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ABSTRACT
A new combustion regime identification methodology using the neural networks as
supervised classifiers is proposed and validated. As a first proof of concept, a binary
classifier is trained with labeled thermochemical states obtained as solutions of pro-
totypical one-dimensional models representing premixed and nonpremixed regimes.
The trained classifier is then used to associate the regime to any given thermochem-
ical state originating from a multi-dimensional reacting flow simulation that shares
similar operating conditions with the training problems. The classification requires
local information only, i.e., no gradients are required, and operates on reduced-
dimension thermochemical states, in order to cope with experimental data as well.
The validity of the approach is assessed by employing a two-dimensional laminar
edge flame data as a canonical configuration exhibiting multi-regime combustion
behavior. The method is readily extendable to additional classes to identify critical-
ity phenomena, such as local extinction and re-ignition. It is anticipated that the
proposed classifier tool will be useful in the development of turbulent multi-regime
combustion closure models in large scale simulations.
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1. Introduction

Reacting flows of practical interest are characterized by strong interactions between
turbulence, mixing, and chemical reactions, over a wide dynamic range of space and
time scales. The unsteady interplay between chemistry and transport phenomena, such
as diffusion and advection, is described by partial differential equations. Combustion
systems are prone to complexity issues arising from both the dimensionality of the
problem, due to a large number of chemical species involved, especially in hydrocar-
bons combustion, and the stiffness originating from the presence of very different space
and timescales. This complexity translates into difficulties in formulating affordable
predictive models and is further exacerbated by the general direction in which com-
bustion systems are evolving because of the increasingly stringent requirements on
efficiency and emissions, e.g., higher pressures, lower temperatures, and higher levels
of dilution.
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Despite the continual growth in size, speed, and availability of large computers,
direct numerical simulations (DNS) of all the scales involved in turbulent flows cou-
pled with detailed chemistry, eventually capable of replacing laboratory experiments
of real-world combustion systems, will remain unfeasible in the foreseeable future.
Even if it is possible, such large scale simulation data do not necessarily provide clear
physical insights. Therefore, the efforts into the simplification of the mathematical
description of complex physical and chemical processes are necessary. The goal is to
develop affordable predictive models which, under specific assumptions, can provide
the essential underlying mechanisms that are responsible for the physical problems
of interest, such as burning rates, pollutant formation, or criticality phenomena like
ignition and extinction.

The premixed versus nonpremixed combustion regimes has been one of the most ba-
sic classifications to build the mathematical modeling framework in describing the dis-
tinct combustion characteristics. The premixed combustion has both reactants mixed
at molecular level, hence the combustion process becomes kinetically controlled, while
naturally in balance with reactant transport. On the other hand, the nonpremixed
combustion process is dominated by the transport which brings the separated reac-
tants into the reaction zone. As such, distinct reaction closure models are employed
in turbulent reacting flow simulations in order to represent the crucial behavior of
different combustion regimes.

However, such a combustion regime identification is not always straightforward in
real applications. Many modern combustion systems are purposely designed to operate
in the partially premixed mode to achieve higher efficiencies and lower emissions.
Examples are present in gas turbines, aircraft combustors, direct-injection engines,
and industrial combustion systems. According to Masri [1], partial premixing refers to
the existence in the fresh mixture of composition inhomogeneities, which evolve due
to mixing so that both diffusion-like reaction zones and premixed propagating layers
may coexist. A canonical example is the lifted flame edge, which propagates into a
mixture with stratification in the lateral direction [2]. The stabilization of the flame
depends on the tribrachial structures characterized by a lean premixed branch, a rich
premixed branch, and a trailing diffusion flame that forms behind the premixed flame
front because of the mixing of the excess oxidizer and fuel [1, 3, 4].

Laminar triple flames have commonly been employed as test-beds for assessing the
validity of combustion models aimed at dealing with multi-mode configurations. Van
Oijen and de Goey [5] tested the flamelet generated manifold (FGM) technique against
a detailed chemistry approach on a triple flame. Domingo et al. [6, 7] proposed a sub-
grid combustion closure model in the large eddy simulation (LES) context for partially
premixed systems, with the closure building upon the association of the locally resolved
field to either a premixed or a nonpremixed model. The technique is tested on a tur-
bulent lifted flame. Knudsen and Pitsch [8, 9] developed a multi-mode flamelet model,
capable to locally select whether tabulated premixed or tabulated nonpremixed chem-
istry should be referenced in the presumed probability density function (PDF) of large
eddy simulations (LES). The model was tested in a laminar triple flame configuration.

Most of these approaches for hybrid combustion models [6, 8, 9] need a rational
criterion to determine whether the local reacting flow belongs to the premixed or
nonpremixed combustion mode. For this purpose, the flame index, introduced by Ya-
mashita et al. [10] and then revised in a normalized version by Domingo et al. [7],
is the most traditional combustion regime identifier. It builds upon the examination
of the fuel and oxidizer gradients. Their alignment/misalignment, determined by the
sign and magnitude of the product of the two gradient vectors, serves as the metric
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for relative dominance of premixed or nonpremixed combustion regime. Fiorina et
al. [11] proposed an improved flame index accounting for finite rate chemistry effects
in strained diffusion flames.

Even though the flame index proved to be a reliable indicator of combustion regimes,
it requires knowledge of non-local information, i.e., spatial gradients. This raises diffi-
culties in experiments [4], since simultaneous 3D gradients of fuel and oxidizer fields
are needed. Rosenberg et al. [12] proposed a method to measure the flame index based
on 2D images of fluorescent markers, which however can be misleading if the scalar
field has pronounced 3-dimensional features. A gradient-free, hence local, sensor of
combustion regimes would be desirable, as pointed out by Hartl et al. [13].

From a mathematical standpoint, the two regimes differ in the way the advection,
diffusion, and chemical source terms are balanced in the conservation equations. Hence,
the dynamics of the system is differently constrained to specific regions of the chemical
composition space, leading to distinct low-dimensional manifolds characterizing the es-
sential slow dynamics. The existence of manifolds in homogeneous reacting systems is
well understood, and many available model reduction techniques are based on the con-
straints on the thermochemical states to a low-dimensional region of the composition
space. Examples are the intrinsic low-dimensional manifold (ILDM) technique [14] and
the computational singular perturbation (CSP) [15]. A manifold in the chemical com-
position space develops because the fast chemical processes equilibrate, constraining
the dynamics to evolve on a lower-dimensional surface exhibiting the important slow
dynamical behavior.

More recent studies [16–18] investigated slow manifolds in non-homogeneous reac-
tion systems involving transport in addition to chemical reactions. Goussis et al. [19]
incorporated the effects of diffusion on the chemically slow manifold, analyzing the
cases where transport acts as a perturbation driving the system off the chemical man-
ifold, with the fast chemical processes rapidly relaxing the system back onto it. It was
shown that a modified slow manifold can be determined by the exhausted fast time
scales related to both chemical reactions and diffusion. Najm et al. [20] examined the
effective low-dimensional structure of the chemical manifold in a methane–air edge
flame. Mengers and Powers [21] applied the concept of slow manifolds to chemical
systems with diffusion, using the Galerkin method to reduce the governing PDEs into
a system of ODEs, and analyzing the shift in the time-scale spectrum due to the
diffusion operator at different resolved wavelengths.

Bykov and Maas [22] proposed the Reaction–Diffusion Manifold (REDIM) as an ex-
tension of ILDM which approximates low-dimensional attracting manifolds of PDEs.
In flamelet-generated manifolds (FGM), flamelet equations are solved to yield one-
dimensional [23] or multi-dimensional manifolds [5] in chemical composition space
spanned by suitable variables, e.g., mixture fraction and progress variable. In the mul-
tidimensional flamelet-generated mainfold (MFM) method [24], specifically developed
to address the existence of different combustion modes, multidimensional flamelet gov-
erning equations are derived by projecting the full set of unsteady mass and species
conservation equations onto a five-dimensional subspace, involving mixture fraction,
progress variable and three scalar dissipation rates. Similarly, the principal component
analysis (PCA) proposed by Sutherland and Parente [25] aims at finding an optimal
basis for identifying low-dimensional structures based on the training data to efficiently
describe the thermochemical state evolution. Echekki and Mirgolbabaei [26] employed
PCA on a database generated with simplified problems to reduce the composition
space, and then transport the principal components in a turbulent flame problem.

All these methods have a common goal to seek a dimensional reduction in the com-
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position space where the system is actually evolving, with the aim of reducing the
computational cost by developing lower-dimensional models. A basic underlying hy-
pothesis in these approaches is that any physical behavior of interest can be described
by a minimal set of appropriate projection bases. The bases may be heuristically de-
termined by physical variables such as mixture fraction and/or progress variables, or
by mathematical operations such as eigenvectors or principal components.

In general, the local thermochemical states reached by a transport-reaction problem
are different segregated regions of the chemical composition space depending on how
and to what extent the thermochemical system is perturbed by transport. A similar
assumption is made by Hartl et al. [13] in that the local thermochemical state depends
on the combustion regime and can be considered a “footprint”. They proposed a
method of gradient-free regime identification (GFRI) that relies on a combination of
flame markers, namely mixture fraction, chemical explosive mode analysis, and heat
release rate. Wu and Ihme [27] defined a regime marker based on drift terms which
describe how well a given manifold-based combustion model can represent the local
flow and flame conditions. Zirwes et al. [28] employed different existing regime markers,
namely the gradient-based flame index, the GFRI and the drift terms, to distinguish
between premixed and nonpremixed local regimes in a partially premixed turbulent
Sydney/Sandia flame.

We hereby employ Machine Learning to exploit the intrinsic low-rank features of
combustion regimes. More specifically, the conjectured segregation in the composi-
tion space of the thermochemical states originating from different combustion regimes
should enable a properly trained classifier to identify a state belonging to either the
premixed or the nonpremixed mode, without additional spatial information originating
from gradients.

A classifier is an application of supervised machine learning, in which the algorithm
is presented with labelled datasets. The best model for the given labeled data is then
found via optimization [29]. This model is then used for classification of new data. In
other words, during a training phase the classifier learns the manifolds generated by
different prototypical problems. This training phase yields a model which is capable
of assigning a probability of belonging to a specific manifold, or class, to a given new
thermochemical state, whose association with a combustion regime is not known a-
priori, because, say, it is obtained as a solution of a complex, partially mixed, reacting
flow in multidimensional CFD simulations.

Classifiers in numerical combustion have been employed by Grogan and Ihme [30] to
discriminate between regular combustion and irregular ignition regimes in detonations,
analyzing experimental data from disparate sources. They concluded the analysis stat-
ing that the correct classification of the combustion process under study is low dimen-
sional, after assessing the relative importance of the features, i.e., parameters employed
to label the data. On the other hand, unsupervised algorithms discover patterns in the
data without given labels and generate clusters. In this context, D’Alessio and cowork-
ers [31] classified the composition space via classifiers defined a priori. They partition
the chemical composition space in a prescribed number of clusters with similar compo-
sition using k-Means and Local Principal Component Analysis (LPCA). Each cluster
then undergoes a kinetic mechanism reduction, to enable adaptive chemistry in CFD
simulations.

In this work, we propose to train a neural-network-based classifier with labeled
thermochemical states originating from steady 1D laminar premixed and nonpremixed
models, solved by assigning proper boundary conditions. The trained classifier is then
employed to classify the local states in a numerical simulation of a laminar edge flame
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with consistent boundary conditions. A reliable and non-expensive classification of
combustion regimes might (i) shed light on optimal low-rank subspaces in chemical
composition space, (ii) support multi-regime combustion closures in LES, and (iii)
facilitate classification in experiments without the need of spatial information. In con-
sideration of the latter, the classifier will be trained and tested using the subset of
species from the full thermochemical state representing the Raman/Rayleigh measur-
able species, as done in [13].

This application of machine learning to combustion regime identification is far from
being comprehensive, but rather serves as a proof of concept. For example, unsteady
effects are not considered, since the inspected edge flame is steady and its reactants
are cold. As a consequence, auto-ignition and extinction dynamics are not present and
left aside in the training process. However, the conceptual framework is general, and
a proper training on unsteady homogeneous reactors and/or unstable branches of the
S-shape curve should allow the classifier to be appropriately trained for such combus-
tion modes as applicable. The extension to other regimes, such as auto-ignition, does
not pose particular challenges, except that the training dataset should be built includ-
ing samples generated with the appropriate archetypal models. As such, the present
approach can be extended to multi-class identification without major modifications,
as long as archetypal models for training are available and well-characterized.

The latter caveat deserves a further discussion: our conjectured segregation in the
composition space of the thermochemical states originating from different combustion
regimes depends on the definition of the combustion regime itself. We assume this
definition as being implicit in the existence of an archetypal model. As long as different
models produce different realizations of thermochemical states, such states, or states
close to those embeddings, can be identified by a properly trained classifier. However,
the ability of any archetypal models to accurately describe the physics of distinct
classes of reacting flows is beyond the scope of the present study. Ultimately, the aim
of this work is to demonstrate that a properly trained classifier is able to identify the
segregation between premixed and nonpremixed embeddings in the thermochemical
composition space based on state functions alone.

To this end, we purposely limit the number of classes to two, following the numer-
ous studies [6–9] on binary regime identification and consequent two-model tabulation
closure strategies, which are unambiguous and consolidated. Lastly, the actual applica-
tion to combustion closure would require training and testing on filtered composition
and temperature data, which is not addressed in this work.

The paper is organized as follows: neural networks for classification problems are
presented in section 2, the training and testing of the classifier, as well as the numer-
ical setup of the edge flame test case, are presented in section 3. Finally, the classifi-
cation outcomes on the edge flame are discussed and compared with the consolidated
gradient-based flame index in section 4.

2. Method

Supervised machine learning algorithms are built to exploit the intrinsic low-rank
features of labeled data sets [29, 32]. The goal is to build a model for the given
labeled data, which is then employed to classify new data. The model-building phase
is essentially the extraction of a typically nonlinear function that characterizes the
boundary between data belonging to different classes. The higher the dimension of the
full space, the more complicated the data embeddings, the more difficult it would be to

5



extract a meaningful and general boundary, or hypersurface, that assures an optimal
separation between the distributions of points.

Many classification algorithms are available, such as k-nearest Neighbors (kNN),
which assigns a label to new data based on the k nearest neighbours labels; the re-
gression tree, which splits the data producing branches of the tree structure; Support
Vector Machine (SVM), which projects the data to seek an hyperplane to split them;
and Naive Bayes, which estimates the label of new data based on the prior probability
distributions of the labeled data. Details on supervised methods can be found in [29].
These algorithms are being replaced by Neural Networks [32].

A Neural Network (NN) is a multi-layer mapping between an input layer x and an
output layer y. A NN is a mapping of the form:

y = AMAM−1...A2A1x (1)

where the matrices Aj contain the coefficients that map each variable from one layer
to the next. A non-linear NN employs non-linear activation functions to connect the
layers:

y = fM (AM , fM−1(AM−1, ..., f2(A2, f1(A1,x)))). (2)

Training a NN means finding the entries of the connectivity matrices Aj through
optimization, knowing x, i.e., the input, and y, i.e., the associated output, such that
the mapping error between y and the true (or target) output is minimized. Neural
Networks in classification tasks are trained to map new data x∗ into their correct
label, hence the output is a label, or class, and the training is devoted to minimize the
error between the true class and the predicted class. In the case of the present binary
classification, the dimensionality N of the input layer is the chemical composition
space dimension Ns plus temperature, while the output layer is a sole perceptron
y = {premixed, nonpremixed}, as shown in Fig. 1, in such a way that:

y =

[
1
0

]
= {premixed} y =

[
0
1

]
= {nonpremixed} (3)

It would be natural to interpret the output y in probabilistic terms, so that the two
entries yi of y are the posterior probabilities P (classi |x∗), i.e., the probability that
the correct label of x∗ is classi. Hence, the quantity yi can be given the meaning of
confidence of the classification result [33]. Some classifier models are naturally based
on probability density estimates, such as Naive Bayes and logistic regression. Feed for-
ward neural networks with non-linear activation functions, such as sigmoids, can easily
be given continuous outcomes on the [0, 1] interval, such that they approximate the
posterior probabilities for well trained and sufficiently large networks [34]. The capa-
bility of a neural network to provide outputs which estimate a posteriori probabilities
has been proved in many works [35–41], particularly in the context of classifiers. This
is especially true when the loss function employed to calibrate the network is the cross-
entropy function, which measures the difference between the true and the predicted
probability distributions. A hard classification can be done employing decision rules,
e.g. the predicted class among the two is the one having the highest probability.

The number of layers and the activation functions are tunable parameters of the
algorithm. For instance, a deeper network will be able to fit more complex patterns
but will be more prone to overfitting. To the extent of this work, we rely on the Neural
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Network classifier built in Wolfram Mathematica, which offers state-of-the-art capabil-
ities for the construction, training and deployment of neural network machine learning
systems. The Mathematica classifier makes the choices of the algorithm parameters
automatically through a procedure consisting of experiments done on data subsets.

Figure 1.: Sketch of a multi-layer neural network with M levels, that maps an input
x ∈ RN to a single output node y.

3. Application

We next describe the utilization of the neural network classifier for the local com-
bustion regime identification in a laminar edge flame. The edge flame is a co-flow
flame whose inner jet is a mixture of methane and nitrogen with a mass ratio of
CH4:N2=0.65:0.35, and whose outer jet is air. The computational domain is 2D pla-
nar, the fuel inflow width is 2 mm while the splitter plate thickness is 0.38 mm, the
domain width is 5.5 cm while the domain length is 12 cm. Both the fuel and oxidizer
streams are fed at ambient temperature and atmospheric pressure, at the velocity
of 0.35 m/s. The far field is modeled by imposing the total pressure of 1 atm and
zero velocity gradient. The splitter plate is modelled as a no-slip adiabatic wall. The
computational mesh is structured and with squared cell down to 100 micron in both
axial and transverse directions in the injection region. The fuel injector is discretized
with 30 cells in the transverse direction, the splitter plate thickness with 6 cells, while
the grid mildly coarsens getting further away from the injector, for a total number
of 85000 cells. The configuration is sketched in Fig. 2. The computation was per-
formed relying on the pressure-based solver laminarSMOKE, developed by Cuoci et
al. [42, 43] within the openFoam framework. In the laminarSMOKE solver, thermo-
chemical properties as well as the chemical source terms are computed by means of the
OpenSMOKE++ libraries [44]. The kinetic scheme is the 82-species, 1698-reactions,
C1-C3 high-temperature mechanism developed by the CRECK modeling group [45].

The binary classifier is trained with a database D = {x1, ...,xNsamples
} of labeled

thermochemical states xi = {T, Yj}, where T is temperature, Yj is the mass frac-
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Figure 2.: Sketch of the edge flame configuration.

tion of species j, so that xi ∈ RN . The states xi are computed as solutions of both
steady 1D laminar premixed flames, with different fresh mixture equivalence ratio, and
counterflow problems, with different strain rates. The choice of the parameters of the
training problems, i.e., boundaries and strain rate, is made based on the edge flame
geometry and inflow conditions. Specifically, the 1D premixed flames solutions are
obtained for CH4/Air mixtures at ambient temperature and pressure, having equiv-
alence ratios ranging from 0.5 to 3. The corresponding mixture fraction values are
z ≈ 0.05 ÷ 0.31, with the stoichiometric mixture fraction placed at zst ≈ 0.1. The
counterflow flames have the two boundaries corresponding to the inflow conditions of
the coflow flame, and strain rates ranging from 0.1 to 125 s−1, corresponding to sto-
ichiometric scalar dissipation rates χst of 10−2 to 25 s−1. The computations are per-
formed with openSMOKE++ [44], adopting the same kinetic scheme employed in the
coflow flame simulation. The total number of thermochemical states isNsamples=15000,
evenly shared by the two problems and computed with the same prescribed accuracy
in the solvers. Figure 3 shows the projection in the (z-T ) space of the thermochemical
states of the two problems. Each of the premixed solutions, in red, is characterized by
a specific value of mixture fraction z; the solutions span a mixture fraction range in
between the flammability limits of the mixture. The counterflow solutions, black lines,
span the whole z-space.

The classifier is trained on this data set. As a common practice, a k-fold cross-
validation is performed, in which the data are randomly partitioned into k equal-sized
subsets, with k=100 in this work. Of the k subsets, a single subset is retained as
validation data for testing the classifier, and the remaining k-1 are used as training
data. The process is performed k times, with each of the k subsets used only once as
the validation set. The k results are then averaged to produce a single estimation of
accuracy. The 100-fold cross-validation yielded a 99.9% average accuracy score. This
result shows that the two classes are well segregated in the composition space and that
the classifier is able to discriminate them. Moreover, the k-fold cross-validation ruled
out the possibility of overfitting. Based on this result, we did not increase the number
of samples.

The k-fold cross-validation is repeated employing samples from the reduced compo-
sition space S̄, such that x̄i = {T, N2, CO2, H2O, CO, H2, CH4, O2} ∈ R8, yielding the
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Figure 3.: Projection in the (z-T ) space of the thermochemical states originating from
1D premixed (red) and counterflow (black) solutions.

same average accuracy result. This is a clear indication that a low-rank structure exists
for both classes, and the embeddings are well separated in composition space. From
now on, the data set restricted to the subspace S̄ will be employed, to be compatible
with availability of experimental measures, as done in [13].

Moreover, the sensitivity of the network structure and accuracy to the range of
χst in the training dataset is evaluated, showing that the nonpremixed embedding is
successfully learnt even with a narrower range of χst, namely 10 to 100 s−1.

The complete data set in S̄ is finally used to train the classifier, with a 15 % split of
the data points for the validation. The Neural Network architecture, whose properties
are summarized in Table 1 and whose layers structure is depicted in Fig. 4, has been
chosen among a family of alternative configurations. Such configurations differ in the
number of hidden layers (2, 4, 8), the number of training epochs (1, 3, 10, 30, 100, 300,
1000) and the presence/absence of an alpha-dropout layer, whose function is described
below. These 42 configurations are trained on small datasets (500 samples) and the
information gathered during these “experiments” are used to predict how well the
configurations would perform on the full dataset. The most promising configurations
in which the mean cross-entropy loss is smaller than 0.01 are then trained on a larger
dataset (1500 samples), and then on the full training dataset. The best architecture
resulted as the one with 2 hidden layers, 300 epochs and Alpha-dropout layer. The
architecture is detailed as follows: the network is fully connected and the 2 hidden
layers have 50 neurons each. The activation functions are the Scaled Exponential
Linear Unit (SELU) in both layers:

selu(x) = λ

{
x if x > 0
αex − α if x 6 0

(4)

where x denotes the input, α = 1.6733 and λ = 1.0507. Such functions naturally
self-normalize the network, meaning that the network preserves the zero-mean and
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Network depth 2
Activation Functions SELU
Dropout Layer probability 0.01
Loss function cross-entropy
Optimization method ADAM
Mean cross-entropy 0.0018
Mean accuracy 0.99989

Table 1.: Neural network properties and performance

unitary-variance nature of the inputs [46]. For this reason, the data set is logarithmi-
cally rescaled and standardized to have zero mean and unitary variance before being
employed for training. The SELU functions have the advantage to converge faster than
the classic activation functions towards the optimum parameters, i.e. weights and bi-
ases, and, more importantly, both the vanishing and exploding gradient problems
have been demonstrated to be impossible [46]. The first hidden layer has an additional
alpha-dropout layer. Dropout layers prevent overfitting by randomly turning off some
of the neurons on each iteration of the training, together with all its input and output
connections, so that they are not affected by the gradient updates. Alpha-dropout is
an enhanced version of dropout, typically employed in conjunction with SELU func-
tions, in which the neurons are not set to 0, but to the negative saturation value of
the SELU, preserving the original mean and variance of the inputs and ensuring the
self-normalizing property even after dropout. The probability of dropout is set to 1%.
The output layer has a softmax activation to produce two decimal numbers between
0 and 1 which sum to 1:

σ(x)i =
exi∑2
j=1 e

xj

i = 1, 2. (5)

The employed loss function is the cross-entropy loss, the batch size is 16 and the
stochastic optimization algorithm is the adaptive moment estimation (ADAM) [47].

The trained classifier is then fed with states x̄∗
i originating from the edge flame. For

each state, the classifier returns a probability of belonging to either the premixed or
nonpremixed regime. Note that the two probabilities sum to 1.

4. Discussion

Figure 5a shows the values of P (class=premixed |x) in the edge flame. The red regions
are the points in which this probability takes values of 1, or close to 1, hence they are
classified as belonging to the premixed regime. The white regions contain the points
in which it takes values of 0, or close to 0, hence they are classified as nonpremixed.
The rich and lean premixed branches of the flame are clearly distinguishable, as well
as the trailing nonpremixed flame. The transition layers between the two regimes,
coloured in blue, i.e., where the posterior probability is uninformative, being close to
0.5, are remarkably thin. In other words, there are only a small number of points at
which the classifier struggles to make a decision. Figure 5b shows the temperature
field of the flame, with mixture fraction iso-contour lines, with the hard classification
boundary P (class=premixed |x)=0.5 superposed, further confirming the validity of
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Figure 4.: Sketch of a the employed neural network architecture.

(a) (b)

Figure 5.: (a) P (class=premixed |x) in the edge flame field, with temperature iso-
contour lines superposed; (b): hard classification boundary P (class=premixed |x)=0.5
-black line- in the edge flame temperature field, with mixture fraction iso-contour lines
in gray. Abbreviations are used in the figures: PM (premixed) and NP (nonpremixed).

the transition layer definition.
Figures 6a and 6b show the scatters of the data points in the edge flame solution

mapped on the mixture fraction space against temperature and progress variable C,
respectively, coloured by P (class=premixed |x) such that the premixed states are in
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(a) (b)

Figure 6.: Scatters of the edge flame field temperature T (a) and progress variable C
(b) against mixture fraction z, colored by P (class=premixed |x).

red and the nonpremixed are in black. The high-temperature black points belong to
the trailing diffusion flame. The premixed regime is identified throughout the whole z-
space, at both low and high temperatures. Note that the transition from the premixed
to the nonpremixed classification in the high-temperature states does not appear to
be identifiable solely based on the values of C and z, or their combination. This is an
indication that the two embeddings have more features than what C and z are able to
describe. Such features are learned by the classifier, which is able to distinguish among
close or overlapping states in the z-T/z-C planes. Such overlapping, also visible in the
training set of Fig.3, is ”apparent” because of the projection onto a lower-dimensional
space, while the embeddings in the composition space S̄ are well separated.

The broad range of the scatters in z for the premixed regime is expected, due to the
states belonging to the lean and rich branches of the edge flame. However, the extreme
z conditions beyond the typical lean and rich flammability limits are identified as the
premixed regime as well. These states belong to the rich/lean pre-heat zones of the edge
flame which are, while outside the flammability range, back-supported by diffusion of
heat and radicals from flammable premixed regions. The dynamics characterizing these
zones would be described by the temporal evolution of a purely diffusive problem in the
mixture fraction space in which the high-temperature boundary is the richest/leanest
flammable solution and the z=1/z=0 boundary is the cold fuel/oxidizer stream. The
classifier associates these points to the premixed class with a high probability since
their composition is close to the premixed embedding. If necessary, however, out-of-
flammability states can be specifically identified a priori based solely on composition,
without the need for an additional class, and thus was excluded from the present
classification task.

As shown in Fig. 5, the classifier detects a premixed tail behind the trailing non-
premixed flame. This tail contains states in or close to the chemical equilibrium which
are not represented by the 1D counterflow problems with non-zero strain rate. On the
contrary, they are similar to the hot (burnt) boundaries of the 1D premixed flames. A
zero-strain nonpremixed flame would share the same thermochemical states with the
burnt conditions of the 1D premixed flames inside the flammability limits, creating a
class superposition and hence lead to an ambiguous classification. Being the equilib-
rium composition identifiable without ambiguity, we decided not to define a specific
class for such occurrence.
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Figure 7.: Up-close on the edge of the flame. Temperature is in grayscale, mixture
fraction iso-contour lines in green, streamlines are coloured by P (class = premixed |x)
using the colour scale of Fig.5a.

Figure 7 shows a zoomed-in view of the flame edge region. The streamlines are
coloured by the classifier probability P (class=premixed |x). A correlation can be no-
ticed between the nonpremixed regime detection (white streamlines) and the alignment
between temperature and mixture fraction iso-contour lines.

A comparison with the normalized flame index [10], computed with the gradients
available in the edge flame simulation, is shown in Fig. 8. A positive flame index,
depicted in red, indicates the premixed regime, while a negative flame index, in
blue, indicates the nonpremixed flame. There is good agreement on the lean pre-
mixed branch and an acceptable agreement on the trailing diffusion flame. The non-
premixed/premixed transition in the rich side is not captured by the classifier as well
as the flame index does, for the reasons discussed above. The immediate upstream of
the flame edge, where the cold streams are mixing, is identified as premixed by the
classifier, while the flame index indicates a purely nonpremixed regime. In this region,
even though the gradients of fuel and oxidizer are definitely opposed, the local ther-
mochemical states have the features of the cold boundaries of the 1D premixed flames.
The inlet streams, being either pure fuel or oxidizer, are classified as nonpremixed,
for their similarity to the 1D counter-flow flame boundaries. Also in this case, the
inert mixing of reactants upstream of the flame front can be identified based on mix-
ture temperature, without resorting to a classifier. Figure 9 shows the classification
results with properly excluding the out-of-flammability and inert mixing regions. This
confirms the qualitative agreement already observed in Fig. 8, with the major discrep-
ancies appearing at the rich boundary of the trailing diffusion flame. Note, however,
that the flame index itself has inherent uncertainties in defining the transition to the
diffusion flame (shown in white, where the index is close to zero).
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Figure 8.: Comparison between normalized flame index (colored contours) and the
current classification P (class=premixed |x)=0.5 (black line). Mixture fraction iso-
contours are overlaid as dashed lines.

5. Conclusions

We proposed a general strategy for combustion regime identification that relies on
supervised machine learning. A classification algorithm is instructed to discriminate
between premixed and nonpremixed modes by learning from solutions of prototypical
problems. The classification deals with thermochemical states only, i.e., local infor-
mation, without the need for spatial information such as gradients, and accounts for
major species only, in line with the experimental availability of data. We assessed
the capabilities of the classifier by training it with 1D laminar steady premixed and
counterflow solutions and then examining a 2D laminar edge flame, which is an ex-
ample of multi-regime reacting flow. The classifier proved to be effective in labelling
the thermochemical states of the edge flame, given the training data set, which was
purposely limited to steady and burning solutions. The rich/lean premixed branches
and the trailing diffusion flame are identified with an accuracy comparable to that of
the flame index, which relies on gradients of fuel and oxidizer.

Ongoing work will further explore the possibility of adding more classes to charac-
terize other regimes, such as auto-ignition and extinction, employing additional pro-
totypical problems to train the classifier, such as homogeneous reactors and unsteady
flamelets. The addition of more classes will help assess the generality of this approach,
which is based on the conjecture that a segregation in the composition space of the
thermochemical states originating from different combustion regimes exists. This con-
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Figure 9.: Comparison between normalized flame index (colored contours) and the
current classification (black line), with the exclusion of out-of-flammability regions
(outside the magenta lines) and inert mixing (below the green line)

jecture was proved satisfyingly right in this paper in the case of premixed/nonpremixed
embeddings. Ongoing work will shed light on the segregation between other combus-
tion regimes. We will also test the classifier with uncertain data, to mimic experimental
data, and within a turbulent flame context, outlining further the utility of the present
construction for robustly identifying combustion modes and enable a fast closure model
selection in the LES context.
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