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ABSTRACT Themonocular depth estimation (MDE) is the task of estimating depth from a single frame. This
information is an essential knowledge in many computer vision tasks such as scene understanding and visual
odometry, which are key components in autonomous and robotic systems. Approaches based on the state of
the art vision transformer architectures are extremely deep and complex not suitable for real-time inference
operations on edge and autonomous systems equipped with low resources (i.e. robot indoor navigation and
surveillance). This paper presents SPEED, a Separable Pyramidal pooling EncodEr-Decoder architecture
designed to achieve real-time frequency performances on multiple hardware platforms. The proposed model
is a fast-throughput deep architecture for MDE able to obtain depth estimations with high accuracy from
low resolution images using minimum hardware resources (i.e. edge devices). Our encoder-decoder model
exploits two depthwise separable pyramidal pooling layers, which allow to increase the inference frequency
while reducing the overall computational complexity. The proposed method performs better than other fast-
throughput architectures in terms of both accuracy and frame rates, achieving real-time performances over
cloud CPU, TPU and the NVIDIA Jetson TX1 on two indoor benchmarks: the NYUDepth v2 and the DIML
Kinect v2 datasets.

INDEX TERMS Computer vision, monocular depth estimation, fast-throughput, edge devices.

I. INTRODUCTION
The estimation and extraction of depth information from
images and videos is one of the basic and essential tasks
in computer vision. Depth information can be successfully
integrated with RGB data to obtain notable improvements
in other challenging tasks, like face and object detection,
semantic segmentation, visual SLAM, etc. [1]. Several appli-
cations, as autonomous systems, robotics manipulators and
augmented reality algorithms, usually rely on stereo or depth
cameras to achieve their tasks. However, in some settings
the presence of a single RGB camera requires the estimation
of the monocular depth; this is especially true for indoor or
hostile environments where the use of small robots and drones
introduce some constraints. Those indoor scenarios are usu-
ally characterized by a limited depth range (i.e. usually lower
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than 10 meters), and the lighting conditions can significantly
change.

Depth estimation techniques can be divided into three
major groups: geometry-based methods, which work on
couples or sequences of images, as the structure from
motion [2], the sensor-based methods [3], which exploit
laser-based and RGBD devices, and the deep learning (DL)
based techniques [1]. The latter methodologies have remark-
able abilities to estimate accurate dense depth maps from
a single image in an end-to-end fashion, without the need
of complex pre-processing or additional assumptions. This
approach leads the research community to further investigate
and develop many novel architectures for depth estimation
through a single camera.

However, recent studies [1] have demonstrated that MDE
algorithms have limited capabilities w.r.t. real-time perfor-
mances, as they focus on the estimation accuracy at the
expense of the inference frequency. Indeed, depth estimation
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algorithms based on vision transformers [4] are computa-
tional heavy and not suitable to perform real-time inference
in low-resource settings.

This paper proposes SPEED,1 a Separable Pyramidal
pooling EncodEr-Decoder architecture that aims at achieving
real-time performances over both cloud and edge devices.
The proposed method exploits an optimized version of
the MobileNet [5] architecture: the depthwise convolutional
blocks have been replaced by a novel depthwise separable
pyramidal pooling (DSPP) layer, which led to an improve-
ment in both the latency and the accuracy of the network.
We experimented with several available encoder and decoder
models to design SPEED, which is the optimal trade-off
between accuracy and inference frequency. SPEED has been
tested on systemswith different resources as cloud CPU, TPU
and the edge NVIDIA Jetson TX1.2 Moreover, to have a
complete overview of the behaviour on edge devices, we also
test the accuracy and inference performances on the Google
Coral Dev Board3 Edge TPU.

SPEED achieves real-time (30 fps) predictions both on
regular CPU and TPU workstations, and on low-power edge
GPU; furthermore, it is able to obtain more accurate estima-
tions on very low resolution images (up to 48 × 64) w.r.t.
other fast-throughputMDEmethods, such as [6], [7]. Figure 1
shows some examples of SPEED depth estimations. The
robustness and the speed of our algorithm could be a valuable
baseline for edge computing methods using edge compu-
tational components (e.g. TPUs); this will further allow to
use DL techniques on several mobile and low-cost indoor
systems, which are often characterized by low computational
power.

The main contributions of the paper are summarized as
follows:
• We propose an improved encoder architecture, based on
the MobileNet [5] model, and a specifically designed
decoder; both the structures take advantage of a novel
layer named DSPP, which is a fast variant of the spatial
pyramidal pooling layer.

• We show the effectiveness of SPEED in the supervised
fast-throughput MDE task on two indoor datasets, the
NYU Depth v2 [8] and the DIML Kinect v2 [39].

• We performed a detailed study on cloud and edge
devices, reporting real-time frequency performances
over CPU, TPU and low-resource NVIDIA Jetson
TX1 GPU.

• We analyze the effect of alternative architectures and
images resolutions through ablation studies, measuring
the performances both on the accuracy estimation and
on the inference frequency.

This paper is organized as follows: Section II reviews some
previous works related to the topics of interest. Section III

1Code and corresponding pre-trained weights are made publicly available
at the following GitHub repository:
https://github.com/lorenzopapa5/SPEED

2https://developer.nvidia.com/embedded/jetson-tx1
3https://coral.ai/products/dev-board/

FIGURE 1. SPEED depth map predictions.

describes the proposed method and the overall architecture
in detail. Experiments and hyperparameters are discussed in
Section IV, while Section V reports the results and a quanti-
tative analysis of SPEED w.r.t. other significant works. Some
final considerations and future applications are provided in
Section VI.

II. RELATED WORKS
In this section we report state of the art related works on
monocular depth estimation, as well as the pyramidal pooling
layer used extensively in our method.

A. MONOCULAR DEPTH ESTIMATION
Deep architectures used to estimate depth maps from single
images are usually trained on large-scale datasets [8], [9].
Plenty of deep neural networks have demonstrated their effec-
tiveness to address the MDE problem mainly focusing on
improving the estimation accuracy: from the most traditional
convolution neural network (CNN) to the recent state of
the art ones, as for example the methods based on vision
transformers (ViT) [4]. Those architectures are usually based
on an encoder-decoder structure [10], that provides sensible
improvements on scene reconstruction [11] and image seg-
mentation [12] tasks.

Among CNN-based approaches, Wofk et al. [6] pro-
pose an architecture that achieves fast-throughput using
MobileNet [5] as a backbone, while Alhashim and
Wonka [13] exploit DenseNet [14] model to obtain
high-resolution depth estimation. Moreover, Eigen et al. [34]
propose a multi-scale two steam architecture for depth esti-
mation, while Zhang et al. [16] explores temporal informa-
tion from monocular videos to capture temporal correlations
among frames. Chen et al. [17] propose a specific architec-
ture and a new dataset called Depth in the Wild for single
image depth estimation in unconstrained settings; similarly
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to Kim et al. [39] with the introduction of the DIML Kinect
v2 dataset for indoor scenarios.

ViT networks have recently gained great visibility, since
their accurate estimation capabilities related to the self-
attention mechanism [18] can simultaneously extract the
necessary information from both local and global pixel
inter-relation, as described in Dosovitskiy et al. [4].
Some MDE works exploit ViT architectures to esti-

mate depth by combining self-attention Transformers layers
and classical CNN. AdaBins [19] makes use of the self-
attention module as network head, transforming the depth
regression task into a classification problem as proposed
by Fu et al. [21]. In Ranftl et al. [20], the authors propose
a novel architecture called Dense Prediction Transformer,
which uses a transformer encoder combined with a tradi-
tional decoder to perform the estimation. Moreover, in [22]
Ranftl et al. propose to use a zero-shot cross-dataset trans-
fer technique to improve the generalization capability over
different datasets while Gur and Wolf [41] propose to learn
depth focus cues.

It is worth saying that the state of the art methods are
mainly focused on attaining higher accuracy performances,
at the expense of an increasing complexity and inference
frequency; with SPEEDwe propose instead a fast-throughput
CNN architecture with a balanced trade-off between accuracy
and inference frequency. We define as fast-throughput archi-
tecture, a model that is characterized by an high inference
frame rate i.e. the average frequency needed to the model to
perform a decision in a low-resource setting while keeping
consistent accuracy scores.

Up to now, few works have been proposed to address
this problem in the indoor scenario. Most of them [6], [24]
are designed to achieve real-time frequencies on a NVIDIA
Jetson TX2 GPU4 while being also widely employed in
mobile applications [23]. Differently, we are interested in
testing the those methods on less investigated devices; for
this reason we chose as benchmark hardware the TPU-v2
and an Intel CPU provided by Google Cloud Platform. Fur-
thermore, we compare the state of the art lightweight mod-
els on two edge devices: the NVIDIA Jetson TX1 and the
Google Edge TPU. Furthermore, other relevant MDE meth-
ods have been developed for the automotive tasks tested
on the outdoor KITTI [9] dataset. Godard et al. [25] pro-
pose an architecture to estimate high-quality depth maps
while Abarghouei and Breckon [27] a CNN-based approach
combined with domain adaptation techniques. Liu et al. [26]
propose a semi-unsupervised recurrent module to accom-
plish accuracy scores competitive to deeper networks while
maintaining real-time performances. Poggi et al. [7] pro-
pose a novel approach based on a pyramidal structure to
obtain a good inference frequency over a standard CPU.
Guizilini et al. [28] propose a 3D solution based on packing
and unpacking 3D convolutions blocks used to preserve the
representation of the details. From the best of our knowledge,

4https://developer.nvidia.com/embedded/buy/

our work is the first to profile an architecture designed to
run at real-time speed on both cloud and edge devices. The
obtained results are remarkable also w.r.t. the very low-
resource Edge TPU, on which the model maintains an excel-
lent final estimation accuracy and a faster frame rate w.r.t.
other available models.

B. PYRAMIDAL POOLING LAYER
The spatial pyramidal pooling (SPP) layer has been intro-
duced for the first time by He et al. [29] for visual recog-
nition tasks. Such a method avoids to repeatedly compute
the same convolutional features, demonstrating to be faster
than recurrent-CNN [30] with a similar accuracy. Many
vision-related works for object detection and classification
exploit pyramidal pooling networks (or some of its vari-
ations) as a complement to standard CNN architectures.
Zhang et al. [31] proposed two pyramidal structures to cap-
ture the global context information in object detection task
through different region-based context aggregations. Differ-
ently, Masci et al. [32] developed a multi-scale pyramidal
pooling layer applied to the detection and classification of
steel defects.

Inspired from these previous works, in this paper we pro-
pose an improved SPP layer, called DSPP, composed of
multiple depthwise separable convolutions which are able to
reduce the architecture computational cost while producing
an accurate depth estimation.

III. PROPOSED METHOD
In this section, a sketch of SPEED is provided, with a detailed
architecture analysis; an overview of the model is reported in
Figure 2. In particular, the encoder and the decoder modules
will be described in two separated sections (III-A and III-B)
to highlight the reasons which led to each design choice.
The consequent impact on the final performances will be
discussed in Section V.

A. THE SPEED ENCODER
The encoder has the objective to progressively downsample
the input image to extract features at multiple different scales,
giving as output a compact set of high-level features. Popular
backbone architectures in the MDE field, as previous men-
tioned, are the DenseNet [14] and the MobileNet [5].

The encoder architecture proposed in this work is a varia-
tion of the second one that is widely employed for multiple
tasks ranging from MDE [6] to semantic segmentation [33].
More in detail, the MobileNet depthwise blocks perform two
operations: a 3 × 3 depthwise convolution and a point-wise
convolution.

In SPEEDwe supersede the final depthwise decomposition
layers of the MobileNet (from the eighth to the eleventh, for a
total of eight convolutional layers) with a DSPP layer, a fast-
throughput variation of the spatial pyramidal pooling layer
obtained replacing the original convolution operation with
depthwise separable one. TheDSPP is composed of four aver-
age pooling and four separable convolution layers. The whole
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FIGURE 2. Overview of the SPEED encoder-decoder network architecture. It consists in two main components: the SPEEDDSPP encoder and three
cascaded up-sampling (UpS) blocks constituting the decoder. The input-output spatial dimensions are reported in the (H, W, C) format.

DSPP structure contributes with 281K trainable parameters,
w.r.t the original configuration, which uses 1.08M parameters
for the same objective.

As will be shown in Section V, this operation improves not
only the inference frequency but also the estimation accuracy.

In fact, the depthwise separable convolution achieves the
same result of a classical convolution through fewer multi-
plications, thus reducing the computational complexity and
increasing the consequent inference frequency. The com-
plete structure of the proposed DSPP layer is reported in
Figure 3(a). The input features are first processed through
four average pooling layers with different resolutions and
then filtered by a depthwise separable convolution where its
output features are a quarter of the input. Finally, the four out-
puts are resized to the desired shape and then concatenated.

Moreover, inspired by [13], we decrease by a factor of 4 the
output features of the encoder, and the input-decoder features
consequently, without introducing any substantial accuracy
degradation. Please refer to Table 1, at the Depthwise-
block13lite,5 for further details on output shape and parameters
of the SPEED encoder.

The final encoder architecture, reported in Table 1,
has 2.1M of parameters w.r.t. the 3.6M of the original
MobileNet.

B. THE SPEED DECODER
The decoder objective is to upsample the features learned by
the encoder while reconstructing the image details to obtain
the desired output depth map (i.e. a per-pixel distance map).

In SPEED, both the encoder and the decoder exploit the
just defined DSPP layer. More in detail, for the decoder
we propose the mixed depthwise separable pyramidal pool-
ing (MDSPP) layer, which keeps the features pipeline divided
into two different flows until their final concatenation. This
choice is due to the beneficial effect of having more depth-
wise separable convolution operations on specific features,
which improves the decoder process while keeping a fast
computation w.r.t. standard convolution ones. Via this setup,

5The architecture blocks names are given following the original layers
nomenclature of the MobileNet model.

TABLE 1. Structure of the SPEED encoder architecture with respective
output shapes and number of parameters.

the network further increase the inference frequency by
exploiting such MDSPP layer, which is designed over depth-
wise separable convolutions. Its graphical representation is
reported in Figure 3(b). It has to be noticed that the sizes of
the four average pooling layers and the flow of the computed
operations in the MDSPP layer are the same as the DSPP
one; such structure is also evidenced by the coloured arrows
reported in Figure 3.

This layer is integrated in an up-sampling (UpS) block;
in detail, the MDSPP output feature maps are up-sampled
by a factor of 2 with a transposed convolution layer, and
finally concatenated through the skip connection to recover
the image details from the encoder feature maps. Finally,
the merged output is processed via a depthwise sepa-
rable convolution layer; to further diminish the decoder
dimension, after the concatenation operation, we trim its
number of parameters to the nearest power of two after
reducing them by a factor of 4 (e.g. from 272 to 68,
and finally rounded to 64). A graphical representation of
the up-sampling block is reported in Figure 3(c). Finally,
as depicted in Figure 2, the proposed decoder is composed
of a sequence of three cascaded up-sampling blocks that
progressively increase the feature resolution to the desired
output. Via this set-up, the SPEED decoder architecture
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counts a total of ∼ 500k trainable parameters while keeping
the overall model fast and accurate as will be shown in
Section V-D.

IV. EXPERIMENTAL SETUP
In this section we give a detailed description on the
experimental setup; in particular, the dataset, the training
hyper-parameters and the evaluation metrics are described to
provide a complete overview of our method highlighting its
strengths.

A. DATASETS
The datasets used to show the performance of SPEED are the
NYUDepth v2 [8] and the DIMLKinect v2 [39], two popular
datasets to benchmark MDE in an indoor setting. The NYU
Depth v2 dataset provides RGB indoor images and ground
truths depth maps, with a maximum distance of 10m and a
resolution of 480 × 640 pixels. It contains 120K training
samples and 654 testing samples [34].We train ourmethod on
a 50K subset as previously done in [13] and [19]. The DIML
Kinect v2 dataset is composed of more than 480K indoor
images at a resolution of 792×1408 in a depth range between
0.5m to 7m, taken with a Kinect v2 device. The indoor subset
is composed by frames taken in several room categories, e.g.
offices, dormitories, classrooms and restaurants. The dataset
is split in a 150K training set and a 70K test set, as reported
in [39].

The images of both datasets are resized to the optimal
resolution of 192×256 due to the trade-off between inference
frequency and accuracy score, discussed in the following in
Section V-E.

B. EVALUATION METRICS
To evaluate and compare the performance of SPEED, we con-
sidered the most commonly used metrics in depth estimation
tasks: root-mean-square error (RMSE), relative error (REL),
and the accuracy value δ1. Please refer to equations (1, 2, 3)
for their formulation, where pi and gi are respectively the
predicted depth map and its ground truth while P denotes the
total number of pixels.

RMSE =

√
1
|P|

∑
i∈P

||pi − gi||2 (1)

REL =
1
|P|

∑
i∈P

|pi − gi|
gi

(2)

δ1 =
1
|P|

∑
i∈P

max
(
pi
gi
,
gi
pi

)
< thr (3)

In the last equation thr is a threshold commonly set to 1.25.
Due to the importance of the inference frequency in our
work, we propose a comparison w.r.t. the frame rate (fps)
obtained over the different benchmark hardware of the ana-
lyzed methods.

C. TRAINING SETUP
We implemented SPEED using TensorFlow 26 deep learning
high level API. We randomly initialized the convolutional
kernels of both the encoder and the decoder (as described
in [35]). ADAM [36] optimizer and its AMSGrad [37] variant
have been used in all the experiments with the following
setup: learning rate 0.0001, β1 = 0.9, and β2 = 0.999.
We have set a batch size of 16 and trained the model for a
total of 25 epochs on the chosen dataset.

The loss function (4) is the Accurate Object Boundaries
Loss [38], where the error ei is computed as the absolute
difference between the predicted image pi and the ground
truth gi.

L = ldepth + lgrad + lnorm (4)

This loss function is computed as combination of the point-
wise depth loss ldepth (5), the Sobel gradient loss lgrad (6),
where ∇ is the spatial derivative of ei w.r.t. the specific axis,
and the normal loss lnorm (7), where 〈npi , ngi〉 is the inner
product of the surface normal vectors ngi and npi computed
for each depth map.

ldepth =
1
n

n∑
i=1

ei (5)

lgrad =
1
n

n∑
i=1

(∇x(ei)+∇y(ei)) (6)

lnorm =
1
n

n∑
i=1

(
1−

〈npi , ngi〉√
〈npi , npi〉

√
〈ngi , ngi〉

)
(7)

Once the training phase is completed, the model is con-
verted to TensorFlow Lite7 (we call this version of the
model SPEEDlite thereafter). We use as benchmark hard-
ware the Google Cloud TPU-v28 equipped with 8 cores,
8GB of memory per-core, and the Google server Intel Xeon
CPU9 @2.20GHz (single core). Moreover, two edge process-
ing units are compared: the 4GB NVIDIA Jetson TX1, an
ARM-powered device equipped with a 256-core NVIDIA
Maxwell GPU,10 and the 4GB Google Coral Dev Board,
an ARM-powered device with an on-board Edge TPU11

coprocessor. Finally, the inference frequencies reported for
each hardware in the Chapter V are computed as average
frame-per-seconds (fps) of the model inference frequency.

V. RESULTS
In this section, we report the SPEED results on two bench-
mark datasets, the NYU Depth v2 and the DIML Kinect
v2, described in Section IV. We provide in Section V-A

6https://www.tensorflow.org/
7https://www.tensorflow.org/lite
8https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
9https://www.intel.it/content/www/it/it/products/details/processors.html
10https://developer.nvidia.com/maxwell-compute-architecture
11https://cloud.google.com/edge-tpu
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FIGURE 3. A representation of the depthwise separable pyramidal pooling (DSPP) layer (3(a)) with respective shapes (H, W, C), the mixed depthwise
separable pyramidal pooling (MDSPP) layer (3(b)), and of the up-sampling (UpS) block (3(c)). The values of the input-output shapes for
(3(b)) and (3(c)) change every time the MDSPP layer and the UpS block are applied in the SPEED decoder. Please refer to the legend to understand
their general behaviour.

FIGURE 4. Qualitative comparison between SPEED and FastDepth [6]. The depth maps are all resized to the same image resolution and converted
in RGB format with a perceptually uniform colormap (Plasma-reversed) extracted from the ground truth, for a better view.

a comparison with state of the art algorithms in terms of
the metrics described in Section IV-B. In Section V-B is
shown a detailed analysis of SPEED over different frame-
works and edge devices. Finally, in the ablation studies
(Sections V-C, V-D, V-E) we analyze the individual contri-
bution of the encoder and the decoder model on the over-
all architecture performances together with the performance
behaviour at different resolutions.

A. COMPARISON WITH STATE OF THE ART METHODS
In this section, SPEED is compared with different methods
working in real-time and low-resource settings as [6], [24],
and with deeper but slower methodologies, as [16], [19], [41].
Table 2 shows the results on the NYU Depth v2 dataset while
in Table 3 a comparison is given with respect to the DIML
Kinect v2 dataset. In each Table, the reported values for the
evaluation metrics are extracted from the respective papers,
with the exception of FastDepth values in Table 3 since this

TABLE 2. Comparison with prior works on the NYU Depth v2 dataset. The
best scores are in bold and second best are underlined, - when the value
is not reported in the original paper.

method has not been originally tested on the DIML Kinect
v2 dataset, thus requiring a training from scratch. It can be
noticed that SPEED achieves state of the art results w.r.t.
fast-throughput related works, such as [6] and [24] but also
remarkable results in the error estimation w.r.t. more complex
models as [41].
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TABLE 3. Comparison with prior works on the DIML Kinect v2.

For example, if compared against FastDepth with the best
RMSE, SPEED shows a decrement in the RMSE of 5.8%
(see Table 2); furthermore, as can be seen from Figure 4,
the SPEED prediction (4(c)) is visually closer to the ground
truth (4(b)) w.r.t. FastDepth (4(d)) estimation. Differently,
AdaBins [19] specifically designed to optimize the estimation
accuracy obtains state of the art results at the expense of the
inference frequency (less than 1 fps as evidenced in Table 4).
The spatial-temporal convolutional long short-term memory
(ST-CLSTM) structure proposed by [16] shows unsatisfied
results on the single image depth estimation task.

In the case of DIMLKinect v2 dataset we compare SPEED
with the fast-throughput architecture which better performed
on NYUDepth v2, FastDepth, and with the method proposed
by the dataset authors [39]. As shown in Table 3 the error
reduction of SPEED with respect to Y. Kim et al. [39] is
around 45% on the RMSE and 83% on REL, underlying
the power of our approach on a different set of data. At the
same time an evident improvement is noticeable also for
FastDepth, with an error reduction of 2% (RMSE), 15%
(REL) and 7% (δ1).
As previously said, most of the techniques developed for

MDE are mainly focused on optimizing the estimation accu-
racy without considering other important aspects as the infer-
ence frequency. In Table 4 we compare the frame rate and the
number of parameters of SPEED w.r.t. FastDepth [6] and two
computationally intensive methods: a deep CNN [16] and a
ViT [19]. We compare the chosen pretrained models running
on the low-resource benchmark hardware. The accuracy per-
formances of ViT [19] comes at the expense of a low frame
rate, with a value lower than 0.1 fps on the cloud CPU and
almost equal to 1 fps on the cloud TPU. Our method is instead
able to improve the inference frequency by almost 540 times
on the CPU and more than 30 times on the TPU w.r.t. [19]
(i.e. achieving 0.05 fps and ∼ 1 fps respectively), with an
increase of 0.1 meters on the RMSE. Furthermore, SPEED
produces an improvement on the two benchmark hardware
w.r.t. FastDepth in terms of fps equal to 385% on the CPU
and 334% on the TPU.

Regarding the number of trainable parameters, SPEED and
FastDepth are one order of magnitude smaller than the other
methods, which are indeed sensibly slower.

B. FRAMEWORKS AND EDGE DEVICES
In this section, we first report an overview of the performance
degradation introduced when a trained model is converted in
TensorFlow Lite format (keeping the same resolution data
type). This operation is mandatory for some edge devices,

TABLE 4. Inference frequency and number of parameters comparison
with related works. The best result is reported in bold.

as for example Edge TPUs. Secondly, we report the inference
frequency on the proposed edge devices.

Table 5, in the last two columns shows the compari-
son between the frame rate obtained by our model, prior
and after the conversion to TensorFlow Lite (SPEEDlite),
on both cloud CPU and TPU. Results show also that the
accuracy degradation introduced by Tensorflow Lite conver-
sion is considerably small (2% only on the RMSE), while
the frame rate is boosted by 11% on the CPU and 17% on
the TPU.

TABLE 5. SPEED performances over different frameworks.

Subsequently, in Table 6 we report a comparison of
the frame rates over the two considered edge devices: the
NVIDIA Jetson TX1 and the Google Dev Board Edge TPU;
as can be noticed, SPEED is able to perform real-time fre-
quency performances also on the edge NVIDIA Jetson TX1.
The second edge device tested is the Google Coral Dev
Board; to run the proposed architecture on low-resource Edge
TPU, we need to perform computations with 8-bit network
weights and activations, which means undergoing a quantiza-
tion process. Such operation will notably reduce the precision
data type of the architecture from 32-bit floating point to 8-bit
integer. Nevertheless, the estimation accuracy of the model is
still acceptable, obtaining an increase in the RMSE, REL and
δ1 less than 15%, 32%, and 18% respectively w.r.t. SPEEDlite
without quantization.

However, looking at the performance on the edge devices
of FastDepth, the obtained results are respectively 28 fps
and 2.1 fps for the TX1 GPU and the Edge TPU. We can
therefore note that SPEED is able to infer three times
faster on the Edge TPU, while producing similar perfor-
mances on the low-power GPU (i.e. with an improve-
ment equal to 11%). Finally, as additional experiment,
we test these models on the NVIDIA Jetson TX1 CPU,
i.e. excluding the GPU. The obtained inference frequen-
cies for SPEED and FastDepth are respectively 0.4 fps
and 0.2 fps; although the frequency values are not accept-
able, the proposed model proves to be still two times
faster.
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TABLE 6. Comparison of SPEED over edge GPU and TPU equipped
devices.

TABLE 7. Comparison of the different encoders. The best results are in
bold, and the second-best are underlined. N◦ indicates the number of
layers of each architecture.

C. ABLATION STUDY: ENCODERS ARCHITECTURES
In the light of previously mentioned results in Table 5, due
to the trade-off between estimation accuracy and inference
frequency, we focus on the SPEEDlite architecture in order to
perform an ablation analysis using different spatial pyramidal
pooling layers and encoders.

We tested different lightweight backbones as EfficientNet
B0 [40], the MobileNet [5] and its later versions [43], [44].
We also report a comparison between SPEED with spa-
tial pyramidal pooling layer (SPEEDPlite) with the proposed
DSPP (SPEEDlite). Some considerations can be inferred from
the results reported in Table 7:
• Despite being shallower than all the other models,
SPEEDlite, in both the setups, with its custom backbones
provides the lower estimation error.

• Comparing SPEEDlite with the original MobileNet
encoder architecture, we see a decrease of RMSE equal
to 30% and an increase of inference frame rates equal
to 27% on the CPU and 31% on the TPU. This is
due to the use of DSPP layer instead of the original
Depthwise-blocks.

• EfficientNet B0, used as encoder, provides similar accu-
racy w.r.t. the MobileNet model, while reporting a sen-
sible reduction of the inference frame rate.

• MobileNet v3 produces the fastest frame rate. However,
the performances on the other metrics are not good
enough to consider the architecture reliable for depth
estimations.

Finally, from Table 7 we observed that the two pyrami-
dal pooling layers produce a similar error in the considered
metrics; however, DSPP inference frequency is higher w.r.t.
the non separable variant, with a boost of 20%. Further-
more, the accuracy degradation introduced by the DSPP layer
is almost neglectable, less than 4%; these results empha-
size that the DSPP is the optimal choice for the proposed
task.

TABLE 8. Comparison between decoder architectures keeping the SPEED
encoder fixed.

TABLE 9. Comparison SPEEDlite with different input-output resolutions.

D. ABLATION STUDY: DECODERS ARCHITECTURES
In this subsection we test the performances of our proposed
decoder w.r.t. the well known U-Net [42] architecture, and
the NNConv5 decoder proposed by [6] while keeping fixed
the SPEEDlite encoder.

Table 8 shows that while U-Net and NNConv5 decoders
almost reach real-time frequencies, SPEEDlite with its custom
decoder is able to improve the frame rate w.r.t. the U-Net
of respectively 11% on the cloud CPU and 6% on the cloud
TPU. Specifically, SPEED is able to produce stable real-time
frequencies with an RMSE increment of only 2%.

Moreover, the NNConv5 model, despite being specifically
developed as a MobileNet decoder, is not able to achieve a
good final estimation, producing an increase of the RMSE
equal to 35% w.r.t. our proposed architecture.

E. ABLATION STUDY: INPUT-OUTPUT RESOLUTIONS
Determining the optimal input-output resolution is a non
trivial task since both accuracy and inference frequency are
affected by the image input-output size.

For this reason, we report a detailed study over the differ-
ent possible input-output resolution pairs, to determine the
optimal trade-off. As can be noticed by Table 9, the input
size has the greater impact on the performances, while the
results are almost invariant to the output resolution. More
in detail, if we consider the same output shape, a sensible
increase of RMSE (12.5%) is obtained when changing the
input shape from 192×256 to 96×128. Vice versa, the error
is relatively unchanged when switching the output resolution
from 98 × 128 to 48 × 64. For this reason, a input-output
resolution of 192 × 256 and 48 × 64 respectively is chosen
for our model, as it makes SPEEDlite fast and lightweight
as possible assuring good accuracy performances and stable
real-time inference frequencies.

VI. CONCLUSION
In this work we propose SPEED, a model able to tackle
the fast-throughput MDE task while improving accuracy
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performances with respect to the state of the art related works.
Our model achieves high frame rates on different resource
hardwares by exploiting an efficient lightweight encoder and
a specifically designed decoder, using two custom pyramidal
pooling layers. With only 2.6M trainable parameters, SPEED
is able to improve the prediction estimation of fast-throughput
MDE while guaranteeing real-time performances on the cho-
sen benchmark hardware such as the Cloud TPU-v2 and the
Intel CPU but also on edge devices such as the NVIDIA
Jetson TX1.

The obtained results demonstrate that our proposedmethod
could be useful not only in many different computer vision
tasks that requires the combination of RGB images with the
depth information but also in autonomous system applica-
tions. In fact in those tasks, as robot indoor navigation, indoor
surveillance and IoT systems, the computational power of
the embedded devices is a de facto bottleneck and depth
information is a crucial feature to perceive the surrounding
environment and to estimate the system own state. Finally,
the real-time performances obtained by SPEED could be a
valuable starting point for future studies: analyzing the impact
of the proposed layers on different architectures and embed-
ded devices, testing different indoor and outdoor datasets with
higher depth range and investigating less explored research
areas, i.e. transferability and security.

AKNOWLEDGMENT
The authors would like to thank Fabiana Di Ciaccio, Univer-
sity La Parthenope, Naples, Italy, for the extensive editing
performed on the text. They would also like to thank ALCOR
Laboratory for havingmade available the workstations for the
tests.

REFERENCES
[1] R. Xiaogang, Y. Wenjing, H. Jing, G. Peiyuan, and G. Wei, ‘‘Monocular

depth estimation based on deep learning: A survey,’’ in Proc.
Chin. Automat. Congr. (CAC), Nov. 2020, pp. 2436–2440, doi:
10.1109/CAC51589.2020.9327548.

[2] S. Ullman, The Interpretation of Structure From Motion. Cambridge, MA,
USA: MIT Press, 1979, pp. 133–175.

[3] J. Furmonas, J. Liobe, andV. Barzdenas, ‘‘Analytical review of event-based
camera depth estimation methods and systems,’’ Sensors, vol. 22, no. 3,
p. 1201, Feb. 2022, doi: 10.3390/s22031201.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16 × 16 words: Trans-
formers for image recognition at scale,’’ 2020, arXiv:2010.11929.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[6] D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, ‘‘FastDepth:
Fast monocular depth estimation on embedded systems,’’ in Proc.
Int. Conf. Robot. Automat. (ICRA), May 2019, pp. 6101–6108, doi:
10.1109/ICRA.2019.8794182.

[7] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, ‘‘Towards real-time
unsupervised monocular depth estimation on CPU,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 5848–5854, doi:
10.1109/IROS.2018.8593814.

[8] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, ‘‘Indoor seg-
mentation and support inference from RGBD images,’’ in Com-
puter Vision—ECCV (Lecture Notes in Computer Science), vol. 7576,
A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin,
Germany: Springer, 2012, doi: 10.1007/978-3-642-33715-4_54.

[9] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354–3361.

[10] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural
Netw., vol. 61, pp. 85–117, Jan. 2015, doi: 10.1016/j.neunet.2014.09.003.

[11] A. Palla, D. Moloney, and L. Fanucci, ‘‘Fully convolutional denoising
autoencoder for 3D scene reconstruction from a single depth image,’’ in
Proc. 4th Int. Conf. Syst. Informat. (ICSAI), Nov. 2017, pp. 566–575, doi:
10.1109/ICSAI.2017.8248355.

[12] L. Hoyer, D. Dai, Y. Chen, A. Köring, S. Saha, and L. Van Gool, ‘‘Three
ways to improve semantic segmentation with self-supervised depth esti-
mation,’’ 2020, arXiv:2012.10782.

[13] I. Alhashim and P. Wonka, ‘‘High quality monocular depth estimation via
transfer learning,’’ 2018, arXiv:1812.11941.

[14] Y. Zhu and S. Newsam, ‘‘DenseNet for dense flow,’’ in Proc.
IEEE Int. Conf. Image Process. (ICIP), Sep. 2017, pp. 790–794, doi:
10.1109/ICIP.2017.8296389.

[15] D. Eigen, C. Puhrsch, and R. Fergus, ‘‘Depth map prediction from a single
image using a multi-scale deep network,’’ 2014, arXiv:1406.2283.

[16] H. Zhang, Y. Li, Y. Cao, Y. Liu, C. Shen, and Y. Yan, ‘‘Exploiting
temporal consistency for real-time video depth estimation,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1725–1734, doi:
10.1109/ICCV.2019.00181.

[17] W. Chen, Z. Fu, D. Yang, and J. Deng, ‘‘Single-image depth perception in
the wild,’’ 2016, arXiv:1604.03901.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2017,
arXiv:1706.03762.

[19] S. F. Bhat, I. Alhashim, and P. Wonka, ‘‘AdaBins: Depth estimation using
adaptive bins,’’ 2020, arXiv:2011.14141.

[20] R. Ranftl, A. Bochkovskiy, and V. Koltun, ‘‘Vision transformers for dense
prediction,’’ 2021, arXiv:2103.13413.

[21] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, ‘‘Deep ordinal
regression network for monocular depth estimation,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2002–2011, doi:
10.1109/CVPR.2018.00214.

[22] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, ‘‘Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 3,
pp. 1623–1637, Mar. 2022, doi: 10.1109/TPAMI.2020.3019967.

[23] I. Andrey, M. Grigory, P. David, S. Samarth, T. Radu, Z. Ziyu, W. Yicheng,
H. Zilong, L. Guozhong, Y. Gang, F. Bin, W. Yiran, L. Xingyi, S. Min,
X. Ke, C. Zhi-Guo, D. Jin-Hua, W. Pei-Lin, G. Chao, and B. Fausto,
‘‘Fast and accurate single-image depth estimation on mobile devices,
mobile AI 2021 challenge: Report,’’ Tech. Rep., 2021, pp. 2547–2557, doi:
10.1109/CVPRW53098.2021.00288.

[24] A. Spek, T. Dharmasiri, and T. Drummond, ‘‘CReaM: Condensed real-time
models for depth prediction using convolutional neural networks,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 540–547,
doi: 10.1109/IROS.2018.8594243.

[25] C. Godard, O. M. Aodha, M. Firman, and G. Brostow, ‘‘Digging into self-
supervised monocular depth estimation,’’ 2018, arXiv:1806.01260.

[26] J. Liu, Q. Li, R. Cao, W. Tang, and G. Qiu, ‘‘MiniNet: An extremely
lightweight convolutional neural network for real-time unsupervised
monocular depth estimation,’’ 2020, arXiv:2006.15350.

[27] A. Atapour-Abarghouei and T. P. Breckon, ‘‘Real-time monocular depth
estimation using synthetic data with domain adaptation via image style
transfer,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 2800–2810, doi: 10.1109/CVPR.2018.00296.

[28] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon,
‘‘3D packing for self-supervised monocular depth estimation,’’ 2019,
arXiv:1905.02693.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in
deep convolutional networks for visual recognition,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015, doi:
10.1109/TPAMI.2015.2389824.

[30] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierar-
chies for accurate object detection and semantic segmentation,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587, doi:
10.1109/CVPR.2014.81.

[31] M. Zhang, Z. Wang, T. Sun, and X. Li, ‘‘Salient object detection
by pyramid networks with gating,’’ in Proc. IEEE Int. Conf.
Robot. Biomimetics (ROBIO), Dec. 2019, pp. 1791–1796, doi:
10.1109/ROBIO49542.2019.8961768.

VOLUME 10, 2022 44889

http://dx.doi.org/10.1109/CAC51589.2020.9327548
http://dx.doi.org/10.3390/s22031201
http://dx.doi.org/10.1109/ICRA.2019.8794182
http://dx.doi.org/10.1109/IROS.2018.8593814
http://dx.doi.org/10.1007/978-3-642-33715-4_54
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1109/ICSAI.2017.8248355
http://dx.doi.org/10.1109/ICIP.2017.8296389
http://dx.doi.org/10.1109/ICCV.2019.00181
http://dx.doi.org/10.1109/CVPR.2018.00214
http://dx.doi.org/10.1109/TPAMI.2020.3019967
http://dx.doi.org/10.1109/CVPRW53098.2021.00288
http://dx.doi.org/10.1109/IROS.2018.8594243
http://dx.doi.org/10.1109/CVPR.2018.00296
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/ROBIO49542.2019.8961768


L. Papa et al.: SPEED for Real-Time MDE on Low-Resource Settings

[32] J. Masci, U. Meier, G. Fricout, and J. Schmidhuber, ‘‘Multi-scale
pyramidal pooling network for generic steel defect classification,’’
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2013, pp. 1–8, doi:
10.1109/IJCNN.2013.6706920.

[33] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, M. Jagersand,
and H. Zhang, ‘‘A comparative study of real-time semantic segmenta-
tion for autonomous driving,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jun. 2018, pp. 587–597, doi:
10.1109/CVPRW.2018.00101.

[34] D. Eigen, C. Puhrsch, and R. Fergus, ‘‘Depth map prediction from a single
image using a multi-scale deep network,’’ 2014, arXiv:1406.2283.

[35] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ J. Mach. Learn. Res., vol. 9, pp. 249–256,
2010.

[36] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[37] S. J. Reddi, S. Kale, and S. Kumar, ‘‘On the convergence of Adam and
beyond,’’ 2019, arXiv:1904.09237.

[38] J. Hu, M. Ozay, Y. Zhang, and T. Okatani, ‘‘Revisiting single image
depth estimation: Toward higher resolution maps with accurate object
boundaries,’’ 2018, arXiv:1803.08673.

[39] Y. Kim, H. Jung, D. Min, and K. Sohn, ‘‘Deep monocular depth
estimation via integration of global and local predictions,’’ IEEE
Trans. Image Process., vol. 27, no. 8, pp. 4131–4144, Aug. 2018, doi:
10.1109/TIP.2018.2836318.

[40] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ 2019, arXiv:1905.11946.

[41] S. Gur and L. Wolf, ‘‘Single image depth estimation trained via depth from
defocus cues,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 7675–7684, doi: 10.1109/CVPR.2019.00787.

[42] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ 2015, arXiv:1505.04597.

[43] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[44] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, ‘‘Searching for
MobileNetV3,’’ 2019, arXiv:1905.02244.

LORENZO PAPA received the B.S. degree in com-
puter and system engineering and the M.S. degree
in artificial intelligence and robotics from the
Sapienza University of Rome, Italy, in 2019 and
2021, respectively, where he is currently pursuing
the Ph.D. degree in computer science engineer-
ing that collaborates with the ALCOR Laboratory,
DIAG Department. His main research interests
include deep learning, computer vision, and cyber
security.

EDOARDO ALATI received the M.Sc. degree in
AI and robotics engineering from the Sapienza
University of Rome, Italy, where he is currently
pursuing the Ph.D. degree in computer science and
AI engineering. He worked for three years in the
European Project Second Hands (Horizon 2020),
while applying his knowledge in ML and DL to
several parallel projects, such as vertical farming,
beekeeping, and COVID detection.

PAOLO RUSSO received the B.S. degree in
telecommunication engineering from the Univer-
sità degli studi di Cassino, Italy, in 2008, and the
M.S. degree in artificial intelligence and robotics
and the Ph.D. degree in computer science from the
Sapienza University of Rome, Italy, in 2016 and
2020, respectively. From 2018 to 2019, he has been
a Researcher at the Italian Institute of Technol-
ogy (IIT), Turin, Italy. He is currently an Assis-
tant Researcher at the ALCOR Laboratory, DIAG

Department, Sapienza University of Rome. His main research interests
include deep learning, computer vision, generative adversarial networks, and
reinforcement learning.

IRENE AMERINI (Member, IEEE) received the
Laurea degree in computer engineering and the
Ph.D. degree in computer engineering, multime-
dia, and telecommunication from the University of
Florence, Italy, in 2006 and 2010, respectively. She
was a Visiting Scholar with Binghamton Univer-
sity, Binghamton, NY, USA, in 2010, and a Visit-
ing Research Fellowwith Charles Sturt University,
Australia, in 2018, with a fellowship offered by the
Australian Government Department of Education

and Training, through the Endeavour Scholarship and Fellowship Program.
She is currently an Assistant Professor with the Department of Computer,
Control, and Management Engineering Antonio Ruberti, Sapienza Uni-
versity of Rome, Italy. Her main research interests include digital image
processing, multimedia content security technologies, secure media, and
multimedia forensics. She is a member of the IEEE Information Forensics
and Security Technical Committee, the EURASIP TAC Biometrics, Data
Forensics, and Security, and the IAPR TC6-Computational Forensics Com-
mittee. She received the Italian Habilitation for an Associate Professor in
telecommunications and computer science. She is a guest editor of several
international journals. She is an Associate Editor of IEEE ACCESS, Journal of
Electronic Imaging, and Journal of Information Security and Applications.

44890 VOLUME 10, 2022

http://dx.doi.org/10.1109/IJCNN.2013.6706920
http://dx.doi.org/10.1109/CVPRW.2018.00101
http://dx.doi.org/10.1109/TIP.2018.2836318
http://dx.doi.org/10.1109/CVPR.2019.00787
http://dx.doi.org/10.1109/CVPR.2018.00474

