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1. Introduction

The possibility of designing and manufacturing structures characterized
by intentional multistable behaviour raises considerable interest for both
technological and scientific reasons. Their applications range nowadays from
aerospace to energy harvesting industries in which the morphing capabilities
arising from the presence of more equilibrium positions are exploited in dif-
ferent ways. By restricting ourselves to bistable structures, the coexistence
of two stable configurations can be ascribed to several effects. For unsym-
metric composite laminates, mechanical bistability due to curing thermal
residual stresses was observed by Hyer forty years ago [1]. As shown in [2],
the introduction of residual bending stresses in thin, homogeneous, isotropic
leads to stable configurations with curvatures of opposite sign. By applying a
prestress to selected fibres, bistable behaviour can also be obtained for lami-
nates with a symmetric layup [3]. Fibre-reinforced composites can also induce
bistability in thin cylindrical shell structures: either a tight coil or helical sec-
ond stable configuration is obtained for antisymmetric and symmetric layup,
respectively [4]. Multistable shells can also be obtained by mechanically in-
ducing a prestress on a initially curved stress free configuration. This makes
it easy to design multistable shells with boundary constraints [5, 6, 7]. A
special class of cantilever composite shells exhibiting multi-stability has been
presented by the authors in [8]. Finite element numerical simulations con-
firmed by experimental tests demonstrated the existence of two or four stable
equilibrium configurations, depending on the shape of the natural stress-free
configuration of the shell. More recently, the cantilevered configuration was
also studied in [9] to obtain snap-through characteristics and design criteria
for bistable laminates with carbon-epoxy and glass-epoxy layers. Compre-
hensive literature reviews on bistable composite laminates can be found in
[10, 11].

Irrespective of the source of mechanical bistability, the force required for
snapthrough motion can be reduced by dynamically driving the structure’s
change of configuration. Therefore, in the last ten years numerous theoretical
and experimental studies have been devoted to describe and possibly exploit
the bistable behaviour under dynamic actuation. In [12] the snap-through
dynamics of cross-ply laminated composite bistable plates was studied for
square and rectangular geometries. The nonlinear behaviour of a square
bistable laminate excited by a shaker acting at the center of the plate was
studied in [13] addressing the so-called in-well dynamic regimes, that is, the
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ones occuring when the shell oscillates around one of the two stable equilibria.
A low order model, whose coefficients were identified from the experimental
frequency response, was adopted to capture the subharmonic behaviour and
estimate the stability boundaries; the model involves quadratic nonlineari-
ties for both the restoring force and the modal coupling term. The latter
model was then extended by including a frequency dependent displacement
threshold beyond which snap-through was experimentally observed [14]. This
allowed to address the so-called cross-well dynamic regimes, that is, the ones
occuring when the shell oscillates back-and-forth between the two stable equi-
libria. A two-way actuation through piezoelectric patches (MFC) of dynamic
morphing was proposed in [15]; the dynamic snap-through was obtained by
carefully tuning the excitation frequencies for each stable state and by adding
point masses. In [16] the linear free vibrations around a stable position of
a cross-ply laminate were studied. A bistable cantilever unsymmetric lam-
inate was investigated in [17] to achieve full-state configuration control by
inducing and reversing snap-through as desired. Besides the experimental in-
vestigations, a number of studies focused on the modelling aspects required
to predict and interpret the nonlinear dynamics of bistable composite lami-
nates under harmonic excitation. The response for the transverse displace-
ment was obtained in [18] following a Rayleigh–Ritz–Galerkin approach. To
take into account the non-constant curvatures, fourth-order polynomials for
the out-of-plane displacement field were proposed as shape functions in [19].
More recently, an analytical dynamic model with 17 unknown terms based
on Rayleigh’s method and Hamilton’s principle was proposed in [20]. Pro-
vided that the material properties and dimensions are known, the latter
model enables the prediction of the nonlinear dynamic response over the en-
tire region of bistable plates. A simplified model depending on only four
time-dependent parameters was validated and used in [21] to examine the
static and free vibration response of cylindrical bistable laminates with high
length-to-thickness ratio.

The dynamics of bistable composite laminates plays a key role for en-
ergy harvesting purposes; in particular, to generate electrical energy from
ambient vibrations. In this context, bistability, with the ensuing large strain
associated with snap-through mechanisms, has shown to significantly enlarge
the harvesting frequency bandwidth. In addition, the involved nonlinearities
trigger advantageous dynamic regimes in which large amplitude oscillations
can be obtained from relatively small input energy. In [22] a square plate
with piezoelectric patches was experimentally investigated showing that large

3



average power was harvested from intermittency, limit cycle and chaotic os-
cillations for responses with initial condition on both stable states. Energy
harvesting performance of bistable composite plates with bonded piezoelec-
tric elements was also investigated in [23, 24, 25]. In these studies, the energy
extraction optimization problem was tackled, from a static perspective, by
considering the actuation arrangement, the laminate aspect ratio as well as
the ply thickness and orientation. A square laminate mounted on the shaker
at its center was considered showing that power generation achieved via con-
ventional resonant systems can be improved by relying on repeatable snap-
through motion. The energy harvesting capability of a cantilever bistable
asymmetric laminates coupled to piezoelectric materials was studied in [26];
at low frequency and low excitation, higher power output over a broader
range of frequencies was obtained for the bistable case with respect to its
linear counterpart. In [27] the dynamics of a square bistable laminate with
piezoelectric layers was successfully predicted by an analytical model char-
acterized by fourth-order shape functions. Under high amplitude excitation,
the nonlinear response of the laminate was predicted in [28] by numerically
solving the electromechanically coupled equations of motion derived from
Lagrange’s equations and the Rayleigh-Ritz method.

Most of the studies so far devoted to the dynamics of bistable laminates
were characterized by symmetric stable configurations with free boundaries.
Although this choice grants clear benefits from an experimental, analytical
and modeling point of view, it restricts the geometric shapes of the sta-
ble states that can be obtained. This might in turn limit the possibility of
maximising the kinetic energy associated with snap-through motion, a nec-
essary condition for optimal energy harvesting performance. To overcome
these limitations, a bistable laminate with remarkably different stable geo-
metric configurations is here considered. By extending the authors’ previous
work [8], the dynamic analysis of a cantilever shell whose design was driven
by a semi-analytical model under static loading conditions is theoretically
and experimentally investigated. It is worth emphasizing that the consid-
ered asymmetry of the clamped stable states stems from the peculiar curved
stress-free configuration of the laminate and from the chosen boundary con-
ditions which introduces significant novelties with respect to the cantilever
bistable laminates obtained from flat plates (e.g. [15, 17, 25]). In particular,
the obtained stable configurations are characterized by remarkably different
stored elastic energies and spectral properties. Therefore, the interest lies
in studying the large amplitude nonlinear behaviour of such a class of shells
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and possibly exploit this ’asymmetry’ for energy harvesting purposes once
the snap-through mechanism is triggered.

The paper is organized as follows. In Section 2 the key geometric and
constitutive features of the class of cantilever bistable shells considered in
this study are introduced. In Section 3 the experimental campaign under
harmonic forcing is reported; it focuses on the resonance scenarios around
the stable configurations and the nonlinear behaviour observed for high am-
plitude excitation. Next, in Section 4, the reduced order model derivation
is discussed. Driven by the experimental evidence and two double-well os-
cillators derived from FEM simulations a double-well quintic oscillator is
derived. The involved parameter identification is also described in which the
key role played by damping modelling is highlighted. The nonlinear dynamics
main features are presented in Section 5 by addressing at first the periodic
behaviour around each stable configuration in terms of resonance curves,
bifurcation diagrams and basins of attraction. Then, the global dynamics in-
volving regular and chaotic dynamic regimes as well as snap-through motion
is described prior to the concluding remarks.

2. Cantilever bistable shells with asymmetric stable configurations

We consider the class of cantilever multistable shells proposed in [5, 6]
and numerically and experimentally investigated in [8]. Starting from a com-
posite shell with rectangular planform and pseudo-conical stress-free shape,
a cantilevered multistable shell is obtained by inducing a prestress by flat-
tening and clamping one of its short edges. The multistability properties
of such a structure (that is, the number of clamped stable configurations,
their shapes, elastic energy content, natural frequencies, etc.) depend on its
stress-free shape, the constitutive properties of the elementary lamina and
the lamination sequence. Here we limit ourselves to the subfamily of mul-
tistable shells obtained by choosing (once and for all) the stress-free shape
represented in Fig. 1, the elementary lamina whose properties are reported
in Tab. 1 and the lamination sequence [α/−α2/α/−α/α2/−α], with α mea-
sured with respect to the x−axis. In this case the multistability properties
depend on a single parameter, namely the lamination angle α. The latter
can be selected based on the performance requirements of the device to be
designed. For the chosen stress-free shape and elementary lamina, the shell,
once flattened and clamped to the x = 0 edge, turns out to be bistable when-
ever α ∈ [35◦, 60◦]. This range, previously estimated by the reduced order
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Figure 1: Stress-free shape z0(x, y) = [1/r0 +(1/r0−1/rL)x/Lx)y2/2, where Lx = 0.45 m,
Ly = 0.15 m, r0 = 0.114 m, rL = 0.07 m.

ρ E1 E2 ν12 G12 G13 G23 t`
(g/mm3) (GPa) (GPa) - (GPa) (GPa) (GPa) (mm)

1.996 130.71 6.36 0.32 4.18 4.18 0.1 0.145

Table 1: Elementary lamina: unidirectional carbon/epoxy composite data
(M12/35%/UD134/AS7/300).
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model proposed in [5, 6], has been verified via finite element (FE) simulations
carried out using the commercial software Abaqus.

The FE model has been developed by taking advantage of the Python
scripting interface. The stress-free shape of the shell has been created starting
from spline approximations of the curved edges and using the shell loft feature
to generate the middle surface; the laminate has been defined using the
composite layup functionality with 3 integration points per ply. We used
general purpose S4R shell elements with reduced integration.

For each choice of the lamination angle α within the bistable domain, let
Cα

1 be the stable configuration that the shell naturally assumes soon after
clamping, that is, its first stable configuration, and Cα

2 be its second stable
configuration. Each numerical simulation consists of 3 steps: at first, the Cα

1

configuration is obtained by flattening and clamping the x = 0 edge (step 1);
then, a follower force is applied at the shell tip to trigger the switch towards
the Cα

2 configuration (step 2); finally, the force is released to check whether
the shell settles to the Cα

2 configuration (step 3). We use a Static, General
procedure for all steps. Fig. 2 shows the shape, the elastic energy content
and angular frequency of the first mode for both the Cα

1 , Cα
2 configurations

as the lamination angle varies. As can be seen, for α ' 45◦ a drastic change
in the shape of the second stable configuration Cα

2 is observed, resulting in
a sudden change in its stored elastic energy and angular frequency. This is
due to the fact that an increase in the lamination angle corresponds to a
decrease in the ratio between longitudinal and transverse stiffnesses which
favors the stability of configurations with large longitudinal curvature and
small (or even vanishing) transverse curvature. The value of the lamination
angle at which this occurs depends on the properties of the specific lamina.
By taking into account the expected energy and spectral features of the two
configurations, the design possibilities while searching for the optimal har-
vesting performance are enlarged. Being interested in studying the nonlinear
dynamics of bistable shells with widely differing stable configurations, in the
following we investigate the case α = 45◦; in the remainder of the paper, due
to the shapes assumed by the shell, the C45

1 , C45
2 configurations are renamed

I, C, respectively. As shown in Fig. 2d, this specific choice of lamination
angle entails that both the elastic energy gap between I and C configura-
tions and the longitudinal curvature of C are maximal. Moreover, it can
be observed that the difference between the frequency of the first mode of
vibration between the two stable configurations, albeit not maximal, is large
enough to give rise to resonant dynamics for rather distinct forcing frequen-
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(a) α = 35◦. (b) α = 45◦. (c) α = 55◦.
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Figure 2: Shapes, elastic energies and frequencies of the clamped shell stable configurations
as the lamination angle α varies.
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(a) M1 (ωI = 49.7 rad/s,
ωC = 18.3 rad/s).

(b) M2 (ωI = 248.2 rad/s,
ωC = 57.4 rad/s).

(c) M3 (ωI = 785.5 rad/s,
ωC = 82.0 rad/s).

Figure 3: First three natural modes for I and C configuration (α = 45◦).

cies, Fig. 2e. Fig. 3 shows the angular modal frequencies, namely ωI , ωC , for
the I and C configurations, respectively; in this study, being interested in
high amplitude motion, the dynamic actuation of the bistable shell focuses
on the first mode of vibration for both the configurations.

3. Experimental campaign under harmonic excitation

3.1. Shell sample and experimental setup

The shell was formed using a single-sided aluminium mould specifically
designed according to the geometry of the stress-free shape (see Fig. 1); we
refer to [8] for all the details about the manufacturing process. Then, the
curved edge having smaller curvature (i.e. r0) was flattened and forced to
remain flat between two clamps fixed to the shaker. As a result of this
clamping action, the shell settles in the so-called I configuration (Fig. 4a);
starting from such configuration, to make the shell settle in the C configura-
tion (Fig. 4b), as described in Section 2, a quasi-static external actuation is
provided.

The shell dynamic behaviour was investigated by experimental tests per-
formed using a 59335 Tira electrodynamic shaker. A 3-axis accelerometer,
glued close to the middle of the shell free edge, was used to acquire mea-
surements during forward and backward frequency sweeps. A LMS vibration
analyzer was used to integrate the signals and calculate the displacement
amplitudes in both the x and z (global) sensor directions.

3.2. Small oscillations behaviour

The shell’s small oscillations around the two stable configurations were
investigated by performing backward and forward frequency sweeps of con-
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(a) I shape. (b) C shape.

Figure 4: Shell clamped stable configurations.

stant amplitude (as = 0.1 g) harmonic base acceleration. Fig. 5 shows the
experimental results for both the I (blue) and C (black) stable configurations
in terms of the displacement amplitudes in the x (Fig. 5a) and z (Fig. 5b)
global directions; continuous and dashed lines correspond to forward and
backward frequency sweep measurements, respectively.

As shown in Fig. 5, the angular frequencies of the first mode of vibra-
tion near the stable configurations are found to be ωI ≈ 43.5 rad/s and
ωC ≈ 28.9 rad/s. We remark that these values differ from those obtained
with the FE model (see Fig. 3), the difference being due to the unavoidable
imperfections introduced by the manufacturing process and the clamping
boundary condition. In particular, the clamp of the experimental device
does not guarantee a complete flattening of the (initially) curved edge. Such
difference was easily removed by assigning to the clamp of the FE model a
slight residual curvature (≈ 5% of the initial curvature 1/r0). The resonance
curves show that the first mode vibrations mostly involve either the vertical
or the horizontal component of the motion for the I and the C configuration,
respectively. For the same harmonic forcing, the amplitude of oscillations of
the I configuration is larger than the C one and the width of the resonance
curves indicates a different damping scenario for the two cases; the significant
latter aspect deserves attention and is dealt with in a later section.
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Figure 5: Small oscillations dynamic response of the shell near the I and C configurations,
backward (dashed line) and forward (continuous line).

3.3. Large oscillations behaviour

The shell’s large oscillations were investigated by repeating backward
and forward frequency sweeps for increasing values of the harmonic base
acceleration as = {0.1, 0.5, 1.0, 1.5} g. Fig. 6 shows the experimental results
obtained when the sweep is applied to the shell settled in the I (blue) and
C (black) configurations, respectively.

The motion components for the two configurations as well as the ampli-
tude of oscillations follow the small amplitude case. For both configurations,
as the amplitude increases the resonant frequency shifts towards lower fre-
quencies. This softening behavior is more evident when the sweep is carried
out starting with the shell settled in the I configuration. For the latter,
the clear jump in the higher forcing amplitude resonance curve indicates the
presence of an unstable branch.

3.4. Damping identification

For an accurate damping identification, a high-speed camera with its
optical axis perpendicular to the vibrating shell was adopted. The recorded
data allowed determining the vertical (z) and horizontal (x) components of
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Figure 6: Large oscillations dynamic response of the shell starting from the I and C stable
configurations, backward (dashed line) and forward (continuous line).

displacement and velocity of the shell free end; samples of free vibrations
time series for the x and z components around the I and C configurations
are shown in Fig. 7.

As shown in Fig. 8, the velocity time series determined experimentally for
small and large natural oscillations are characterized by a significantly dif-
ferent amplitude envelopes. Therefore, a linear damping term in the reduced
order model is considered inadequate. In particular, for the I configuration
(C configuration) the viscous damping coefficient estimated from large am-
plitude oscillations is about 2.5 times higher (2 times higher) than the one
obtained for small amplitude oscillations. The results clearly show that the
damping model should be dependent on vibrations level. The shell has a
substantial surface area and air resistance can be significant, so, as proposed
in [29], a quadratic term is introduced in addition to the linear one. In
the following, the identification of the coefficients of both terms (linear or
nonlinear) obtained from forced vibration will be described. Besides the air
resistance, the identified damping model allows to take into account differ-
ent damping mechanisms occurring during the experimental tests, such as
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Figure 7: Experimental time series (I, blue; C, black). The dashed lines specify the
reference position of the point at the free end of the shell in the two stable configurations.

0 1 2 3 4 5

-3

-2

-1

0

1

2

3

t [s]

z
-
v
e
lo
c
it
y
[m

/s
]

(a) I−configuration

0 1 2 3 4 5

-3

-2

-1

0

1

2

3

t [s]

x
-
v
e
lo
c
it
y
[m

/s
]

(b) C−configuration
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internal material damping and clamps dry friction.

4. Reduced order model derivation

In this section the derivation of a reduced order model enabling to retrace
the observed rich experimental dynamics of the bistable shell under investiga-
tion is presented. Such derivation comprises the choice of tractable suitable
models and the identification of the relevant parameters. The process was
divided into two phases. Firstly, the dynamics of each configurations is de-
scribed separately using the Duffing-Holmes model. Then the description of
both oscillators is combined into one global model.
Being in presence of a clear softening effect and vibration offset a Duffing-
Holmes model is adopted with the following differential form:

q̈i + κ1iqi + κ3iq
3
i + ξ1iq̇i + ξ2iq̇i|q̇i| = µiλg sin (ωt) i = I, C (1)

where qi are generalized coordinates independently describing the shell vibra-
tion around both equilibria. Depending on the configuration for which the
vibrations are considered the subscript i can take I or C notation. In this
model the nonlinear restoring force is given by the sum of linear and cubic
terms, with negative κ1i and positive κ3i terms. According to the observed
damping experimental features, a viscous damping with linear parameter ξ1i
and a nonlinear quadratic one ξ2i is assumed. The latter is introduced to take
into account the shell surface air resistance which can be significant for high
amplitude vibrations. The reduced harmonic forcing proportional to the ac-
celeration λg is rescaled by the coeffcient µi. In the model (1), the values of
five parameters are unknown, namely {κ1i, κ3i, ξ1i, ξ2i, µi}. The parameters
{κ1i, κ3i} were identified from the backbone curve, whose analytic expression
is determined using the harmonic balance method. Accordingly, for free un-
damped vibrations and limiting ourselves to the first order approximation,
the solution takes the form

qi = A0 + A1 sin (ω0it) + A2 cos (ω0it) (2)

where A1, A2 are harmonic amplitudes, A0 is a constant value corresponding
to the vibration offset and ω0i are the natural frequencies. The relation
between natural frequency and vibration amplitude A =

√
A2

1 + A2
2 is given

by

ω2
0i = −2κ1i −

15

4
κ3iA

2 (3)
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Based on the location of the maximum vibration amplitudes on the experi-
mental resonance characteristics, a few points close to the experimental back-
bone curve were selected. By matching them with the analytical equation (3)
the values of κ1i and κ3i coefficients were identified. The remaining parame-
ters ξ1i, ξ2i and µi were identified from the comparison of experimental and
numerical resonance characteristics. Based on an iterative search, the set of
values for damping coefficients and scale factors providing the best fit was
determined. In particular, the best set of parameters was the one providing
the minimum value of maximum distance (minmax) between the numerical
and experimental resonance points. The selected curves for optimal fit are
shown in Figures 9-10. The computed parameters values for both configura-

30 35 40 45 50

0.00

0.05

0.10

0.15

ω [rad/s]

q
-
a
m
p
li
tu
d
e
[m

]

Exp

Num

(a) λ = 1.5

30 35 40 45 50

0.00

0.05

0.10

0.15

ω [rad/s]

q
-
a
m
p
li
tu
d
e
[m

]

Exp

Num

(b) λ = 2.0

Figure 9: Comparison of experimental and numerical curves, I configuration.

tions are summarized in Table 2; we observe that the negative sign obtained
for the k1i parameters is a direct consequence of the bistability of the shell
and the Duffing-Holmes model adopted.

i κ1i(s
−2) κ3i(m

−2 s−2) ξ1i(s
−1) ξ2i(m

−1) µi(−)

I -825.96 12560. 1.8847 0.96 1.42
C -410. 1550. 0.275 0.312 0.12

Table 2: Selected parameters for the two independent Duffing-Holmes oscillators.

Once determined the structure and the parameters of the ideal equivalent
oscillators describing the independent dynamics around the two stable shell

15
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Figure 10: Comparison of experimental and numerical curves, C configuration.

equilibria, a global description of the elastic force is pursued. Towards
this goal, the attention is shifted to the potential energy associated to the
bistable system. Based on the available information from FEM, the poten-
tial curve minima corresponding to the equilibrium positions were identified:
VI ' 1.8 J, VC ' 6.4 J. According to the previous identification phase, in
the neighbourhood of these minima the shell dynamics shall be described
through the identified stiffness coefficients (κ1i, κ3i). The global generalised
coordinate q is shifted so that it takes negative and positive values for con-
figurations I and C, respectively. By labelling the equilibrium positions as
q̂I and q̂C , the conditions to be fulfilled in order to match the potential curve
can be written as

V =


VI +mκ1I

(q − q̂I)2

2
+mκ3I

(q − q̂I)4

4
when |q − q̂I | < εI

VC +mκ1C
(q − q̂C)2

2
+mκ3C

(q − q̂C)4

4
when |q − q̂C | < εC

(4)

where parameters εI and εC , given by maximum shell deflections observed
in the identified Duffing-Holmes oscillators, define the neighbourhood of the
equilibrium positions. The obtained description of potential energy provides
a global function associated with a single differential equation enabling the
approximation of the main nonlinear response features observed during the
experimental campaign. The reference potential points from (4) are com-
puted and approximated by means of the polynomial function

Ṽ = Ṽ0 + κ1
q2

2
+ κ2

q3

3
+ κ3

q4

4
+ κ4

q5

5
+ κ5

q6

6
(5)
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Figure 11: Potential energy and force of the model.

Finally, the best fit was obtained for the following set of parameters, ex-
pressed per unit mass

Ṽ0 = 15.24 m2s−2, κ1 = −712.93 s−2, κ2 = 861.81 m−1s−2,

κ3 = 11 813.45 m−2s−2, κ4 = −11 787.63 m−3s−2, κ5 = −12 243.19 m−4s−2

The obtained double-well potential curve and the corresponding restoring
force characteristic are shown in Fig. 11. The resulting analytical nonlinear
model takes the form:

q̈ + κ1q + κ2q
2 + κ3q

3 + κ4q
4 + κ5q

5 + ξ1q̇ + ξ2q̇|q̇| = µλg sin (ωt) (6)

in which the damping coefficients and the scale factors are taken from the
identification of the individual oscillators:

ξ1 =

{
1.8847 s−1 for q ≤ 0

0.275 s−1 for q > 0
ξ2 =

{
0.96 m−1 for q ≤ 0

0.312 m−1 for q > 0

µ =

{
1.42 for q ≤ 0

0.12 for q > 0

(7)

The accuracy of the proposed model was verified in several ways. Fig. 12
shows the obtained numerical resonance characteristics for different values of
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λ, namely 0.1, 0.5, 1, 1.5 and 2 which correspond to the experimental cases.
From a qualitative standpoint, the different softening behaviour as well as the
amplitude of the generalized displacement for the two configurations matches
satisfactorily the experimental results. For I configuration the obtained nat-
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Figure 12: Large oscillations dynamic response obtained from the reduced model, back-
ward (dashed line) and forward (continuous line).

ural frequency is about 6.65Hz and it is slightly lower than the experimental
one (6.8 Hz). On the contrary, for C configuration, the natural frequency is
about 4.9 Hz and it is slightly larger than the experimental value, namely
4.6 Hz. The numerical and experimental characteristics show a very good
agreement around the resonance region for larger vibration amplitude. The
maximum error between maximum amplitudes does not exceed 10%.
The obtained reduced nonlinear model captures the shell experimental dy-
namic features and it will be used in the next section to extend the dynamic
analysis to a wider range of amplitudes and frequencies of excitation, via
numerical continuation approach.

5. Single-degree-of-freedom model nonlinear dynamics

In this section the nonlinear dynamic regimes of the reduced model (6)
are studied as the excitation frequency varies. By selecting this latter as free
bifurcation parameter, we use the numerical continuation method provided
by the AUTO software ([30]) to detect bifurcations and compute different
branches of periodic solutions; direct simulations are performed taking into
account local and global dynamics for regular or chaotic oscillations. For
the sake of clarity, we recall that λ in the Duffing-Holmes equation (6) is a
dimensionless coefficient defining acceleration of excitation in relation to the
gravity acceleration g, while µ works as a scaling factor based on the experi-
ment and its value is tuned to experimental data for I and C configuration.
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The values of coefficients of the adopted reduced 1 DOF model are summa-
rized in Table 3. The analysis begins from local (in-well) periodic oscillations

Coefficient Value Physical unit

κ1 −712.93 s−2

κ2 861.81 m−1s−2

κ3 11813.45 m−2s−2

κ4 −11787.63 m−3s−2

κ5 −12243.19 m−4s−2

ξ1I 1.8847 s−1

ξ2I 0.96 m−1

µI 0.12 [−]
ξ1C 0.275 s−1

ξ2C 0.312 m−1

µC 0.12 [−]

Table 3: Value of coefficients of the reduced model.

for I and C configurations.

5.1. Periodic dynamics - I–configuration

The continuation procedure is applied for the I configuration presented
in Fig. 4a. Resonance curves presented in Fig. 13 are computed for relatively
small amplitudes of excitation: λ = 0.1, λ = 0.5, λ = 1, λ = 1.5, λ =
2. The curves are in agreement with the experimental results. The shell
oscillates in-well I configuration around ω0I frequency with negative values
of coordinate q, see Fig. 11a. The softening effect around natural frequency
ω ≈ ω0I is observed if amplitude of excitation increases and then the unstable
solutions occur with the amplitude jump, observed also experimentally. The
curves for selected λ values are indicated by different colours (Fig. 13). The
jump of amplitude takes place if excitation amplitude λ is greater than 1.
Furthermore, apart from the main resonance the subharmonic resonance is
observed around half of the natural frequency, ω0I/2 ≈ 20 rad/s.

The slightly increased value of excitation, up to λ = 2.1, leads to a
period doubling bifurcation, located close to the peak of the resonance curve
as presented in Fig. 14a and corresponding zoom, Fig. 14b. We note that
the peak of the resonance curve approaches zero value which is close to the
limit of the I configuration domain. Time histories for ω = 23 rad/s inside
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Figure 13: Resonance curves for selected amplitude of excitation λ = 0.1–blue, λ = 0.5–
green, λ = 1–black, λ = 1.5–red, λ = 2.0–pink; I configuration.

the period doubling zone and for ω = 25 rad/s, out of period doubling zone
are presented in Fig. 14c.

Blue and green lines correspond respectively to the large and low ampli-
tude branches for ω = 23 rad/s, while black and red for ω = 25 rad/s. The
period doubling bifurcation is indicated by T and 2T periods in Fig. 14c.

The narrow zone of the period doubling has very narrow basins of attrac-
tion therefore, to get this specific solution it is necessary to put precise initial
conditions.

The basins of attractions for λ = 2.1 and two selected frequencies ω =
23 rad/s and ω = 25 rad/s are presented in Fig. 15a and 15b, respectively.
Attractor A1 represents C configuration and is discussed in the next section.
The in-well oscillations for the I configuration are represented by attractor
A2 (lower branch of the resonance curve) and A3 (the upper branch period
solution). For ω = 23 rad/s (Fig. 15a) the period doubling is clearly visible
by double A3 points in contrast to the single point for omega ω = 25 rad/s
(Fig. 15b). Basins of attraction for attractors A1 (red colour area) and A2

(green colour area) are vast comparing with very narrow basins of attractions
of A3 shown in a white colour area. This result demonstrates that for large
oscillations, the new solution occurring due to a period doubling bifurcation
has a very narrow basis of attraction. Therefore it is difficult to get this
configuration experimentally. Basins for the 1-T period oscillations around
I− and C configurations are much wider.

The frequency response curves for further increased excitation λ = 2.5,
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Figure 14: Resonance curves for amplitude of excitation λ = 2.1 (a), zoom of the peak
with period doubling points (PD) (b) and time histories for ω = 23–blue and green and
ω = 25–black and red (c); I-state.
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Figure 15: Basins of attraction for λ = 2.1.

λ = 3.85, is presented in Fig. 16 for which a different bifurcation scenario is
observed. For λ = 2.5 a period doubling bifurcation occurs for large ampli-
tudes, similar to that presented in Fig. 14. However, now the period doubling
bifurcation occurs earlier (for smaller amplitudes) and then after the first bi-
furcation a cascade of a period doubling takes place (not indicated in the
figure) and the system goes to zero value (red cross) which is a limit of the
I configuration domain. For λ = 3.85 the period doubling occurs again for
smaller amplitudes and additional solutions occur. The additional separated
solutions have been detected on the basis of the bifurcation diagram - am-
plitude of solution against λ parameter for fixed excitation ω = 50 rad/s
(Fig. 17). The zoom in Fig. 17b indicates a branch of stable solutions which
allowed computing the isola in Fig. 16b.

The detected period doubling bifurcation occurs much earlier if excitation
is essentially increased, for example up to λ = 5 as presented in Fig. 18b.
Furthermore, an additional superharmonic resonance zone arises next to fre-
quency ω ≈ 80 rad/s which is double the value of the natural frequency. For
λ = 8.5 (Fig. 18b) the stable part of the main resonance curve is reduced, in
contrast the superharmonic resonance curve increases and a period doubling
bifurcation occurs on this branch. It means that two scenarios are possible to
jump to the C configuration, via the cascade of a period doubling bifurcation
from the main resonance or via the superharmonic resonance which starts to
play an important role if excitation is increased.
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Figure 16: Frequency response curves for selected amplitude of excitation, I configuration.
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Figure 17: Bifurcation diagram against λ parameter and fixed frequency ω = 50 rad/s, I
configuration.
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Figure 18: Frequency response curves for selected amplitude of excitation, I configuration.

5.2. Periodic dynamics - C configuration

The analysis of the periodic response is extended to the dynamics around
the C configuration. The frequency response curves for relatively small oscil-
lations are presented in Fig.19. The curves have softening nature, similar to
oscillations around the I configuration. In this case however, the softening
is weaker comparing to similar excitation level of the I-configuration.
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Figure 19: Resonance curves for λ = 0.5–blue, λ = 1.0–black, λ = 1.5–green, λ = 2.5–red;
C configuration.

The resonance curves for larger oscillations are presented in Fig.20. The
large value of excitation λ = 4.5 does not lead to a period doubling bifurcation
scenario but at the amplitude peak the stable and unstable solutions replace

24



their positions, Fig. 20b. We note that the subharmonic resonance around
ω ≈ 15 rad/s arises and is clearly visible for larger oscillations. In contrast
to the I-configuration the superharmonic resonance is not observed in the
range of the analysed parameters.

q
m

a
x

[m
]

w [rad/s]

(a) Resonance curve.
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(b) Zoom of top amplitude zone.

Figure 20: Resonance curve for λ = 4.5, C configuration.

The period doubling bifurcation occurs for λ = 5, Fig. 21. Close to the
peak loop crated by stable and unstable solutions and a new branch followed
by a period doubling bifurcation arises (zoom in Fig.21b). Starting from this
point a cascade of period doubling takes place (not presented in the figure).
This zone is an indication for further studies of global oscillations leading to
possible chaotic response with jumps between two potential wells.

A bifurcation diagram, amplitude against amplitude of excitation λ, for
fixed excitation frequency ω = 50 rad/s is presented in Fig. 22. An increase of
parameter λ does not change the response qualitatively in the large parameter
domain: the amplitude of oscillations increases almost linearly up to very
large value of λ ≈ 90 (Fig. 22a). Then, the unstable branch arises going to a
limit point where stable solution exists (blue line in Fig. 22a). This solution
bifurcates and a cascade of period doubling takes place as presented in the
enlarged zone in Fig. 22b by green and red lines.

5.3. Global dynamics - regular and chaotic motion

To detect not only local (in-well) periodic solutions the simulations for
global dynamics are performed. The interest lies in determining the zone
of nonlinear oscillations, including snap-through effects, where the shell may
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Figure 21: Resonance curves for λ = 5.0, C configuration.
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Figure 22: Bifurcation diagram of maximal displacement against λ parameter for ω =
50 rad/s, C configuration.
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jump from one to another potential well or jump between both potential
wells, I and C configurations. These nonlinear behaviours, either local or
global, are effective for energy harvesting; moreover, their operating condi-
tions can guide a suitable shell design.

In the following analysis the transient states are rejected and then the
solution is plotted on the bifurcation diagrams with a projection equal to
excitation frequency. The rejected number of transient periods is set to guar-
antee that a steady state is obtained. All computations are repeated starting
from different initial conditions or in some cases for fixed initial conditions
for better results interpretation. Starting from different initial conditions we
are able to find more coexisting solutions than using the classical continua-
tion method while for fixed initial conditions we may ensure that out-of-well
oscillations are produced by the system itself.

In Fig. 23 we present the bifurcation diagram for relatively small excita-
tions λ = 1 and λ = 2.5. For λ = 1 (Fig. 23a) only local periodic oscillations
are observed, depending whether the system oscillates around the I or C
configurations in the initial conditions. This is in agreement with former
results presented in Sec. 5.1 and 5.2. We note that the bifurcation diagrams
show a projection of the solution thus the resonance zones have a different
view than those computed by a continuation technique.

For λ = 2.5 we expect to get period doubling bifurcation (see Fig. 16a)
and more complex dynamics. In fact, in Fig. 23b and enlarged zone A, shown
in Fig. 23c, a period doubling bifurcation is present. Varying frequency
ω backward the cascade of period doubling leads to a narrow black zone
which vanishes for the certain value of ω. A systematic change of initial
conditions enables detecting another narrow zone of solutions, not detected
by the continuation technique. The solution are presented in narrow zone B
enlarged in Fig. 23d where again the period doubling scenario is observed.

To confirm the nature of motion in the zone presented in Fig. 23c and
existence of all possible periodic solutions we compute basins of attractions
for λ = 2.5 and ω = 29.3 rad/s, Fig. 24a. Attractor A1 represents a peri-
odic solution around C configuration, attractor A2 corresponds to periodic
solutions around I configuration. The third attractor A3 plotted in yellow
with white basins of attraction has chaotic nature. The computed maximal
Lyapunov exponent gets positive value which confirms that attractor A3 is
an in-well strange chaotic attractor, localised around the I configuration.

If excitation frequency is slightly changed up to ω = 30 rad/s the strange
chaotic attractor transforms into the regular solution with a double period,
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Figure 23: Bifurcation diagrams; projected solution q against excitation frequency ω.
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Figure 24: Basins of attraction for λ = 2.5.

shown by double point A3 in Fig. 24b.
In order to get double-well dynamics it is necessary to increase the am-

plitude of excitation λ. Bearing in mind solutions obtained in previous sub-
sections and to keep the excitation at a more realistic level we increase its
value up to λ = 5. Now the initial conditions are fixed as q = −0.2 m, q̇ =
0 m/s and excitation frequency is varied. Such an investigation allows detect-
ing zones with a jump to C configuration despite initial conditions located
close to the I configuration. In the bifurcation diagram in Fig. 25a jumps
between I and C configurations are visible. Varying frequency ω periodic
solutions represented by negative values correspond to the I configuration
while positive to the C configuration.

As we can see, in zones A and B indicated in Fig. 25a more complex
dynamics with local or global chaotic motion is possible. This fact is pre-
sented in enlarged zones A and B in Fig. 25b and 25c, respectively. In zone
A (Fig. 25b), around frequency ω ≈ 30.5 where double dark areas occur,
oscillations with snap-through effect took place. Varying frequency back-
ward we get periodic solutions, next we observe a first period doubling and
then a cascade of a period doubling leading to chaotic oscillations. Below
ω ≈ 30.5 rad/s chaotic oscillations rapidly disappear.

The bifurcation diagram has been plotted for fixed initial conditions q =
−0.2 m, q̇ = 0 m/s. To detect other existing solutions and to explain the
bifurcation scenario we compute basins of attraction around this specific
zone. We start from ω = 30.68 rad/s (Fig. 26) and then we move backward.
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Figure 25: Bifurcation diagrams for λ = 5.0 computed for fixed initial condition
q = −0.2 m, q̇ = 0 m/s.

30



-0.5
-10

10

A2

A1

q
 [
m

/s
]

q [m] 0.5

(a) ω = 30.68 rad/s.

-0.5 0.5
-10

10

A1

A2

q
 [

m
/s

]

q [m]

(b) ω = 30.52 rad/s.

-0.5 0.5
-10

10

A1

Atr

q [m]

q
 [

m
/s

]

(c) ω = 30.51 rad/s.

-0.5
-10

10

A1

q [m]

q
 [

m
/s

]

0.5

(d) ω = 30.49 rad/s.

Figure 26: Basins of attraction for λ = 5.
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In Fig. 26a two types of oscillations are possible, A1 which is a periodic
attractor of the C configuration with basins in red colour and the chaotic
attractor A2 composed of four small green areas with basins in light green.
We note that the chaotic attractor is partially located on the negative and
partially on positive part of the phase plane. This means that system os-
cillates globally, moving between I− and C configurations. The basins of
attraction computed for frequency ω = 30.68 rad/s (Fig. 26a) enabled to
detect the chaotic attractor and the coexisting periodic attractor around C
configuration.

Moving frequency backward the chaotic attractor is merged into two
larger components as presented in (Fig. 26b) for ω = 30.52 rad/s. For
ω = 30.51 rad/s (Fig. 26c) it is almost touching the boundaries of basins
of attractions of A1. When the chaotic attractor touches the boundaries the
boundary crisis bifurcation takes place and the chaotic attractor disappears.
This effect is observed in Fig. 26c, where Atr means transient attractor which
disappears after long time. For ω = 30.49 rad/s the transient chaotic response
does not exist any more (Fig. 26d) and just a periodic solution around the C
configuration maintains. Time histories corresponding to attractors A1 and
A2 from Fig. 26b for ω = 30.52 rad/s are presented in Fig. 27.

Figure 27: Time histories of regular motion around C configuration (red) and global
chaotic oscillations (green) for λ = 5, ω = 30.52 rad/s.

In zone B presented in Fig. 25c only local chaotic motion around I con-
figuration is observed (dark zone around q ≈ −0.2 m, ω ≈ 38.6 m/s).

The global motion with snap-through effect for λ = 5 may occur only for
a very narrow frequency domain. Therefore, realization of such motion in
a real application could be rather difficult. To enlarge the zones of global
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oscillations a further increase of the amplitude of excitation is needed. How-
ever, limitations of a level of real excitation should be taken into account.
Thus, to check the tendency we increase excitation to λ = 8.5. A bifurcation
diagram computed again for fixed initial conditions q = −0.2 m, q̇ = 0 m/s is
presented in Fig. 28.

Figure 28: Bifurcation diagram for λ = 8.5 computed for fixed initial conditions
q = −0.2 m, q̇ = 0 m/s; general overview with indicated frequency zones A, B and C.

For the tested frequency domain we select free sub-domains for low fre-
quency ω ≈ 10.0 rad/s, middle frequency ω ≈ 35 rad/s and high frequency
ω ≈ 68 rad/s. The enlarged sub-domains are presented in Fig. 29.

For low frequency two possible solutions exist (presented in Fig. 30a for
ω = 8.5 rad/s): (i) periodic solution around the C configuration (red attrac-
tor A1 with red basins) or (ii) chaotic oscillations around the I configuration
(green strange chaotic attractor with light green basins).

The searched global oscillations with a snap-through between potential
wells can be obtained for frequency around ω ≈ 33 rad/s. This motion is
shown in Fig. 30b with chaotic attractor composed of two parts (A2 in green
with light green basins) for ω = 32.78 rad/s which splits into four parts for
ω = 32.91 rad/s in Fig. 30c. In both cases global chaotic oscillations coexist
with local periodic around C configuration (attractor A1 in red). In contrast
for the high frequency sub-domain three coexisting solutions are present in
Fig. 30d, periodic oscillations around C configuration (attractor A1 in red)
and I configuration (attractor A2 in green) exist as well. However, apart from

33



146 108 12

0.00

-0.20

0.20

-0.40

0.40

q
p

[m
]

w [rad/s]

(a) Zone A.

0.00

-0.20

0.20

-0.40

0.40

4030 32 34 3836

q
p

[m
]

w [rad/s]

(b) Zone B.

0.00

-0.20

0.20

-0.40

0.40

7065 66 67 6968

q
p

[m
]

w [rad/s]

(c) Zone C.

Figure 29: Zoom of bifurcation diagrams computed for λ = 8.5 and fixed initial conditions
q = −0.2 m, q̇ = 0 m/s.
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Figure 30: Basins of attraction for λ = 8.5.
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two possible periodic oscillations also chaotic motion is located on negative
part of the phase plane around I configuration. The strange chaotic attractor
A3 (in yellow) can be achieved if initial conditions are properly selected from
basins plotted in white.

The increased amplitude of excitation does not enlarged essentially the
domains of existing two-well oscillations. The local chaotic motion is present
only around the I configuration for considered level of amplitude and fre-
quency of excitation. Chaotic oscillations around the C configuration have
not been obtained. This results confirm difficulties in obtaining global motion
in real experimental tests. To widen the domains of two-well oscillations it
is necessary to modify the shell structural parameters. This goal is a subject
of future studies.

6. Concluding remarks and future work

On the basis of experimental data the nonlinear dynamics of composite
bistable cantilever shells was addressed. In order to capture the observed
main nonlinear features, a reduced 1DoF nonlinear oscillator with double
potential well is proposed. Dictated by experimental results and FE sim-
ulations, the model extends the Duffing-Holmes equation to cubic-quintic
terms.

For relatively small oscillations around both the shell stable configu-
rations a nonlinear softening effect was experimentally detected. This be-
haviour is properly captured by the proposed model, whose resonance curves
are in good agreement with experimental results; however, the large difference
in shape betweeen the shell stable configurations forced a separate identifica-
tion of the model parameters. Notably, an ad-hoc nonlinear damping model
has been proved necessary to properly describe the dynamics of the shell. In-
deed, the experimentally determined damping behaviour depends upon the
level of excitation and it differs for the two stable configurations of the shell.

For large oscillations, the numerically detected cascade of period dou-
bling bifurcations is an indicator of the transition to chaotic motion. The
snap-through effect leading to global chaotic oscillations between the two
shell stable configurations has been observed for relatively narrow frequency
domains, regardless of the excitation amplitude value.

On the basis of these initial results, the dynamic response of this class of
shells seems to promise interesting applications in the field of energy harvest-
ing systems. Indeed, the relevant difference between the shell’s stable shapes
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guarantees a level of extracted energy much higher than that achieved with
the symmetric stable shapes usually studied in the literature. However, for
this to be possibile, it is essential to widen the frequency range where the
snap-through occurs, since it triggers the switch from one configuration to
the other. This call for a design strategy capable of ensuring the desired
dynamic behaviour, that is, the one maximizing the energy harvesting ca-
pabilities. Such design procedure calls for simple modelling tools like the
proposed 1DoF model, in which active MFC elements and relevant electri-
cal circuits can be directly modeled; the latter aspects are a subject of the
authors’ ongoing research.
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