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Abstract An epidemic multi-groupmodel formed by
interconnected SEIR-like structures is formulated and
used for data fitting to gain insight into the COVID-19
dynamics and into the role of non-pharmaceutical con-
trol actions implemented to limit the infection spread
since its outbreak in Italy. The single submodels pro-
vide a rather accurate description of the COVID-19
evolution in each subpopulation by an extended SEIR
model including the class of asymptomatic infectives,
which is recognized as a determinant for disease diffu-
sion. Themulti-group structure is specifically designed
to investigate the effects of the inter-regional mobil-
ity restored at the end of the first strong lockdown in
Italy (June 3, 2020). In its time-invariant version, the
model is shown to enjoy some analytical stability prop-
erties which provide significant insights on the efficacy
of the implemented control measurements. In order to
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highlight the impact of human mobility on the disease
evolution in Italy between the first and second wave
onset, the model is applied to fit real epidemiological
data of three geographical macro-areas in the period
March–October 2020, including the mass departure for
summer holidays. The simulation results are in good
agreement with the data, so that the model can repre-
sent a useful tool for predicting the effects of the com-
bination of containment measures in triggering future
pandemic scenarios. Particularly, the simulation shows
that, although the unrestricted mobility alone appears
to be insufficient to trigger the second wave, the human
transfers were crucial to make uniform the spatial dis-
tribution of the infection throughout the country and,
combined with the restart of the production, trade, and
education activities, determined a time advance of the
contagion increase since September 2020.

Keywords COVID-19 · Multi-group epidemic ODE
model · COVID-19 spread in Italy · System control
and identification

1 Introduction

The “coronavirus disease 2019” (COVID-19), caused
by SARS-CoV-2, posed novel challenges to all world
countries, often evidencing their vulnerability in the
practical management of emergency states, particu-
larly concerning the health effects, but also the impli-
cations for economic growth and social development.
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Understanding and quantifying the dominant variables
that govern the current pandemic evolution, espe-
cially in order to limit the impact of future outbreaks,
imposes the need of framing the determinants of the
epidemic dynamics [48]. Many literature studies take
into account several types of possible interventions,
mainly identifying twodomains of variables: pathogen-
associated variables and society-based variables. This
latter variable domain appears to be particularly rele-
vant for COVID-19, since individuals are actually the
vectors of SARS-CoV-2 virus.

Thus, although vaccines are currently available,
social distancing and personal protective measures are
still important mechanisms for controlling the COVID-
19 spread. The effectiveness of social distancing is
studied by many authors, whose papers propose pro-
jections where the impact of containment measures in
reducing the infection spread is shown [8,11,16,27,
44].

In the early stage of pandemic, only qualitative data
analysis was performed, as in [30] where data regard-
ing how the human mobility changed in the USA at the
beginning of the pandemic course are studied; in that
paper, it is also stressed the importance of quantifying
the social distancing practices, emphasizing the oppor-
tunity of determining relationships between confirmed
cases and the social distancing plateau. The concept of
“social distancing” can also be associated with travel
restrictions, that is to the attempt of limiting the virus
transmission by reducing the amount of travels among
regions. One of the first studies about the effects of
human mobility on COVID-19 spread is proposed in
[28]. Through the analysis of time mobility data from
Wuhan, the study shows the importance of applying
travel restrictions in the early stage of the outbreak,
evidencing their lack of effectiveness in late stages.

Among the growing number of literature papers on
the topic, we focus on the quantitative studies con-
cerning the effects of limiting social distancing and
human mobility. These studies are generally based on
mathematical modelling, still exploiting rather differ-
ent approaches, and most often they use public or
volunteered datasets to assess the impact of differ-
ent non-pharmaceutical countermeasures, [12,13,23,
39,40]. As an example, we mention the works of
correlational analysis based on (generalized) regres-
sion models of city clusters; in particular, applications
are mainly proposed for single countries, e.g., China
[53], USA countries [2], and some European countries

(namely France, Spain, and Italy) [25], or for cross-city
analysis in many worldwide countries [47]. In [7], a
framework that employs an epidemic Renormalization
Group (eRG) approach tomodel the effects of inter- and
extra-European border control and of social distancing
for single countries is proposed; the model describes
the time-evolution of the infected cases in a specific
isolated region, while including the interactions among
multiple regions of the World.

In many recent works, both deterministic/stochastic
and discrete/continuous models have been applied for
the description, forecast and control of the COVID-
19 epidemic spread. In the framework of deterministic
compartmental models, the classes of Susceptible (S),
Exposed (E), Infected (I), and Removed (R) subjects
are generally introduced, yielding SEIR models. For
the COVID-19 pandemic, because of the specificity of
the disease, other categories are generally introduced
referring to the condition of infected patients.

In this respect, notable modeling setups take into
account the symptomatology level, thus distinguish-
ing presymptomatic and asymptomatic infected indi-
viduals [41], with the addition of the quarantined class
[16,17] or acutely andmildly infection level alongwith
the conditions of hospitalization and home-isolation
[21,24].

Different modeling approaches can include dis-
tributed time delays[50] or the computational model
using probabilistic cellular automata [22,32].

Moreover, among the most recent (and actually
huge) literature on the COVID-19 modeling, we also
mention some papers proposing interesting variants of
the classical SIRmodel and using different approaches:
the age-structured SIR model [36], the stochastic,
discrete, age-structured compartmental model [1] in
which distributed time delays related to the periods of
incubation, infection, and quarantine are considered as
in [35]. Another aspect common to these latter works
that matters in relation to our study is that they ana-
lyze the first epidemic period (until October 2020) in
order to highlight how different strategies implemented
in that peculiar time interval can affect the future epi-
demic trajectory.

It is important to stress that a particularly critical epi-
demiological characteristic has been recognized in the
fraction of infectious cases remaining undocumented
owing to mild or very limited symptoms; indeed, esti-
mating the extent of undiagnosed infections is crucial
for evaluating the overall prevalence and contagious-
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ness and then the pandemic potential of the disease,
[17,31].

Some variants of the original SIR/SEIR framework,
modeling peculiar aspects of epidemic transmission
dynamics, have been proposed in the past to gener-
ate insights into the evolution of specific infectious
diseases and assess the potential impact of different
intervention strategies; so, these studies can usefully
support the research on the present COVID-19 pan-
demic. Among numerous modeling works, we men-
tion the book [9] and the paper [46], presenting in-
depth overviews of theoretical and applicative results
on measles, ebola, and other viral infections. Examples
of more specific works are [15,43] on the measles dis-
ease, and [14,37,38] on HIV/AIDS. Also, it is worth
mentioning that very recent works deal with the impact
of the COVID-19 co-infection in patient with pre-
existent morbidity [11]; for example, [4] reports a sta-
tistical population-based study to estimate risk and pos-
sible outcome of the association betweenHIV infection
and COVID-19.

The epidemic models of the kind described con-
cern the transmission of the virus within population.
Concerning aspects of the virus transmission between
populations, multi-group epidemic models, which are
suitable extensions of SIR/SEIR frameworks, can be
used to represent the COVID-19 spread among differ-
ent (heterogeneous) populations, and to study the effect
of interactions and travel restrictions on the pandemic
evolution, [3,6,10,20,33,34,42]. The heterogeneity of
the subpopulations is intended with respect to the epi-
demic properties and can depend on their different geo-
graphical allocation or other structural variables (e.g.,
economy, age, mobility).

Themodel presented in this paper is basedonaprevi-
ous epidemicmodel reported in [17],which represented
the COVID-19 evolution by a SEIR-typemodel includ-
ing two subpopulations of infected subjects, undiag-
nosed and diagnosed, and explicitly accounting for
a fraction of asymptomatic infective subjects. The
present model structure, depicted in Sect. 2, incorpo-
rates N interconnected epidemic models of that kind,
particularly with the aim of representing the effects
of individual interactions and geographical exchanges
among groups. In Sect. 3, analytical results on the
dynamics of both the isolated subsystem and the inter-
connected model are given. In Sect. 4, the general
model is specialized for N = 3 and it is applied to
simulate the disease evolution in Italy, and precisely

in three macroareas, in order to evidence some inter-
esting aspects related to the increased human mobil-
ity following the first pandemic wave. The numeri-
cal results show that the model is apt in describing
the summer period 2020 of the COVID-19 epidemic
in Italy and the effect of the holiday exodus from
North to Center-South, by explicitly accounting for
different scenarios characterizing geographically dis-
tinct macro-areas of the Italian territory (northern, cen-
tral, and southern). The detailed analysis reported in
Sect. 4 includes two periods: (i) the first one character-
ized by the strong lockdown implemented in our coun-
try and (ii) the following reopening period going from
the control relaxation (beginning of June 2020) until
new social, economic and mobility restrictions were
implemented to contain the second contagion wave
(mid-October 2020). As explained in the following,
the time period selected for the analysis, as well as the
number and the geographical localization of the sub-
groups considered, are actually motivated by the main
goal of this paper, that is the in-depth analysis of the
human mobility (satisfactorily captured in this period
by the assumedmodel structure) after the removal of the
containment measures following the first severe lock-
down. However, in Sect. 5, the same model structure
is exploited to evaluate the mobility impact after the
period of interest, extending the analysis to the present
days and confirming some epidemiological and mobil-
ity aspects already highlighted in Sect. 4.

2 A multi-group epidemic model for the spread of
COVID-19 among N groups

The model proposed here has a multi-group structure
that incorporates different subunits, each one describ-
ing the dynamic evolution of the COVID-19 within a
homogeneous population, whose epidemic evolution
differs from that of all other units. For instance, differ-
ent groups can represent different geographical areas
or structurally different populations. The N groups
(namely subunits) are interconnected by amobility net-
work that accounts for the transfers of individuals who
are allowed to travel from a group to another. Most
typically, the model can describe a geographical sys-
tem composed by N regions with people of each region
moving for work, study or simply personal/holiday rea-
sons.
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Fig. 1 Block diagram of the epidemic model representing a sin-
gle subpopulation

Each of the N submodels is a simplified version
of the model previously proposed in [17] for the
description of the first phase of the epidemic spread
in our country (thereby modeled as a whole homo-
geneously mixing group). In particular, the compart-
ment of subjects isolated while waiting for the results
of the swab tests, included in [17], has been removed
due to the increasing capability of doing fast tests
along the considered period, especially at the end of
lockdown, which provide almost immediate responses
of positiveness (so producing a new diagnosed and
isolated infected) or negativeness (leaving the tested
subject in the class of susceptible people). In addi-
tion to a compartment of exposed individuals, which
is proper of SEIR models, our model explicitly dis-
tinguishes between diagnosed and undiagnosed infec-
tive patients. As shown in [17], the proposed struc-
ture appears appropriate to mimic the Italian case, by
incorporating also control actions reproducing govern-
ment restrictions and emergency actions implemented
to detect the infected cases, especially asymptomatic or
mildly symptomatic ones. The block diagram reported
in Fig. 1 shows the general structure and the state vari-
ables of one regional submodel.

Precisely, each submodel takes into account the fol-
lowing five state variables:

Si (t), number of susceptible individuals;
Ei (t), number of exposed (infected but not yet infec-

tive) individuals;
Iui (t), number of undiagnosed infective patients, account-

ing for two subpopulations: (i) asymptomatic
or developing mild or limited symptoms dur-
ing their whole infection period; (ii) develop-
ing, at a certain point, recognizable symptoms,
still remaining undocumented;

Idi (t), number of diagnosed infective patients, receiv-
ing medical treatments (to cure the infection or
its complications). It is assumed that they can-
not transmit the virus since they are isolated (at
home or at hospital);

Ri (t), number of healed patients (spontaneously or
after therapy).

The complete model formulation includes N struc-
turally identical groups or subsystems, with each group
i , {i = 1, 2, . . . , N }, described by a SEIR-type model
with undiagnosed and diagnosed infected subjects, as
reported above. For sake of compactness, when the
whole system is considered, a vectorial notation is
introduced for the state space variables, defining the
vector

S(t) = (
S1(t) · · · SN (t)

)T
(1)

and, with the same procedure, E(t), Iu(t), Id(t) and
R(t). The N subsystems are connected by means of
a mobility network allowing people to move among
groups. In the following, we refer to a specific epidemic
group by its identifier i , also using the same subscript
to denote the related state variables and parameters. In
general, however, we assume that the only individu-
als allowed to move are the ones having no evidence
and/or diagnosis of infection, i.e., the ones belonging
to compartments Si , Ei , Iui , Ri , i = 1, 2, . . . , N . Fig. 2
shows how the mobility network works for N = 3 sub-
systems, also illustrating the epidemic core model of
each subsystem.

So, the spread of COVID-19 among N epidemio-
logically distinct groups can be formally described by
means of N systems of time-varying ODE models of
the following kind:

Ṡi = Bi − βi (1 − ui )Si Iui − μi Si

−
N∑

j=1, j �=i

ci, j (1 − zi, j )Si +
N∑

j=1, j �=i

c j,i (1 − z j,i )S j , (2)

Ėi = βi (1 − ui )Si Iui − vi Ei − ki Ei − μi Ei

−
N∑

j=1, j �=i

ci, j (1 − zi, j )Ei +
N∑

j=1, j �=i

c j,i (1 − z j,i )E j + ΛEi ,

(3)
İui = ki Ei − vi Iui − hiφi Iui − γIui (1 − φi )Iui − μi Iui

−
N∑

j=1, j �=i

ci, j (1 − zi, j )Iui +
N∑

j=1, j �=i

c j,i (1 − z j,i )Iu j + ΛIui
,

(4)
İdi = hiφi Iui + vi (Ei + Iui ) − γIdi

(1 + fi )Idi

−μIdi
(1 − wi )Idi , (5)
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Fig. 2 Block diagram of a
mobility scheme among
N = 3 interconnected
groups of epidemic
diffusion. Controls for
group i : ui ∈ [0, 1], social
contact limitations;
vi ∈ [0, 1], test campaign
intensity; wi ∈ [0, 1],
efficacy of therapies against
COVID-19 complications;
fi ≥ 0, efficacy of therapies
against COVID-19;
zi, j ∈ [0, 1], limitation of
movements between groups
i and j . Coefficients ci, j :
transition probability of a
subject from compartment i
to compartment j

Ṙi = γIui (1 − φi )Iui + γIdi
(1 + fi )Idi − μi Ri

−
N∑

j=1, j �=i

ci, j (1 − zi, j )Ri +
N∑

j=1, j �=i

c j,i (1 − z j,i )R j , (6)

where i = 1, 2, . . . , N . Now, we briefly explain the
meaning of all the quantities included in the ODE sys-
tem (2)-(6). Bi is the net input rate in compartment Si ,
which accounts for both the newborn (susceptible) indi-
viduals and the balance between immigration and emi-
gration; μi is the per capita death rate owing to causes
not related to the infection (natural death of the popu-
lation) and it represents the loss rate from any compart-
ment of the model except for Idi ; μIdi

is the per capita
death rate of diagnosed patients Idi ; βi is the relative
contagiousness of individuals in compartment Iui and
it accounts for two main factors, which are the conta-
gion probability from one infected-susceptible contact
(related to the aggressiveness of the virus) and the fre-
quency of contacts; φi represents the fraction of the
infective population Iui that will show recognizable
symptoms and that will consequently be diagnosed and
isolated (possibly receiving therapies); ki describes the
transition from Ei to Iui , and it is set to ki = 1/τi ,
where τi is the mean length of the incubation period
(see Fig. 3); hi refers to the transition from Iui to Idi ,
taken as hi = 1/τsi , where τsi is the average time from
infection until the occurrence of the first recognizable
symptoms; γIui models the outflow from the infective
compartment Iui associated to recovery from infection
and, then, it is assumed γIui = 1/τri , with τri the mean
recovery period without any medical assistance; simi-
larly γIdi

models the outflow from the infective com-
partments Idi due to recovery from the infection and,

Fig. 3 Schematic picture of the disease progression

then, it is γIdi
= 1/τ̃ri , with τ̃ri denoting the mean

recovery period of monitored patients; ci j is a weight
accounting for the transition probability of a subject
moving from the i-th compartment Si or Ei or Iui to the
corresponding j-th compartment. Note that the coeffi-
cients ci j can also be time-varying in order to represent
the variation of transfer probabilities possibly occur-
ring over time. This variability is especially required
for long-term analysis when “ordinary” mobility regi-
mens alternate with highly “intense” transfer periods,
like summer or Christmas or Easter seasons. Note also
that, for the sake of generality, the recovery rates from
compartments Iui and Idi are taken into account by the
separate rate constants γIui and γIdi

respectively, even
though to a first approximation, and in the absence of
experimental evidences, they are assumed equal in the
following simulation.

As far as the control actions are concerned, the time-
varying quantities ui (t), vi (t),wi (t), zi, j (t), taking val-
ues in [0, 1], and fi (t) ≥ 0 are introduced to repre-
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sent the intervention measures adopted by the author-
ities to contain the disease outbreak. More precisely,
ui (t) quantifies possible actions locally implemented
by authorities to reduce the contact rate, and then the
relative infectivity βi , of population i . It accounts for
all the government decrees introduced to limit the phys-
ical interactions among people, but also for the infor-
mative campaign about hygienic measures, TV/radio
announcements, and so on. The quantity vi (t) repre-
sents the intensity of the swab test campaign performed
on subpopulation i , which changes daily depending on
the number of swab tests actually performed. For the
sake of simplicity, and in the absence of other indica-
tions, we assume that the amount of performed tests
is equally distributed among people of compartments
Si , Ei and Iui , so that the same per capita test rate can
be assumed for all these compartments. This implies
that the exit fluxes of tested (positive) individuals leav-
ing Ei and Iui are proportional to the number of indi-
viduals within the same compartment, i.e., vi (t)Ei (t)
and vi (t)Iui (t), respectively. We notice that the flux
vi (t)Si (t) of (negative) test results exiting Si does not
explicitly appear in themodel equation (see also Fig. 1)
since it does not contribute to the dynamical evolution
(actually an identical flux amount comes back to com-
partment Si ). The control actions wi (t) and fi (t) refer
to the efficacy of the therapies adopted by the i th health
system, either to reduce side effects of COVID-19 and,
respectively, to cure the infection. Furthermore, the
time-varying controls zi, j (t), i, j = 1, 2, . . . , N , rep-
resent the interventions andmobility restrictions imple-
mented by the central government or local authorities
to limit people transfers between groups i and j .

Finally, the pair of input fluxes ΛEi (t) and ΛIui
(t)

is introduced (see Eqs. (3), (4)) to model the cumu-
lative entry of infected people coming from outer
groups/areas whose epidemic dynamics is not incorpo-
rated in the N group model. Since documented infec-
tive people are not allowed to travel, it is reasonable
to account for such cumulative outer inputs only in the
equations of Ei and Iui , i = 1, . . . , N .

We notice that the proposedmodel does not incorpo-
rate the possibility of re-infection. Indeed in ourmodel,
once recovered, a patient (R) is no longer susceptible of
infection and cannot re-enter the S class. This simplify-
ing hypothesis, which is actually the object of clinical
studies and debates on the persistence and actual length
of the immunity period, can be a valid assumption if a

short-term analysis, like the one presented in the next
section, is performed.

As a remark on the asymptomatic undiagnosed sub-
jects, we observe that a susceptible subject (of any
group i) can become infected if a non-safe contact
with an infected undiagnosed subject occurs. During
the infectious period that follows incubation, the newly
infected subject can at some time develop recognizable
symptoms being easily diagnosed, and possibly recov-
ering after medication and assistance without serious
consequences. However, in a number of cases, the
infectious individual can be asymptomatic or mildly
symptomatic until full recovery, remaining hidden and
undocumented as a positive case in Iui . So, in fact, the
class of asymptomatic undiagnosed subjects represents
the most dangerous class responsible for the possible
epidemic spread since the individuals are allowed to
move, thus transmitting the contagion and increasing
the number of infections also to other groups. Exhaus-
tive swab test campaigns performed on the entire pop-
ulation can improve the capability of diagnosis con-
tributing to mitigate the infection diffusion as reported
in [29].

3 Equilibria and stability analysis

The first step of the analysis, in Subsection 3.1, takes
into account each i th subsystem as an isolated dynam-
ical model, neglecting all the mobility contributions,
i.e., setting zi, j = 1, i, j = 1, . . . , N . In order to
take into account the actual situation in which control
actions are always present, the other controls are not
set to zero but they are considered as constants. So, the
following setting is introduced in all the analysis

ui (t) = uci , vi (t) = vci , wi (t) = wc
i , fi (t) = f ci ,

zi, j (t) = zci, j , i, j = 1, 2, . . . , N .
(7)

The resulting study can be also associated to the condi-
tions over a limited time interval in which the controls
do not vary sensibly. In addition, as usual for equilibria
and stability analysis, the external inputs are set to zero,
so that ΛEi (t) = Λc

Ei
= 0 and ΛIui

(t) = Λc
Iui

= 0.
Introducing the compact expressions

c̃i, j = ci, j (1 − zci, j ), μ̃i = μi +
N∑

j=1, j �=i

c̃i, j , i = 1, 2, . . . , N ,

(8)

the system addressed in the present section is

123



A data-driven model of the COVID-19 1245

Ṡi = Bi − βi (1 − uci )Si Iui − μ̃i Si +
N∑

j=1, j �=i

c̃ j,i S j ,

Ėi = βi (1 − uci )Si Iui − (
vci + ki + μ̃i

)
Ei +

N∑

j=1, j �=i

c̃ j,i E j ,

İui = ki Ei −
(
vci + hiφi + γIui (1 − φi ) + μ̃i

)
Iui +

N∑

j=1, j �=i

c̃ j,i Iu j ,

İdi = hiφi Iui + vci (Ei + Iui ) −
(
γIdi

(1 + f ci ) + μIdi
(1 − wc

i )
)
Idi ,

Ṙi = γIui (1 − φi )Iui + γIdi
(1 + f ci )Idi − μ̃i Ri +

N∑

j=1, j �=i

c̃ j,i R j .

(9)

3.1 Analysis of the i th isolated subsystem

Equilibrium points for system (9), and their stability
analysis are here addressed from the point of view of
each i th submodel, assuming the absence of incoming
and outgoing fluxes (zi, j = 1, i, j = 1, . . . , N ). Under
these positions, the equilibriumpoints can be computed
solving the nonlinear system

Bi − βi (1 − uci )I
e
ui S

e
i − μi S

e
i = 0, (10)

βi (1 − uci )S
e
i I

e
ui − (

vci + ki + μi
)
Ee
i = 0, (11)

ki E
e
i −

(
vci + hiφi + γIui (1 − φi ) + μi

)
I eui = 0,

(12)

hiφi I
e
ui + vci E

e
i + vci I

e
ui

−
(
γIdi

(1 + f ci ) + μIdi
(1 − wc

i )
)
I edi = 0, (13)

γIui (1 − φi )I
e
ui + γIdi

(1 + f ci )I edi − μi R
e
i = 0.

(14)

From (12) the expression for Ee
i ,

Ee
i =

(
vci + hiφi + γIui (1 − φi ) + μi

)

ki
I eui , (15)

is obtained and can be used in (11), giving
βi (1 − uci )S

e
i I

e
ui

− (vci +ki+μi)
(
vci +hiφi+γIui

(1−φi )+μi

)

ki
I eui = 0,

(16)

from which the two solutions

I eui = 0 (17)

and

Sei =
(
vci + ki + μi

) (
vci + hiφi + γIui

(1 − φi ) + μi

)

kiβi (1 − uci )

(18)

can be computed. Denoting by the superscript 1 the
equilibrium point associated to (17) and by 2 the one

associated to (18), using (17) in (10)–(14), the solu-
tion

Pe1
i =

(
Bi
μi

0 0 0 0
)T

(19)

is obtained. Equilibrium points like (19), characterized
by the absence of any kind of infected people, are usu-
ally addressed as epidemic free.

The second equilibrium can be obtained starting
from (18); setting Se2i = Sei , the other components of

Pe2
i =

(
Se2i Ee2

i I e2ui I e2di Re2
i

)T
(20)

can be computed as follows

I e2ui = Bi − μi S
e2
i

βi (1 − uci )S
e2
i

,

Ee2
i = Bi − μi S

e2
i(

vci + ki + μi
) ,

I e2di =
(
hiφi + vci

)
(Bi − μi S

e2
i )

βi (1 − uci )
(
γIdi

(1 + f ci ) + μIdi
(1 − wc

i )
)
Se2i

+ vci (Bi − μi S
e2
i )

(
γIdi

(1 + f ci ) + μIdi
(1 − wc

i )
) (

vci + ki + μi
) ,

Re2
i =

⎛

⎝γIui
(1 − φi ) +

γIdi
(1 + f ci )

(
hiφi + vci

)

(
γIdi

(1 + f ci ) + μIdi
(1 − wc

i )
)

⎞

⎠

× Bi − μi S
e2
i

μiβi (1 − uci )S
e2
i

+
⎛

⎝
γIdi

(1 + f ci )vci (Bi − μi S
e2
i )

μi

(
γIdi

(1 + f ci ) + μIdi
(1 − wc

i )
) (

vci + ki + μi
)

⎞

⎠ .

An important note is that equilibrium (20) is admis-
sible if and only if all its components are nonnegative.
Since for Bi−μi Se2i = 0 the equilibrium (20) coincides
with the epidemic-free solution (19), the admissibility
of an independent solution is assured only for

Bi − μi S
e2
i > 0. (21)

In this case the equilibriumdefines a condition inwhich
a certain number of infected individuals is always
present and then the epidemic is active. This kind of
equilibrium define the so-called endemic conditions.

It can be noted that in the epidemic-free condition,
the equilibrium point is not dependent on the control
actions, since no epidemic is present. On the contrary,
the endemic equilibrium point is strongly dependent on
the controls, if present.

Once the equilibrium points are known, it is possible
to study their stability characteristics. Local conditions
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can be easily given on the basis of the linear approxi-
mation in a neighborhood of each of them.

The first step is the computation of the Jacobian
matrix for the system (9) in the isolated conditions con-
sidered above, without incoming and outgoing people
fluxes. The result is a matrix of the form

J =
(
J1,1 0
J2,1 J2,2

)
, (22)

with

J1,1 =
( −βi (1−uci )Iui −μi 0 −βi (1−uci )Si

βi (1−uci )Iui −(vci +ki+μi ) βi (1−uci )Si
0 ki −(vci +hiφi+γIui

(1−φi )+μi )

)

,

(23)

J2,1 =
(
0 vci vci + hiφi

0 0 γIui (1 − φi )

)
, (24)

J2,2 =
(

−(γIdi
(1 + f ci ) + μIdi

(1 − wc
i )) 0

γIdi
(1 + f ci ) −μi

)

. (25)

Being the eigenvalues of J2,2 always real negative
(λ1 = −(γIdi

(1 + f ci ) + μIdi
(1 − wc

i )) < 0 and
λ2 = −μi < 0), stability of local approximations
depends on the different forms assumed by J1,1 once
computed in Pe1

i and Pe2
i .

Setting, for sake of compactness,

mi = (vci + ki + μi ), ni

= (vci + hiφi + γIui (1 − φi ) + μi ), (26)

the matrix obtained for Pe1
i can be written as

J1,1(P
e1) =

⎛

⎜
⎝

−μi 0 −βi (1 − uci )
Bi
μi

0 −mi βi (1 − uci )
Bi
μi

0 ki −ni

⎞

⎟
⎠ . (27)

along with
From the triangular structure of thematrix and being

−μi < 0, stability is assured once the matrix
(

−mi βi (1 − uci )
Bi
μi

ki −ni

)

(28)

has eigenvalues, i.e., the roots of the characteristic poly-
nomial equation

λ2 + (mi + ni )λ + mini − kiβi (1 − uci )
Bi
μi

= 0,

with negative real part. Thanks to the positiveness of
the model parameters andmaking use of the Descartes’
rule of signs, the required condition holds if and only
if

mini − kiβi (1 − uci )
Bi
μi

> 0. (29)

Easy computations, along with positions in (26), lead
to
Bi
μi

= Se1i <
mini

kiβi (1 − uci )
= Se2i . (30)

When the stability of the second equilibrium point
Pe2
i is investigated, the same procedure as above brings

to the computation of the matrix

J1,1 =

⎛

⎜
⎜
⎝

− Bi
Se2i

0 −βi (1 − uci )S
e2
i

Bi
Se2i

− μi −mi βi (1 − uci )S
e2
i

0 ki −ni

⎞

⎟
⎟
⎠ . (31)

Its eigenvalues are given by the roots of the character-
istic polynomial

pJ1,1(λ) = λ3 +
(

Bi
Se2i

+ mi + ni

)
λ2

+
(

Bi
Se2i

mi + Bi
Se2i

ni + mini − kiβi (1 − uci )S
e2
i

)
λ

+ Bi
Se2i

mini − μi kiβi (1 − uci )S
e2
i

= λ3 +
(

Bi
Se2i

+ mi + ni

)
λ2 + Bi

Se2i
(mi + ni )λ

+
(

Bi
Se2i

− μi

)
mini .

(32)

For the Routh–Hurwitz stability criterion, necessary
and sufficient conditions to be fulfilled are

(
Bi
Se2i

+ mi + ni

)
Bi
Se2i

(mi + ni ) −
(

Bi
Se2i

− μi

)

mini > 0,

(33)
(

Bi
Se2i

− μi

)

mini > 0. (34)

It is possible to verify that condition (33) is always
satisfied since, after some manipulations, the equiva-
lence with

Bi
Se2i

(
Bi
Se2i

(mi + ni ) + m2
i + n2i + mini

)

+ μi mi ni > 0 (35)

can be proved. Condition (34) is equivalent to

Bi
Se2i

− μi > 0 ⇔ Se1i
Se2i

> 1. (36)

A preliminary observation is that condition (36) is the
sameas condition (21) and thenwhen the endemic equi-
librium exists, it is also locally asymptotically stable.
At the same time, being (30) not satisfied, the epidemic-
free equilibrium is unstable. The opposite situation
arises when (36), and then (21), are not satisfied: the
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only admissible equilibrium point is the epidemic-free
one, and it is locally asymptotically stable.

For the analysis of the epidemic dynamics, it can
be useful to derive the model-based expression of the
reproduction numberR, which gives the average num-
ber of secondary cases produced by a single infected
patient in an entire susceptible population [46]. This
parameter can be approximatively computed on the
basis of the time history of the number of infected
individuals to characterize the speed of the epidemic
spread [5,51,52]: if R < 1 the epidemic does not
spread, reducing autonomously until vanishing;R > 1
denotes a spreading epidemic with the number of new
infected cases growing with a rate related to the mag-
nitude of R. An analytical expression, in terms of a
model parameters, can be also provided by means of
the next generation matrix [46]. This procedure is here
followed to derive the reproduction numberRi for the
isolated i-th sub group considered in this Subsection,
showing the fulfilment of the above mentioned rela-
tionships w.r.t. the stability properties just provided.

According to [46], from system (9) only the equa-
tions regarding the infected part of the population
Ei , Iui and Idi are considered; the same assumptions
about individual fluxes and controls introduced for the
equilibrium and stability analysis are here performed.
Denoting by Zi (t) = (Ei (t) Iui (t) Idi (t))

T , the fol-
lowing subsystem is defined:

Żi = Fi − Vi ,

where

Fi =
⎛

⎝
βi (1 − uci )Si (t)Iui (t)

0
0

⎞

⎠ and Vi =
⎛

⎝
Vi,1

Vi,2

Vi,3

⎞

⎠

with

Vi,1 = mi Ei (t)

Vi,2 = −ki Ei (t) + ni Iui (t)

Vi,3 = −vci Ei (t) − (vci + hiφi )Iui (t) + (γIdi
(1 + f ci )

+μIdi
(1 − wc

i ))Idi (t)

Introducing the notation F ′
i =

(
∂Fi
∂Zi

)

Pe1
i

and V ′
i =

(
∂Vi
∂Zi

)

Pe1
i

, the reproduction numberRi is given by the

eigenvalue with themaximummodulus of the next gen-
eration matrix F ′

i (V ′
i )

−1, with

F ′
i =

⎛

⎝
0 βi (1 − uci )S

e1
i 0

0 0 0
0 0 0

⎞

⎠ , (37)

V ′
i =

( mi 0 0
−ki ni 0
−vci −(vci +hiφi ) (γIdi

(1+ f ci )+μIdi
(1−wc

i ))

)
,

(38)

(V ′
i )

−1 =
⎛

⎝
∗ 0 0
ki

mi ni
1
ni

0
∗ ∗ ∗

⎞

⎠ . (39)

The computation yields

F ′
i (V ′

i )
−1 =

⎛

⎜
⎝

kiβi (1−uci )S
e1
i

mi ni
∗ 0

0 0 0
0 0 0

⎞

⎟
⎠ , (40)

in which the greatest eigenvalue can be directly found
because of the particular structure. The result is that the
basic reproduction number is expressed as

Ri = kiβi (1 − uci )S
e1
i

mini
= Se1i

Se2i
. (41)

According to its definition, if Ri > 1 the epidemic
spreads within the i th population. This corresponds to

Ri = Se1i
Se2i

> 1, (42)

that is the same condition as (36) providing the stability
of the endemic equilibrium (as well as the instability of
the disease-free equilibrium). On the other hand, when
Ri < 1 the epidemics reduces and tends to vanish.
From (41), this latter condition can be expressed as

Ri = Se1i
Se2i

< 1 (43)

that guarantees the stability of the disease-free equilib-
rium too, as required by (30).

3.2 The whole multi-group model

If all the N groups are considered together instead of
each single one separately as in the previous Subsec-
tion 3.1, making reference to system (9), the equilib-
rium points can be computed solving the N systems
(i = 1, . . . , N )

Bi − βi (1 − uci )S
e
i I

e
ui − μ̃i S

e
i +

N∑

j=1, j �=i

c̃ j,i S
e
j = 0, (44)

βi (1 − uci )S
e
i I

e
ui − (vci + ki + μ̃i )E

e
i +

N∑

j=1, j �=i

c̃ j,i E
e
j = 0, (45)
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ki E
e
i − (vci + hiφi + γIui (1 − φi ) + μ̃i )I

e
ui +

N∑

j=1, j �=i

c̃ j,i I
e
u j

= 0,

(46)
hiφi I

e
ui + vci (E

e
i + I eui ) − γIdi

(1 + f ci )I edi − μIdi
(1 − wc

i )I
e
di = 0,

(47)

γIui (1 − φi )I
e
ui + γIdi

(1 + f ci )I edi − μ̃i R
e
i +

N∑

j=1, j �=i

c̃ j,i R
e
j = 0.

(48)

Some conditions on the solutions can be preliminary
given by equations inspection. In fact, it is possible to
claim

i. for all the admissible solutions, Sei > 0∀i ∈ [1, N ].
Indeed, supposing Sei = 0 for the generic i th sys-
tem, equation (44) becomes

Bi +
N∑

j=1, j �=i

c̃ j,i S
e
j = 0 (49)

and, being c̃ j,i ≥ 0 and Bi > 0, no admissible
solutions can be obtained;

ii. if the network is connected, I eui = 0 for any given
i ∈ [1, N ] implies I eu j

= 0 ∀ j ∈ [1, N ]. In other
words, any admissible solution for I eu has either
none or all the components equal to zero. In fact,
setting I eui = 0 in (46), one gets

ki E
e
i +

N∑

j=1, j �=i

c̃ j,i I
e
u j

= 0, (50)

besides Ee
i = 0. Being all the coefficients non-

negative, and not all equal to zero from the con-
nected hypothesis on the network, the only admis-
sible solution is

I eu j
= 0 ∀ j : c̃ j,i > 0. (51)

The connection property assures that this result can
be propagated through the network, from subsys-
tem i to subsystems j and so on, giving I eu j

=
0,∀ j ∈ [1, N ].
Concerning the equilibrium points computation,

from (46), for i = 1, . . . , N , it is possible to write
the compact expression

K Ee − (V + Φ + Ψ + C) I eu = 0 (52)

once the following matrices are introduced

K =

⎛

⎜⎜⎜
⎝

k1 0 . . . 0
0 k2 . . . 0
...

...
. . .

...

0 0 . . . kN

⎞

⎟⎟⎟
⎠

, V =

⎛

⎜⎜⎜
⎝

vc1 0 . . . 0
0 vc2 . . . 0
...

...
. . .

...

0 0 . . . vcN

⎞

⎟⎟⎟
⎠

,

Φ =

⎛

⎜⎜⎜
⎝

h1φ1 0 . . . 0
0 h2φ2 . . . 0
...

...
. . .

...

0 0 . . . hNφN

⎞

⎟⎟⎟
⎠

C =

⎛

⎜⎜⎜
⎝

μ̃1 −c̃2,1 . . . −c̃N ,1

−c̃1,2 μ̃2 . . . −c̃N ,2
...

...
. . .

...

−c̃1,N −c̃2,N . . . μ̃N

⎞

⎟⎟⎟
⎠

,

Ψ =

⎛

⎜⎜⎜
⎝

γIu1 (1 − φ1) 0 . . . 0
0 γIu2 (1 − φ2) . . . 0
...

...
. . .

...

0 0 . . . γIuN (1 − φN )

⎞

⎟⎟⎟
⎠

.

They are all non-negative diagonal matrices except
C , which is a positive definite and then non-singular,
matrix: due to its structure, it is strictly diagonally dom-
inant (w.r.t. its columns). In fact, from (8) and c̃i, j ≥ 0,

one has that
∣
∣∣μi + ∑N

j=1, j �=i c̃i, j
∣
∣∣ ≥

∣
∣∣
∑N

j=1, j �=i c̃i, j
∣
∣∣−

|μi | >

∣∣∣
∑N

j=1, j �=i c̃i, j
∣∣∣ = ∑N

j=1, j �=i

∣∣c̃i, j
∣∣.

From (52), the expression

Ee = K−1 (V + Φ + Ψ + C) I eu (53)

is obtained. Computing the sum of (44) and (45), for
each i = 1, 2, . . . , N , and collecting them in a vector
equation, the resulting expression is given by

B − CSe − (V + K + C)Ee = B − CSe − (V + K

+C)K−1 (V + Φ + Ψ + C) I eu = 0, (54)

where

B = (
B1 B2 . . . BN

)T
, (55)

from which we get

Se = C−1B − C−1(V + K + C)K−1 (V + Φ + Ψ

+C) I eu . (56)

From Eqs. (45) we get

Σ(I eu )Se − (V + K + C) Ee = 0, (57)

where

Σ(I eu ) =

⎛

⎜⎜
⎜
⎝

β1(1−uc1)I
e
u1

0 ... 0

0 β2(1−uc2)I
e
u2

... 0

.

.

.
.
.
.

. . .
.
.
.

0 0 ... βN (1−ucN )I euN

⎞

⎟⎟
⎟
⎠

. (58)

Then, exploiting solutions (56) and (53) and introduc-
ing the matrix

H = (V + K + C)K−1 (V + Φ + Ψ + C) , (59)
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we get the equation

Σ(I eu )C−1B − Σ(I eu )C−1H I eu − H I eu = 0. (60)

Eq. (60) has one solution given by

I eu = 0, (61)

which substituted in Eqs. (53), (47), (48), (56) provides

Ee = 0, (62)

I ed = 0, (63)

Re = 0, (64)

Se = C−1B, (65)

and then the epidemic-free equilibrium

Pe1 = (
C−1B 0 0 0 0

)T
. (66)

Additional equilibrium points can be found computing
the non-zero solutions I eu of (60) (for whichmatrix (58)
is non-singular) and obtaining all the other components
by substituting I eu in Eqs. (47), (48), (53), (56). For such
solutions, a closed expression is not easy to be found.
A numerical approach can be fruitful for each specific
case.

The availability of the expression (66) for Pe1 allows
to study its stability characteristics in analytic closed
form. Then, the computation of the Jacobian is per-
formed, getting the block-wise form

J (Pe1) =
⎛

⎝
−C J1,2(Pe1) 0
0 J2,2(Pe1) 0
0 J3,2(Pe1) J3,3(Pe1)

⎞

⎠ , (67)

where

J1,2(P
e1) = (

0 −Σ(Se1)
)

J2,2(P
e1) =

(−(V + K + C) Σ(Se1)
K −(V + Φ + Ψ + C)

)

J3,2(P
e1) =

(
V (V + Φ)

0 Ψ

)

J3,3(P
e1) =

(−(Γ + Δ) 0
Γ −C

)

in which

Δ =

⎛

⎜
⎜⎜⎜
⎜
⎝

μId1
(1 − wc

i ) 0 . . . 0

0 μId2
(1 − wc

2) . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . μIdN
(1 − wc

N )

⎞

⎟
⎟⎟⎟
⎟
⎠

, (68)

Γ =

⎛

⎜⎜⎜
⎜⎜
⎝

γId1
0 . . . 0

0 γId2
. . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . γIdN

⎞

⎟⎟⎟
⎟⎟
⎠

, (69)

and

Σ(Se1) =

⎛

⎜⎜⎜
⎝

β1(1−uc1)S
e1
1 0 ... 0

0 β2(1−uc2)S
e1
2 ... 0

.

.

.
.
.
.

. . .
.
.
.

0 0 ... βN (1−ucN )Se1N

⎞

⎟⎟⎟
⎠

. (70)

Thanks to the block structure and the characteristics
of C and (Γ + Δ), the local stability of Pe1 is proved
once matrix

J2,2(P
e1) =

( −(V + K + C) Σ(Se1)
K −(V + Φ + Ψ + C)

)
(71)

has all its eigenvalues with negative real part. Some
considerations about the position of the eigenvalues in
the complex plane can be performed making use of the
Gershgorin circle theorem on matrix eigenvalues1.

In fact, according to the column formulation, it is
possible to write

λi ∈ Di , i = 1, . . . , N , (72)

where

Di = {z ∈ C : |z + vci + ki + μ̃i | ≤
N∑

j=1, j �=i

c̃i, j + ki }, (73)

and

λN+i ∈ Bi , i = 1, . . . , N , (74)

where

Bi = {z ∈ C : |z + vci + hiφi + γIui (1 − φi ) + μ̃i |

≤
N∑

j=1, j �=i

c̃i, j + βi (1 − uci )S
e1
i }.

Recalling the domains of definition of each parameter,
it is possible to give the expressions of the upper bound
for the real parts of the eigenvalues. Being the centers
real, theminimum
(z)min and themaximum
(z)Max

real parts of possible values of the eigenvalues are the
intersections of the circles with the real axis. For the
first N circles Di one has


(zi )min = −vci − ki − μi −
N∑

j=1, j �=i

c̃i, j

1 The eigenvalues of a n × n matrix A with entries ai, j belong
to at least one of the n discs Di , i = 1, . . . , n, where Di =
{z ∈ C : |z − ai,i | ≤ ∑n

j=1, j �=i |ai, j |} for a row formulation, or
Di = {z ∈ C : |z − ai,i | ≤ ∑n

j=1, j �=i |a j,i |} for a column based
version.
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−
N∑

j=1, j �=i

c̃i, j − ki < 0,


(zi )Max = −vci − ki − μi −
N∑

j=1, j �=i

c̃i, j

+
N∑

j=1, j �=i

c̃i, j + ki = −vci − μi < 0, (75)

for zi ∈ Di , i = 1, . . . , N , while, for the circles Bi it
is possible to write


(zi )min = −vci − hiφi − γIui
(1 − φi ) − μi −

N∑

j=1, j �=i

c̃i, j

−
N∑

j=1, j �=i

c̃i, j − βi (1 − uci )S
e1
i < 0,


(zi )Max = −vci − hiφi − γIui
(1 − φi ) − μi

−
N∑

j=1, j �=i

c̃i, j +
N∑

j=1, j �=i

c̃i, j + βi (1 − uci )S
e1
i

= −vci − hiφi − γIui
(1 − φi ) − μi

+βi (1 − uci )S
e1
i , (76)

for zi ∈ Bi , i = 1, . . . , N . It is possible to conclude
that, being the N circles Di all contained in the real
negative part of the complex plane, the epidemic-free
equilibrium point is locally asymptotically stable if all
the
(zi )Max of (76) are negative, which is true if, ∀i ∈
[1, N ], the following conditions hold

Se1i <
vci + hiφi + γIui

(1 − φi ) + μi

βi (1 − uci )
= ni

βi (1 − uci )
. (77)

Like for each isolated subsystems, it is possible to
introduce the reproduction number for the entire net-
work making use of the next generation matrix. The
same procedure adopted for the single case is here per-
formed.

According to [46], the same restriction of the full
dynamics (9), considered in Subsection 3.1, is taken. It
is

Ż = F − V, (78)

with Z = (E Iu Id)T ,

F =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

β1(1 − uc1)S1 Iu1
β2(1 − uc2)S2 Iu2

...

βN (1 − ucN )SN IuN
0
0

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

(79)

and

V =
⎛

⎝
V1E

−K E + V2 Iu
−V E − (V + Φ)Iu + (Γ + Δ)Id

⎞

⎠ . (80)

with

V1 = V + K + C (81)

and

V2 = V + Φ + Ψ + C (82)

Then, the derivative of F and of V with respect to
the vector Z must be computed and evaluated in the
disease-free equilibrium:

F ′ =
(

∂F
∂Z

)

Pe1
=

⎛

⎝
0 Σ(Se1) 0
0 0 0
0 0 0

⎞

⎠ , (83)

V ′ =
(

∂V
∂Z

)

Pe1
=

⎛

⎝
V1 0 0
−K V2 0
−V −(V + Φ) (Γ + Δ)

⎞

⎠ , (84)

(V ′)−1 =
⎛

⎜
⎝

V−1
1 0 0

V−1
2 KV−1

1 V−1
2 0

∗ ∗ (Γ + Δ)−1

⎞

⎟
⎠ . (85)

The reproduction number R is the eigenvalue with
the maximum modulus of

F ′(V ′)−1 =
⎛

⎝
Σ(Se1)V−1

2 KV−1
1 Σ(Se1)V−1

2 0
0 0 0
0 0 0

⎞

⎠ .

Since

σ(F ′(V ′)−1) = σ(Σ(Se1)V−1
2 KV−1

1 ) ∪ {0}, (86)

the maximum eigenvalue of F ′(V ′)−1 can be found as
the maximum eigenvalue of the matrix

Υ = Σ(Se1)(V + Φ + Ψ + C)−1K (V + K + C)−1. (87)

The analytical computation is not easy and it is prefer-
able to compute R numerically for each specific case.
However, for the special case of N isolated groups, for
whichC is diagonal, it is possible to simplify Υ so that

Υ =

⎛

⎜⎜⎜⎜⎜⎜
⎝

β1(1−uc1)S
e1
1 k1

m1n1
0 . . . 0

0
β2(1−uc2)S

e1
2 k2

m2n2
. . . 0

...
...

. . .
...

0 0 . . .
βN (1−ucN )Se1N kN

mNnN

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...

0 0 . . . RN

⎞

⎟⎟⎟
⎠

, (88)
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yielding

R = max
i∈[1,N ]

{
Ri

}
. (89)

Eq. (89) expresses the reproduction number of the
whole system as the greatest one among all the sub-
groups of the isolated case. Therefore, the general sta-
bility condition (77), in the absence ofmobility, implies
R < 1which is the well known condition guaranteeing
the local stability of the disease free.

4 Numerical analysis of the mobility in Italy from
March 9 to October 21, 2020

In this section, the proposed model (2)–(6) is partic-
ularized to analyze the COVID-19 evolution in Italy,
considering N = 3 groups (geographical areas) and
using real demographic and epidemic data for param-
eter estimation. Choosing N = 3 coupled to a summer
observation period is motivated to highlight the influ-
ence of human movements on the epidemic spread. In
the period of interest, which followed the first epidemic
wave, a considerable number of movements could be
counted across Italy, with non-uniform flow, but with
predominant floworientation fromNorth towardSouth.
We finally note that, in view of the model modular-
ity, the group number N could be differently chosen
depending on the level of detail required by the anal-
ysis. For instance, with the aim of analyzing the epi-
demic situation in each one of the 20 Italian regions and
focusing on the peculiar policies adopted by the local
authorities in each area, we could set N = 20 special-
izing the parameters of the submodels on the basis of
the local epidemic and social characteristics.

Numerical simulations are performed in order to
assess the impact of human mobility and of people
transfer on the diffusion of COVID-19 considering
three macro-areas of the Italian territory. Each macro-
area gathers different Italian regions, as reported by
Table 1. Our analysis starts on March 9th 2020, begin-
ning date of the hard lockdown implemented by the
Italian government, and covers the summer period with
the aim of evaluating the effects of restoring the mobil-
ity among regions, evidencing the role played by the
holiday exodus and by the reopening of many activities
in the late summer in triggering the second pandemic
wave.

4.1 Parameter tuning and fitting from data in the
interval March 9–June 3, 2020

The time interval selected for parameter fitting from
epidemiological data allows to simplify the identifi-
cation procedure, treating separately the three chosen
macro-areas. Indeed, since in the chosen period the
mobility was basically forbidden (except for work or
necessity reasons) across Italy, we can perform the
numerical procedure for the separate identification of
the following parameter sets: {βi , φi , μIdi

, γIui , γIdi
},

i = 1, 2, 3.
Preliminarily to parameter fitting, the parameters Bi ,

μi , i = 1, 2, 3, have been evaluated on the basis of the
demographic data provided by ISTAT [26]. The per
capita death rates μi , i = 1, 2, 3, have been assumed
equal to each other and computed making reference to
the mean value, over the period 2011-2018, of the ratio
μ between the number of deaths in Italy in a year and
the number of Italians at the end of the same year, i.e.,
μ1 = μ2 = μ3 = μ = 2.81 · 10−5 days−1. Since
the Italian population can be considered constant over
the relatively “short” period of interest, we assume that
birth (plus the net balance between immigration and
emigration) approximately compensates for death, and
that the average per capita rate of birth and death are
comparable, and we compute the net input rate Bi as
the product between μ and the number of individuals
Pi in the i-th group at a given time (1-1-2020), i.e.,
Bi ≈ Pi · μ, i = 1, 2, 3.

Then, according to the sizes (number of persons) of
the three populations reported by ISTAT on the 1st of
January 2020, P1 ≈ 27.746 · 106, P2 ≈ 12.016 · 106,
P3 ≈ 20.597 ·106, we get B1 = 779.67, B2 = 337.65,
B3 = 578.79 (persons · day−1).

The parameters ki , hi , i = 1, 2, 3, have beenfixedon
the basis of time constants related to disease progres-
sion provided by the World Health Organization and
confirmed by the scientific literature [45,49]. In partic-
ular, as previously done in [17], we take ki = 1/τi =
1/6 days−1 and hi = 1/τsi = 1/5 days−1, i = 1, 2, 3,
assuming that an exposed individual becomes infective
after nearly 3-7 days and that about 5 days are required
for the appearance of the first symptoms after the end
of the incubation period.

Concerning the relative infectivity of the three pop-
ulations, the fractions of symptomatic infective people
within Iui , i = 1, 2, 3, and the per capita rates of death
and recovery (for both Iui and Idi ), i.e., the parameters

123



1252 P. Di Giamberardino et al.

Table 1 Correspondence between macro-areas and Italian regions

Index i Area Italian regions

1 North Piemonte, Valle d’Aosta, Liguria, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia, Emilia Romagna

2 Center Toscana, Umbria, Marche, Lazio

3 South Abruzzo, Molise, Campania, Puglia, Basilicata, Calabria, Sardegna, Sicilia

βi , φi , μIdi
, γIui , γIdi , i = 1, 2, 3, have been estimated

by means of a ordinary least square fitting procedure.
For the sake of simplicity, we assumed γIui = γIdi
for any i . The epidemiological data exploited for the
fitting are: i) daily number of diagnosed individuals
that are currently positive, ii) total number of recov-
eries among all diagnosed positives, iii) total num-
ber of notified deaths. For each group i , such data
are respectively reproduced by computing the quan-

tities: a) Idi (δ j ), b)
∫ σ=δ j
σ=δ0

γIdi
(1+ fi (σ ))Idi (σ )dσ , c)

∫ σ=δ j
σ=δ0

μIdi
(1−wi (σ ))Idi (σ )dσ , where δ0 is March 9,

beginning date of the national lockdown in Italy, while
the j-th notification day δ j can run until June 3, which
is the initial date of restored mobility among regions
(about one month after the end of the “strong” lock-
down on May 4).

Suitable time-varying controls, accounting for changes
in the social behavior (owing to government restrictions
and to increased health risk knowledge), in the swab
testing modalities, and in the efficiency of the health
system have been exploited for the identification of the
parameter sets {βi , φi , μIdi

, γIui , γIdi
} from data.More

in details, the controls ui (t), i = 1, 2, 3, are assumed
rapidly increasing as of March 9 as a consequence of
the government lockdown decree [17], and reaching
the saturation values 0.96, for u1, and 0.92, for u2, u3,
about two weeks after the mentioned government act.
Such high saturation values are maintained by all the
controls ui (t), i = 1, 2, 3, for the entire identifica-
tion period, so as to represent the achievement of high
awareness levels among the Italians at the re-opening.
With regard to vi (t), i = 1, 2, 3, these controls are
directly inferred from the data. In particular, denoting
by ρi (δ j ) the swab test ratio of group i measured at day
δ j , it is

ρi (δ j ) = # tests at time δ j in group i

Pi
, (90)

and, for any t ∈ [δ j , δ j+1), we take vi (t) as the linear
interpolation between M3(ρi (δ j )) and M3(ρi (δ j+1)),
where M3(·) is the function performing the moving

average on a 3-week interval, i.e., a 21-sample moving
window, centered in δ j , which allows us to filter out the
oscillations inρi (δ j ) getting a smoother time course for
vi (t), i = 1, 2, 3 (right bottom panels of Figs. 4-6).

Passing to the choice of wi (t), fi (t), i = 1, 2, 3,
a rapid change in their time behavior was required in
order to fit adequately the total number of deaths and
recoveries of the three groups. The mentioned time
variations for wi (t), i = 1, 2, 3, can be explained
by assuming an increased medical experience (reached
almost at the end of the first wave) in curing the side
effects of COVID-19 and in assisting mildly infective
people, so avoiding the acute phase of the infection. On
the other hand, the change in time of fi (t), i = 1, 2, 3,
can be motivated by a likely initial defect in the notifi-
cation process reporting the daily number of recoveries,
especially due to the difficulty of monitoring the infec-
tion course of positive people at the beginning of the
epidemic in our country.

As far as zi, j (t) is concerned, since uniform mobil-
ity restrictions have been implemented in Italy until
mid-October, we assume in this analysis zi, j (t) = z(t)
for any pair i, j and for any time. So, the function
z(t) (quantifying the level ofmobility between regions)
was set to 1.0 throughout the entire estimation interval,
since no movement of people was allowed fromMarch
9 to June 3. Obviously, this is a simplifying assump-
tion as some people did actually move for serious or
necessity reasons, though observing strict precaution-
ary and distancing measures. However, such a mod-
elling choice allowed to separate the parameter identifi-
cation of the three ODE submodels, since each dynam-
ical system depends only on the state variables of the
related group as long as the condition z(t) = 1 is sat-
isfied.

We finally assume a null infective input in each area
from abroad during the whole identification period,
i.e., ΛEi (t) = ΛIui

(t) = 0, i = 1, 2, 3, since strong
restrictions and controls for people coming from for-
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eign countries were carried out in Italy during the lock-
down.

Concerning the initial conditions of the state vari-
ables at δ0= 9March 2020, we fixed Idi (δ0) equal to the
ISS data on the number of current diagnosed positives
of group i , while we computed Ei (δ0), Iui (δ0), Ri (δ0),
i = 1, 2, 3, according to the ratios Ei (δ0)/Idi (δ0) =
Iui (δ0)/Idi (δ0) = 11 and Ri (δ0)/Idi (δ0) = 1, i =
1, 2, 3, that we inferred from preliminary simulations
on thewhole national population [17]. Finally the num-
ber of susceptibles of group i was computed using the
measured Pi by means of the relation Pi = Si (δ0) +
Ei (δ0) + Iui (δ0) + Idi (δ0) + Ri (δ0).

Numerical solutions of theODE system (2)-(6) were
obtained by a MATLAB procedure implementing a
classical Runge–Kutta method, exploiting the ode45
solver. The best fitting procedure is based on fmin-
search function of MATLAB, suitably modified to
guarantee parameter estimates falling in the physical
(positive) range. The estimates of themodel parameters
in each group are reported in Table 2 while the related
optimal fitting curves of data i)-iii) are shown in panels
A-C of Figs. 4 – 6. The control actions exploited for
each fitting are reported in panel D of the same figures.

As a comment to the obtained parameter estimates,
we note that the difference of the relative infectivity βi
in the three subpopulations is basically attributable to
the bilinear form of the incidence rate, βi Si Iui , and to
the different population sizes Pi , i = 1, 2, 3. Indeed, as
the bilinear incidence approximates the standard inci-
dence, β̃i Si Iui /Pi , which is normalized to the total pop-
ulation size, the coefficients βi , i = 1, 2, 3, of our for-
mulation are actually of the order of the inverse of the
population sizes Pi , i = 1, 2, 3 (βi ∼ O(1/Pi )). So, it
is straightforward to verify that the products β̃i = βi Pi ,
i = 1, 2, 3 differ only slightly from each other, ranging
about in 0.2-0.3 day−1.

Another comment about the estimates of Table 2
concerns the fraction of subjects showing recognizable
symptoms within the infective population Iui . It can
be noticed that the estimated values of φi , i = 2, 3
(Center, South) is rather higher than φ1 (North). This
could be explained by the different (smaller) number
of swab tests initially implemented in Center-South
with respect to the amount of tests performed in North
Italy. Indeed, as the virus was prevalent in the North-
ern area at the beginning of the epidemic outbreak, a
very intense test campaign was performed in that area,
focusing not only on suspected cases with symptoms

(as done inCenter-South) but including also the general
population even in the absence of recognizable symp-
toms.

Based on the parameter estimates given in Table 2
and on the expressions of the reproduction number of
Sect. 3, we can now provide some predictions on the
initial value of such an indicator for the three isolated
subsystems and for the interconnected model. As the
three areas were actually isolated during the estimation
interval (zi, j = 1 from 09/03 to 03/06) we can pro-
vide an initial estimationof their reproductionnumbers,
exploiting Eq. (41). In particular, taking into account
the control actions on March 9 (first day of lockdown)
and the estimated parameters, we obtain R1 = 5.45,
R2 = 3.49, R3 = 4.94.

Moreover, we can provide also an evaluation of
the basic reproduction number of the whole coun-
try by computing the maximal eigenvalue of matrix
Υ given by Eq. (87). In particular, setting the onset
time of the epidemic spread in Italy at t0 << March
9 when the “first” infected appeared in Italy and the
mobility was completely active, while no other con-
trol actions were implemented (uci = vci = zci, j = 0
in Eq. (87)), we obtain a basic reproduction number
R = σ(Υ ) = 5.03. This value is located near the
higher literature estimates of the basic reproduction
number reported for instance in the study [21].

The identified model parameters, along with the
mathematical expression of the reproduction number
R given in Sect. 3, allow also to highlight some inter-
esting aspects on the control action intensity which is
necessary to contain the disease spread in Italy. Fig-
ure 7 shows how the reproduction number of the whole
country changes when the intensities of the swab test
campaign and of the social contact limitations change.
In particular the plot depicts the behavior ofR = σ(Υ )

(Υ given by Eq. (87)) with respect to vci = v and
uci = u, i = 1, 2, 3, when the mobility is completely
active (zci, j = 0, i, j = 1, 2, 3). The plot highlights the
following aspects:

– in the absence of social contact limitations the con-
tainment of the disease spread could be achieved
provided that a very intense swab test campaign is
performed: indeed, when u = 0, we get R < 1
for v > 0.12; this means that at least the 10% of
the whole population should be tested every day,
so requiring about 6 million of swabs per day. This
scenario of intense infection tracing is very hard to
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Fig. 4 Group 1 - North.
Circles: ISS data [18].
Dotted line: model
prediction. Panel A: Daily
number of diagnosed
positives. Panel B: Total
number of notified
recoveries. Panel C: Total
number of notified deaths.
Panel D: Time course of the
control actions

Fig. 5 Group 2 - Center.
Circles: ISS data [18].
Dotted line: model
prediction. Panel A: Daily
number of diagnosed
positives. Panel B: Total
number of notified
recoveries. Panel C: Total
number of notified deaths.
Panel D: Time course of the
control actions
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Table 2 Estimated model parameters (epidemiological data from March 9 to June 3 [18])

Area Parameter Value

North β1 7.971 · 10−9 persons−1 · day−1

φ1 0.1145

μId1
0.0142 day−1

γIu1 , γId1 0.0192 day−1

Center β2 1.794 · 10−8 persons−1 · day−1

φ2 0.2510

μId2
0.0067 day−1

γIu2 , γId2 0.0143 day−1

South β3 1.687 · 10−8 persons−1 · day−1

φ3 0.3176

μId3
0.0067 day−1

γIu3 , γId3 0.0089 day−1

Fig. 6 Group 3 - South.
Circles: ISS data [18].
Dotted line: model
prediction. Panel A: Daily
number of diagnosed
positives. Panel B: Total
number of notified
recoveries. Panel C: Total
number of notified deaths.
Panel D: Time course of the
control actions

be actualized, suggesting that some contact limita-
tions are mandatory;

– performing a strong limitation of the social and eco-
nomic activities which reduces the human contacts
more than 80%, could be enough to contain alone

the outbreak; in fact, the condition u > 0.8 pro-
vides R < 1 independently of the intensity of v;

– it is possible to infer a feasible trade-off between
social contact limitation and infection tracing,
which is not very heavy from both aspects; imple-
menting a reduction of social contacts of 70-80%,
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Fig. 7 Reproduction number R as a function of vci = v and
uci = u, i = 1, 2, 3 (zci, j = 0, i, j = 1, 2, 3)

i.e., keeping u ∈ (0.7, 0.8) (note that u is at least
0.92 in the lockdown period), allows to contain the
outbreak if v ∈ (0.0002, 0.02). This means that
from about 12 thousand (for u = 0.8) to about 1.2
million (for u = 0.7) of swabs per day are required.

We notice also that Figure 7 does not significantly
changewhen themobility level change, even increasing
100 times the coefficients ci j (not shown), suggesting
that the stability properties are not sensibly affected by
themobility level. However, as shown by the case study
reported in the next section, the human mobility plays
an important role in making uniform the spatial dis-
tribution of the infection throughout the country, also
contributing to a time advance of the second wave.

4.2 Evaluation of the effect of switching on the
mobility among areas after June 3rd, 2020

This section is devoted to the numerical simulation
of the complete model to investigate the impact that
restoring mobility and connections among the groups
of regions had on the epidemic evolution of each area.
Unrestricted mobility officially started as of June 3 in
our country and we aim to reproduce the dynamics
of the period following the lockdown phase, quanti-
fying some policies and actions adopted with particu-
lar attention to the mobility aspects. Therefore, on the
basis of the fitting of the separated models previously
obtained, we fix values for the remainingmodel param-
eters (representing intergroup exchanges) and we start
tuning a tentative mobility framework so as to satisfac-

torily reproduce the epidemiological data updated with
respect to time. Once the model is suitably calibrated
with respect to the mobility and control variables, we
hypothesize and simulate different evolutionary sce-
narios that could be envisaged as a consequence of
adopting control actions that combine or exclude some
restrictions actually adopted in Italy.

In the following, we propose a procedure to derive
realistic time courses for the control actions translating
into model quantities the social behaviors and sanitary
actions. The unknown model variables are adjusted so
that the model adequately reproduces the epidemiolog-
ical data over the chosen period ending on October 21,
which is an observation interval that allows to investi-
gate the role played by the increased number of move-
ments in summer on the trigger of the second pandemic
wave. Epidemiological data used to adjust the model
behavior are the total number of reported positive cases
and the daily number of new cases. The reason for con-
sidering these data is that they carry “cumulative” infor-
mation on the total number of subjects notified since
thebeginningof the observationperiod and theydepend
on a reduced number of model parameters. The model
quantities representing the mentioned measured data
are

Ci (δ j ) =
∫ δ j

δ0

[hiφi Iui (σ ) + vi (σ )(Ei (σ ) + Iui (σ ))]dσ , (91)

for the total cases of area i at δ j and the related incre-
ment Ci (δ j ) − Ci (δ j−1) for the daily new cases. Suit-
able values of ui (t) and z(t), as well as of ΛEi (t),
ΛIui

(t), i = 1, 2, 3 have been accurately searched by
trial and error until satisfactory data reproduction. For
simplicity sake, we assume that a single cumulative
external flux Λi (t) enters the infected communities
and that it is equally split up between Ei and Iui , i.e.,
ΛEi (t) = ΛIui

(t) = Λi (t)/2, i = 1, 2, 3. Next, ad-
hoc time behaviors have to be chosen, according to
the available data and official sources, for the coeffi-
cients ci, j (t) in order to represent both the “ordinary
mobility” (occurring all year round) and the unbalanced
transfer of people characterizing the holiday exodus.
Concerning the other control actions, vi (t) is deduced
by data on the number of swab tests (as done in the pre-
vious section), while wi (t) and fi (t) are kept fixed to
the last value obtained during the identification period.
Note that, as it can be seen from the model equations,
the total number of positive cases does not depend on
wi (t) and fi (t) (as well as on the actual value of the
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Fig. 8 Time course of the total number of cases for the three
Italian macro-areas from March 9 to October 21

model parameters μIdi
and γIdi

), so that an accurate
tuning of these functions is not required to represent
this quantity.

A first comment that can be made about the total
number of positive cases is that their extents in the
three geographical areas considered were highly het-
erogeneous since the beginning of the pandemic out-
break and the same differencewas basicallymaintained
until October, as shown in Fig. 8. The total number of
cases reported at the beginning of August (around day
150) in the North was about 200000, while a sensi-
ble smaller (about one order of magnitude) number of
positive cases were reported by Center (∼ 28000) and
South (20000).

Let us now go into the quantitative details of the
control tuning. Figure 9 depicts the time course finally
adopted for the control actions, which has been estab-
lished on the basis of the observations reported in
the following. The relatively low number of the daily
new cases in the central and southern regions during
the mentioned period suggests that neither substantial
changes in the social behavior, like the relaxation of
precautionary measures or of the social distancing, nor
a sensible importation of new infections from outside
occurred during the first phase of summer. Therefore,
for i = 2, 3, the controls ui (t) should be taken as high
as it was during the lockdown, i.e., 0.92, while tak-
ing the inputs Λi (t) equal to zero. On the contrary,
the number of cases in the North keeps on increasing
after the end of the lockdown, although with a slope
smaller than before May 4. For this reason, in order
to reproduce the data, it is reasonable to hypothesize a
decrease of u1(t) after reopening, or a non-negligible

Λ1(t), or both these contributions. We assumed both,
which means a decrease in u1(t) (until mid Septem-
ber) and a concomitant increase of Λ1(t) just after the
reopening. As it can be seen from panels B, C of Fig. 9,
the new values set for the inputsΛi (t), i = 1, 2, 3, after
the 3 June reopening are maintained up to 21 Octo-
ber. Moreover, we assume a sensible change occurring
in ui (t), i = 1, 2, 3, (the second reduction for u1(t))
around mid September. On this date the restart of pro-
duction activities and school re-opening increased the
“intra-group” mobility and the consequent social con-
tacts among people. As explained in detail below, this
last change of ui (t), i = 1, 2, 3, in addition to the
“intergroups” mobility, is actually a necessary assump-
tion in the simulation to explain the sharp increment of
cases starting from the end of September in all the three
areas (see Fig. 8) .

As far as themobility controls z(t) and ci, j (t), i �= j ,
i, j = 1, 2, 3 are concerned, they are chosen on the
basis of the following considerations. First, according
to the government decrees allowing people to travel
as of June 3, we assume that the mobility is restored
gradually along about forty days, so that z(t) starts
decreasing from 1 (no mobility) on June 3 going to
0 (complete mobility) on July 15. In addition, we need
to quantify the “regular mobility”, i.e., the amount of
people transfers for study and work, or just for visit-
ing under “ordinary” conditions. So, in order to model
the “regular mobility” we keep the coefficients ci, j (t),
i �= j , i, j = 1, 2, 3, constant, say ci, j (t) = c̄i, j ,
i �= j , i, j = 1, 2, 3, before and after the holidays
(which means out of the interval 15 July–30 Septem-
ber). Such constant coefficients are tuned in order to
provide approximately 100000 persons travelling each
day and between each pair of areas, paying attention in
balancing the macro-areas demographies, i.e., assum-
ing a constant number of people in each of them. In
particular, we choose c̄1,2 = 4 · 10−3, c̄1,3 = 4 · 10−3,
c̄2,1 = 8 · 10−3, c̄2,3 = 8 · 10−3, c̄3,1 = 6 · 10−3,
c̄3,2 = 4 · 10−3 (see Fig. 9, panel A).

From the beginning ofAugust till the end of Septem-
ber, a remarkable mass departure of Italians from
North to Center and South took place, with a sensi-
ble delay with respect to previous years and with a
remarkable increment of internal travelling toward the
Southern seas or mountains. Indeed, a statistical anal-
ysis reported in September 2020 by ENIT (the Italian
National Agency for Tourism) shows that almost 24
millions of Italian went to Center-South for their hol-
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Fig. 9 Time course of the
control actions adopted to
reproduce the data from
March 9 to October 21

idays [19]. For this reason, as of July 20 we impose
changes to the coefficients ci, j (t), i �= j , i, j = 1, 2, 3,
to reproduce an unbalanced demographic movement
toward the Central and Southern populations whose
size increases of some millions of persons (the north-
ern population was reduced accordingly). Conversely,
from aboutAugust 31 themobility across Italy progres-
sively changed again up to mid September, producing
the opposite migration of people from Center-South to
North. The summer exodus is thought to terminate at
the end of September. A temporal scheme of the model
quantities so assumed is illustrated in Fig. 9, while their
simulated effect on the susceptible populations (that
basically coincide with the entire resident populations
of the areas) is shown by the upper panels of Fig. 10.

The time course of the control actions assumed as
described (see also Fig. 9) allows to reproduce well the
data behavior by means of the model. This is shown in
Fig. 10 for the total number of cases (middle panels)
and for the daily number of new cases (lower panels)
reported from June 3 toOctober 21. Themain comment
that we can give is that the combination of the sum-
mer exodus from North to Center-South along with the
actually enhanced virus circulation in the North (u1(t)
lowered andΛ1(t) increased in themodel) produces the
joint spread and increment of positive cases throughout
the three areas, and especially in Center-South. Indeed,
in the interval 150-200 days the total cases present a net

slope change (Fig. 10, middle panels) while the daily
number of new cases take a more bell-shaped course
(lower panels of Fig. 10). Overall, such increment of
positive cases was rather limited, which in our opinion
proves that the general mobility increment during the
summer holidays was not sufficient to directly induce
the feared second wave. However, they did probably
contribute to the second wave since the fast increase of
cases after September 15 can be actually reproduced
only by combining the further sensible reduction of
containment measures (i.e., ui (t)) after that date with
the assumptions on mobility and social behavior made
for the summertime. This combination of effects can be
demonstrated also by the predictions reported below,
which we construct by simulating the removal of one
control variable at a time.

So, let us now evaluate the impact of the single con-
trol actions, evidencing how the combination of the dif-
ferent controls assumed above is necessary to obtain a
sufficiently accurate reconstruction of the data. In par-
ticular, our aim is to evaluate how different the situation
could have been by adopting different control strate-
gies. The following two scenarios are schematized by
model simulation: (1) epidemic evolution keeping the
restricted inter-regional mobility even after June 3; (2)
epidemic evolution with restored mobility, but suppos-
ing that stronger precautionary measures and restric-
tions on social contacts are applied. Scenario (1) can be
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Fig. 10 Model reconstruction of the epidemiological data from
March 9 to October 21. Upper panels: susceptible population
S(t) northern, central, and southern from left to right. Middle

panels: total number of cases. Lower panels: new daily cases.
Circles: ISS data [18]. Solid lines: model predictions

simulated setting z(t) = 1 for any time (until October
21). Scenario (2) can be modelled by fixing Λ1(t) = 0
for any time and keeping u1(t) = 0.96 at least until
the middle of September (instead of allowing u1(t) to
go down to 0.67 after the reopening, and before mid
September, as in the reference simulation). Figures 11
and 12 report the model predictions obtained for the
two scenarios (1) and (2) supposing valid the varia-
tions mentioned above w.r.t. the reference situation of
Fig. 10. From the results of Fig. 11 it is evident that,
if the inter-regional mobility had been prevented (i.e.,
keeping closed the borders of the three areas), a second
wave would have occurred sooner in the North, where
the virus circulation was higher than elsewhere, but it

would have spared the other areas from a sharp incre-
ment of infections (at least until October 21). So the
simulation evidences the role of the holiday mobility
in the diffusion of the epidemic along the Italian terri-
tory, making the number of infections more uniformly
distributed in the country and delaying the second
wave. Conversely, from Fig. 12 we can conclude that,
if stricter rules for the social contacts and stronger pre-
cautionary measures had been imposed at the reopen-
ing (after June 3), the second wave would have been
avoided in all the three groups until October 21. Note
that the reduction of the controls ui (t), i = 1, 2, 3,
after the middle of September is not sufficient to pro-
duce the rapid increase that we actually observe in the
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Fig. 11 Simulation of scenario (1): z(t) = 1 for any t in [9
March, 21 October]. The other controls are as in Fig. 9. Upper
panels: susceptible population S(t) northern, central, and south-

ern from left to right.Middle panels: total number of cases. Lower
panels: new daily cases. Circles: ISS data [18]. Solid lines: model
predictions

real data over a month (from 15/09 to 21/10). Indeed,
from the middle and lower panels of Fig. 12 we can
notice a barely perceptible increase of the simulated
cases (both total and new daily cases) at the end of the
considered time interval (indeed, the same number of
cases are basically obtained until October 21 without
reducing ui (t) from the middle of September). This
means that the second wave is slowly starting from the
final days of the considered time interval, because of
the reduction of ui (t), i = 1, 2, 3, at the middle of
September, but if this had been the case the disease
progression could have been slower giving more time
to the government for effective interventions to limit
the impact of the second wave.

5 Numerical analysis of the mobility impact after
October 21, 2020

Themodel presented in this paper has been used to eval-
uate the contribution that the summer holidays, with
their largely incremented mobility, had on the virus
spread along Italy until midOctober 2020 (i.e., until the
second wave onset). In the present section, the model
capability to capture and describe the mobility even in
the subsequent time up to nowadays is discussed.Main-
taining the aggregation of Italian regions into three
groups when a color based mobility characterization of
each region is actually adopted since November 2020
clearly brings to averaged results. It is worthy to note
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Fig. 12 Simulation of scenario (2): Λi (t) = 0, i = 1, 2, 3, for
any time and u1(t) = 0.96, ui (t) = 0.92, i = 2, 3, until about
September 15. The other controls, as well as ui (t) from the mid-
dle of September, are as in Fig. 9. Upper panels: susceptible

population S(t) northern, central, and southern from left to right.
Middle panels: total number of cases. Lower panels: new daily
cases. Circles: ISS data [18]. Solid lines: model predictions

that the model (2)–(6) could be specialized to describe
the twenty regions division of Italy once a new identi-
fication procedure is performed. Keeping the model as
used in Sect. 4, with the parameter values as estimated
in Sect. 4.1, new predictions on the human mobility
after summer 2020 are presented once a coarse tun-
ing of the control actions is performed accounting for
new social, economic and mobility restrictions intro-
duced in Italy to mitigate the incoming second wave.
To this aim, starting from the last values of the controls
reported in Figure 9we impose the following variations
atmid-October: (i) an increase of the social contact lim-
itations ui , i = 1, 2, 3, up to 0.8; (ii) a reduction of i1

to one third of the maximal value reached after the first
reopening; (iii) a reduction of 50% of themobility level
(z = 0.5). The variations imposed to the mentioned
controls are kept constant until the end of June 2021;
moreover, the values of the actions vi , i = 1, 2, 3, are
driven by the data on the swab tests administered in the
three macro-areas, as done before in Sect. 4. A com-
promise between a fine tuning of the control actions
and the averaged description over the aggregated three
macro-areas is adopted. The assumed controls and the
prediction results are shown in Figures 13 and, respec-
tively, Fig. 14 (solid lines); such a coarse control tuning
provides a satisfactorymodel predictionwhich roughly
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Fig. 13 Time behavior of the control actions assumed for the
coarse fitting of the epidemiological data until June 2021. ui ,
i = 1, 2, 3, and i1 are changed since mid-October 2020 and

different mobility levels are considered from the same date:
z = 0.5 (reference prediction, solid line) and the extreme condi-
tions z = 0 (dashed line) and z = 1 (dotted line)

reproduces the total number of cases (see the solid lines
of Figure 14, related to z = 0.5, compared to the real
data). Starting from this reference prediction, we eval-
uate how much the total number of cases could have
been different in each area by changing the mobility
level between the two extreme conditions z = 0 and
z = 1. Indeed, Figure 14 confirms that the total number
of infected patients could have been sensibly different
in the whole country and in each area at the end of June
2021, depending on the level of human transfers among
the three groups. Indeed, passing from z = 0 (dashed
line, free mobility) to z = 1 (dotted line, mobility for-
bidden), we obtain a reduction of about −10% of the
total cases at the end of June 2021 in the whole Italy
and, in particular, the following local variations of cases
in the three areas:+38.5% in the North,−42.9% in the

Center and−59.8% in the South. The strongest impact
of the mobility between the three areas is obtained in
the South, where the level of local infected people was
lower than those of the other areas atmidOctober (com-
pare the number of casesw.r.t. the local population size)
and a significant import of infected could change the
time evolution of cases in this area. Moreover, the vari-
ation of cases (which are given by the integral of the
incidence) evaluated for the whole country suggests
that the mobility has also a sort of multiplying effect
on the contagion in addition to the spatial infection dis-
tribution.

As a final and general remark about the application
of the model presented here, it is worth stressing the
interest of the proposed COVID-19 analysis not only
to explain the current emergency, but also to under-
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Fig. 14 Model prediction
on the total number of cases
until the end of June 2021.
Control actions are changed
since mid-October 2020 as
reported by Figure 13.
Different mobility levels are
considered from
mid-October 2020: z = 0.5
(reference prediction, solid
line) and the extreme
conditions z = 0 (dashed
line) and z = 1 (dotted line).
Panels: A, whole Italy; B,
North; C, Center; D, South.
Circles: ISS data [18].
Lines: model predictions

stand the underlying dynamics, in view of possible sim-
ilar future situations. As noted by important theoretical
studies such as [1,22,32,36,50], the evolution of any
pandemic (and particularly the current one) strongly
depends on the population actions in the early phase;
nevertheless, the model provides a quantitative tool for
evaluating the impact of the applied containment mea-
sures, in particular of the mobility restrictions, in dif-
ferent epidemic scenarios.

6 Concluding remarks

In this paper, an enriched version of the classical SEIR
model, including the effects of asymptomatic individu-
als on the COVID-19 outbreak, is proposed to describe
the spread of a virus among different geographically
defined populations, with the aim of analyzing the con-
sequences of inter-regional peoplemobility on the virus
transmission.

After an in-depth model analysis, we present a case
study, which is interesting by itself and also as a possi-
ble future scenario, considering the effects of the people

fluxes among Italian macroareas in summer 2020. Dur-
ing that period, the mobility restrictions were relaxed
and a considerable number of movements with pre-
dominant flow orientation from North toward Center-
South (in early summer, and backward, in late summer)
occurred.

By using official Italian epidemiological data, it is
evidenced the capability of the proposed modelling
of capturing the effects of individual mobility among
regions characterized by different local evolutions and
effects of government decrees to regulate and limit such
inter-regional mobility.

The studyof the expression of the reproduction num-
ber showed its dependency from the model parame-
ters; in particular, it is stressed the influence of the
swab test campaign and its relation with the changes in
social contacts limitations, showing the possibility of
an acceptable trade-off between social contacts limita-
tion and infection tracing once an high number of swab
test is processed.

The numerical results obtained by ad hoc model
simulations evidenced the capability of capturing the
effects of the individual mobility among regions, char-
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acterized by different local evolutions, and the con-
sequences of government decrees to regulate and limit
such inter-regional mobility. It is proved that themobil-
ity increment during summer 2020was not sufficient to
immediately induce the second wave, but it was proba-
bly decisive to its onset when the mass departure effect
was combined with the restart of the productive activ-
ities and school reopening. Preventing the mobility
among the macro-areas considered would have prob-
ably saved the Center-South from a sharp contagion
increase after the summer, while producing a time
advance of the second wave in the North. Prolonging
the analysis along the next interval (mid-October 2020–
end of June 2021) we evidenced the role of the human
mobility in multiplying the number of infections in the
whole country.

Future developments of the present study in progress
are represented by the use of the identified models and
the quantified contribution of mobility, social and eco-
nomic activities, and schools, to analyze and predict
the effects of the combination of containment actions
in different possible scenarios. The possibility of a
deeper description increasing the resolution adopting
the twenty regions division is also under investigation,
to evaluate the effects of the short–medium distance
mobility too.
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