixed point. We 
then study the orientifolds of the orbifold theories, and show how Seiberg dualities confirm the 
existence of the conformal point.

In analogy with [18], we then look for other orientifold theories that are in the first sce-
nario and whose value of the superconformal a-charge coincides with the value that we find 
for (SPP/Zn)

�. The parent SPP theory can be obtained by mass deformation from the orbifold 
C2/Z3 ×C [27,28], dubbed from now on C3/Z′

3, and thus for any orbifold Zn we look for the-
ories that result from mass deformations of non-chiral orbifold theories. These theories belong to 
the family of the La,b,a theories [29–31], and remarkably we find that orientifolds of L

3n
2 , 3n

2 , 3n
2

for n even and L
3n−1

2 , 3n+1
2 , 3n−1

2 for n odd have a superconformal fixed point with a value of the a

charge which coincides with that of (SPP/Z′
n)

�. Besides, 
(
L

3n
2 , 3n

2 , 3n
2

)�

(n even) realize the first 
scenario and therefore constitute an infinite class of models in which the mechanism described 
in [18] is realized.
3
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Fig. 1. (a) The quiver of theories PdP3b and PdP3c . The dashed gray line labeled as � represents the orientifold projec-
tion, which identifies the two sides of the quiver and projects fields and gauge groups that lie on top of it. (b) Dimer of 
PdP3b , where the dashed green line delimits the fundamental cell. The two red fixed lines and their signs represent the 
orientifold projection that yields the unoriented PdP�

3b
. (c) The dimer of PdP3c , where the dashed green line delimits the 

fundamental cell. The four red fixed points (τ0, τ3, τ24, τ51) represent the orientifold projection, where (+, −, −, +)

corresponds to PdP�1
3c

and (−, +, −, +) corresponds to PdP�2
3c

.

The plan of the paper is as follows. In Sec. 2 we give motivations for this work, describe 
the line of reasoning and summarize the results. In Sec. 3 we construct the non-chiral theories 
SPP/Z′

n and find their maximal central charge a. In Sec. 4 we discuss different patterns of mass 
deformation of C3/Z′

3n to SPP/Z′
n, Ln̄,n̄,n̄ or Ln̄,n̄+1,n̄, and their Seiberg duals. In Sec. 5 we 

find the conformal point of the orientifold projections of SPP/Z′
n and show that they belong to 

the third scenario. In Sec. 6 we show that the unoriented theories obtained by mass deformation 
of the C3/Z′

3n share the same central charge, ’t Hooft anomalies and superconformal index. In 
particular, for n even this happens between models in third scenario and first scenario. In Sec. 7
we construct the type IIA brane model related to our classes of theories. With the help of these 
elliptic models, we provide another evidence for the conformal point we find. Finally, Sec. 8
contains a discussion of our results and perspectives on future work.

2. Unoriented conformal theories

In this section we first review the main results of [18], which are the starting point for the 
present work. We then give motivations for this project and outline the rest of the paper.

In [18] the orientifold projections � of theories over the surfaces Pseudo del Pezzo (PdP) 3b

and 3c were analyzed, and in particular their superconformal central charges a� were found and 
compared. The toric parent theories PdP3b and PdP3c can be represented via a brane tiling of a 
torus and their gauge groups and matter content easily read. Both have the same gauge group ∏5

i=0 SU(Ni) and matter content, as showed in Fig. 1a, and global symmetries U(1)2 × U(1)R
as mesonic ones and U(1)3 as non-anomalous baryonic ones. The orientifold involution of toric 
models is discussed in [32–35]: on the brane tiling, orientifold planes are represented as the 
fixed loci of the Z2 involution of the fundamental cell, either with fixed points or fixed lines, 
all carrying the charge of the orientifold plane, indicated by τ . Gauge groups and bifundamental 
4
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fields are identified with respect to them. In case of fixed points, toric isometries U(1)2 ×U(1)R
are preserved, while fixed lines break the non-R symmetries into a diagonal combination.

PdP3b is projected with fixed lines resulting in a theory with gauge group SO/Sp(N0) ×
SU(N1) ×SU(N2) ×Sp/SO(N3), see Fig. 1b, and mesonic flavor symmetry U(1) ×U(1)R . The 
signs of the fixed lines (±, ∓) determine the nature of the orthosymplectic gauge factor, where a 
+ is associated with SO and a − with Sp. These signs also determine the symmetry properties of 
the projected bifundamentals X24 and X51 which give rise to matter in the rank-two symmetric 
(with +) and antisymmetric (with −) tensors. Determining the conformal point of the unoriented 
PdP�

3b via maximization of the two-variable function a, one finds that a�/a = 1/2, namely, the 
degrees of freedom are halved by the orientifold projection, which keeps the number of global 
abelian symmetry mixing with the R-symmetry as in the parent. This affects the R-charges and 
the central charge a only at subleading order. This is the first scenario for an unoriented theory, 
as opposed to the second scenario in which the conformal point does not exist.

On the other hand, PdP3c is projected via fixed points, see Fig. 1c, preserving toric symme-
tries. Following the rules of [33], the signs of these fixed points must obey 

∏
τ = (−1)NW /2, 

where NW is the number of terms in the superpotential of the parent theory. Two inequiva-
lent choices of (τ0, τ3, τ24, τ51) are allowed, �1 = (±, ∓, ∓, ±) and �2 = (∓, ±, ∓, ±). The 
signs project, in order, gauge group 0 and 3 and bifundamental fields X24 and X51. The choice 
�1 leads to a conformal point that belongs to the first scenario. This is not the case for �2, in 
which the R-charges and the maximal central charge a are affected by the orientifold already at 
leading order, due to the breaking of a U(1) flavor symmetry. Consequently, a�/a < 1/2 and 
d.o.f. result to be more than halved at the fixed point, which, for the a-theorem, has been moved 
towards the infrared. This is the third scenario found in [18].

Interestingly, the orientifolds PdP�2
3c and PdP�

3b share the same gauge factors and matter con-
tent, and even more surprisingly the two models have exactly the same R-charges and central 
charge a. As a consequence, their ’t Hooft anomalies and superconformal indices trivially match, 
and since the two theories only differ because of superpotential terms one expects that they are 
connected by an exactly marginal deformation. The fact that both theories are orientifold projec-
tions of toric models suggests that they could be dual [18].

In this work we find other examples in which the third scenario occurs and, for a subset 
of them, their counterpart in the first scenario. One may ask whether for all these models the 
conformal point in the third scenario is physical. Since dimensions of gauge-invariant operators 
are modified and the fixed point is moved towards the IR, some operators may decouple before 
reaching the conformal point. As a consequence, accidental U(1) flavor factors are generated. 
This is discussed in [22], where it is pointed out that one must correct the computation of the 
central charge a by taking into account the fact that a chiral operator C has hit the bound R ≤ 2/3
and become free. Only C is charged under the accidental U(1) symmetry, which corrects its R
charge so that it remains 2/3. The a-charge must be corrected taking into account this accidental 
abelian factor as

ã� = a� + 3

32

(
3Tr R3 − Tr R

)∣∣∣
R=2/3

− 3

32

(
3Tr R3

C − Tr RC
)

= a� + 1

96
(2 − 3RC)2 (5 − 3RC) , (2)

where ̃a� and a� are the corrected and the uncorrected central charges, respectively. For each 
gauge-invariant chiral operator which crosses the free-field bound there is a correction term of 
this form. Note that, unless RC = 2/3, when such decoupling occurs the overall Tr R �= 0, which 
5
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is harmless for the gauge field theory but spoils the holographic duality. This will occur in some 
cases in our analysis, and theories of this type will not be considered physical.

A further, and stronger, check that we will perform in this paper consists in finding the con-
formal point of a Seiberg dual theory. Agreement with the electric theory would provide solid 
evidence for the physical existence of the conformal fixed point. However, the context itself of 
unoriented models is subtle, due to the presence of tensorial matter and/or orthogonal or sym-
plectic gauge groups. While several Seiberg dualities are known for such cases, in most of them 
the required superpotential terms are not allowed for toric theories. When this is the case, all one 
can say is that a fixed point seems to exist for the theory, but further analysis is needed.

In order to find more models that belong to the third scenario, we note that PdP3c is the chiral 
orbifold SPP/Z2. Thus, it is natural to investigate the orientifold projection of other orbifolds of 
SPP, both chiral and non-chiral theories. The former case is computationally complicated as n
grows, while a-maximization for unoriented theories in the latter case can be easily generalized, 
as we shall see. Indeed, their orientifold projections belong to the third scenario. For certain 
solutions, it happens that some operators decouple before the theory reaches the conformal point, 
then the central charge a must be revisited, as discussed above. Finally, we apply Seiberg duality 
to find the magnetic dual and its conformal point.

Furthermore, the class of SPP/Z′
n theories can be obtained by a certain mass deformation 

of C3/Z′
3n. Different choices of mass deformation yield another class of theories, Ln̄,n̄,n̄ for 

n̄ = 3n/2 and n even, and Ln̄,n̄+1,n̄ for n̄ = (3n − 1)/2 and n odd, not related by Seiberg dual-
ity to SPP/Z′

n. These two classes provide a natural ground for searching signs of a relation as 
in [18], where fixed-point models in the third scenario share the same central charge a, ’t Hooft 
anomalies and superconformal index with fixed-line models in the first scenario. This would be 
a stronger evidence of the existence of the conformal point in the third scenario. This happens 
between SPP/Z′

n and Ln̄,n̄,n̄ for n even, while for n odd both theories belong to the third sce-
nario. Interestingly, for n even the orientifold projection of the theory C3/Z′

3n also belongs to 
the third scenario and for some choices of the ranks it again features the same central charge a, 
’t Hooft anomalies and superconformal index as the aforementioned pair of unoriented models. 
These results are summarized in the chart in Fig. 2, which serves as a guide for the reader.

3. SPP and its non-chiral orbifold Z′
n

The Suspended Pinch Point (SPP) is a (non-isolated) toric singularity, that can be realized as 
an affine variety in C4 with the relation

xy = z2w , (3)

with x, y, z, w ∈ C4. The singularity is represented by the toric diagram in Fig. 3, which has 
no internal points, signaling that the associated gauge theory is non-chiral. The gauge group is 
U(N0) × U(N1) × U(N2), while the matter content corresponds to six chiral fields denoted 
by Xij (i �= j ), transforming under the fundamental representation of U(Ni) and the anti-
fundamental of U(Nj), together with the chiral field X00, that we denote by φ0,1 in the adjoint 
on the group U(N0). We draw the quiver and the dimer of the theory in Figs. 4a and 4b. The 
superpotential reads

1 In general we denote adjoint chiral fields Xii by φi .
6
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∏
τ = +1

�B

(±, ±, ∓, ∓)

a�B = 81nN2p2τ0

16
(
p+2τ0

)3

a�B

a < 1
2

�A

(±, ∓, ±, ∓)

a�A = 3
8 nN2

a�A

a = 1
2

∏
τ = −1

(±, ∓, ∓, ∓)

a� = 3
8 nN2

a�

a = 1
2

(
C3/Z′

3n

)�

(
SPP/Z′

n

)�∏
τ = +1

(±, ±, ∓, ∓)

(
Ln̄,n̄+1,n̄

)�∏
τ = +1

(±, ±, ∓, ∓)

Mass
Deformation

(
SPP/Z′

n

)�∏
τ = +1

(±, ±, ∓, ∓)

a�

a < 1
2

(
Ln̄,n̄,n̄

)�

Fixed lines

(±,∓)

a�

a = 1
2

n even

n̄ = 3n/2(
τ0 , τ00 , τ

n̄
, τ

n̄,n̄

)
n odd

n̄ = (3n − 1)/2(
τ0 , τ00 , τ

n̄,n̄+1 , τ
n̄+1,n̄

)

Mass Deformation

a� = 81
256 nN2

a�

a < 1
2

a� = 81
256 nN2

p = 2τ0

Fig. 2. The web of unoriented dualities found between C3/Z′
3n

, SPP/Z′
n and Lk,n−k,k .

Fig. 3. The toric diagram of the SPP singularity.
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0

12

�

(a) (b)

Fig. 4. (a) The quiver diagram for SPP. The line � represents the orientifold projection. (b) The dimer of the SPP theory, 
the four fixed points of the orientifold projection are drawn in red.

0

12

(a) (b)

Fig. 5. (a) The quiver diagram for C3/Z′
3. Giving mass to the adjoint fields represented by dashed lines yields SPP. (b) 

The brane tiling for C3/Z′
3.

WSPP = φ0 (X02X20 − X01X10) + X12X21X10X01 − X21X12X20X02 , (4)

as can be deduced from the dimer.
The SPP theory can be obtained by mass deformation of another toric theory, the non-chiral 

orbifold of flat space C3/Z′
3 [27]. Its graphical representation as dimer and quiver is shown in 

Fig. 5a-5b. The superpotential reads

W
C3/Z′

3
= φ0 (X02X20 − X01X10) + φ1 (X10X01 − X12X21) + φ2 (X21X12 − X20X02)

(5)

which reduces to the superpotential of SPP adding the mass term

�W
C3/Z′

3
= M

2

(
φ2

1 − φ2
2

)
(6)

and integrating the massive fields out. Plugging F-terms into the superpotential and redefining 
fields as

X′
21X

′
12 = 1

X21X12 ,

M

8
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φ′
0 = φ0 + 1

2M
(X01X10 − X02X20) (7)

gives the superpotential of SPP.
We now review how the R-charges and the central charge a of the conformal SPP theory are 

determined using a-maximization. We denote the R-charges of Xij by

Rij = rij + 1 , (8)

where rij is the R-charge of the fermionic field in the multiplet. First, we impose the constraint 
R(W) = 2, that gives

r01 + r10 + r00 = −1 ,

r12 + r21 − r00 = −1 ,

r20 + r02 = r01 + r10 . (9)

This constraint implies that all the r’s must satisfy −1 < r < 1. Moreover, the Z2 symmetry of 
the quiver implies r12 = r21, r02 = r01 and r20 = r10. The condition that the beta functions vanish 
(which in turn is equivalent to the R-symmetry being anomaly-free) gives

r00 (2N0 − N1 − N2) = − (2N0 − N1 − N2) ,

r00 (N1 − N2) = (2N1 − N0 − N2) ,

r00 (N0 − N1) = (2N2 − N1 − N0) , (10)

where we have used Eq. (9). We note that 2N0 − N1 − N2 �= 0 would imply r00 = −1, violating 
unitarity. We therefore impose N0 = N1 = N2 = N , which leaves r00 undetermined. Note that 
Eq. (9) is invariant under the exchange rji ↔ rij , then we put them equal. This is inherited 
from the N = 2 C3/Z′

3 and its superpotential before mass deformation. Hence, we have a one-
parameter family of solutions, corresponding to the fact that there is one non-anomalous U(1)

flavor symmetry that can in principle redefine the R-charge. The superconformal R-charge is 
then determined by a-maximization. In particular, defining r01 = x, the a-charge2 at leading 
order in N

aSPP = 9

32
Tr R3 = 9N2

32

[
(−1 − 2x)3 + 4 (x)3 + 2(−1 − x)3 + 3

]
(11)

has a local maximum at [31]

r00 = 1 − 2√
3

, r12 = − 1√
3

, r01 = r10 = −1 + 1√
3

, (12)

which gives the superconformal a-charge

aSPP = 3
√

3

8
N2 . (13)

2 Observe that Tr R = 0 at leading order in N for holographic theories.
9
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0

1

2

3

4

5

�

(a) (b)

Fig. 6. (a) The toric diagram of SPP/Z′
2, a.k.a. L(2,4,2), where fixed points of the orientifold projection are drawn in red. 

(b) The quiver of SPP/Z′
2, a.k.a. L(2,4,2). The dashed line represents the orientifold projection.

3.1. Non-chiral orbifold SPP/Z′
n

Starting from the SPP geometry, one can construct additional models by considering abelian 
orbifolds SPP/�. As we have already mentioned, a particular Z2 orbifold results in the PdP3c

geometry, which is the model whose properties were the main motivation for the present work. 
There is another Z2 involution that can be performed, resulting in the toric geometry denoted 
by L2,4,2 in the literature, and whose toric diagram is given in Fig. 6a. As will be discussed 
in the next section, this geometry leads to two different toric phases, and we are interested in 
particular in the one corresponding to the quiver in Fig. 6b, which can be seen as arising from a 
Z2 involution on the SPP gauge theory. The resulting gauge theory has six unitary gauge groups, 
it is non-chiral, and we denote it by SPP/Z′

2. The superpotential is

W
SPP/Z′

2
= φ0 (X05X50 − X01X10) + φ3 (X32X23 − X34X43) + X10X01X12X21

− X21X12X23X32 + X43X34X45X54 − X54X45X50X05 , (14)

and it can be explicitly obtained from the Z′
2 action on the SPP superpotential in Eq. (4).

The non-chiral Z′
2 orbifold discussed above belongs to an infinite family of non-chiral models 

SPP/Z′
n, whose quivers correspond to a sequence on n copies of the structure of nodes and 

arrows in Fig. 7, giving in total 3n unitary gauge groups, n of which have matter in the adjoint. 
The associated geometry is known as Ln,2n,n in the literature. The superpotential reads

W
SPP/Z′

n
=

n−1∑
i=0

φ3i

(
X3i,3i−1X3i−1,3i − X3i,3i+1X3i+1,3i

)
+

n−1∑(
X3i+1,3iX3i,3i+1X3i+1,3i+2X3i+2,3i+1
i=0

10
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0
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Fig. 7. Blue nodes form the recursive structure of the quiver SPP/Z′
n .

−X3i+2,3i+1X3i+1,3i+2X3i+2,3i+3X3i+3,3i+2
)

, (15)

where it is understood that the group labels of the fields are defined modulo 3n.
In order to determine the R charges and a charge of the SPP/Z′

n theory at the conformal fixed 
point, we impose the constraints coming from the condition that the R charge of the superpoten-
tial be equal to 2, viz.

r3i,3i+1 + r3i+1,3i + r3i,3i = −1 ,

r3i,3i−1 + r3i−1,3i + r3i,3i = −1 ,

r3i+1,3i + r3i,3i+i + r3i+1,3i+2 + r3i+2,3i+1 = −2 ,

r3i+2,3i+1 + r3i+1,3i+2 + r3i+2,3i+3 + r3i+3,3i+2 = −2 , (16)

with i = 0, ..., n − 1. As discussed in the previous subsection, r3i,3i+1 = r3i+1,3i . The symmetry 
of the quiver also allows to impose various constraints on the charges. First of all, the charges 
are invariant under shifts in i. Besides, the Z2 symmetry around each adjoint node implies that 
r3i−1,3i = r3i+1,3i , r3i,3i−1 = r3i,3i+1 and r3i+1,3i+2 = r3i+2,3i+1. Finally, the condition that all 
the beta functions vanish is solved imposing that all the gauge groups have equal rank N . Putting 
all this together, one can show that the a charge is simply n times the a charge of the SPP theory. 
In particular, performing a maximization gives [31]

r3i,3i = 1 − 2√
3

, r3i+1,3i+2 = − 1√
3

, r3i,3i+1 = −1 + 1√
3

(17)

as in Eq. (12), and the corresponding maximized a-charge reads

a
SPP/Z′

n
= naSPP = n

3
√

3

8
N2 . (18)

As a consequence of the orbifold involution, we see that the d.o.f. of the field theory increase 
with n.
11
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Fig. 8. (a) The toric diagram for L3,3,3. (b) The quiver for L3,3,3, obtained by mass deformation of all of the adjoints in 
C3/Z′

6.

4. Mass deformation of C3/Z′
3n

As we have already seen, the SPP theory can be obtained via mass deformation of C3/Z′
3, 

giving mass to two of the adjoints. This is more general and we can recover SPP/Z′
n via mass 

deformation of C3/Z3n, giving mass to more pairs of adjoints. In particular, starting with the 
superpotential

W
C3/Z′

3n

=
3n−1∑
i=0

φi

(
Xi, i−1Xi−1, i − Xi, i+1Xi+1, i

)
(19)

and deforming it with

�W
C3/Z′

3n

=
n−1∑
i=0

M

2

(
φ2

3i+1 − φ2
3i+2

)
, (20)

below the scale M the effective theory reads

W =
n−1∑
i=0

φ3i

(
X3i,3i−1X3i−1,3i − X3i,3i+1X3i+1,3i

)

+
n−1∑
i=0

(
X3i+1,3iX3i,3i+1X3i+1,3i+2X3i+2,3i+1

−X3i+2,3i+1X3i+1,3i+2X3i+2,3i+3X3i+3,3i+2
)

, (21)

which is the superpotential of SPP/Z′
n. Recall that SPP is the toric geometry L1,2,1. In [27], it 

is pointed out that giving mass to contiguous k pair of adjoint fields in C3/Z′
3n, one obtains the 

toric theory Lk,3n−k,k .
If we perform a mass deformation such that the highest number of pairs of adjoints are inte-

grated out, the resulting theory depends on whether n is even or odd. In fact, for n even we can 
integrate out all the adjoint fields, with k = 3n/2, to obtain L

3n
2 , 3n

2 , 3n
2 , whose toric diagram is a 

rectangle. In Fig. 8b-8a we show an example for n = 2. The final superpotential reads
12
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Fig. 9. (a) The toric diagram for L4,5,4. (b) The quiver for L4,5,4, obtained by mass deformation of all but one of the 
adjoints in C3/Z′

9.

W 3n
2 , 3n

2 , 3n
2

=
3n−1∑
i=0

(
Xi+1, iXi, i+1Xi+1, i+2Xi+2, i+1

−Xi+2, i+1Xi+1, i+2Xi+2, i+3Xi+3, i+2
)

. (22)

On the other hand, for n odd at most we can integrate out n−1
2 pair of adjoints and we are left 

with a single adjoint field, which we can choose to be on node 0 without loss of generality. In 
this case we are left with L

3n−1
2 , 3n+1

2 , 3n−1
2 , whose toric diagram is a trapezoid, see Fig. 9a. The 

resulting superpotential reads

W 3n−1
2 , 3n+1

2 , 3n−1
2

= φ0
(
X0,3n−1X3n−1,0 − X01X10

)
+

3n−3∑
i=0

(
Xi+1, iXi, i+1Xi+1, i+2Xi+2, i+1

−Xi+2, i+1Xi+1, i+2Xi+2, i+3Xi+3, i+2
)

. (23)

4.1. Web of Seiberg dualities

As we have just shown, from C3/Z′
3n we can reach SPP/Z′

n by mass deforming pairs of 
adjoint fields in a particular pattern, which is the one given in Eq. (20). On the other hand, 
toricity is preserved as long as we give mass to an adjacent pair of adjoint fields, that is two 
adjoint fields whose gauge groups are connected in the quiver. As an example, for the case of 
C3/Z′

6 (i.e. n = 2) if we give mass to two adjacent pairs of adjoints we have two possibilities, 
up to symmetries: we can either give mass to the adjoints of the groups 1, 2, 4 and 5 or to the 
adjoints of 1, 2, 3 and 4. The resulting theories are two different toric phases of L2,4,2, with 
13
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a − 1

a

a + 1

a − 1

a

a + 1

a − 1
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a + 1

Fig. 10. Performing Seiberg duality on node (a), while node (a − 1) has an adjoint, results in moving the adjoint from 
(a − 1) to (a + 1). Dashed lines are mesons, while gray lines represent fields that have been integrated out in the process.

the former being SPP/Z′
2. If instead we give mass to a single pair or to all the adjoints, there is 

clearly only one possibility in each case, corresponding to L1,5,1 and L3,3,3 respectively.
This can be generalized to any n. Starting from C3/Z′

3n, we have one possibility if we give 
mass to a single pair, which corresponds to L1,3n−1,1, while if we give mass to two pairs we 
have 

[ 3n
2

] − 1 different L2,3n−2,2 gauge theories. It is a combinatorial exercise to determine all 
possible theories that one obtains giving mass to k pairs. If k = n one gets Ln,2n,n, which contains 
SPP/Z′

n. If n is even, one can remove all adjoint fields giving mass to 3n
2 pairs, which gives the 

L
3n
2 , 3n

2 , 3n
2 theory. If n is odd, one reaches the L

3n−1
2 , 3n+1

2 , 3n−1
2 theory giving mass to 3n−1

2 adjacent 
pairs.

We now explicitly show that these Lk,3n−k,k gauge theories for a given k are related by Seiberg 
duality, which in turn means that they are dual phases of the same toric diagram. In particular, we 
perform Seiberg duality on a gauge group with no adjoint fields. Suppose that (a) is such a node. 
There are two possibilities: either both nodes (a − 1) and (a + 1) have no adjoint, or one of the 
two, say (a −1), has an adjoint. In the former case, Seiberg duality gives a theory with an adjoint 
on both the (a − 1) and the (a + 1) node. The latter case is the interesting one. Suppose the 
group at node a has rank Na . The usual rules for the Seiberg dual give Ña = Na+1 + Na−1 − Na

and if Na = N for all a then Ña = N . The matter content includes dual bifundamental fields 
and mesons. Integrating the massive fields out one obtains the dual magnetic theory. Note that 
the net result is to move an adjoint field from node (a − 1) to (a + 1), as displayed in Fig. 10. 
This is represented as the operation in Fig. 11 from the dimer perspective. Repeating the process, 
one can construct all possible theories with 3n − 2k adjoints and non-adjoint nodes all in pairs. 
In particular, one can choose to dualize both nodes (a) and (n − a), realizing a theory that is 
Z2-symmetric. This will be useful in the case of orientifold projections.

5. Orientifold of SSP/Z′
n

In this section we study the orientifold projection � of the non-chiral orbifold SSP/Z′
n and in 

particular we seek the conformal point of the unoriented theory. We first discuss the cases with 
n = 1 and n = 2 and then general n.
14
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Fig. 11. Seiberg duality on node (a), whereas node (a − 1) has an adjoint field, from the perspective of the dimer. As a 
result of integration of massive fields, the hexagon (a −1) collapses into a square, while the pair of extra edges transform 
the square (a + 1) into an hexagon, generating the adjoint fields.

Table 1
The matter content and the superconformal R-charges of (SPP)�.

Sp/SO(N0) SU(N1) U(1)R

φ0 / 1 1

X01
1
2

X10
1
2

X
S/A
12 1 / 1

2

X
S/A
21 1 / 1

2

5.1. Unoriented SPP

Let us perform the orientifold projection � with four fixed points, see Fig. 4b, whose signs 
are denoted by τ0 and τ00 for the gauge group and the adjoint field, and τ12 and τ21 for the 
projected bifundamental fields. The anomaly cancellation condition imposes τ12 = τ21. Since 
half the number of terms in the superpotential is even, the sign rule requires 

∏
τ = +1. The 

superpotential of the unoriented theory reads

W�
SPP = −φ0X01X10 + X12X21X10X01 . (24)

The condition R(W) = 2 remains as in Eq. (9), while the cancellation of the R-symmetry 
anomaly gives

r00 (N0 − N1 + 2τ0) = − (N0 − N1 − 2τ0) , (25)

r00 (N0 − N1 − 2τ12) = − (N0 − N1 + 2τ12) .

At the conformal point of the parent theory, N0 = N1 = N , the orientifold projection gives r00 =
+1, violating unitarity. On the other hand, imposing N1 = N0 − 2τ0 = N0 + 2τ12 we obtain

r00 = 0 , τ0 = −τ12 , (26)

fixing r01 = r12 = −1/2. The superconformal R-charges are already determined and the a-charge 
at large N = N0 � N1 reads (see Table 1)
15
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a�
SPP

= 81

256
N2 . (27)

The ratio between the a-charge of the parent and of the unoriented theory

a�
SPP

aSPP

= 9
√

3

32
� 0.4871 (28)

is more than halved. From a geometrical perspective, the volume of the horizon is less than 
halved, if compared with the parent one with the same radius3

V �
SPP

VSPP

= 8
√

3

27
� 0.5132 . (29)

The third scenario occurs here, where the R-charges after the orientifold projection are differ-
ent from those of the parent theory already at leading order, in contrast with the first scenario. 
This can be traced back to the fact that the number of abelian symmetries that mix with the R-
symmetry is less than in the parent theory, for the r00 being already fixed, which in turn fixes 
all the rij before a-maximization. In contrast, in the parent theory the rij are determined by a-
maximization. The same mechanism, the breaking of an abelian symmetry, is discussed in [18]. 
This is the reason behind the values in Eqs. (28) and (29): since the R-charges are related to the 
Reeb vector, the consequence is that the geometry of the horizon is different between the first 
and the third scenario.

One last solution is allowed for the R-charges. Imposing in Eq. (25) that N0 − N1 + 2τ0 �= 0
and N0 − N1 − 2τ12 �= 0 and N0 − N1 = p �= 0, we have

r00 = −p − 2τ0

p + 2τ0
= −p + 2τ12

p − 2τ12
, r01 = − 2τ0

p + 2τ0
, r12 = − p

p + 2τ0
, (30)

which requires τ0 = −τ12. They yield

a�
SPP

= 27

8
N2 pτ0

(p + 2τ0)
3 (p + τ0) , (31)

for τ0 = −1 and −N1 < p < 0, or τ0 = +1 and N0 > p > 0, considering unitarity and a� > 0, 
N0 > 0, N1 > 0. Note that if p = 2τ0 we recover the previous case, then this is a more general 
solution.

To sum up, for the unoriented SPP the result would seem to naively suggest the existence of 
a whole family of conformal theories with τ0 = τ00 = −τ12 = −τ21 and parametrized by p, the 
shift between ranks N0 and N1, i.e. the number of fractional branes. They would all belong to 
the third scenario, since a U(1) is anomalous and at the fixed point the R-charges differ from 
those of the parent already at leading order. The fact that any value of p could in principle yield 
a conformal point is somewhat surprising, so the existence of this family of solution must be 
investigated more. We are going to discuss this point further.

We should worry about operators that may become free and decouple before the theory 
reaches the conformal point and correct the central charge a as in Eq. (2). In applying this anal-
ysis, we look at several operators potentially dangerous. Operators which contain mesons in the 
superpotential never become free, however other can be constructed. Since τ0 = τ00

3 The (fourth power of the) radius of the horizon is proportional to the unit of five-form flux N . In unoriented theories, 
the radius is then proportional to N/2, then we must rescale N → N/2 in V � in order to compare it with the parent 
volume.
16
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O0,j = Tr φ
j

0 , j > 1 ,

Mm = (X12X21)
m , m ≥ 1 ,

M̃0,lk = φl
0 (X01X10)

k , l ≥ 0 , k ≥ 1 (32)

are allowed and their R-charge reads

R
(j)

O = j
4τ0

p + 2τ0
,

R
(m)

M = m
4τ0

p + 2τ0
,

R
(lk)

M̃ = 4τ0

p + 2τ0
(l − k) + 2k . (33)

The singlet with j = 1 vanishes in the unoriented theory. In the parent theory this parametrizes 
the movement of fractional branes along a curve of singularity, but this mode is projected out by 
the orientifold plane since fractional branes are stuck at the orientifold singularity. The configu-
ration will be explicit in the elliptic model (see Sec. 7).

Clearly, these operators may decouple depending on the value of p. We stress that each value 
of p defines an independent theory and we are not describing an RG-flow parametrized by p.4

Let us focus on the case with τ0 = τ00 = +1 and 0 < p < N0, the opposite choice is similar. The 
operator Oj becomes free for

j
4

p + 2
≤ 2

3
, (34)

so, for all integers j ≤ j̄ = (p + 2)/6 an operator decouples and the a-charge gets corrected. For 
example, Tr φ2

0 decouples for p = 10 (at which the correction is zero though), while for p = 16

both Tr φ2
0 and Tr φ3

0 decouple. As for M̃0,lk hits R(lk)

M̃ = 2/3 only for p = 1 and the correction 
to the a-charge is zero. On the other hand, Mm is free for m ≤ (p + 2)/6 and the first correction 
enters for p = 4, where it is zero. In Fig. 12 we can see that the corrected ratio ã�

SPP
/aSPP . It 

increases and approaches the value 0.5, beyond which we doubt the existence of the conformal 
theory at all: it is the Z2 projection of SPP. From Eq. (2), we also note that for p > 4 Tr R �= 0
at leading order, due to the correction itself. Hence, beyond this point the holographic duality 
should not hold in its simple form and we are not allowed to think of the field theory as the gauge 
dual of a pure gravity theory.5 The existence of the conformal point can be bound to p ≤ 4, for 
which the third scenario always occurs. Moreover, applying the analysis of [36] we find that for 
p = 1 all terms in the superpotential should be removed, posing doubts on the existence of the 
conformal point. We exclude p = 1 from the allowed range.

A hypothetical magnetic theory could confirm the existence of the conformal point and maybe 
select only one value of p, number of fractional branes. Unfortunately, for this case there is no 

4 In principle, one could perform a duality cascade, under which the theory is self-similar and after a number of Seiberg 
dualities it goes back to its original structure. This is not possible in this case, as one eventually needs to dualize a gauge 
group with tensorial matter and the superpotential does not meet the known dualities.

5 In principle, one might think of a holographic theory with Tr R �= 0 and a dual description including backreacted 
flavor branes. This would introduce an open string sector in addition to the closed string one.
17
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Fig. 12. The ratio ̃a�
SPP

/aSPP vs. p = N0 − N1. The green points signal that there are no correction to the central charge, 
on orange points (X12X21)m becomes free, while on red ones operators Tr φ

j
0 start to decouple.

known Seiberg duality compatible with the superpotential of the unoriented toric theory. As we 
shall see, this is not the case when n > 1.

5.2. Unoriented SPP/Z′
2

Let us now focus on the case with n = 2, the first with unitary nodes with no tensorial matter, 
as can be seen from the quiver in Fig. 6b. Depending on the τ ’s, gauge groups at node zero 
are orthogonal or symplectic, with a bifundamental hypermultiplet and tensorial matter. The 
superpotential reads

W�
SPP/Z′

2
= −φ0X01X10 + X12X21X10X01 − X21X12X23X32 + φ3X32X23 . (35)

Proceeding as before, we solve the constraints for the R-charges. Along with Eq. (9), r00 = r33
and 2r01 = 2r23 = −1 − r00, we have

r00 (N0 − N1 + 2τ00) = − (N0 − N1 − 2τ0) ,

r00 (N0 − N2) = 2N1 − N0 − N2 ,

r00 (N3 − N1) = 2N2 − N3 − N1 ,

r00 (N3 − N2 + 2τ33) = − (N3 − N2 − 2τ3) . (36)

From the projected nodes we may either have τ0 = −τ00 and τ3 = −τ33 and shift between the 
first and last pair of ranks determined, or τ0 = τ00 and τ3 = τ33. We denote them as solution A 
and B, respectively.

5.2.1. Solution A
Consider the case τ0 = −τ00 and τ3 = −τ33 (see Table 2). Denoting rank shifts as N0 − N2 =

p, N1 − N2 = q requires that q = p − 2τ0 and τ0 = −τ3. Then one gets
18
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Table 2
The matter content and the superconformal R-charges of (SPP/Z′

2)� solution A.

Sp/SO(N0) SU(N1) SU(N2) SO/Sp(N3) U(1)R

φ0 / 1 1 1 1

X01 1 1 1
2

X10 1 1 1
2

X12 1 1 1
2

X21 1 1 1
2

X23 1 1 1
2

X32 1 1 1
2

φ3 1 1 1 / 1

N1 = N0 − 2τ0 ,

N2 = N0 − p ,

N3 = N0 − p − 2τ0 , (37)

along with

r00 = 1 − 4
τ0

p
, r01 = −p − 2τ0

p
, r12 = −2

τ0

p
. (38)

Thus, at large N

a�

SPP/Z′
2
= 27

8
N2

(
− τ0

p3

)(
4 − p2

)
(39)

and the ratio w.r.t. the parent reads

a�

SPP/Z′
2

a
SPP/Z′

2

= 3
√

3

2

(
− τ0

p3

)(
4 − p2

)
, (40)

with τ0 = +1 and 2 < p < N0 − 2, or τ0 = −1 and 2 < −p < N3 − 2, from unitarity and 
positivity of Na .

Some operators are dangerous, in the sense that may decouple and correct the computation of 
the central charge a. Since τ0 = −τ00 there are no operators of the form Tr φ

j

0 or Tr φ
j

3 . However, 
the following gauge-invariant operators

Mm = (X12X21)
m , m ≥ 1 ,

M̃0,lk = φl
0 (X01X10)

k , l ≥ 0 , k ≥ 1

M̃3,lk = φl
3 (X32X23)

k , l ≥ 0 , k ≥ 1 (41)

with R-charges

R
(m)

M = 2m
p − 2τ0

p
,

R
(lk)

M̃ = 2
p − 2τ0

p
(l − k) + 2k (42)
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Fig. 13. The ratio ̃a�

SPP/Z′
2
/a

SPP/Z′
2

vs. p = N0 − N2 in Solution A. The green points signal that there are no correction 

to the central charge, while on red points operators φl
0 (X01X10)k and φi

3 (X32X23)k start to decouple.

Table 3
The matter content and the superconformal R-charges of (SPP/Z′

2)� solution B.

Sp/SO(N0) SU(N1) SU(N2) SO/Sp(N3) U(1)R

φ0 / 1 1 1 1

X01 1 1 1
2

X10 1 1 1
2

X12 1 1 1
2

X21 1 1 1
2

X23 1 1 1
2

X32 1 1 1
2

φ3 1 1 1 / 1

may decouple. Operator Mm becomes free only for m = 1 and p = 3, where the correction to 
a vanishes. Instead, operators M̃0,lk and M̃3,lk become free for l = 0, k ≤ p/6 and p ≥ 6 and 
the a-charge gets corrected for p > 6. The final ratio a�

SPP/Z′
2
/a

SPP/Z′
2

is displayed in Fig. 13. As 

before, the existence of the conformal point is bound to p ≤ 6, where holography still holds and 
the third scenario occurs.

5.2.2. Solution B
This solution is obtained for τ0 = τ00 and τ3 = τ33 and N0 �= N1 − 2τ0, N3 �= N2 − 2τ3 (see 

Table 3). Denoting the shifts as N0 − N1 = p, N1 − N2 = q , N2 − N3 = s leads to q = 2τ0, 
p = s, τ0 = −τ3 and

N1 = N0 − p ,

N2 = N0 − p − 2τ0 ,
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N3 = N0 − 2p − 2τ0 , (43)

along with

r00 = −p − 2τ0

p + 2τ0
, r01 = −2

τ0

p + 2τ0
, r12 = − p

p + 2τ0
. (44)

This family of solutions generalizes the one discussed for SPP and for p = 2τ0 it gives r00 = 0, 
and it will appear again for general Z′

n. In order to impose unitarity, −1 < r00 < 1 holds for 
τ0 = +1 and 0 < p < (N0 − 2)/2, or for τ0 = −1 and −(N3 − 2)/2 < p < 0.

The a-charge and the ratio read

a�

SPP/Z′
2
= 27

4
N2 pτ0

(p + 2τ0)
3 (p + τ0) ,

a�

SPP/Z′
2

a
SPP/Z′

2

= 3
√

3

(p + 2τ0)
3 pτ0 (p + τ0) . (45)

In this case operators of the form

O0,j = Tr φ
j

0 , j ≥ 1 ,

O3,j = Tr φ
j
3 , j ≥ 1 , R

(j)

O = j
4τ0

p+2τ0
,

Mm = (X12X21)
m , m ≥ 1 , R

(m)

M = m
4τ0

p+2τ0
,

M̃0,lk = φl
0 (X01X10)

k , l ≥ 0 , k ≥ 1 ,

M̃3,lk = φl
3 (X32X23)

k , l ≥ 0 , k ≥ 1 , R
(lk)

M̃ = 4τ0
p+2τ0

(l − k) + 2k ,

(46)

may decouple and the central charge must be corrected as in Eq. (2). The corrections are the 
same as those discussed in SPP/� and the corrected central charge is displayed in Fig. 14. As in 
the � projection of SPP and its solution with r00 �= 0, for p > 4 it turns out that Tr R �= 0 and the 
conformal theory may exist only for p ≤ 4, where it realizes the third scenario, as can be seen 
from Fig. 14.

5.2.3. Seiberg duality for SPP/Z′
2

The solutions with r00 �= 0 discussed in the previous subsections are somewhat difficult to 
interpret. The central charge a must be corrected by the contribution of those operators which 
decouple along the flow towards the IR, where the conformal point in the third scenario stays. 
A side-effect of these corrections is that Tr R �= 0 at leading order, then once they contribute, 
the holographic duality does not hold anymore. All one can say is that this reasoning bounds the 
number of fractional branes p, up to 6 in solution A and up to 4 in solution B (as in the SPP case), 
for the theory to have a gravity dual. Beyond this limiting value, the ratio between the corrected 
a-charge and the parent one in no more significative for the existence of the conformal point. As 
a consequence, the distinction between first and third scenario no longer holds.

It is puzzling that the conformal point exists only for a range of number of fractional branes. 
Seiberg duality may help in finding a clear evidence for the very existence of the conformal point. 
From this point of view, we perform Seiberg duality on an SU node in SPP/Z′

2 and look for the 
conformal point in the magnetic theory, then compare it with the electric theory. The two must 
be the same.
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Fig. 14. The ratio ̃a�
SPP/Z2

/aSPP/Z2
vs. p = N0 − N1 in solution B. The green points signal that there are no correction 

to the central charge, on orange points (X12X21)m becomes free, while on red points operators Tr φ
j
0 and Tr φ

j
3 start to 

decouple.

0

1̃

2

3

4

5̃

�

Fig. 15. The quiver for the orientifold projection of magnetic SPP/Z′
2.

First, let us focus on the quiver theory in Fig. 6b with solutions A for the r-charges, τ0 =
−τ00 = −τ3 = τ33, with ranks given in Eq. (37). Performing Seiberg duality on gauge group 
SU(N1), the resulting magnetic node has rank

Ñ1 = N0 + N2 − N1 = N0 − p + 2τ0 , (47)

while mesons and dual quarks are constructed as discussed in Sec. 4.1. The final quiver is shown 
in Fig. 15 and the superpotential reads

W̃�
′ = φ3X32X23 − X̃12X̃21X̃10X̃01 + M2

(
X̃21X̃12 − X23X32

)
. (48)
SPP/Z2
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0

1

2

3

3n − 1

�

Fig. 16. Blue nodes form the recursive structure of the quiver SPP/Z′
n.

The conformal point is given by r22 = 0 and p = 4τ0. At these values, none of the gauge invariant 
operators decouples, neither in the electric nor in the magnetic theory. The a-charge does not 
change in the magnetic, hence, there is only one value for the number of fractional branes so that 
the conformal point exists and it features the third scenario.

The matter content and superpotential for solution B remains unchanged, while orientifold 
signs are τ0 = τ00 = −τ3 = −τ33 and ranks given in Eq. (43) and the dual gauge node has rank 
Ñ1 = N0 − 2τ0. For the fixed point, it must be r22 = 0 and p = 2τ0 and, again, the central 
charge a gets no correction both in the electric and magnetic theory. We conclude that this is the 
conformal point, in third scenario, we looked for. We notice that in both cases the fixed point 
exists only for r00 = 0.

5.3. Unoriented SPP/Z′
n

As we have seen in Sec. 3.1, the parent gauge theory SPP/Z′
n has a recursive structure that 

allows us to solve the set of equation for the R-charges (see Fig. 16). The computation for the 
unoriented theory is similar, with some modifications due to the � projection. The Z2 maps two 
sides of the quiver and we keep nodes from 0 to n̄, the latter being

n̄ = 3

2
n n even ,

n̄ = 3n − 1

2
n odd . (49)

Half the superpotential is projected out and it reads

W�

SPP/Z′
n

= −φ0X01X10 +
� n

2 �∑
i=1

φ3i

(
X3i,3i−1X3i−1,3i − X3i,3i+1X3i+1,3i

)

+
n̄−1∑(

X3i+1,3iX3i,3i+1X3i+1,3i+2X3i+2,3i+1
i=0
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−X3i+2,3i+1X3i+1,3i+2X3i+2,3i+3X3i+3,3i+2
)

+
{

φn̄Xn̄,n̄−1Xn̄−1,n̄ , n even

X
S/A

n̄,n̄+1X
S/A

n̄+1,n̄Xn̄,n̄−1Xn̄−1,n̄ , n odd
(50)

The gauge group at node 0 and its adjoint field are projected by the orientifold involution, with 
signs τ0 and τ00, respectively. Depending on the parity of n, the other projected elements are the 
gauge group at node n̄ and its adjoint if n is even, with signs τn̄ and τn̄,n̄. On the other hand, if n
is odd, fields Xn̄,n̄+1 and Xn̄+1,n̄ are projected onto symmetric or anti-symmetric representations 
by τn̄,n̄+1 and τn̄+1,n̄. In this case, the anomaly-cancellation condition is not trivial and requires 
that τn̄,n̄+1 = τn̄+1,n̄. From the sign rule, this means that τ0 = τ00.

Let us look at the constraints on the R-charges. Eq. (9) still holds and recursion yields

r00 = r3i,3i ,

2r3i,3i+1 + r00 = −1 ,

2r3i+1,3i+2 − r00 = −1 . (51)

Using Eq. (51), anomaly-free R-symmetry gives

r00 (N0 − N1 + 2τ00) = − (N0 − N1 − 2τ0) , (52)

r00 (2N3i − N3i−1 − N3i+1) = − (2N3i − N3i−1 − N3i+1) , (53)

r00 (N3i − N3i+2) = 2N3i+1 − N3i − N3i+2 , (54)

r00 (N3i+3 − N3i+1) = 2N3i+2 − N3i+3 − N3i+1 , (55)

r00 (Nn̄ − Nn̄−1 + 2τn̄n̄) = − (Nn̄ − Nn̄−1 − 2τn̄) , (56)

r00
(
Nn̄ − Nn̄−1 + 2τn̄,n̄+1

) = − (
Nn̄ − Nn̄−1 − 2τn̄,n̄+1

)
. (57)

If we impose that Ni = N for all i, we obtain

r00 = τ0

τ00
= ±1 , (58)

but both choices of signs would violate unitarity. Thus, the conformal point of the parent theory 
is excluded. Allowing for different ranks gives, from the second equation,

r00 = −1 , if 2Nn̄ − Nn̄−1 + Nn̄+1 �= 0 (59)

and again R00 = 0, violating unitarity. On the other hand, if we impose the right hand sides to 
vanish, we get

r00 = 0 , (60)

Ni = N0 − i 2τ0 , 0 ≤ i ≤ n̄ ,

τ0 = −τn̄ , n even ,

τ0 = −τn̄,n̄+1 , n odd . (61)

Note that the sign rule restricts the possible choices for the τ signs, such that only (τ0, τ00, τn̄,

τn̄,n̄) = (±, ±, ∓, ∓) are allowed, both for n even and, mutatis mutandis, for n odd.
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Before the orientifold projection there are 3n nodes, while all R-charges can be expressed 
in terms of one of them, say r01, due to the recursive structure. In case of n even (the odd 
case is similar), after the Z2 involution there are 2 projected nodes and 3n/2 − 1 not projected. 
The condition r00 = 0 ensures that r01 = r12 = −1/2, then there are 3n fields carrying r-charge 
(−1/2). We obtain, at large N ,

a�

SPP/Z′
n

= 81

256
nN2 , (62)

which holds also for n odd. The volume of the horizon is

V �

SPP/Z′
n

= π

n

64

81
. (63)

The ratio with the a-charge at the conformal point before the orientifold projection is

a�

SPP/Z′
n

a
SPP/Z′

n

= 9
√

3

32
� 0.4871 . (64)

This solution exists for all non-chiral orbifold Z′
n with n ≥ 1, where for n = 1 and n = 2 it is part 

of the more general family of solution we found. Note that a solution with τ0 = −τ00 is allowed 
only for n = 2, because for n > 2 nodes with adjoint fields prevent the solution to exist.

5.4. Seiberg duality for unoriented SPP/Z′
n

The a-maximization procedure for unoriented SPP/Z′
n shows that there is a conformal point 

for r00 = 0. For this value of the R-charges, none of the gauge-invariant operators decouples. 
Then, the conformal point is determined without any ambiguities in the electric theory. As a 
further check, we study the dual magnetic theory and look for the conformal point. Due to the 
recursive structure, we have two options: first, for n > 1, we can dualize only the first unitary 
gauge group and compute the maximal central charge a. Second, we can dualize the first node of 
each fundamental structure, along all the quiver for even n or all but the last unitary group for odd 
n. This is because the last unitary group has tensorial matter and we do not know how Seiberg 
duality works in this case with the toric superpotential, the same problem as in SPP. However, 
in this second method we just obtain the first one recursively repeated. Note that for all dualized 
node the rank remains the same, as

Ñi = Ni−1 + Ni+1 − Ni = Ni , (65)

where we have used Eq. (60).
Then, proceeding as in the first case, the resulting gauge groups, matter and superpotential is 

the same as for the magnetic SPP/Z′
2, with the remaining quiver and superpotential unchanged:

W̃�

SPP/Z′
n

= M2
(
X̃21X̃12 − X23X32

) − X̃12X̃21X̃10X̃01 + φ3 (X32X23 − X34X43) + . . . .

(66)

Solving the constraints for the R-charges, we find that for those bifundamental fields transform-
ing under gauge groups which have also an adjoint field

ri, i+1 + ri+1, i = −1 − r22 , (67)
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for example r12 +r21 = −1 −r22, since in the magnetic theory the second node has an adjoint. For 
the adjoints along the quiver ri,i = r22. On the other hand, for those bifundamental transforming 
under gauge groups which do not have an adjoint

ri, i+1 + ri+1, i = −1 + r22 , (68)

for example r01 +r10 = −1 +r22 in the magnetic theory. For the R-symmetry to be anomaly-free, 
the only solution is r22 = 0, as for the electric theory. The central charge a gets no correction, 
since no operators decouple. We conclude that the conformal point of SPP/Z′

n is the one with 
r22 = 0, τ0 = τ00 = −τ3 = −τ33 and central charge, in the third scenario,

a�

SPP/Z′
n

= 81

256
nN2 ,

a�

SPP/Z′
n

a
SPP/Z′

n

= 9
√

3

32
� 0.4871 , (69)

as for the electric theory.

6. Orientifold projection of C3/Z′
3n and deformations

All parent theories we study in this work can be obtained from C3/Z′
3n by mass deformation. 

As we are interested in the conformal point after the orientifold projection and to compare it with 
the parent one, we should analyze the orientifold of C3/Z′

3n to get insights on the RG flow to the 

unoriented 
(
SPP/Z′

n

)� and the unoriented 
(
Lk,n−k,k

)�
. The strategy for the computation of the 

fixed point follows closely the one adopted in the previous sections. The only difference is that in 
this case adjoint fields are present at all nodes and the superpotential has only cubic interactions. 
Then one finds

r00 = rii , 2r01 = 2ri,i+1 = −1 − r00 , ∀i . (70)

For the parent theory, the constraints on the R-charges give Ni = N for all i and

a
C3/Z′

3n

= 3

4
nN2 . (71)

The orientifold projection we want to study is given by four fixed points, but their signs depend 
on n being even or odd. If n is even 

∏
τ = (−1)NW /2 = +1, whereas if n is odd 

∏
τ = −1. Let us 

first focus on the case with n odd. The anomaly cancellation condition imposes τn̄,n̄+1 = τn̄+1,n̄, 
where n̄ = (3n −1)/2 is the last node in the orientifolded quiver. Then, it follows that τ0 = −τ00. 
One finds a solution for the R-charges at Ni = N0 − i 2τ0, 0 ≤ i ≤ n̄, τ0 = −τn̄,n̄+1, with

r00 = r01 = −1

3
,

a�

C3/Z′
3n

= 3

8
nN2 , (72)

so the theory belongs to the first scenario.
We turn to n even, in which case the last node n̄ = 3n/2 is projected by the orientifold plane. 

There is no condition for anomaly cancellation, thus two distinct choices are allowed: solution 
26



A. Antinucci, M. Bianchi, S. Mancani et al. Nuclear Physics B 976 (2022) 115695
A with τ0 = −τ00 and solution B with τ0 = τ00.6 For solution A, one finds that Ni = N0 − i 2τ0, 
0 ≤ i ≤ n̄, τ0 = τn̄ and the same values of Eq. (72), so again the theory realizes the first scenario.

On the other hand, for solution B one gets Ni = N0 − i p, 0 ≤ i ≤ n̄, τ0 = −τn̄, pτ0 > 0 and

a�

C3/Z′
3n

= 81

16
nN2 p2τ0

(p + 2τ0)
3 ,

(
a�

a

)
n even

= 27

4

p2τ0

(p + 2τ0)
3 , (73)

which is always less than 1/2, hence the theory belongs to the third scenario. For some values of 
p there are gauge-invariant operators that decouple before reaching the conformal point. In this 
case, they are

Oi,j = Tr φ
j
i , j > 1 ,

M̃i,lk = φl
i

(
Xi,i+1Xi+1,i

)k
, l ≥ 0 , k ≥ 1 , (74)

whose R-charges read

R
(j)

O = j
4τ0

p + 2τ0
,

R
(lk)

M̃ = 4τ0

p + 2τ0
(l − k) + 2k . (75)

While the second operator hits the unitary bound only for p = 1, l = 0 and k = 1 with vanishing 
correction to the central charge, operators Oi,j start to decouple at p = 10. The corrected cen-
tral charge is shown in Fig. 17. Interestingly, at p = 2τ0, none of the gauge-invariant operators 
decouple and the central charge a� results to be equal to that of SPP/Z′

n, n even. Moreover, the 
pattern of mass deformation needed to flow from C3/Z′

3n to SPP/Z′
n enjoys the Z′

2 required for 
the orientifold projection, so this flow is preserved under the orientifold involution. That is not 
the case for the Seiberg dual phases. In fact, the phases that are not Z2 symmetric are projected 
out by the orientifold.

The deformation where the highest number of pairs of adjoints become massive allows for the 

orientifold involution, so the class of theories 
(
L

3n
2 , 3n

2 , 3n
2

)
, 
(
L

3n−1
2 , 3n+1

2 , 3n−1
2

)
can be reached in 

presence of orientifold planes. Their difference in the toric diagrams is crucial, since for n even 
we can perform the orientifold projection we are interested in only with fixed lines.7 See Fig. 18
for the brane tiling of n = 2, namely L3,3,3. On the contrary, for n odd fixed lines are not allowed, 
as can be seen from the toric diagram. An example of such a case on the brane tiling is n = 1, 
namely SPP, in Fig. 4b.

Let us find and compare the conformal point both for the parent and the unoriented theories. 
Consider first the case with n even, where all adjoints have been integrated out. The constraints 
for the R-charges [31] read

6 Note that the same choices are allowed for 
(
SPP/Z′

2

)�.
7 The related brane tiling is made only of squares and a fixed point can not lie on a square, because it must map nodes 

with different colors.
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Fig. 17. The corrected central charge a for the unoriented C3/Z′
12 solution B, where operators Tr φ

j
i

start to decouple 
at p = 10.

Fig. 18. The brane tiling for L3,3,3, where fixed lines represent the orientifold projection.

ri, i+1 = −1

2
,

Ni = N , i = 0, . . . , n − 1 , (76)

and the central charge a is

an even = 81

128
nN2 . (77)

Performing the orientifold projection, with fixed lines, we find Ni = N0 − i 2τ0, 0 ≤ i ≤ n̄, τ0 =
−τ3, where τ0 and τ3 are the sign of the two fixed lines. At large N , the a-charge reads

a�
n even

= 81

256
nN2 . (78)

Clearly, for n even the theory realizes the first scenario, since a�/a = 0.5 and the R-charges are 
the same both for parent and unoriented ones, at leading order (see Table 4).

However, for C3/Z′
3n with n odd, after mass deformation the presence of the adjoint field φ0

in the parent theory gives [31]

2r2i,2i+1 = −1 − r00 ,

2r2i+1,2i+2 = −1 + r00 ,

Ni = N , i = 0, . . . , n − 1 . (79)
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Table 4
The matter content and the superconformal R-charges of (L3,3,3)� , dual to (SPP/Z′

2)�.

Sp/SO(N0) SU(N1) SU(N2) SO/Sp(N3) U(1)R

X01 1 1 1
2

X10 1 1 1
2

X12 1 1 1
2

X21 1 1 1
2

X23 1 1 1
2

X32 1 1 1
2

Fig. 19. The ratio
(

a�

a

)
for n odd, which asymptotically approaches 0.5.

Maximization of the central charge yields

r00 = n −
√

1 + 3n2

3
,

a
n odd = 9

64

⎡⎣3n
(

1 − n2
)

+
(

1 + 3n2
)√

1 + 3n2

3

⎤⎦ . (80)

For the orientifold projection, Ni = N0 − i 2τ0, 0 ≤ i ≤ n̄, τ0 = τ00 = −τn̄,n̄+1 = −τn̄+1,n̄. Since 
it is required that r00 = 0, the R-charges and the central charge a are the same of n even in 
Eq. (78). The ratio between the central charges reads(

a�

a

)
n odd

= 9

4
n

⎡⎣3n
(

1 − n2
)

+
(

1 + 3n2
)√

1 + 3n2

3

⎤⎦−1

, (81)

which asymptotically tends to 0.5, as shown in Fig. 19. This case belongs to the third scenario.
Hence, for the unoriented case there is no distinction between n even or odd and both show the 

same central charge a of the unoriented SPP/Z′
n. But, for n odd L

3n−1
2 , 3n+1

2 , 3n−1
2 the third scenario 

occurs and the orientifold projection is performed with fixed points. For n even L
3n
2 , 3n

2 , 3n
2 features 
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the first scenario and its orientifold projection is performed with fixed lines. In L
3n
2 , 3n

2 , 3n
2 the 

fact that fixed lines are needed for the orientifold projection is crucial: fixed lines break a U(1)

mesonic symmetry, part of the toric U(1)2 × U(1)R . On the contrary, the orientifold projection 
with fixed points does not break toricity, but at the conformal point r00 = 0 and, as a consequence, 
r01 = r122 = −1/2. Thus, the number of nodes and flavor symmetries matches, and ’t Hooft 
anomalies do as well.

The superpotential and the matter content are however different and equivalence of the super-
conformal index must be checked. Contributions to the index come from matter fields Xij and 
vector multiplets Vi as8

iX(t, s) =
∑ tRij χ

Xij
− t2−Rij χ

Xij

(1 − ts)
(
1 − ts−1

) ,

iV (t, s) =
3n−1∑
i=0

[
2t2 − t

(
s + s−1

)]
(1 − ts)

(
1 − ts−1

)χadji , (82)

where the first sum runs over all matter fields, χ
Xij

, χ
Xij

are the characters of the representation 

of Xij and its conjugate, t and s are the fugacities for R-charge and (twice the) spin, respectively. 
When matter fields φi are present, either in the adjoint or in the anti/symmetric representation, 
in the unoriented models Rii = 1 at the conformal fixed point and their contributions to the 
superconformal index vanish. The remaining contributions are equal for unoriented model with 
the same number of gauge groups.

Hence, the central charge a�, ’t Hooft anomalies and the superconformal index of 
(
SPP/

Z′
n

)� match that of 
(
L

3n
2 , 3n

2 , 3n
2

)�

and of 
(
C3/Z′

3n

)�
with p = 2τ0 for n even, while for n odd 

the same quantities match between 
(
SPP/Z′

n

)� and 
(
L

3n−1
2 , 3n+1

2 , 3n−1
2

)�

. We want to stress that, 
for n even, the former theory is an orientifold with fixed points in the third scenario, while the 
latter is an orientifold with fixed lines in the first scenario, as shown in Fig. 20, exactly as the 
PdP�2

3c and PdP�
3b theories in [18]. On the contrary, for n odd the dual pair belongs to the third 

scenario, see Fig. 21. The reader is invited to go back to Fig. 2, where the full web of relations 
that we find is summarized.

7. Elliptic models

The models described above arise as the supersymmetric gauge field theory living on the 
world-volume (WV) of D3-branes at a toric CY singularity. We mentioned that, after two T-
dualities, one may recover a system of NS5-branes and D5-branes wrapped along a torus and 
generating the brane tiling. Both descriptions are defined in type IIB string theory. However, 
performing one T-duality one can construct another useful description of the brane system in 
type IIA, as D4-branes suspended between NS5 branes. In particular, the D4-branes are wrapped 
along a compact direction, say x6, while NS5s can extend along directions x4, x5 or x8, x9. 
In the former case they are called simply NS5, in the latter NS5′. Both types split the WV of 
D4-branes. See [37] for the construction of such theories. The configuration is summarized in 
Table 5, where also �6-planes are included, yielding the � projection.

8 Recall that Rij = rij + 1 in our notation.
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Fig. 20. Two dual theories: on the left, SPP/Z′
2 with fixed points and, on the right, L3,3,3 with fixed lines.

Fig. 21. Two dual theories: on the left, SPP/Z′
3 and, on the right, L4,5,4, both with fixed points.

Table 5
The T-dual picture with D4-branes, NS5 and NS5′-branes. 
The direction x6 is compact.

0 1 2 3 4 5 6 7 8 9

D4 − − − − · · − · · ·
NS5 − − − − − − · · · ·
NS5′ − − − − · · · · − −
�6± − − − − · · · − − −

A simple example that can be obtained from this configuration is the SPP, where two NS 
and one NS′ 5-branes, located at different positions on x6, divide the WV of D4-branes into 
three stacks, which we label by 0, 1 and 2, see Fig. 22. Bifundamental fields X01, X01, X12, 
X12 and X20, X02 arise at the intersections between D4s and a 5-brane. The stack denoted by 0 
is suspended between two parallel NS5 branes and D4-branes can be moved along them. This 
generates an adjoint field X00 = φ0, which completes an N = 2 vector multiplet. In fact, locally 
the physics resembles N = 2. D4-branes between two orthogonal 5-branes generate a quartic 
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Fig. 22. The brane system in type IIA which corresponds to the SPP singularity. The circular direction is x6.

Fig. 23. The brane system in type IIA which corresponds to the L3,3,3 singularity. The circular direction is x6.

superpotential term of the form ±XijXjiXij ′Xj ′i , taken with positive sign if an NS5 lies at 
the left of the D4. When D4s are suspended between two parallel 5-branes, a cubic term as 
φi

(
XijXji − Xij ′Xj ′i

)
is generated.

The geometry of the singularity can be described in C4 as the locus

xy = zw2 . (83)

This construction can be generalized to the case of r NS5 and s NS5′, whose geometry reads

xy = zswr . (84)

Adjoint fields arise between parallel 5-branes of the same type, but a relative rotation corresponds 
to giving them a mass, and the effective field theory is obtained below the mass scale. Thus, 
we can start with a system of 3n NS5s, corresponding to C3/Z′

3n, and rotate the NS5 in an 
alternating scheme. If 3n is even, we can give mass to all the adjoints fields and integrate them 
out, whereas in case of 3n odd two 5-branes remain always parallel. This is exactly the process 
we have described in the previous section, and we end up with L

3n
2 , 3n

2 , 3n
2 or L

3n−1
2 , 3n+1

2 , 3n−1
2 , see 

for example L3,3,3 in Fig. 23.
When a pair of �6± planes is present in the system, it induces a Z2 identification among 

5-branes and stacks of D4. For n odd, one of the orientifold planes lies in correspondence of a 
5-brane which separates a stack of D4 labeled by i and another one labeled by j . In this case, 
fields Xij , Xji are projected onto symmetric or antisymmetric representations, both in the same 
one in case of an NS5, in opposite ones for an NS5′.9 The other �6± lies on a stack of D4, 
projecting the gauge group onto SO/Sp and the adjoint field onto a symmetric or antisymmetric 
representation. This happens also for n even, where both orientifold planes acts in this way. Note 
that the mode of fractional branes along parallel 5-branes is projected out, since the D4s are stuck 
at the orientifold singularity: they can not be moved along x4, x5 since the orientifold plane does 
not wrap these directions.

In these elliptic models, Seiberg duality is described as the reordering of the 5-branes [38,37]. 
Consider, for example, the situation in which node (a − 1) has an adjoint and we want to dualize 

9 This is because the NS5′ divide the �6 WV into two regions. Crossing the 5-branes, the RR-charge changes sign.
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node (a). As described in Sec. 4.1 and Figs. 10-11 the adjoint moves from node (a − 1) to 
(a + 1), while the rest of the quiver remains untouched. Let us look at the process in the elliptic
model, where the same configuration corresponds to a stack of D4 labeled by (a − 1) delimited 
by two parallel 5-branes, say two NS5. The stack (a) is delimited then by an NS5 and an NS5′, 
and finally (a + 1) by an NS5′ and an NS5, in this order. Seiberg duality on (a) means that 
one exchanges the 5-branes at its ends, so no adjoint field is generated. On the other hand, the 
5-branes delimiting (a − 1) are now orthogonal, whereas for (a + 1) the 5-branes are parallel, 
explaining the presence of the adjoint field in the magnetic theory.

Moreover, this construction explains why Seiberg duality picks the conformal point of 
(SPP/Z′

2)
� at p = 4τ0 for solution A (τ0 = −τ00) and at p = 2τ0 for solution B (τ0 = +τ00). In 

fact, moving the NS5 towards the NS5′ and eventually crossing it, results in the dual configura-
tion where the number of D4 does not change [38,37], since in the system no D6 are present.10

For the field theory associated to (SPP/Z′
2)

�, this means that dualizing either node 1 or 2 yields 
N1 = Ñ1 or N2 = Ñ2, which is true only for p = 4τ0 in solution A (see Eq. (37)) and p = 2τ0

in solution B (see Eq. (43)). The same mechanism of reordering of 5-branes occurs in dualiz-
ing a gauge node in (SPP/Z′

n)
�, which results in Ñi = Ni , as already noted in Sec. 5.4. For 

n > 2 the electric theory has the unique solution at r00 = 0, value obtained also for solution B of 
(SPP/Z′

2)
� at p = 2τ0. Note that this solution B has the same choice for τ signs as for n > 2.

In theories without an orientifold plane and each gauge node connected to the adjacents by 
a chiral and an anti-chiral field, the condition that, after Seiberg duality, the rank of the gauge 
group remains the same is quite natural. In fact, the electric theory is conformal when all ranks of 
the gauge factors are equal, hence, in the conformal window Ñi = Ni for the magnetic theory. On 
the other hand, the presence of an orientifold plane shifts the ranks of gauge factors, for anomaly 
cancellation, and the condition for the ranks to remain equal is no longer obvious.

The message from (SPP/Z′
n)

� with n ≥ 2 is that for theories where each gauge factor has 
both chiral and anti-chiral matter and in presence of orientifold planes, the conformal window 
is given by the condition that the magnetic dual theory yields Ñi = Ni , as for theories without 
orientifold. Moreover, it seems that in this class of unoriented theories at the conformal point 
r00 = 0.

Checking these statements for SPP� is quite complicated, both on the elliptic model and on 
the field theory side. In the former, we can either move an NS5′ brane and its image towards 
the orientifold plane or deal with an NS5 at the position of the orientifold plane. From the field 
theory perspective, we may construct a magnetic dual theory by means of the deconfinement 
trick [39–43], in which the tensorial matter is deconfined into fundamental fields of an auxiliary 
gauge group, leaving the original unitary group with only (anti)fundamental fields. Applying this 
technique in SPP� with antisymmetric matter, the extra gauge group is symplectic. Indeed, for 
r00 = 0 the rank of the Seiberg dual of SU(N1) remains unchanged, as in the previous cases, 
while this does not happen with symmetric matter and an orthogonal extra group. However, after 
the duality the auxiliary group can not be confined back. While most of the family (SPP/Z′

n)
�

have the conformal point at r00 = 0, all we can say for SPP� is that we are not able to exclude 
fixed points with r00 �= 0. From the result we got for (SPP/Z′

n)
�, in which we have analytical 

tools, we expect that the same should hold also for SPP�, namely, that the conformal point exists 

10 If we add D6-branes along directions 0123789 in between the 5-branes, new D4-branes are created while exchanging 
the position of the 5-branes, in order to preserve supersymmetry [38].
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only for a specific value of p for which r00 = 0. This fact will be investigated further in the 
future.

8. Discussion

In this paper we have found an infinite class of pairs of non-chiral unoriented theories whose 
conformal fixed points have the same central charge a�, ’t Hooft anomalies and superconfor-

mal index. These theories are 
(
SPP/Z′

n

)� and the orientifold � of L
3n−1

2 , 3n+1
2 , 3n−1

2 for n odd 

or L
3n
2 , 3n

2 , 3n
2 for n even, whose parent theories can be constructed from the non-chiral orbifold 

C3/Z′
3n by mass deformation of pairs of adjoint fields [17].

For n odd, we find that both theories in each pair belong to the third scenario, whereby the 
orientifold projections, realized with fixed points on the dimer, break the conformal invariance 
of the parent theories even at large N , and they flow to a new conformal fixed point in the 
infrared [18]. For n = 1 the two theories are actually the same, namely (SPP)�. Imposing that all 
β-functions vanish, it seems that for any value of the number of fractional branes p the theory 
has a fixed point. However, for some values of p, the central charge a must be corrected taking 
into account operators that decouple before reaching the conformal point. The effect is that the 
ratio a�/a tends to increase. Considering that the � projection is a Z2 involution of the parent 
theory, any point at which a�/a > 1/2 seems unphysical. Moreover, for p ≥ 5, Tr R �= 0 already 
at leading order, spoiling the holographic duality, at least in its simple form. Being the parent 
theory a holographic theory, beyond this value the comparison with the a charge of the parent 
theory is unreliable. A possibility is that for p ≥ 5 the field theory has a conformal point, with 
no gravity dual. Furthermore, following the prescription in [36], for p = 1 all the terms in the 
superpotential must be eliminated. Eventually, for n = 1 all we can say from the field theory side 
is that in the range 2 ≤ p ≤ 4 a-maximization yields a maximum in the third scenario.

For n even, while for SPP/Z′
n the orientifold involution is performed with fixed points and 

belongs to the third scenario, for L
3n
2 , 3n

2 , 3n
2 it is performed by fixed lines and belongs to the first 

scenario, realizing the same mechanism discussed for the first time in [18]. This is a stronger 
evidence of the fact that the conformal points that we find are physically relevant. For n = 2, 
apparently conformal invariance does not fix the relative rank p of the gauge groups, but Seiberg 
duality selects the value of p = 2τ0, which yields r00 = 0. Interestingly, for n even the orientifold 
projection of the theory C3/Z′

3n belongs to the third scenario and only for p = 2τ0 it shares the 
same central charge a�, ’t Hooft anomalies and superconformal index of the unoriented SPP/Z′

n

and, in turn, L
3n
2 , 3n

2 , 3n
2 .

On the gravity side, all these theories can be described in Type IIA by means of elliptic 
models [37] where the geometry of the singularity depends on the configuration of NS5-branes, 
while stacks of D4-branes suspended between them provide the field theory. Rotating the 5-
brane, one gives a geometric meaning to mass deformation and the flow to SPP/Z′

n and Lk,n−k,k

mentioned above. In this context, Seiberg duality gives a clearer picture of the conformal point. 
Reordering the 5-branes does not change the number of D4, since no D6-branes are present. Back 
on the field theory side, this means that the ranks in the magnetic theory remain unchanged, and 
this happens only for the unique value of p that gives r00 = 0. Nonetheless, we have not been 
able to fully understand why one should pick that unique value in the case of n = 1, an issue 
related to the presence of tensorial matter. We leave this as an open problem.

The fact that each pair of theories share the same central charge a�, ’t Hooft anomalies and 
superconformal index, along with the fact that they share the same global symmetries, implies 
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that they are connected by an exactly marginal deformation. Since the endpoints of this exactly 
marginal deformation are orientifold projections of toric theories, one can conjecture that the two 
theories are actually dual, as suggested in [18] for the case of the orientifold of PdP3c and PdP3b. 
The geometric interpretation of this infrared duality is presently lacking, as already mentioned 
in the introduction, but having found an infinite class of theories in which this duality is realized
gives hope that a geometric picture could emerge. In particular, note that as opposed to the case 
investigated in [18], the metrics of the parent theories of all these models are known.
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