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We present the analysis of a new signature for light dark matter detection with superfluid 4He: the
emission of three phonons. We show that, in a region of mass below the MeV, the kinematics of this process
can offer a way to reconstruct the dark matter interaction vertex while providing background rejection via
coincidence requirements and directionality. We develop all the theoretical tools to deal with such an
observable, and compute the associated differential distributions.
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I. INTRODUCTION

While there is overwhelming evidence that the largest
fraction of matter in the Universe is dark matter, little is
known about its nature. In particular, the possible dark
matter mass spans several orders of magnitude, and differ-
ent masses require vastly different detection techniques.
Recently, increasing attention has been paid to candidates
in the keV to GeVmass range (see [1–13], and [14,15] for a
review), which, while massive enough to be treated as
pointlike, cannot release appreciable energy to a material
via standard recoil processes, hence requiring detectors
with low energy thresholds. When the typical exchanged
momentum is below the keV, the prime signature of the
interaction with such particles is the emission of collective
excitations in the detector material. Several proposals have
been put forth along these lines [16–46]. A promising
direction is that of considering the emission of collective
excitations in superfluid 4He [18–25], in particular, gapless
phonons for small dark matter masses. It has been shown
that the process where the dark matter interacts with the
bulk of the detector and emits two excitations has a
favorable kinematics, allowing us to probe masses down
to the warm dark matter limit, mχ ∼ keV [19,20].

In [22–24] the same problem has been solved using
effective field theory (EFT) techniques for the description
of collective excitations in different phases of matter—see,
e.g., [47–50]. This allows us to bypass the complicacies
of the microscopic physics of the detector, formulating a
low-energy quantum field theory with a given symmetry
breaking pattern. Amplitudes and rates can be computed
with perturbation theory methods.
In this workwe use the same approach to investigate a new

possible signature of the interaction of dark matter with the
4He detector—the emission of three phonons. This shows the
capabilities of themethods used, and paves theway to further
discussions on the experimental signatures in superfluid
targets. Indeed, as we will argue, there is a region of mass
around roughly 500 keVwhere the three phonons are emitted
in the configuration shown in Fig. 1, which we dub as the
“cygnus” configuration. The details of the experimental
setup will tell how to detect these configurations.
Although suppressed with respect to other processes

[19,20,22–25], this event has the potential to allow for the
reconstruction of the dark matter interaction vertex, while
providing a good background discrimination via coinci-
dence requirements and directionality. The latter also
provides a handle to determine the dark matter mass. In
particular, we show that for a good fraction of the events,
the dark matter releases most of its available momentum to
the forward phonon, whose direction is then strongly
correlated to the direction of the incoming particle.
We present the phonon self-interactions up to quartic

order in the field, and at leading order in the small
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momenta/long wavelength expansion. We develop an
analytic treatment of the four-body phase space to compute
the emission rate of three phonons, along with a fully
numerical phase space Monte Carlo tool which serves for
producing the results presented in this paper.
Conventions: Throughout this paper we work with a

“mostly plus” metric and set ℏ ¼ c ¼ 1.

II. EFFECTIVE ACTION

When the momentum exchanged by the dark matter to
the detector is smaller than the inverse of the typical atomic
size, the dark matter cannot resolve single atoms but rather
it interacts with macroscopic collective excitations. A
particularly suitable description of the latter is in terms
of EFTs, which are independent of the (often complicated)
microscopic details of the condensed matter system and
rely solely on symmetry arguments.
In particular, the last decade witnessed the development

of relativistic EFTs for different phases of matter, which are
based on the observation that condensed matter systems are
particular symmetry violating states of an underlying
Poincaré invariant theory, which is then spontaneously
broken (see, e.g., [48,49]). The soft collective excitations of
the system are nothing but the corresponding Goldstone
bosons, whose interactions are strongly constrained by the
nonlinearly realized symmetries, and can be organized in a
derivative (low-energy) expansion.
From this viewpoint, a superfluid like 4He is a system

that spontaneously breaks boosts, time translations, and an
internal Uð1Þ symmetry associated to particle number
conservation, but preserves a diagonal combination of
the last two (see, e.g., [47,49–51]). The most general
effective Lagrangian, at leading order in the low-energy
expansion, is given by L ¼ PðXÞ, where P is the pressure

of the superfluid as a function of the chemical potential,
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂μψ∂μψ

p
, and ψðxÞ ¼ μtþ

ffiffiffiffiffiffiffiffiffiffiffiffi
μc2s=n̄

p
πðxÞ, with

πðxÞ being the phonon field. The parameters cs, μ, and
n̄ are, respectively, the equilibrium sound speed, relativistic
chemical potential, and number density. For more details
we refer the reader to [22] and the references therein.
The action up to quartic order in the field reads

Sph ¼
Z

dtd3x
"
1

2
_π2 −

c2s
2
ð∇πÞ2

þ g1
2
_πð∇πÞ2 þ g2

6
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8
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4
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24
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#
: ð1Þ

The effective couplings in the nonrelativistic limit1 are
related to the thermodynamic quantities of the superfluid by
the following expressions [22]:

g1 ≃ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mHec2s
n̄

r
1

mHe
; g2 ≃

$
mHec2s
n̄

%3
2

n̄00;
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c2s

mHen̄
; λ2 ≃ −

mHec4s
n̄2

n̄00; λ3 ≃
m2

Hec
4
s

n̄2
n̄000; ð2Þ

where the primes denote derivatives with respect to the
chemical potential. In Table I we report the values of the
above quantities for 4He, as obtained from the equation of
state reported in [52].2

In the class of models we are considering, the
effective coupling with the dark matter in the nonrela-
tivistic limit occurs via the number density operator,3

Lint ¼ Gχmχ jχj2nðXÞ. The latter is easily found as the
temporal component of the Noether current associated
with the superfluid Uð1Þ symmetry, ψ → ψ þ a, with a
being constant. This leads to the following interaction term
[22–24]:

Sint ¼
Z

dtd3xGχmχ jχj2
"
−α _π −

β1
2
ð∇πÞ2

−
β2
2
_π2 þ γ1

2
_πð∇πÞ2 þ γ2

6
_π3
#
; ð3Þ

FIG. 1. Possible “cygnus-shaped” event. One phonon is emitted
forward, almost in the direction of the incoming dark matter,
while the other two are emitted back-to-back and orthogonally to
it. We assume the geometry of the detector is such that all three
phonons are then redirected upward to be detected via quantum
evaporation.

1We remark that, although the dark matter itself is charac-
terized by small speeds, here we mean the nonrelativistic limit of
a superfluid like 4He, i.e., the instance where cs ≪ 1 and μ ≃mHe.2We notice that the parameter b in the Appendix of [52] has a
typo in its units, which should be MPa1=2 m9=2 kg−3=2, as also
confirmed by the data reported in Fig. 6 of [53].

3This is true for the most common models [15], where the
coupling to the Standard Model happens either via a current-
current interaction or via the trace of the stress energy tensor,
which both reduce to the number density in the nonrelativistic
limit.
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where mχ is the dark matter mass and Gχ an effective
coupling of the dark sector with the dimension ðmassÞ−2,
which can eventually be related to the dark matter–nucleon
cross section by the relation σn ¼ G2

χμ2χn=ð4πÞ, with μχn
being their reduced mass. We consider the case of a
complex scalar dark matter given that, for small dark
matter velocity, the final results are spin independent.
The effective couplings can again be related to the
quantities in Table I:

α ≃ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄

mHec2s

r
; β1 ≃

1

mHe
; β2 ≃ −

mHec2s
n̄

n̄00;

γ1 ≃ −
$
mHec2s
n̄

%3
2 n̄00

mHe
; γ2 ≃

$
mHec2s
n̄

%3
2

n̄000: ð4Þ

The actions (1) and (3) produce the following Feynman
rules for the self-interaction of phonons of energy and
momentum ðω; qÞ:

and for their interaction with dark matter,

Let us stress that, the EFT being a low-energy theory, it is
valid up to a certain strong coupling scale, MUV. At
momenta higher than that, the phonon becomes strongly
coupled, and the derivative expansion breaks down. For
4He, MUV can be deduced, for example, from the value of
the momentum for which the dispersion relation deviates
from linear, ω ¼ csjqj, by order one corrections, or for
which the phonon width is of the same order as its
frequency. To ensure the perturbativity of our treatment,
we then limit all momenta to be smaller than a cutoff,
Λ ¼ 1 keV. At momenta equal to Λ, indeed, the correc-
tions to the derivative expansion are still moderate, as
proved by the fact that the deviation from the linear
dispersion relation is ≃30% [54], and that the phonon
width compared to its frequency is Γ=ω ≃ 3%. The effects
of nonlinearities in the dispersion relation for the problem
at hand have been discussed via standard techniques
in [25].

III. PHASE SPACE FOR THREE-PHONON
EMISSION

It is now possible to compute the rate of emission of
three phonons by the passing dark matter. We will assume
that all phonons are separately detected via quantum
evaporation [21,55–57], making them distinguishable from
each other. This is possible if each of them has energy
larger than the binding energy of a helium atom to the
surface of the superfluid, i.e., if ωi ≥ 0.62 meV [21].
Moreover, when ωi > 0.68 meV, phonons are stable
against decay into two other phonons [21,54]. We impose
that all final state phonons satisfy this condition.

TABLE I. Thermodynamic quantities for 4He at atmospheric pressure, as obtained from the equation of state
reported in [52]. Derivatives with respect to the chemical potential can be related to those with respect to the pressure
by the identity dP ¼ n̄dμ.

mHe cs n̄ n̄00 n̄000

3.75 × 106 keV 8.2 × 10−7 0.17 keV3 −1.16 × 1011 keV 5.47 × 1017
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The amplitude for the process under consideration is given
by the diagrams in Fig. 2, with appropriate permutations of
the external momenta. We recall that, for small total
exchanged momentum q, the overall amplitude is strongly
suppressed, M ¼ Oðq2Þ [20,23], as a consequence of the
conservation of particle number associated to the superfluid
[58] (see also [25]). In this particular case, this happens via a
pairwise cancellation between the diagrams Ma and Mc,
and Mb and Md. This can be understood in terms of
integrating out the highly off-shell intermediate phonon,
which amounts to shrinking its propagator to a pointlike local
interaction [23]. The expression for the matrix element is
admittedly cumbersome, but nonetheless manageable ana-
lytically. We report it in the Appendix, together with some
further discussion.
We now present a semi-analytical treatment of the four-

body phase space associated to the three-phonon emission
rate, which we compare to a full Monte Carlo calculation.
When the light dark matter particle hits the superfluid

target in a specific point, the helium volume reacts as a
whole and one or more phonons are produced in the
neighbourhood of the interaction point. Within the EFT,
this is described in terms of an elementary pointlike process
in which the dark matter–helium interaction generates a
given number of phonons.
For simplicity, let us first consider the two-phonon case.

In its passage, the light dark matter particle exchanges
a spacelike momentum4 and the superfluid 4He responds
with the excitation of two gapless particles; including the
final state dark matter, we have a 1 → 3 process. In the
Minkowski metric, on-shell phonons are spacelike—if we
compose a phonon 4-momentum in the form qμ ¼ ðω; qÞ,

this follows from the dispersion law ω ¼ csjqj, with
cs ∼ 10−6.
To compute the phase space, we factorize the 1 → 3

process (dark matter → dark matter þ two phonons) into
two parts:

p → p1 þ q1 þ q2 ¼ ðp → p1 þ qÞ × ðq → q1 þ q2Þ:

We will use p for the norm of the momentum p of the
incoming dark matter particle, p1 for that of the outgoing
one, and qi for the final state phonons. The 4-momentum q
is fictitious. Formally, we treat the first factor as a two-body
decay into the final state dark matter particle and a
“tachyon”, as described by the phase space integral

I2 ¼
1

16π2

Z
d3p1

mχ

d3qffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s

p δ4ðp − p1 − qÞ; ð5Þ

with

q2 ≥ −s; and s ¼ ω2 − q2; ð6Þ

where ω ¼ p2

2mχ
− p2

1

2mχ
is the energy released to the system by

the dark matter particle. From now on, we work at leading
order in the nonrelativistic limit, cs ≪ 1. The I2 integral
can be written as

I2 ¼
1

16π2

Z
d3p1

mχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − p1Þ2 þ s

p

× δ
&
ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p2

1 − 2pp1 cos θ þ s
q '

: ð7Þ

Solving the δ-function for cos θ, and requiring it to have
support on the integration region, we get a condition on the
possible values of s, i.e., smin ≤ s ≤ smax with

smin ¼ ω2 − ðpþ p1Þ2; smax ¼ ω2 − ðp − p1Þ2: ð8Þ

The three-body phase space volume I3 must include the
phase space for the decay of the “tachyon” into two
phonons, which we call J2. Altogether we get

I3 ¼
1

8πmχp

Z
p

0
p1dp1 ×

1

2π

Z
smax

smin

ds × J2: ð9Þ

Now compute the factor J2∶

J2 ¼
1

16π2c2s

Z
d3q1
q1

d3q2
q2

δ4ðq − q1 − q2Þ

¼ 1

8πc2s

Z
dq1 d cos η q1

jq − q1j
δðω − csq1 − csjq − q1jÞ;

ð10Þ

(a) (b)

(c) (d)

FIG. 2. Diagrams contributing to the emission of three pho-
nons. Permutations of the external momenta for the diagrams (b)
and (d) are understood.

4In a Lorentz-breaking medium spacelike, timelike, and light-
like are no longer good labels. However, it is still useful to phrase
the process in these terms to help intuition, and to implement the
phase space with Monte Carlo techniques.
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where η is the relative angle between q and q1. Integrating
over it, we find

J2 ¼
1

8πc3sq

Z
qmax
1

qmin
1

dq1: ð11Þ

Imposing −1 ≤ cos η ≤ 1, we get

qmin
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s

p

2cs
−
q
2
; qmax

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s

p

2cs
þ q

2
: ð12Þ

Plugging everything into Eq. (9) gives the phase space
volume for the three-body decay:

I3 ¼
p3

96π3c3smχ
: ð13Þ

The calculation of the four-body phase space follows the
same logic, but is admittedly more involved. In particular,
the decay is now factorized in three two-body decays, with
the introduction of two fictitious 4-momenta, as shown in
Fig. 3. We now have two integration variables, s and r, and
the result for the four-body phase space factor, I4, is

I4 ¼
1

8πmχp

Z
p

0
p1dp1 ×

1

2π

Z
smax

smin

ds

×
1

8πcsq

Z
qmax
3

0
dq3 ×

1

2π

Z
rmax

rmin

dr

×
1

16π2c3sk

Z
qmax
1

qmin
1

dq1

Z
2π

0
dϕ1; ð14Þ

where ϕ1 is the azimuthal angle between q1 and k.
Imposing positivity of all energies, and for the δ-functions
to have support within the integration domain, one finds the
following additional extrema:

rmin ¼ s − q23 − 2csq3ω − 2qq3; ð15aÞ

rmax ¼ s − q23 − 2csq3ωþ 2qq3; ð15bÞ

qmax
3 ¼ ω

2cs
: ð15cÞ

Putting everything together, the expression for the four-
body phase space is

I4 ¼
p7

53760m3
χπ5c6s

: ð16Þ

One last comment is in order. The matrix element for the
three-phonon emission is a function of the magnitudes of
the phonon momenta, qi, and of their relative polar angles,
θij. After imposing momentum conservation to, say,

eliminate q2, one is still left with a dependence on θ13,
which does not appear among the integration variables.
The latter can, however, be related to the relative angles
between q1 and k, say ðθ1;ϕ1Þ, and between q3 and k,
say ðθ3;ϕ3Þ. To do that, start from a reference frame
where q1 is along the z-axis. The other two vectors can
be written as q3 ¼ q3ðsinθ13 cosϕ13;sinθ13 sinϕ13;cosθ13Þ
and k ¼ kðsin θ1 cosϕ1; sin θ1 sinϕ1; cos θ1Þ. We now
perform a rotation to a frame where k is along the
z-axis. The corresponding rotation matrix is given by
R ¼ eL·n̂θ1 ¼ 1þ sin θ1L · n̂þ ð1 − cos θ1ÞðL · n̂Þ2, where
L are the real generators of three-dimensional rotations,
and n̂ ¼ k × q1=jk × q1j is the normal vector perpendicular
to both k and q1. In this frame, the momentum q3 is given
by R · q3 ¼ q3ðsin θ3 cosϕ3; sin θ3 sinϕ3; cos θ3Þ. Rotating
this last vector back to the original frame, one finds the
relative angle between q1 and q3 as a function of the angles
between q1 and k, and q3 and k, i.e.,

cos θ13 ¼ cos θ3 cos θ1 − cosðϕ3 − ϕ1Þ sin θ3 sin θ1: ð17Þ

All the remaining angles are either trivial, an integration
variable, or can be eliminated through a δ-function.
The analytic formulae for phase space volumes in

Eqs. (13) and (16), valid at leading order in cs ≪ 1, have
been compared to the fully numerical exact computation of
the same two quantities, finding perfect agreement.
The numerical calculation proceeds through the random

generation of final state momenta and their selection with
a sequence of controls cutting the phase space according
to the kinematical conditions. The matrix element, as
determined by the EFT, will weight the phase space cells.
The differential distributions presented here are generated
numerically.

IV. DIFFERENTIAL RATES, VERTEX
RECONSTRUCTION AND DIRECTIONALITY

The relevance of an event where three phonons are
emitted lies in its potential for background rejection, vertex

FIG. 3. Kinematics of three-phonon emission. The 1 → 4
process is factorized in three 1 → 2 processes by introducing
two fictitious 4-momenta.
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reconstruction, and directionality. Consider the “cygnus-
shaped” event, like the one schematically represented in
Fig. 1. The corresponding rate will clearly be suppressed
with respect to that of emission of a lower number of
phonons. Nonetheless, one can envision a detector where
all three phonons can be observed and where their direction
can be approximately determined (see [56,59]). This might
be achievable, for example, with a geometry as the one
depicted in Fig. 1, with the vertical sides tilted in order to
redirect the two back-to-back phonons upward, allowing
them to trigger quantum evaporation. The latter, as found in
[56,59], only happens if the phonon has a relative angle
with respect to the direction normal to the surface of the
superfluid smaller than a certain critical value (roughly
25°). This can allow for a partial reconstruction of the
phonon initial direction. Given this, an event of this sort

contains important information, which cannot be obtained
from other processes. First, the presence of two almost
back-to-back phonons could be employed for efficient
background rejection through coincidence requirements
[21], also in combination with the third forward phonon.
Moreover, knowing the direction of the outgoing phonons,
it is possible to reconstruct the interaction vertex. Used in
combination with timing information,5 this can be impor-
tant to discriminate between a multiphonon emission due
to a single scattering with the target (as expected for a
dark matter particle) and one due to multiple scatterings (as
it can happen, for example, from a background neutron).

FIG. 4. Differential distributions for the cosine of the angle between the most forward phonon and the direction of the incoming dark
matter (upper left), the angle between the other two phonons (upper right), the angle between the most forward phonon and the hardest
of the remaining two (bottom left), and the angle between the incoming and outgoing dark matter (bottom right). The corresponding
angles are pictorially represented in the insets. Note that in the top right panel, while going from mχ ¼ 300 keV to 500 keV, the typical
angle gets closer to ψ ¼ π and further increasing the mass to 1000 keV brings it back to smaller values. This is due to an interplay
between the high momentum released by the dark matter, and the presence of the cutoff Λ for the forward phonon. The rates have been
obtained for a nominal value of the dark matter–nucleon cross section σn ¼ 10−42 cm2. We recall that, in a realistic situation, the dark
matter incoming direction follows a Maxwell-Boltzmann distribution. The curves formχ ¼ 300 keV and 500 keV have been rescaled to
make their shape visible, as indicated in the legend.

5With a time resolution of Δt ∼ 0.1 ms, as the one envisioned
in [21], one can, in principle, discriminate distances of the order
of Δx ∼ csΔt ∼ 2 cm.
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As we show below, the direction of the forward outgoing
phonon is also strongly correlated with the direction of the
incoming dark matter, hence providing important direc-
tional information, also key to background discrimination.
An event of this sort contains a good deal of information—
see Fig. 4—which could be further used to characterize the
dark matter event.
To determine whether the configuration shown in Fig. 1

is allowed, we compute different angular distributions—see
Fig. 4. We consider a typical dark matter velocity given by
vχ ¼ 220 km=s [60]. Before commenting on them, let us
notice that our tree-level amplitudes feature collinear
divergences, when two of the final state phonons are
emitted at a small relative angle. This is a standard property
of amplitudes involving gapless states with a linear
dispersion relation. For the phonons of energy between
0.68 meV and csΛ ¼ 0.82 meV considered here, the
divergence is never hit. Moreover, since we are interested
in an exclusive process, where all phonons are well
separated in angle, here it suffices to regularize the possible
unphysical enhancements including the finite phonon
width in the propagator, along the lines of [25]—see the
Appendix.
As one can see from Fig. 4, most of the events are such

that the forward phonon is indeed close in direction to the
incoming dark matter, while the remaining two phonons are
almost back-to-back. Moreover a non-negligible fraction of
the latter appears perpendicular to the forward phonon, i.e.,
in the configuration of interest to us. Finally, the differential
distribution shows that, in many events, the outgoing
direction of the dark matter is almost opposite to the
incoming one. The discrepancy between the two can be
further reduced by aligning the detector with the direction
of the Cygnus constellation, taking advantage of the
velocity distribution of the dark matter (see, e.g., [61]).
This, together with the presence of the forward phonon,
ensure both the directionality of the signal (crucial for
background discrimination) and the possibility of recon-
structing the dark matter momentum (and hence its mass)
from the momentum of the forward phonon.
As we can also deduce from the distributions, the

“cygnus” event is relevant for masses that are not much
lighter than a few hundred keV. Below that, the number of
back-to-back phonons emitted perpendicularly to the for-
ward one drops (bottom left panel of Fig. 4), making the
event unlikely.
We note that the above features cannot be obtained from

processes where the dark matter emits one or two phonons.
In the former case, while directional information might be
available through Čhrenkov emission [22], this strongly
varies with the dark matter mass, it is not possible to
reconstruct the interaction vertex, and the process is only
allowed for masses strictly heavier than 500 keV. In the
latter case, instead, there is a large degeneracy on the
interaction point, which makes the reconstruction of

the direction of the incoming dark matter, as well as the
interaction vertex, very challenging.
To have a rough idea of how many events to expect for a

process like this, we estimate the total rate allowing for the
three phonons to deviate from the exact “cygnus-shaped”
configuration by 25° [56,59] for the relative angle between
the dark matter and the forward phonon, between the two
back-to-back phonons, and between the latter and the
forward phonon. As a comparison, we also compute the
rate for the emission of two back-to-back phonons,
allowing for the same spread in relative angle (essentially
the same event but without the additional forward phonon).
We fix the dark matter–nucleon cross section to the nominal
value of σn ¼ 10−42 cm2. Starting from these rates, Γ, the
number of events per unit time and mass of the detector is
then computed as R ¼ ρχ

mχ n̄mHe
Γ, where ρχ ¼ 0.3 GeV=cm3

[62] is the local dark matter mass density. The comparison
is reported in Fig. 5.
The two-phonon event signature is dominant in most of

the mass range. However, for masses larger than roughly
500 keV, the “cygnus-shaped” three-phonon event signa-
ture becomes more relevant. Indeed, it is only for quite low
masses that the two phonon events are dominated by back-
to-back configurations. At higher masses, requiring such a
configuration drastically reduces the rate.

V. CONCLUSION

In this work we put forth the idea of looking for the
process of emission of three phonons by a dark matter
particle in superfluid 4He. If the dark matter is not too much

FIG. 5. Number of events per unit time and target mass for two
phonons almost back-to-back and three phonons in the “cygnus-
shaped” configuration. The angular tolerance is taken to be 25°
[56,59] and the dark matter–nucleon cross section is fixed to the
nominal value of σn ¼ 10−42 cm2. The shaded band corresponds
to the statistical uncertainty of the Monte Carlo integration.
Interestingly, due to the paucity of back-to-back phonons at
masses mχ ≳ 500 keV, the three-phonon event signature be-
comes relevant, or even dominant.
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lighter than mχ ≃ 500 keV, this event can allow for
triggering, vertex reconstruction, and directionality due
to its peculiar kinematical configuration. This important
information, which cannot be obtained from events involv-
ing one or two phonons, can be key towards an efficient
background discrimination, and mass reconstruction.
Moreover, if one enforces approximately back-to-back
phonons for coincidence requirements, the three-phonon
event considered here becomes dominant over the two-
phonon one.
The dynamical matrix elements have been obtained

from the relativistic EFT for superfluids, while the cor-
responding four-body phase space has been computed
with both semi-analytical methods and fully numerical
Monte Carlo techniques. The combination of these tools
allows excellent control over this and many other observ-
ables, also confirming the EFT approach as a powerful
theoretical framework, with possible applications to other
materials or signatures, as well (see, e.g., [63]). The four-
phonon interaction vertex found here can be hard to obtain
with standard condensed matter methods, and can hence be
relevant for other studies on the dynamics of 4He.
The predicted rate for the process of interest is straight-

forward to obtain with the tools described here. However,
its precise determination depends on the allowed angular
and momentum resolutions for the outgoing phonons,
which are ultimately given by the detector acceptance.
Finally, as already noted, the three-phonon tree-level

rates involving almost collinear final states are divergent.

If one was interested in computing these configurations, the
cancellation of these divergences, as well as their power
counting within the EFT (see, e.g., [64–67]), should be
addressed.
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APPENDIX: MATRIX ELEMENTS

Here we present the complete expressions for the
matrix elements associated with the diagrams in Fig. 2.
Note that diagram (b) and (d) should appear three
times, one for each permutation of the phonon eternal
momenta. Here we report only one of them. The matrix
elements are

Ma ¼
Gχmχαω

ω2 − c2sq2 þ iκcsq6
fλ1ðq1 · q2q3 · qþ q1 · q3q2 · qþ q1 · qq2 · q3Þ

× λ2ðω1ω2q3 · qþ ω1ω3q2 · qþ ω1ωq2 · q3 þ ω2ω3q1 · qþ ω2ωq1 · q3 þ ω3ωq1 · q2Þ þ λ3ω1ω2ω3ωg; ðA1aÞ

Mb ¼ −
Gχmχαω½g1ðω1q22 þ ω2q21 þ 2ðω1 þ ω2Þq1 · q2Þ þ g2ω1ω2ðω1 þ ω2Þ&
ðω2 − c2sq2 þ iκcsq6Þ½ðω1 þ ω2Þ2 − c2sðq1 þ q2Þ2 þ iκcsðq1 þ q2Þ6&

× ½g1ðω1q3 · qþ ω2q3 · qþ ω3ðq1 þ q2Þ · qþ ωðq1 þ q2Þ · q3Þ þ g2ωðω1 þ ω2Þω3&; ðA1bÞ

Mc ¼ Gχmχ ½γ1ðω1q2 · q3 þ ω2q1 · q3 þ ω3q1 · q2Þ þ γ2ω1ω2ω3&; ðA1cÞ

Md ¼
Gχmχ ½g1ðω1q22 þ ω2q21 þ 2ðω1 þ ω2Þq1 · q2Þ þ g2ω1ω2ðω1 þ ω2Þ&

ðω1 þ ω2Þ2 − c2sðq1 þ q2Þ2 þ iκcsðq1 þ q2Þ6

× ½β1ðq1 þ q2Þ · q3 þ β2ðω1 þ ω2Þω3&; ðA1dÞ

where κ ≡ ð3g1þg2c2sÞ2
960πc2s

¼ ð1þmHen̄cs
dcs
dP Þ

2

240πmHen̄
characterizes the pho-

non width, while ω and q are, respectively, the total energy
and momentum released by the dark matter.
When computed in the limit of small exchanged momen-

tum, csq ≪ ω, the above matrix elements cancel pairwise
—i.e., Ma þMc ¼ Oðq2Þ and Mb þMd ¼ Oðq2Þ—in

order to respect the Ward identity following from the
conservation of the superfluid particle number [24].
Despite the complicated structure of the matrix elements
themselves, this pairwise cancellation can be easily under-
stood just from the Feynman diagrams. As shown in [23],
in the limit of small exchanged momentum one can
integrate out the very off-shell phonon appearing in
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diagrams (a) and (b). This amounts to reducing its
intermediate propagator to a contact interaction, hence
precisely obtaining diagrams (c) and (d), but with opposite
sign. Interestingly, the derivative nature of the phonon

coupling compensates for the nonlocality of the propagator,
ultimately ensuring the locality of the effective interac-
tion obtained by integrating out the gapless off-shell
phonon.
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