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Abstract: Fluorescence excitation spectroscopy at cryogenic temperatures carried out on hybrid
assemblies composed of photosynthetic complexes deposited on a monolayer graphene revealed
that the efficiency of energy transfer to graphene strongly depended on the excitation wavelength.
The efficiency of this energy transfer was greatly enhanced in the blue-green spectral region. We
observed clear resonance-like behavior for both a simple light-harvesting antenna containing only
two chlorophyll molecules (PCP) and a large photochemically active reaction center associated with
the light-harvesting antenna (PSI–LHCI), which pointed towards the general character of this effect.
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1. Introduction

Graphene is a two-dimensional hexagonal lattice of carbon atoms in sp2 hybridization.
This structure yields unique electrical or thermal properties, which are a direct consequence of
the energy band structure, i.e., linear dispersion relation in the vicinity of Dirac points [1,2], in
addition to high carrier mobility and thermal stability, which opens potential for applications of
graphene in electronics. The absence of the energy gap in this material translates into nearly
constant absorption of light over the whole visible spectral range. Indeed, a single atomically
thin layer of graphene [1] absorbs 2.3% of incoming light, regardless of the wavelength. At the
same time graphene is not fluorescent. Thus, all captured energy is dissipated in a nonradiative
way, presumably via carrier– carrier and carrier–phonon scattering. These properties make
graphene an almost ideal energy acceptor in hybrid assemblies, and thus, it can be used to
examine energy transfer mechanisms and processes that take place at the nanoscale.

Energy transfer in hybrid nanostructures that include graphene as the energy/charge
acceptor has been studied for a variety of emitters, including molecules, polymers, and
semiconductor nanocrystals, both in solution and in a layer geometry [3,4]. The proximity of
graphene strongly influences the optical properties of emitters. First of all, the fluorescence
intensity for emitters is strongly quenched. This quenching, which can be as high as 99%,
is accompanied with dramatic shortening of fluorescence lifetimes, indicating efficient
energy transfer to graphene in such assemblies. Moreover, the two-dimensional character
of graphene results in a weaker dependence of the energy transfer efficiency on the distance
between a fluorophore and graphene, as compared with the case of two interacting dipole
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moments, where the efficiency of the Forster resonance energy transfer (FRET) is inversely
proportional to the sixth power of the distance. As discussed previously, while graphene
cannot be considered as a classical dipole moment, the efficiency of the energy transfer
scales with the fourth power of the distance [5–7]. Such a dependence has also been
observed experimentally [3,8].

Recently, research has focused on the energy transfer in hybrid graphene assemblies
has been extended towards systems that are more complex than molecules or nanocrystals,
such as the natural pigment–protein complexes that take part in photosynthesis [6,7]. Such
hybrid assemblies can be considered one of the pathways aimed at obtaining a “green”
device for efficient energy conversion [9]. Indeed, a biomimetic solar cell, in which the
photoactive medium is composed of photosynthetic reaction centers, could be a promising
solution for conversion and storage of the sunlight energy [10–28]. This concept is based on
the fact that photosynthetic complexes, being evolutionarily optimized for over three billion
years, are highly efficient photochemical devices. Because of the specific arrangement of
various cofactors present within the photosynthetic reaction center, light absorption, energy
transfer, and photochemistry are optimized, so that every photon captured by the reaction
center is converted into a charge-separated state that is required for electron transfer
and, ultimately, the production of a proton gradient across the thylakoid membrane and
initiation of synthesis of carbon-based high energy molecules [9]. Interfacing photosynthetic
proteins as building blocks of solar energy conversion devices with other nanostructures
has been widely discussed in literature, especially in the context of devising efficient solar-
driven charge separation or water splitting [9,21,24,25,29]. These include classic electrode
materials such as gold [30], indium tin oxide (ITO) [31–33], and TiO2 [34–36], but also
graphene and its derivatives [15,17–19,22,28,37,38]. Another rather promising route has
been interfacing photosynthetic pigment–protein complexes with metallic nanostructures
in order to couple the excited states of the inbound pigments with localized surface plasmon
resonances [11,18,39–45]. In this way, the optical absorption of photosynthetic complexes
can be increased, typically by over an order of magnitude.

An important issue that needs to be addressed when photosynthetic proteins are deposited
on various nanostructures relates to the modifications of the optical properties of such hybrid
systems due to mutual interactions between the components. Among the most surprising effects
encountered for relatively simple light-harvesting antennae, such as peridinin-chlorophyll a-
protein (PCP), is that fluorescence decay times measured for PCP deposited on graphene change
with the excitation wavelength. Specifically, it was shown that upon excitation with 405 nm,
the decay times were substantially shorter than those obtained with 630 nm excitation [7]. This
result, based on just two excitation wavelengths, was in clear contrast with a classical description
of the energy transfer, where the fluorescence decay time, which is a measure of the efficiency
of energy transfer [5,46,47], is independent of the excitation wavelength. Such an effect would
have important repercussions for any architecture that would attempt to utilize graphene as a
component of biomimetic solar energy conversion devices.

In this work, we aimed at precise determination of the wavelength dependence of
the energy transfer efficiency in a hybrid structure in which photosynthetic complexes of
various size, composition, and function were deposited on a monolayer graphene. First,
we designed and performed a systematic fluorescence excitation microscopy analysis,
where the emission intensity was monitored for varying excitation wavelengths. Second,
we carried out this analysis both for the PCP complex and for a photosystem I with its
associated light-harvesting antenna (PSI–LHCI), that has been previously used in various
types of biohybrid solar energy conversion devices [12,13,17–19,23,28,48]. Importantly,
both pigment–protein complexes studied in this work, despite chlorophyll-based emission,
differed significantly in the structure and function of the photosynthetic apparatus. The
PCP complexes were small and relatively simple antenna complexes optimized for efficient
light harvesting and transfer of the captured energy toward the photosynthetic reaction
center. On the other hand, the PSI–LHCI was a photosynthetic reaction center that was
considerably larger than PCP and much more complex in pigment and protein assembly. It
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combined multiple roles, such as direct light harvesting or energy capturing from the outer
antenna complexes and transferring this energy to the photochemical reaction center—a
special P700 chlorophyll a pair, where charge separation occurred.

The results of fluorescence excitation microscopy measurements indicated that for
both photosynthetic proteins (PCP and PSI–LHCI), a substantial reduction in fluorescence
intensity occurred upon excitation into the blue-green spectral region. Importantly, the
spectral dependence of the emission intensity exhibited a resonance-type character. These
results point toward a more complex role of graphene in assemblies in which both energy
transfer and tightly focused illumination take place.

2. Results
2.1. Spectroscopic Characterization of Materials

In Figure 1, we show optical spectra measured for both PCP (Figure 1a) and PSI–
LHCI (Figure 1b) in solution. Contributions of both types of pigments, Pers and Chl a,
were visible in the absorption spectrum of PCP (black line in Figure 1a). Bands around
440 nm and 668 nm corresponded to Chl a absorption at the Soret band and Qy band,
respectively. A prominent band in the range from 350 nm to 550 nm corresponded to Per
absorption. On the other hand, the emission was associated solely with Chl a fluorescence,
centered at 673 nm (red curve). This, along with close resemblance between absorption
and excitation spectra, indicated highly efficient energy transfer between Pers and Chls,
reaching 90% [49–52].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 10 
 

 

emission, differed significantly in the structure and function of the photosynthetic appa-
ratus. The PCP complexes were small and relatively simple antenna complexes optimized 
for efficient light harvesting and transfer of the captured energy toward the photosyn-
thetic reaction center. On the other hand, the PSI–LHCI was a photosynthetic reaction 
center that was considerably larger than PCP and much more complex in pigment and 
protein assembly. It combined multiple roles, such as direct light harvesting or energy 
capturing from the outer antenna complexes and transferring this energy to the photo-
chemical reaction center—a special P700 chlorophyll a pair, where charge separation oc-
curred. 

The results of fluorescence excitation microscopy measurements indicated that for 
both photosynthetic proteins (PCP and PSI–LHCI), a substantial reduction in fluorescence 
intensity occurred upon excitation into the blue-green spectral region. Importantly, the 
spectral dependence of the emission intensity exhibited a resonance-type character. These 
results point toward a more complex role of graphene in assemblies in which both energy 
transfer and tightly focused illumination take place. 

2. Results 
2.1. Spectroscopic Characterization of Materials 

In Figure 1, we show optical spectra measured for both PCP (Figure 1a) and PSI–
LHCI (Figure 1b) in solution. Contributions of both types of pigments, Pers and Chl a, 
were visible in the absorption spectrum of PCP (black line in Figure 1a). Bands around 
440 nm and 668 nm corresponded to Chl a absorption at the Soret band and Qy band, 
respectively. A prominent band in the range from 350 nm to 550 nm corresponded to Per 
absorption. On the other hand, the emission was associated solely with Chl a fluorescence, 
centered at 673 nm (red curve). This, along with close resemblance between absorption 
and excitation spectra, indicated highly efficient energy transfer between Pers and Chls, 
reaching 90% [49,50,51,52]. 

  
Figure 1. Spectral characteristics of PCP (a) and PSI–LHCI (b) aqueous-solution absorption spectra 
(black lines), emission spectra (red lines), and excitation spectra (blue lines). 

Compared to PCP, the PSI–LHCI complex was much larger, containing nearly 200 
cofactors enclosed within the protein scaffold [53,54,55]. The absorption spectrum of this 
complex (Figure 1b) underlined the dominant role of Chl a in light-harvesting; however 
contributions from Cars were also clearly visible, mostly in the green spectral range. In 
the case of PSI–LHCI complex, the Chl a molecules were responsible for fluorescence 
emission (red curve), although there were different subpopulations of these fluorophores 
present in the spectra, as suggested by significant broadening of the emission spectrum. 
Energy pathways within the PSI–LHCI complex and associated kinetics have been studied 
previously [40,53,56]. 

Figure 1. Spectral characteristics of PCP (a) and PSI–LHCI (b) aqueous-solution absorption spectra
(black lines), emission spectra (red lines), and excitation spectra (blue lines).

Compared to PCP, the PSI–LHCI complex was much larger, containing nearly 200 cofactors
enclosed within the protein scaffold [53–55]. The absorption spectrum of this complex (Figure 1b)
underlined the dominant role of Chl a in light-harvesting; however contributions from Cars
were also clearly visible, mostly in the green spectral range. In the case of PSI–LHCI complex,
the Chl a molecules were responsible for fluorescence emission (red curve), although there were
different subpopulations of these fluorophores present in the spectra, as suggested by significant
broadening of the emission spectrum. Energy pathways within the PSI–LHCI complex and
associated kinetics have been studied previously [40,53,56].

The optical properties of graphene are unique in the sense that it features flat absorp-
tion of light across the visible spectral range, and thus, it can be considered as an ideal
energy absorber. Our recent investigation of energy coupling between PCP complexes and
graphene indicated that the fluorescence decay time depended on the excitation wave-
length [7]. This observation suggests that the efficiency of the energy transfer depends on
the excitation wavelength.
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2.2. Excitation Wavelength Dependence of the PCP Emission

In order to systematically study the excitation wavelength dependence on the emission
properties of photosynthetic complexes deposited on a graphene monolayer, we conducted
a photoluminescence excitation experiment using a microscope objective for both excitation
and light collection. By tuning the excitation wavelength, we measured fluorescence spectra
and extracted emission intensities. There are two important comments needed before the
discussion of the results. First of all, it was necessary to perform such an experiment in a
microscopic setup, as we wanted to probe only these complexes that were in the vicinity of
graphene. This imposed another criterion that needs to be fulfilled, namely, the very small
thickness of the PVA layer containing the photosynthetic complexes. On the other hand,
pigment–protein complexes are highly suitable for studying energy transfer processes, as
the protein scaffold itself provides a spacer between the pigments and graphene, which,
while not very thick, is sufficient to partially inhibit the energy transfer. In other words,
should the pigment molecules be placed directly onto graphene, the efficiency of the energy
transfer would be extremely, high leading to essentially complete quenching of fluorescence
emission, regardless of the experimental conditions [3,5,57].

Figure 2 shows a sequence of fluorescence spectra collected for PCP complexes at different
excitation wavelengths. We tuned the excitation wavelengths from 610 to 400 nm with a step size
of 5 nm while keeping the laser spot in the same location. In this way, we minimized any effects
related to fluctuations of either PCP concentration or PCP layer thickness between different
points. In this context, keeping the sample at cryogenic temperatures was highly important, as
it considerably reduced any photobleaching of pigments. The fluorescence spectra measured
for PCP deposited on glass (black) or graphene (red) featured identical position, shape, and line
width, which indicated that the protein was intact, and all its functionality was maintained, for
both types of assemblies. However, the wavelength dependence differed considerably between
the PCP complexes on graphene and on glass. First of all, the intensities measured for PCP
on graphene were lower than those measured for the reference sample, which fact may be
attributed to the energy transfer between both components of the assembly [3,4,6,7,58]. The
direct comparison of actual emission intensities would have been questionable, as we did not
know the precise concentration of PCP complexes at a given position of the assembly. However,
the variation of relative intensities was much more relevant. Specifically, while for the PCP
complexes on glass, the highest emission intensity was observed for the excitation wavelength
of 480 nm, the intensity measured for the same excitation wavelength for PCP on graphene was
much smaller. This observation suggests that the efficiency of the energy transfer from PCP to
graphene indeed depended on the excitation wavelength applied [7]. Qualitatively, a similar
result was obtained for the PSI–LHCI complexes.
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2.3. Excitation Wavelength Dependence of Emission Intensity of PCP and PSI–LHCI

The emission intensities extracted by integrating the spectra on a graphene monolayer
and on glass for PCP and PSI–LHCI complexes are compared in Figure 3a,b, respectively.
The shape of the dependence obtained for PCP on glass was essentially the same as the
absorption and excitation spectra measured for PCP solution (see Figure 1). This result
implied that the PCP complexes were functional upon fabrication of the layer and during
the measurement and that the optical properties of the PCP complexes were not influenced
by any of manipulations during the assembly preparation. In particular, we observed
no effect of embedding the pigment–protein complexes in the PVA polymer layer on the
optical properties.
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Figure 3. Photoluminescence excitation spectra of PCP (a) and PSI–LHCI (b) layers deposited on
glass (black) and graphene substrate (red).

In contrast, the excitation spectrum of PCP complexes on graphene was radically
different, in that a substantial and systematic decrease in emission intensity was observed
for the blue-green spectral range. The emission intensity seemed to recover for the wave-
lengths shorter than 400 nm. The experiment was repeated for more than 10 spots on
each sample, and the result was always the same as shown in Figure 3a. Therefore, we
concluded that for emitters deposited on a monolayer graphene, the efficiency of the energy
transfer depended on the excitation wavelength.

Similar experiments performed for PSI–LHCI on graphene yielded qualitatively iden-
tical results (see Figure 3b). This indicated that the effect observed for a relatively simple
light-harvesting pigment–protein complex, such as PCP, was not exclusive to this complex
but had a more universal character. Indeed, for large light harvesting/charge-separating
pigment–protein complexes, such as the PSI–LHCI complex, the energy transfer to graphene
was also wavelength–dependent. This finding is important and should be considered for
any hybrid architecture aimed at exploiting graphene as a component of energy conversion
devices or sensors.

3. Discussion

By dividing the excitation spectra measured for photosynthetic complexes deposited
on graphene by the corresponding reference, we gained insight into the character of this
wavelength-dependent interaction between both modules of the hybrid assembly. As
shown in Figure 4, in both cases, we found a resonance–like behavior. The linewidths of
these resonances were similar for the two photosynthetic complexes studied in this work,
while the maxima were slightly shifted. The shapes of these curves were rather similar
to plasmon resonances in metallic nanoparticles, suggesting that the behavior observed
for PCP and PSI–LHCI complexes deposited on graphene could be associated with the
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presence of free electrons in graphene. However, more research should be conducted in
order to elucidate the underlying mechanism of this unique effect in greater detail.
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respectively).

4. Materials and Methods

Graphene substrates were purchased from Graphene Supermarket® (Ronkonkoma,
NY, USA). For both types of photosynthetic pigment–protein complexes, we used single-
layer graphene (SLG) deposited on 1 cm × 1 cm p-doped silicon (p-Si) substrates covered
with a 285 nm thick silicon dioxide layer. In the case of SLG, 97% of the surface was a
monolayer graphene. The presence of graphene on the p-Si substrate was confirmed by
Raman spectroscopy (not shown).

For the optical experiments, we used two photosynthetic complexes: a water-soluble
PCP light-harvesting antenna present in Dinoflagellates and a PSI–LHCI complex from a red
microalga, Cyanidioschyzon merolae. Aqueous solution of PCP from Amphidinium carterae was
purchased from BD Pharmingen (San Diego, CA, USA). The PCP complexes contained only
10 pigments: 8 peridinins (Pers) and 2 chlorophyll (Chl) a molecules [43,49,50,59–61]. While
absorption of PCP is rather broad, ranging from 400 to 660 nm, the fluorescence is associated
with the Chls a because of very efficient energy transfer from Pers to Chl a. The PSI–LHCI
complexes from C. merolae contained 157–159 Chl a molecules [53,54] and 35 carotenoids
(Cars) [53,54,62] and were obtained using a protocol including C. merolae culture growth,
thylakoid isolation, solubilization, and PSI–LHCI complex purification, described in detail
previously [19,55]. At the initial steps of the procedure, the crude PSI–LHCI fraction was eluted
from the DEAE TOYOPEARL 650 M column, then loaded with solubilized thylakoids with
0.09 M NaCl and applied onto the DEAE TOYOPEARL 650 S column. Next, the fraction of
pure PSI–LHCI was eluted with a continuous 0–0.2 M NaCl gradient in the carrier buffer [55].
After that, the PSI–LHCI sample was concentrated to 1 mg/mL Chl a and further purified on
the desalting Superdex G-25 column in buffer (40 mM HEPES-NaOH, pH 8, 3 mM CaCl2, 25%
(w/v) glycerol, 0.03% (w/v) DDM). This was followed by an anion exchange chromatography
step using a UNOTM Q12 column [55]. Finally, the solution of pure PSI–LHCI supercomplexes
was collected and concentrated to 2–5 mg/mL Chl a, snap-frozen in liquid N2, and stored
at −80 ◦C prior to use. The absorption of the PSI–LHCI complex is very broad; thus, similar
ranges of excitation wavelengths were applied for both samples.

The samples were prepared as follows: the stock solution of PCP complexes was further
diluted to the concentration of 0.05 mg/mL with 0.2% polyvinyl alcohol (PVA). The solution
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was then spin-coated on the graphene substrate (30 µL at 17 rps). The PSI–LHCI complexes
(0.02 mg/mL) were suspended in a buffer composed of 40 mM HEPES, 3 mM CaCl2, and
0.03% DDM, with pH 8.0; resuspended in 0.2% PVA; then spin-coated as above. The reference
samples consisted of the same concentration for each pigment–protein complex that was
spin-coated onto a glass coverslip.

Absorption, excitation, and emission spectra in solution were measured using a Varian
Cary 50 spectrophotometer and Horiba Jobin Yvon Fluorolog 3 spectrofluorometer (Kyoto,
Japan), respectively. The optical properties of the hybrid nanostructures composed of
pigment–protein complexes embedded in a PVA matrix on a monolayer graphene were
studied using photoluminescence excitation (PLE) microscopy by measuring sequences
of emission spectra for varied excitation wavelengths. The experiment was performed in
a back-scattering geometry. For excitation, the frequency-doubled output of an optical
parametric oscillator (OPO), synchronously pumped by a mode-locked Ti:sapphire laser
or the second harmonic (SH) of the mode-locked Ti:sapphire laser, was used. The typical
temporal pulse width was 140 fs, with a repetition rate of 80 MHz. The laser beam was
focused on the sample surface by Mitutoyo M PlanApo 50 × objective (NA 0.55) (Aurora,
IL, USA). To avoid photobleaching, the samples were placed in a liquid helium cryostat at
5 K during the entire measurement. In order to filter out the emission of photo-synthetic
complexes, we used a set of suitable optical filters (488 LP, 532 LP, and 633 LP). The emission
was detected using a CCD camera coupled to an Acton SP2500 monochromator (Princeton
Instruments, Acton, MA, USA) equipped with a grating with 600 lines/mm and blaze at
700 nm.

5. Conclusions

In this work, we systematically studied the wavelength dependence of the energy
transfer between two types of photosynthetic complexes and graphene. The results of
microscopic fluorescence excitation spectroscopy indicated that in the blue-green spec-
tral region, the efficiency of the energy transfer was substantially increased compared
with that in other wavelengths. This phenomenon, which was proven for both simple
light-harvesting pigment–protein complexes and photochemically active reaction centers,
opens the unexplored field of tuning the properties of hybrid graphene nanostructures for
optimized optoelectronics and photovoltaics applications.
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