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Abstract

Many relevant multidimensional phenomena, such as well-being, climate change,
sustainable development, poverty and so on, are defined by nested latent concepts,
which can be represented by a tree-shape structure supposing hierarchical relation-
ships among observed variables. In literature, several methodologies have been
proposed to both model the relationships among observed variables that reflect
unobserved ones, and assess the existence of unobserved variables of “higher-order”.
Nonetheless, these methodologies are usually developed with sequential procedures
that do not optimize a unique objective function, and/or a confirmatory approach,
i.e., by setting the relationships between observed and unobserved variables a priori.

This dissertation discusses some new simultaneous, exploratory and parsimonious
models for hierarchical dimensionality reduction, which overcome the limitations of
the existing methodologies. The proposals introduced herein are based, “directly”
or “indirectly”, upon the definition of an ultrametric matrix, that differs from the
well-known definition of an ultrametric distance matrix and is one-to-one associated
with a hierarchy of latent concepts. The first proposal allows to model a nonnegative
correlation matrix via an ultrametric correlation one by detecting reliable concepts,
associated with disjoint groups of variables, and hierarchical relationships among
them. The second work compares the first proposal with the traditional agglomerative
hierarchical clustering algorithms applied on variables, after a transformation of
correlations into distances, by highlighting the need for specific models to inspect the
hierarchical relationships among variables. The third proposal extends the definition
of an ultrametric matrix to a generic one by relaxing the non-negativity assumption
and applying it to a covariance matrix. The extended ultrametric covariance matrix
is then used to model the covariance structures of a Gaussian mixture model by both
defining a new parsimonious parameterization of a covariance matrix and inspecting
the hierarchical structure underlying multidimensional phenomena in heterogeneous
populations. The fourth proposal introduces a quantification of latent concepts via
a hierarchical extension of the Disjoint Principal Component Analysis. Even if not
directly based on the definition of an ultrametric matrix, this proposal aims in turn
at pinpointing nested partitions of variables into groups, each one associated with a
component.

The proposed models are illustrated both via simulation studies and real data
applications in order to study their performances and abilities.
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Chapter 1

Introduction

The study of multidimensional phenomena is currently growing with the complexity
of the reality, raising the need for methodologies to explore the relationships between
their many facets. Multidimensional concepts often include more specific ones,
highlighting the existence of an underlying tree structure to represent them. The
root of the tree is a general concept usually corresponding to the multidimensional
phenomenon under study; the leaves coincide with the observed variables and the
internal nodes can represent specific dimensions defining the general concept.

Detecting latent dimensions with different relationship intensities is a crucial
need for a correct and all-around understanding of the phenomenon under study
in different fields, e.g., psychometrics, marketing, climatology, and environmental
science, economics, and social sciences, and so on. In psychometric studies, many
examples of multidimensional phenomena that entail the presence of a hierarchy of
latent concepts are described, e.g., the cognitive abilities (the g factor, Spearman,
1927; Carroll, 1993), the personality traits, (the Big Five model, Cattell, 1947;
Eysenck, 1970; Digman, 1990; Costa & McCrae, 1992; Goldberg, 1990, 1992, 2006;
de Raad & Mlačić, 2015, among others), as well as allometry studies in the field of
physiology (Rindskopf & Rose, 1988). For instance, according to the three-stratum
theory (Carroll, 1993), the g factor can be conceptualized via a hierarchy made
up of specific (narrow) factors - e.g., induction, quantitative reasoning - directly
associated with the observed variables (first stratum); eight abilities (e.g., crystallized
intelligence, broad visual perception), called broad factors (second stratum); and
the general intelligence factor, which covers the total domain of cognitive abilities
and accounts for all the relationships among the observed variables (third stratum).
Moreover, the Big Five model highlights a hierarchy of latent concepts representing
personality traits of human beings with different levels of abstraction, from the most
specific (openness to experience, conscientiousness, extraversion, agreeableness and
neuroticism) to the most abstract (intelligence). In environmental studies, climate
change, that is nowadays one of the most urgent topics in public debate because of
its risks for human life, is an epitome of a multidimensional phenomenon. Indeed,
this is defined by different dimensions pertaining to greenhouse gas emissions, human
causes of climate change, impacts on humans and natural systems, and efforts of
human to avoid and adapt to the consequences, each of which is described by a set
of variables directly observed (UNECE, 2017). Other examples concern the study of
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well-being, poverty, sustainability and socio-economic phenomena, some of which
will be analyzed throughout this thesis.

In the specialized literature, manifold models have been developed to analyze
hierarchical structures that refer to a multidimensional phenomenon. Therefore,
the existing methodologies are usually based upon sequential procedures for the
hierarchy construction, i.e., without specifying an overall objective function, or
defined in a confirmatory approach, i.e., by fixing the relationships between observed
variables and latent specific dimensions a priori. In the former case, an inaccurate
detection of the hierarchical relationships among observed variables may occur by
leading to incorrect conclusions on the definition of the general concept; whereas
in the latter case, the researcher knows the hierarchical relationships among latent
concepts defining the general one and tests the hypothesized structure. However, a
theoretical conceptualization of the phenomenon under study may be not available
or the existing one may not be confirmed, highlighting the need for an exploratory
approach.

In this thesis, we introduce new simultaneous and exploratory models for studying
multidimensional phenomena. The proposals are characterized by a common feature:
ultrametricity. This is an important notion in different fields, like mathematics (e.g.,
Schikhof, 1985), physics (e.g., Mézard et al., 1984; Parisi & Ricci-Tersenghi, 1999),
taxonomy (e.g., Benzécri, 1973). In statistics, the ultrametric property is usually
connected with distances in hierarchical clustering, where a complete hierarchy over
units is associated with an ultrametric distance matrix. Nonetheless, the definition of
an ultrametric matrix, which differs from that of an ultrametric distance matrix even
if a relationship between the two exists, is certainly less known. The methodologies
proposed in this dissertation are based upon the latter definition that can be applied
to correlation matrices and, with some extensions proposed herein, to covariance
matrices. One of the main features of an ultrametric matrix is the relation with a
hierarchy of partitions and specifically, thanks to its application to correlation (and
covariance) matrices, with partitions of the variable space. When multidimensional
phenomena are studied, observed variables are often highly correlated in “blocks”
such that they can be partitioned into groups associated with latent concepts by
inspecting their correlations (covariances). In this case, the number of internal
nodes of the tree used to represent multidimensional concepts is limited, thus a
parsimonious hierarchy (tree, Gordon, 1999) can be depicted. Since the proposals
define parsimonious hierarchies by firstly partitioning the variables into groups, they
can be considered into the dimensionality reduction framework.

The purpose of this chapter is to provide the reader with an introduction of the
problem under study, i.e., the analysis of multidimensional phenomena composed
of nested latent concepts, how this problem has been addressed in the literature
and which is the central idea underlying the proposals. An overview of the existing
methodologies for detecting hierarchical structures of latent concepts is provided in
Section 1.1, whereas ultrametricity is discussed in Section 1.2. Section 1.3 introduces
the difference between reflective and formative models which define the nature of
the relationships among concepts (or between observed variables and corresponding
latent concepts) in two sequential levels of a hierarchical structure. The final section
of this chapter (Section 1.4) gives a brief summary of the dissertation structure.
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1.1 Hierarchical structures on variables: an overview

In many areas of study, real problems concern multidimensional phenomena whose
complexity cannot be directly explored via observed variables. For this reason,
multidimensional concepts may be hypothesized to have a hierarchical latent structure
representing different levels of abstraction, from the most specific concepts to the
most general one. We can observe that the design of this structure among levels
can be crossed or nested. In the former, all possible combinations of concepts
between two levels are considered such that a concept of lower level may affect more
than one of higher level; whereas in the latter, concepts of higher level reconstruct
only some of those (nested) of lower level, or observed variables, by defining a tree
configuration (Gordon, 1999). The nested form is associated with a hierarchical
partition of variables, that is in turn composed of disjoint groups of observed variables
whose pairwise possible amalgamations give rise to broader groups according to the
magnitude of the relationships between the concepts they represent. This thesis
focuses on hierarchical structures composed of nested latent concepts.

Factor Analysis (FA, Spearman, 1904; Anderson & Rubin, 1956; Horst, 1965) is
one of the most used models to reconstruct the relationships among variables, i.e., the
covariance or correlation matrix, via a set of latent factors. Together with Principal
Component Analysis (PCA, Pearson, 1901; Hotelling, 1933), FA aims at reducing the
dimensionality of the data by computing a reduced number of unobserved variables
(components or factors), but preserving as much information as possible regarding
the relationships among the observed variables. Therefore, neither FA nor PCA are
suitable to detect the hierarchical relationships among observed variables. In the
specialized literature, different classes of models have been developed to analyze
hierarchical structures that refer to a multidimensional phenomenon. First of all,
two main classes of sequential and exploratory methodologies have been introduced:
the Higher-Order Factor models (G. H. Thompson, 1948; Cattell, 1978b; Rindskopf
& Rose, 1988; Undheim & Gustafsson, 1988) and the Bi-Factor or Hierarchical
Factor models (Holzinger & Swineford, 1937; Wherry, 1959; Schmid & Leiman,
1957; Jennrich & Bentler, 2011, 2012), which mainly differ in the construction of
the hierarchy. Indeed, the former aim at pinpointing higher-order of factors via
sequential applications of the exploratory FA (B. Thompson, 2004) on the covariance
or correlation matrix of the observed variables first, and higher-order factors then,
followed each time by an oblique rotation method, until zero correlation occurs
among factors or a single factor is detected (Gorsuch, 1983). Insofar each level
of the hierarchy is obtained from the lower previous one, an indirect relationship
between the general factor and the observed variables through the other (higher-
order) latent factors is identified. Contrariwise, the Bi-Factor or Hierarchical Factor
models are characterized by a single order of orthogonal hierarchical factors, usually
obtained by applying the Schmid-Leiman transformation (Schmid & Leiman, 1957)
to the corresponding higher-order solutions, and they identify a direct effect of
the general factor on the observed variables. Several authors (Mulaik & Quartetti,
1997; Yung, Thissen, & McLeod, 1999; Gignac, 2016) have shown the equivalence of
the aforementioned classes of models under certain conditions. Moreover, in both
models a simple structure of the loading matrices (Thurstone, 1947) can be sought.
Recently, Cavicchia and Vichi (2021) proposed a simultaneous and exploratory two-
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level FA, called Second-Order Disjoint Factor Analysis, to model phenomena with
an underlying hierarchical structure of latent concepts composed of two orders, in
the first of which disjoint groups of observed variables are identified.

Other methodologies have been proposed to study the data with a hierarchical
structure on variables. Among others, Holzinger (1944) and Jöreskog (1966, 1969,
1978) introduced the Hierarchical Confirmatory Factor Analysis by assuming that
the number of factors and the relationships between factors and observed variables
are known a priori. Moreover, the relationships among observed and unobserved
variables, as well as among the latter ones, can be investigated via Structural
Equation Modeling (SEM, Wright, 1921; Kline, 2015, for a complete overview). SEM
are simultaneous models which combine confirmatory FA (B. Thompson, 2004) and
regression analysis (see, for example, Seber & Lee, 2003), and can be estimated with
two different approaches: the LInear Structural RELations (LISREL or SEM-ML,
Jöreskog, 1970; Jöreskog & Sörbom, 1982) approach and the Partial Least Squares
Path Modeling (PLS-PM or SEM-PLS, Wold, 1966, 1982, 1985; Tenenhaus et al.,
2005) approach (see Jöreskog & Wold, 1982, for a comparison between the two
approaches). The former, also known as the covariance-based method, is based
upon the maximum likelihood estimation method, thus requiring distributional
assumptions, and is related to FA. The latter, also known as the component-based
method, does not assume any distributional assumption and is related to PCA. It
is worth noticing that if the general factor corresponds to one of the higher-order
factors, the Higher-Order Factor models can be investigated via LISREL approach
(Undheim & Gustafsson, 1988). SEM models have been developed in turn in a
confirmatory approach; however, they do not build a hierarchy in the broad sense
over the observed variables.

In order to study data which are described by several groups of variables of
different nature (qualitative and quantitative) and organized in a hierarchical struc-
ture, Le Dien and Pagès (2003) proposed a hierarchical extension of Multiple Factor
Analysis (Escofier & Pagès, 1983, 1994), called Hierarchical Multiple Factor Analysis
(HMFA). The latter aims at integrating different groups of variables which describe
the same observations and balancing their role within each node of the hierarchy. Ad-
ditionally, HMFA provides an overall, and a partial (for each node of the hierarchy),
graphical display of the variable groups.

Finally, hierarchical clustering algorithms (Cliff et al., 1995; Gordon, 1999,
Chapter 4; Rencher, 2002, pp. 455-481; Strauss, Bartko, and Carpenter, 1973) may
be used to inspect hierarchical structures on variables. Indeed, after a transformation
of correlations (measure of similarity) among variables into distances (measure of
dissimilarity) by subtracting to one the absolute value or the square of the correlation
coefficients (Revelle, 1979; Soffritti, 1999; Liu et al., 2012), hierarchical clustering
algorithms may be implemented in order to build a hierarchy over the observed
variables. It is worth highlighting that these algorithms are based upon sequential
and greedy procedures carried out in an exploratory approach, and build a complete
hierarchy, i.e., a tree with the maximum number of internal nodes given the number
of variables. Thus, a partition of the variable space into a reduced number of
groups is obtained only a posteriori, by cutting the complete tree. Agglomerative
hierarchical clustering methods will be discussed in Chapter 3 in order to compare
their performances with respect to those of the first proposal illustrated in this thesis
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(Chapter 2).
In the following section, the ultrametric property is introduced and the distinction

between the definition of the well-known ultrametric distance matrix and that one
of the ultrametric matrix is given.

1.2 Ultrametricity

Ultrametricity is a very important notion introduced in mathematics with regard to
p-adic number theory. In the last two decades, ultrametricity has gained attention
in different fields, like statistical physics with application to spin glasses, taxonomy
and evolutionary biology for the phylogenetic tree construction, etc., thanks to its
relationship with nested partitions and tree structures.

In statistics, the ultrametric property can be found in hierarchical cluster analysis
(see Gordon, 1987, for an exhaustive review), where a complete hierarchy over a set
of objects1 I is built. The graphical representation of hierarchical structures used in
hierarchical cluster analysis is a particular tree, called dendrogram (Gordon, 1987,
1999, Chapter 4). The latter corresponds to an ultrametric distance matrix, whose
definition is reported as follows.

Definition 1.1. Given a set of objects I, a matrix D is an ultrametric distance
matrix if

(i) dij ≥ 0 for all i, j ∈ I (non-negativity);

(ii) dij = dji for all i, j ∈ I (symmetry);

(iii) djj = 0 for all j ∈ I (zeros on the main diagonal);

(iv) dij ≤ dil + djl, for all i, j, l ∈ I (triangle inequality);

(v) dij ≤ max{dil, djl}, for all i, j, l ∈ I (ultrametric inequality).

Johnson (1967) first demonstrated that a hierarchical classification was endowed
with the ultrametric property. Nonetheless, it is worth highlighting that not all
hierarchical clustering algorithms induce an ultrametric metric (Milligan, 1979),
like the centroid method (UPGMC) and the median method (WPGMC). Definition
1.1 states that a distance matrix - which is nonnegative, symmetric, with zeros on
the main diagonal and satisfies the triangle inequality by definition - must fulfill
the ultrametric inequality, also called strong triangle inequality (see, for instance,
Contreras & Murtagh, 2015, p. 105). The latter simply implies that objects (or
cluster of objects) merged earlier in the hierarchy have a distance value that is
smaller than the distance value of objects (or cluster of objects) merged later in
the hierarchy. Thus, no reversal occurs in the corresponding tree, but rather the
distances among objects (cluster of objects) monotonically increase from the bottom
of the hierarchy upwards. An example of an ultrametric distance matrix is given in
Figure 1.1a.

1Tipically, the term objects refers to units in hierarchical cluster analysis. In this dissertation, we
refer to objects as a synonym of both units and variables because of the application of hierarchical
clustering algorithms to classify variables, as we will see in Chapter 3.
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(a) Ultrametric distance matrix (b) Ultrametric matrix

Figure 1.1. Examples of an ultrametric distance matrix and an ultrametric matrix.

As already mentioned, the hierarchical clustering algorithms build a complete
hierarchy over objects. This corresponds to a tree (dendrogram) with the maximum
number of internal nodes, i.e., |I| − 2 (except the root) where |I| represents the
cardinality of the set of objects I. However, one of the most common uses of these
methods is to derive a partition of the object space by cutting the dendrogram at
a specific level chosen by a visual inspection of the latter, thus only a posteriori
with respect to the hierarchy construction. Alternative procedures to obtain a
parsimonious hierarchy of objects are those based on a “tandem analysis” which first
applies Multidimensional Scaling (MDS, Torgerson, 1958; Gower, 1966) on a distance
matrix, and then a partitioning algorithm like K-means (MacQueen, 1967; Hartigan
& Wong, 1979) on the dimensions specified by MDS. Vichi (2008) introduced a class
of new methodologies for hierarchical clustering in which a partition of the object
space was directly estimated in a model-based approach. The parsimonious tree
obtained in this way is associated with an ultrametric distance matrix that contains
a reduced number of different values.

In mathematics, another definition pertaining to ultrametricity was introduced
with respect to the study of M -matrices (Martínez, Michon, & San Martín, 1994):
that one of an ultrametric matrix, which is provided as follows.

Definition 1.2. Given a set of objects I, a matrix U is an ultrametric matrix if

(i) uij ≥ 0 for all i, j ∈ I (non-negativity);

(ii) uij = uji for all i, j ∈ I (symmetry);

(iii) ujj ≥ max{ukj : k ∈ I} for all j ∈ I (column pointwise diagonal dominance);

(iv) uij ≥ min{uil, ujl}, for all i, j, l ∈ I (ultrametric inequality).

It is worthy of remark that Definition 1.2 will be re-written in Chapter 2 in order
to help the reader to follow the mathematical notation used in that chapter. An
example of an ultrametric matrix is given in Figure 1.1b.
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Definition 1.2 differs from an ultrametric distance matrix in Definition 1.1,
because the conditions of null diagonal and triangle inequality do not hold for an
ultrametric matrix. The former (condition (iii) of Definition 1.1) is replaced with
the column pointwise diagonal dominance for an ultrametric matrix (condition (iii)
of Definition 1.2). This implies a reverse relationship between the diagonal entries
of the two matrices with respect to their off-diagonal values. Indeed, an ultrametric
distance matrix has its minimum value on the main diagonal, i.e., zero for each
diagonal entry, whereas in an ultrametric matrix each diagonal element corresponds
to the maximum value of the corresponding column (or row thanks to condition
ii), remembering that both matrices are nonnegative by definition (condition i).
Moreover, the ultrametric condition in Definition 1.2 (condition iv) shows a reverse
inequality with respect to the one in Definition 1.1 (condition v). The ultrametric
matrix is in turn associated with a hierarchy, where objects (or cluster of objects)
merged earlier have a stronger relationship than objects (or cluster of objects) merged
later in the hierarchy. Thus, the interpretation of the hierarchical structure obtained
from an ultrametric matrix differs from that of an ultrametric distance matrix.

In this thesis, we use the definition of an ultrametric matrix to model hierarchical
relationships among variables. In fact, conditions (i), (ii), (iii) in Definition 1.2
hold for a nonnegative correlation matrix, which turns out to be ultrametric if
condition (iv) in Definition 1.2 is satisfied. Moreover, as we will discuss in Chapter
2, every ultrametric matrix is positive semi-definite by allowing the application of
Definition 1.2 to a nonnegative correlation matrix. Furthermore, in Chapter 4 we will
propose an extension of Definition 1.2 to a generic matrix such that the positive semi-
definiteness still holds even relaxing the non-negativity constraint and allowing its
application to a generic covariance matrix. In Chapter 4, the definition of an extended
ultrametric covariance matrix will be used to characterize a new parameterization of a
covariance matrix in Gaussian mixture models (Titterington, Smith, & Makov, 1985;
McLachlan & Basford, 1988; McLachlan & Peel, 2000a). It has to be highlighted
that an extended ultrametric covariance matrix is in turn associated with a hierarchy,
where the most concordant variables are merged earlier in the hierarchy than the
less concordant ones (most discordant), and its application to Gaussian mixture
models enables to study multidimensional phenomena in heterogeneous populations.

The methodologies presented in this dissertation directly pinpoint a partition of
the variable space in a reduced number of groups - without cutting the tree after its
construction (a posteriori), as done by the hierarchical clustering algorithms - and
a parsimonious hierarchy over them by identifying specific features of the variable
groups in terms of correlation and covariance, as in Chapters 2 and 4, or quantifying
the latent concepts associated with them, as in Chapter 5. In Chapters 2 and 4, the
parsimony of the proposals results in ultrametric and extended ultrametric matrices,
respectively, which contain a reduced number of different values.

1.3 Reflective and formative models

Two main features typically characterize a hierarchical structure of nested latent
concepts underlying a multidimensional phenomenon: the number of levels in
the hierarchy, i.e., internal nodes of the corresponding tree, and the nature of
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(a) Reflective model

(b) Formative model

Figure 1.2. Examples of the measurement model.

the relationships between (observed and unobserved) variables belonging to two
sequential hierarchical levels. As already mentioned in the previous sections, a
reduced number of internal nodes of the tree gives rise to a parsimonious hierarchy.
The latter represents the main structure the proposals introduced in this thesis
are based on. The nature of the relationships in a hierarchical structure is instead
specified by their “direction”, which formally describes the measurement model
(Blalock, 1964; Bollen & Bauldry, 2011), and affects both the relationships between
observed and unobserved variables than unobserved variables and “higher-order”
ones. It is worth highlighting that we refer herein to an unobserved variable as a
quantitative representation (quantification) of a latent concept.

Two different directions of the relationships among variables belonging to sequen-
tial levels of a hierarchy exist: reflective and formative (Bollen, 2001). A reflective
relation occurs when a set of correlated observed (or unobserved) variables reflect
a (higher-order) unobserved one, i.e., a (broader) latent concept accounts for the
covariance/correlation among the observed (or unobserved of lower level) variables.
Whereas, a formative relation arises when the (higher-order) unobserved variable
is defined/formed by observed (or unobserved of lower level) variables, which are
generally uncorrelated to each other. In this case, the observed (or lower-order
unobserved) variables represent a unique part of the (higher-order) unobserved
variable. Blalock (1964) referred to reflective models as effect models, since the



1.3 Reflective and formative models 9

relationships among the variables of lower level depend on a common variable of
higher level that explains them in a top-down approach, and to formative ones as
causal models, since the variables of lower level determine the one of higher level in a
bottom-up approach. A real example of the two kinds of relations among sequential
levels of a hierarchical structure is provided in Figure 1.2. These two approaches
are not necessarily referring to causality, since a relationship between two elements
does not imply a causal link between the two, but rather the need for one element
for the existence of the other. In order to better understand the difference between
reflective and formative models, see, for example, Edwards and Bagozzi (2000) and
Jarvis, MacKenzie, and Podsakoff (2003).

FA and PCA usually define reflective relationships between observed variables
and factors or components, respectively. Nonetheless, they pinpoint unobserved
variables which turn out to be uncorrelated and, thus, could define a higher-order
one in a formative approach. Although Higher-Order Factor models and Bi-Factor
or Hierarchical Factor models described in Section 1.1 are based upon FA, they were
developed to build only reflective hierarchies. Indeed, these models implement an
oblique rotation method after each FA application such that unobserved variables
(factors) can be correlated and the higher-order level is computed if the correlation
among unobserved variables of lower level occurs; otherwise, the hierarchy construc-
tion stops. Similarly, Second-Order Disjoint Factor Analysis (Cavicchia & Vichi,
2021) theorizes a reflective relationship between the observed variables and the
higher-order factors, i.e., the factors of the first level, as well as between the latter
and the general one, i.e., the factor of the second level. It is worth noticing that
this methodology extends the Disjoint Factor Analysis (Vichi, 2017) by relaxing the
orthogonal constraint on the unobserved variables and assuming that a second-order
factor, i.e., the general one, exists.

When dealing with confirmatory models, the relationships among variables and
their nature are set a priori. For instance, in SEM-ML the relations between observed
and unobserved variables are usually modeled by FA thus with a reflective approach,
whereas those among unobserved variables are modeled via multivariate regression
and thus can be interpreted as formative. In SEM-PLS, J. M. Becker, Klein, and
Wetzels (2012) discussed guidelines for using reflective-formative, i.e., mixed, models.
It is noteworthy that an entirely formative model is not identified (Edwards, 2011;
Bollen, 2011). To solve this problem, Hauser and Goldberger (1971) and Jöreskog
and Goldberger (1975) proposed the Multiple Indicators and Multiple Causes model
in which an unobserved variable represents both the effect of some observed ones
and the determinant of some others.

In the real applications we will illustrate in Chapter 2, the existence of a general
concept which causes some nested specific ones is theorized by identifying a reflective
model. Nevertheless, in some situations researchers may not have a theoretical
definition of the hierarchical relationships among variables, or maybe this may not
be empirically confirmed by a test. In Chapter 5, we will propose a methodology
which defines a model-based approach to choose the nature of the relationships
among unobserved variables of two contiguous hierarchical levels. The latter assumes
a reflective relationship between the observed variables and unobserved ones of the
first bottom-up level, and then tests the correlation among the unobserved variables
along the hierarchy by changing from a reflective to a formative approach at the
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first level at which the correlation turns out to be not statistically significant.

1.4 Chapter summaries

In this section, an overview of the following chapters and appendices is provided.
Chapter 2 presents a novel, exploratory, parsimonious and simultaneous model,

called Ultrametric Correlation Model (UCM), to study multidimensional phenomena.
The proposed methodology reconstructs a nonnegative correlation matrix via an
ultrametric correlation one that is able to pinpoint the hierarchical nature of the
phenomenon under study. Indeed, UCM detects non-overlapping groups of variables,
each one associated with a latent concept, and their hierarchical relationships by
inspecting the internal consistency of the latent concepts and the correlation between
them. A relationship between these features and a well-known measure of internal
consistency of a variable group is provided. The performance of the proposed
model is illustrated through a simulation study and two real applications - one
on a benchmark data set regarding mental abilities and the other one on drug
consumption.

The contents of Chapter 2 were developed with Prof. Maurizio Vichi and Dr.
Carlo Cavicchia, and are reported in a paper which was published in Advances in
Data Analysis and Classification in 2020, see Cavicchia, Vichi, and Zaccaria (2020b).
The contents of Section 2.6.2 concerning the real data example on drug consumption
were developed with Prof. Maurizio Vichi, and are reported in a volume which was
published by Pearson in 2020, see Zaccaria and Vichi (2020).

Chapter 3 provides a comparison between UCM and the procedure based on
well-known hierarchical clustering methods used for variable classification. The
performances of the aforementioned model and methods are illustrated through an
application to the Holzinger data set, which represents a real demonstration of a
hierarchical structure of latent concepts.

The contents of Chapter 3 were developed with Prof. Maurizio Vichi and Dr.
Carlo Cavicchia, and are reported in the chapter of a volume published by Springer
in 2020, see Cavicchia, Vichi, and Zaccaria (2020a).

Chapter 4 extends the model presented in Chapter 2 to a generic covariance
matrix. The definition of an extended ultrametric covariance matrix is stated and
implemented into a Gaussian mixture model. The proposal is able to pinpoint a
hierarchical structure on variables for each component of the Gaussian mixture,
thus identifying a different characterization of a multidimensional phenomenon for
each component (cluster, subpopulation) of the mixture. At the same time, the
proposed parameterization of the covariance matrix defines a new parsimonious
Gaussian mixture model since the ultrametric covariance structure reconstructs the
relationships among variables with a limited number of parameters. Furthermore,
a simulation study shows the performance of the proposal both in terms of cluster
recovering - even in comparison with other existing methodologies - and correct
identification of the variable partition and hierarchical structure over it. Two real
data examples are used to illustrate the features of the proposed methodology.

The contents of Chapter 4 have been developed with Prof. Maurizio Vichi and Dr.
Carlo Cavicchia, and are reported in a paper that has been accepted for publication
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in Advances in Data Analysis and Classification, see Cavicchia, Vichi, and Zaccaria
(2022).

Chapter 5 proposes a new exploratory and simultaneous model, called Hierarchical
Disjoint Principal Component Analysis (HierDPCA), with the aim of building a
parsimonious hierarchy of nested components associated with disjoint groups of
observed variables. Differently from the models proposed in the previous chapters,
HierDPCA introduces the quantification of the latent concepts associated with
variable groups for each level of the hierarchy. Moreover, the proposed methodology
allows to choose the type of the relationship among components of two sequential
levels, from the lowest upwards, by testing the component correlation per level and
changing from a reflective to a formative approach when this correlation turns out
to be not statistically significant. The performance of the proposal is illustrated
through an extensive simulation study and two real data applications.

The contents of Chapter 5 have been developed with Prof. Maurizio Vichi and
Dr. Carlo Cavicchia, and are reported in a paper which has been submitted for
publication and is currently under the second revision in an international journal,
see Cavicchia, Vichi, and Zaccaria (2021).

All the models presented in Chapters 2-5 have been implemented in a MATLAB
routine.

Appendices A-C report the supplementary materials for Chapters 2, 4 and 5.
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Chapter 2

The ultrametric correlation
matrix for modeling hierarchical
latent concepts

2.1 Introduction

The identification of a hierarchy of nested latent concepts is a considerable aspect
in the study of phenomena composed of different facets, i.e., multidimensional
phenomena. These arise in many fields like psychometrics, marketing, economics and
social sciences, etc., and need specific models to be studied. Manifold methodologies
were proposed to deal with the problem of the construction of a general latent concept
via a hierarchy of nested specific ones, as illustrated in Chapter 1 (Section 1.1).
Therefore, these methodologies are based upon sequential applications of exploratory
factor analysis, like the Higher-Order Factor models and Bi-Factor or Hierarchical
Factor models, without specifying an overall objective function, or defined in a
confirmatory approach, i.e., by fixing the relationships between observed variables
and latent concepts a priori, as in SEM models.

In this chapter, we propose a simultaneous, exploratory and parsimonious model,
named Ultrametric Correlation Model (UCM), to reconstruct a correlation matrix
via an ultrametric correlation one in order to explore a multidimensional phenomenon
(general concept) through a set of nested specific dimensions (concepts). UCM gives
rise to a hierarchical partition of the observed variable space that can be associated
with a hierarchy of latent concepts defining a general broader one. The nested
design of the hierarchical structure among concepts makes them easier to interpret
with respect to the crossed one. Thus, each dimension can be directly or indirectly
specified by a set of observed variables. In order to detect specific concepts at
each level of the hierarchy, i.e., a tree-shape structure, and different relationships
between them, two main features characterize the ultrametric correlation matrix of
the proposed model: the internal consistency of a latent concept, i.e., the concordant
relations observed within a group of variables that assess the reliability of the concept,
and the correlation between concepts, i.e., the concordant relations between two
groups of observed variables. Some relationships between these two characteristics of
latent concepts and the Cronbach’s α (Cronbach, 1951) are here highlighted. UCM
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is estimated in the Least-Squares (LS) non-parametric approach searching for the
internal consistency of concepts and the correlations between them which better
represent the hierarchical structure of the phenomenon under study. Furthermore,
to avoid that specific concepts compensate in the definition of a latent dimension,
the correlation matrix of the data is assumed to be nonnegative1. Even if restrictive,
the latter assumption turns out to be realistic in a manifold of real applications, e.g.,
the g factor (Spearman, 1927; Carroll, 1993) in psychometric studies on intelligence
and cognitive abilities.

The chapter is organized as follows. In Section 2.2, the notation used in the
whole chapter and some basic notions on hierarchical partitions and ultrametric
matrices are provided to allow the reader to follow the specification of the model
herein. An in-depth description of the proposed methodology is provided in Section
2.3. Section 2.4 is dedicated to the non-parametric least-squares estimation of the
model together with the description of the corresponding algorithm. Section 2.5
discusses the results of a simulation study to assess the model. Two real applications
are illustrated in Section 2.6 and a final discussion completes the chapter in Section
2.7.

2.2 Notation and basic notions

For the convenience of the reader, the notation used in this chapter is listed here:
p, Q number of variables, number of groups of the variable partition.
C set (partition) {C1, . . . , CQ} of Q groups of variables.
R = [rjl] (p × p) correlation matrix of the observed variables, where rjl is

the correlation between variables j and l (j, l = 1, . . . , p, l ̸= j).
RW = [W rqq] (Q × Q) within-concept consistency (diagonal) matrix, where

W rqh = 0 for all q ̸= h; W rqq > 0 (q = 1, . . . , Q) represents
the consistency within the qth group of variables.

RB = [Brqh] (Q ×Q) between-concept correlation matrix, where Brqh (q, h =
1, . . . , Q, h ̸= q) denotes the correlation between latent concepts
associated with the variable groups {Cq, Ch} ⊂ C; Brqq = 1 for all
q = 1, . . . , Q.

V = [vjq] (p × Q) membership matrix, where vjq = 1 if the jth variable
belongs to the qth group Cq; vjq = 0 otherwise. It pinpoints a
partition C of variables in Q groups, {C1, . . . , CQ}; thus, V is
binary and row-stochastic, i.e., with one non-zero element per row.

1p, 1Q, Ip, IQ unitary vector of order p and Q, identity matrix of order p and Q,
respectively.

E = [ejl] (p× p) error matrix.

The internal consistency of a group Cq (q = 1, . . . , Q) of observed variables is
the extent to which all the variables in Cq contribute to identify the same latent
concept. A measure of the internal consistency of a group Cq is the Cronbach’s α

1A matrix A = [aij ] is nonnegative if aij ≥ 0 ∀i, j (see Horn & Johnson, 2013, p. 519). It is
important to stress that the definition of a nonnegative matrix is different from that of a nonnegative
definite matrix.
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(Cronbach, 1951). It ranges between 02 and 1, that are reached when Cq has an
identity correlation matrix, i.e. Rq = Iq, and Cq has a correlation matrix made up
of unitary elements, i.e. Rq = 1q1′

q, respectively. In this framework, the internal
consistency of the variable groups Cq, q = 1, . . . , Q, is represented by the value, one
per group, W rqq computed as a function of the correlations between variables in Cq

(see Section 2.4, Eq. 2.11) and arranged on the main diagonal of the matrix RW,
where W rqh = 0 for all q ̸= h. It is worthy to remark that a relationship between
based upo of Cq and the corresponding within-concept consistency coefficient W rqq

exists (Cronbach, 1951; Osburn, 2000; Warrens, 2015). Indeed, the standardized
Cronbach’s α - a generalization of the Spearman-Brown formula (Spearman, 1910;
Brown, 1910) - can be written as αS

q = Jq W rqq

1+(Jq−1) W rqq
, where Jq is the number of

variables in Cq and J1 + · · ·+ JQ = p.
Given two groups Cq and Ch (h ̸= q) of observed variables, the correlation

between them measures the extent to which variables in Cq are concordant with
variables in Ch and, therefore, it measures the correlation between latent concepts.
For C1, . . . , CQ, Q(Q−1)

2 correlations between pairs of variable groups - each one
representing a latent concept - can be computed. These values can be arranged in a
correlation matrix RB = [Brqh] of order Q, where Brqh (q, h = 1, . . . , Q, h ̸= q) is
defined as a function of the correlations between pairs of variables, one belonging to
Cq and the other one to Ch (see Section 2.4, Eq. 2.14); hence, Brqq = 1 for all q. A
further relationship between αS

q , αS
h , Brqh (h ̸= q) and the Cronbach’s α of the set

Cq ∪ Ch exists (see Appendix A).
Before going into detail of the proposal, let us provide some basic notions that

turn out to be necessary for the explanation of the UCM. As done from Section
2.3 onward, let us suppose that the Q groups of variables form a partition of the
observed variable space. This implies that each variable contributes to specify one
and only one latent dimension. Therefore, we need to introduce the definition of
a hierarchy of latent concepts and an ultrametric matrix3, which differs from that
of the well-known ultrametric distance matrix as already mentioned in Chapter 1
(Section 1.2).

Definition 2.1. A hierarchy of latent concepts is a set HQ = {Cq, (q = 1, . . . , Q),
CQ+1, . . . , C2Q−1} = {C, CQ+1, . . . , C2Q−1}, composed of 2Q − 1 groups, each one
representing a latent concept, where the first C1, . . . , CQ stand for the subsets
of an initial partition C of the observed variables with internal consistency W rqq

(q = 1, . . . , Q); the remaining groups, i.e. CQ+1, . . . , C2Q−1, are obtained by Q− 1
pairwise possible amalgamations of subsets of C with correlation between groups
Brqh (q, h = 1, . . . , Q, h ̸= q). Thus, Ck, Ch ⊂ HQ ⇔ Ck ∩ Ch ⊂ {Ck, Ch, ∅},
k, h = 1, . . . , 2Q− 1.

Definition 2.2. (Dellacherie, Martínez, & San Martín, 2014, pp. 58-59) Given a
set of objects I, a nonnegative matrix R is said to be ultrametric if

(i) rij = rji for all i, j ∈ I (symmetry);
2Negative values are not taken into account herein thanks to the assumption of nonnegative

correlations that is introduced from this section on.
3The definition of an ultrametric matrix is rewritten herein by using the mathematical notation

adopted throughout the chapter. Henceforth, we will cite Definition 2.2 instead of Definition 1.2.
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(ii) rjj ≥ max{rkj : k ∈ I} for all j ∈ I (column pointwise diagonal dominance);

(iii) rij ≥ min{ril, rjl}, for all i, j, l ∈ I (ultrametric inequality).

Property (iii) can be equivalently rewritten as follows:

(iii’) for each triplet i, j, l ∈ I, there exists a reordering {i, j, l} of the elements s.t.

rij ≥ ril = rjl,

which corresponds to say that for each triplet the smallest two elements are
equal. This fact limits the number of different values in the ultrametric matrix
R.

It is straightforward to observe that each nonnegative correlation matrix R
satisfies properties (i) and (ii), i.e., it is symmetric and column pointwise diagonally
dominant.

2.3 The model

Starting from the observation of a (p × p) nonnegative correlation matrix R, the
hierarchical statistical problem we want to deal with can be formalized as follows

R = Ru + E, (2.1)

where the (p × p) matrix Ru represents the hierarchical structure of the latent
concepts, i.e., the theoretical hierarchical model for the concepts, and E is the
random error matrix, i.e., the residual matrix from the hierarchical model. The
non-negativity assumption of R and Ru is needed to pinpoint a non-compensatory
hierarchical structure of the latent concepts.

The Ultrametric Correlation Model (Ultrametric Correlation Matrix model,
UCM) proposes to build an ultrametric correlation matrix for modeling hierarchical
latent concepts is formally specified as follows

Ru = V(RB − IQ)V′ + VRWV′ − diag
(
VRWV′) + Ip, (2.2)

subject to constraints

V = [vjq ∈ {0, 1} : j = 1, . . . , p, q = 1, . . . , Q]; (2.3)

V1Q = 1p i.e.
Q∑

q=1
vjq = 1 j = 1, . . . , p; (2.4)

RB is an ultrametric correlation matrix (Definition 2.2); (2.5)
min{W rqq : q = 1, . . . , Q} ≥ max{Brqh : q, h = 1, . . . , Q, h ̸= q}, (2.6)

where diag
(
VRWV′) is a diagonal matrix with diagonal entries equal to the diagonal

of the matrix VRWV′.
It is worthy to notice that since the within-concept consistency matrix RW is

diagonal, it is ultrametric by definition.
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The ultrametricity constraint (2.5) implies that the following O(Q3) constraints
on the triplets of RB hold:

Brqh ≥ min(Brqk, Brhk)
Brhk ≥ min(Brqh, Brqk) q = 1, . . . , Q, h = q, . . . , Q, k = h, . . . , Q.

Brqk ≥ min(Brqh, Brhk)
(2.7)

Before inspecting the main properties of the proposal, a basic result and definition
are provided in order to state our principal findings (Lemma 2.1 and Theorem 2.1).

Proposition 2.1. The number of different off-diagonal elements of Ru (nRu) is{
1 ≤ nRW ≤ Q

1 ≤ nRB ≤ Q− 1
⇒ 2 ≤ nRu ≤ 2Q− 1, (2.8)

where nRW, nRB are the number of different diagonal elements of RW and the
number of different off-diagonal elements of RB, respectively.

Definition 2.3. A (2Q− 1)-ultrametric correlation matrix is a square ultrametric
matrix of order p with diagonal elements equal to one and off-diagonal elements
that can assume one of at most (2Q − 1) different values Brqh, W rqq, such that
0 ≤ Brqh ≤ W rqq ≤ 1.

Lemma 2.1. A hierarchy of Q latent concepts, i.e. HQ - starting from p observed
variables - with within-concept consistencies, i.e., the group reliability, W rqq (q =
1, . . . , Q) and between-concept correlations Brqh (q, h = 1, . . . , Q, h ̸= q), with
0 ≤ Brqh ≤ W rqq ≤ 1, is one-to-one associated with a (2Q−1)-ultrametric correlation
matrix R.

Proof. Considering a hierarchy of latent concepts HQ, it can be stated that the jth
(j = 1, . . . , p) variable belongs to only one group Cq (q = 1, . . . , Q) ⊂ HQ. The
latter statement implies that any triplet (i, j, l) of variables certainly falls into one
of the following scenarios: (a) all the elements of the triplet belong to a single group
Cq (q = 1, . . . , Q); (b) the elements of the triplet belong to two distinct groups Cq

and Ch ⊂ HQ (q, h = 1, . . . , Q, h ̸= q); (c) all the elements of the triplet belong
to different groups Cq, Ch, Ck ⊂ HQ (q, h, k = 1, . . . , Q, k ̸= h ̸= q). According
to the Definition 2.2 and 2.3 it can be gathered that (a), (b) and (c) correspond
to the following correlation triplets: (W rqq, W rqq, W rqq), (W rqq, Brqh, Brqh) and
(Brqh, Brqk, Brhk), respectively. Furthermore, considering a hierarchy of latent
concepts HQ, all the triplets previously pinpointed verify the ultrametric inequality
by definition (i.e., condition (iii) and (iii’) of the Definition 2.2). Thus, the (2Q− 1)-
ultrametric matrix R has Q levels W rqq (q = 1, . . . , Q) corresponding to the subsets
of C, while the remaining Q − 1 levels Brqh (q, h = 1, . . . , Q, h ̸= q) match the
subsets CQ+1, . . . , C2Q−1.

Conversely, each (2Q− 1)-ultrametric correlation matrix R leads to a hierarchy
of latent concepts, because for each pair of variables (j, l) they belong to the
same group Cq ⊂ C if their correlation is W rqq, or to different groups Cq, Ck ⊂
C if their correlation is Brqk. Moreover, CQ+1, . . . , C2Q−1 may contain only the
triplets previously defined that are associated to non-overlapping groups since the
ultrametricity constraint on R.
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(a) (2Q− 1)-ultrametric correlation matrix (b) Hierarchy of latent concepts: path dia-
gram representation

Figure 2.1. Relationship between a (2Q− 1)-ultrametric correlation matrix and a corre-
sponding hierarchy of latent concepts.

Theorem 2.1. The matrix Ru defined in Eq. (2.2) is a (2Q − 1)-ultrametric
correlation matrix.

Proof. The matrix Ru defined in Eq. (2.2) can be rewritten as

Ru = V(RB − IQ + RW)V′ − diag
(
VRWV′) + Ip. (2.9)

According to constraints (2.5)-(2.6) and the ultrametricity of RW, it is easily to
demonstrate that Q = RB − IQ + RW turns out to be ultrametric. Indeed, Q
is symmetric as well as RB, since constraint (2.5) holds; it is column pointwise
diagonally dominant since its diagonal elements are those of RW and the constraint
(2.6) holds; the ultrametric inequality holds for Q observing that its possible triplets
are contained in RB that is assumed to be ultrametric. Thus, V(RB − IQ + RW)V′

is in turn ultrametric because it may contain the only triplets defined in Lemma
2.1, and the remaining addends of Eq. (2.9) affect only the diagonal of Ru, whose
elements turn out to be unitary. Thus, the conditions of the Definition 2.2 and 2.3
are satisfied and the (2Q− 1)-ultrametricity of Ru is proved.

Moreover, property (ii), i.e., the column pointwise diagonal dominance, is a
sufficient condition for an ultrametric matrix to be positive semi-definite (Dellacherie,
Martínez, & San Martín, 2014, pp. 60-61). The matrix Ru is nonnegative, with
unitary diagonal elements and it is an ultrametric matrix since it is defined according
to Eq. (2.2) subject to constraints (2.3)-(2.6); then, it is a correlation matrix.

An example of a (2Q−1)-ultrametric correlation matrix Ru and its corresponding
hierarchical representation - one-to-one correspondence defined in Lemma 2.1 - is
shown in Figure 2.1. In this example, four main groups which are internally strongly
correlated are visible, i.e. Q = 4, in Figure 2.1a; indeed, the four within-concept con-
sistency coefficients are {W r11,W r22,W r33,W r44} = {0.8970, 0.9131, 0.9105, 0.7602},
that correspond to the first four levels, starting from above, in Figure 2.1b, whereas
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the hierarchical relationships between them are pinpointed through the matrix RB
which has three different off-diagonal values, i.e., Br23 = 0.7068, Br24, Br34 = 0.5455
and Br12, Br13, Br14 = 0.3, corresponding to the last three levels in Figure 2.1b.
As shown in this example, UCM is based on a reflective approach since it assumes
the existence of a general concept that causes some nested specific ones differently
correlated to each other, as it happens in many applications. Nevertheless, the
values of the correlation between concepts, i.e., the off-diagonal elements of RB, in
some situations can be very low and therefore close to zero providing the researcher
with useful information about the formative nature of the general latent concept.

In the next section, the estimates of the proposed model defined in Eq. (2.2) are
provided according to a non-parametric least-squares approach.

2.4 Least-Squares estimation of the model and algo-
rithm

The least-squares estimation of the model (2.2), which provides the (2Q − 1)-
ultrametric approximation (Ru, see Theorem 2.1) of the nonnegative correlation
matrix R by identifying its hierarchical structure of latent concepts, is defined as
the minimization of the following constrained quadratic problem with respect to
RW, RB and V

F (RW, RB, V) =∥ R −V(RB − IQ)V′ −VRWV′ + diag
(
VRWV′)− Ip ∥2

=
Q∑

q=1

p∑
j=1

p∑
l=1
l ̸=j

(rjl − W rqq)2vjqvlq

+
Q∑

q=1

Q∑
h=1
h̸=q

p∑
j=1

p∑
l=1
l ̸=j

(rjl − Brqh)2vjqvlh → min
RW,RB,V

(2.10)

subject to constraints (2.3)-(2.6).
Therefore, before describing the algorithm to solve the aforementioned constrained

quadratic optimization problem, the expression of the parameter estimators is
provided.

Estimation of RW
The estimators of the elements of RW are computed by differentiating Eq. (2.10)
with respect to W rqq (q = 1, . . . , Q) for a fixed V̂:

ˆW rqq =

∑p
j=1

∑p
l=1
l ̸=j

rjlv̂jqv̂lq∑p
j=1

∑p
l=1
l ̸=j

v̂jqv̂lq
q = 1, . . . , Q. (2.11)

The above estimate of RW can be also expressed in a matrix form. Indeed, for fixed
R̂B and V̂, the loss function (2.10) can be rewritten as

F (RW, R̂B, V̂) =∥ R̃ − V̂RWV̂′ + diag(V̂RWV̂′) ∥2, (2.12)
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where R̃ = R − V̂(R̂B − IQ)V̂′ − Ip is a known residual matrix. Eq. (2.12) is
minimized by

R̂W = diag
(
V̂′(R − Ip)V̂

)
[(V̂′V̂)2 − V̂′V̂]+, (2.13)

where [A]+ denotes the Moore-Penrose inverse of a matrix A. The estimates in Eq.
(2.11) are equivalent to the diagonal elements of R̂W in Eq. (2.13) and they must
satisfy constraint (2.6).

Estimation of RB
The estimators of the elements of RB are computed by differentiating Eq. (2.10)
with respect to Brqh (q, h = 1, . . . , Q, h ̸= q) for a fixed V̂:

ˆBrqh =

∑p
j=1

∑p
l=1
l ̸=j

rjlv̂jqv̂lh∑p
j=1

∑p
l=1
l ̸=j

v̂jqv̂lh
q, h = 1, . . . , Q, h ̸= q. (2.14)

The above estimate of RB can be also expressed in a matrix form. Indeed, for fixed
R̂W and V̂, the loss function (2.10) can be rewritten as

F (R̂W, RB, V̂) =∥ R̃ − V̂RBV̂′ ∥2, (2.15)

where R̃ = R− V̂R̂WV̂′ + diag(V̂R̂WV̂′)− Ip + V̂ IQV̂′ is a known residual matrix.
The minimization of (2.15) is a Penrose multivariate regression problem with the
following matricial solution

R̃B = (V̂′V̂)−1V̂′R̃V̂(V̂′V̂)−1. (2.16)

The elements of R̃B simply define the correlations between C1, . . . , CQ. Since
constraint (2.5) must be satisfied, the estimate of RB is the closest - in the LS sense
- ultrametric matrix to Eq. (2.16). This ultrametric solution, which corresponds
to R̂B, is computed via an average linkage UPGMA algorithm (Sokal & Michener,
1958), but for correlations, such that the Definition 2.2 is satisfied. Thus, the
elements of R̂B represent the levels of correlation between the groups of HQ (see
Definition 2.1).

Estimation of V
The estimators of the elements of V are computed by minimizing Eq. (2.10) row
by row for each vj (j = 1, . . . , p) of V, when all the remaining rows are fixed and
the corresponding R̂W and R̂B have been estimated. Specifically, the jth variable is
assigned to the qth group (vjq = 1) if Eq. (2.10) reaches its minimum with respect
to V, after the corresponding estimation of R̂W and R̂B. Formally, each row vj of
V, j = 1, . . . , p, is estimated as followsv̂jq = 1 if arg min

q=1,...,Q
F (R̂W, R̂B, [v̂1, . . . , vj = iq, . . . , v̂p]′)

v̂jq = 0 otherwise
(2.17)

where iq is the qth row of the identity matrix of order Q and R̂W, R̂B are the
estimates of the within-concept consistency and between-concept correlation matrices,
respectively, which correspond to the configuration of V̂.
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Algorithm 1: LS Estimate of the Ultrametric Correlation Model
Input: R, Q, Random Starts

1 Fixed values ϵ← small nonnegative convergence tolerance value;
2 maxiter ← maximum number of iterations;
3 for i = 1 to Random Starts do
4 Initialization t← 0
5 V(0) ← random initial partition of variables in Q non-empty groups s.t. constraints

(2.3)-(2.4) hold;
6 R(0)

W ← Eq. (2.13) subject to constraint (2.6), given V(0);
7 R(0)

B ← Eq. (2.16) subject to constraint (2.5), given V(0);
8 if Constraint (2.6) does not hold then
9 min{W r

(0)
qq : q = 1, . . . , Q} ← max{Br

(0)
qh : q, h = 1, . . . , Q, h ̸= q}∗;

10 end
11 F (0) ← F (R(0)

W , R(0)
B , V(0)) through Eq. (2.10);

12 F
(0)
diff ← F (0);

13 Fmin ← F (0);
14 while F

(t)
diff > ϵ and t ≤ maxiter do

15 t← t + 1;
16 V(t)

temp ← V(t−1);
17 for j = 1 to p do
18 currentq ← qth group the jth variable belongs to;
19 for q = 1 to Q do
20 V(t)

temp(j, :)← iq;
21 if V(t)

temp(:, currentq) is nonempty then
22 Step 1 Update RW and RB

23 R(t)
W;temp ← Eq. (2.13) subject to constraint (2.6), given V(t)

temp;
24 R(t)

B;temp ← Eq. (2.16) subject to constraint (2.5), given V(t)
temp;

25 if Constraint (2.6) does not hold then
26 min{W ;tempr

(t)
qq : q = 1, . . . , Q} ← max{B;tempr

(t)
qh : q, h =

1, . . . , Q, h ̸= q}∗;
27 end
28 endStep1
29 F

(t)
temp ← F (R(t)

W;temp, R(t)
B;temp, V(t)

temp) through Eq. (2.10);
30 if F

(t)
temp < Fmin then

31 F (t) ← F
(t)
temp;

32 Fmin ← F (t);
33 currentq ← q ;
34 R(t)

W ← R(t)
W;temp;

35 R(t)
B ← R(t)

B;temp;
36 end
37 end
38 end
39 Step 2 Update V
40 V(t)(j, :)← icurrentq;
41 endStep2
42 end
43 F

(t)
diff ← (F (t−1) − F (t)) ;

44 end
45 end

∗ It is worthy to notice that if the aforementioned replacement occurs, the relationship
between the standardized Cronbach’s α of Cq and the within-consistency coefficient W rqq

stressed in Section 2.2 does not hold.
Output: R̂W, R̂B, V̂, R̂u, F (R̂W, R̂B, V̂) corresponding to the optimal solution among

the whole ones obtained running Random Starts times the algorithm.
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2.4.1 Algorithm for detecting the LS Ultrametric Correlation Model

The Algorithm 1 for the LS estimation of the UCM parameters is composed of
two main steps: one to update the parameters representing the continuous part
of the optimization problem in Eq. (2.10), i.e., RW and RB, conditionally on the
configuration of V̂ and subject to constraints (2.5) and (2.6); the other one to update
the parameter representing the combinatorial part of the optimization problem in
Eq. (2.10) subject to constraints (2.3) and (2.4), i.e., V, and conditionally on the
corresponding R̂W and R̂B. These two main steps are iteratively repeated after the
initialization step - that starts from a random initial partition of the variable space,
i.e. V(0), since the estimates of RW and RB are based upon it - and at each iteration
the objective function in Eq. (2.10) does not increase and generally decreases until
the convergence to a stationary point. The latter is at least a local minimum; thus,
to improve the chance to reach a global optimum, the algorithm is run several times
starting from different random initializations of the parameters (Random Starts
input parameter of the Algorithm 1).

It is worthy to notice that the computational time and space are reduced relative
to an algorithm on a data matrix, since at most 2Q− 1 + p different elements per
iteration are stored.

2.5 Simulation

In order to assess the performances of the Ultrametric Correlation Model, we have
implemented a simulation study by following the ultrametric correlation structure
determined in Eq. (2.2). Two different scenarios have been taken into account to
test the model with a small scale correlation structure, characterized by p = 30 and
Q = 4 (small number of groups), 7 (large number of groups), and with a larger one,
with p = 100 and Q = 7 (small number of groups), 15 (large number of groups).

The matrices of the model (2.1) have been defined as follows. The diagonal
elements of RW have been generated as W rqq = 0.85 + 0.1 a where a ∼ N(0, 1),
q = 1, . . . , Q, whereas the off-diagonal elements of RB have been set in the interval
[0.3, 0.7] such that the difference between pairs of two sequential correlation coef-
ficients turns out to be equal and constraint (2.6) holds. In this way, the correct
estimation of the hierarchical structure depends only on the noise, i.e., on the error
matrix E which has been generated in turn starting from a uniform distribution in the
interval [0, σE ] - the matrix has been symmetrized and its positive semi-definiteness
has been verified. The membership matrix V has been randomly generated such
that no constraint on the variable groups, e.g., the number of variables in each group,
has been put. Three levels of error σE were fixed: σS

E = 0.1 (small error), σM
E = 0.3

(medium error) and σH
E = 0.5 (high error). In Figure 2.2, an example of the meaning

of the error levels is illustrated. Indeed, the groups and their hierarchical structure
are clearly visible when the small error is added to Ru and tend to be less visible as
the error grows. For each generated matrix R according to Eq. (2.1), we have verified
if it has turned out to be a proper correlation matrix (i.e., positive semi-definite and
with values between 0 and 1).

The simulated model is evaluated according to the Adjusted Rand Index (ARI,
Hubert & Arabie, 1985), that compares the generated membership matrix V with
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(a) σS
E = 0.1 (b) σM

E = 0.3 (c) σH
E = 0.5

Figure 2.2. Example of the heat maps of three (30× 30) correlation matrices produced by
the simulation study with different levels of error. The theoretical number of groups of
variables is Q = 7 (Scenario 1).

Table 2.1. Simulation study results.

σS
E σM

E σH
E

Scenario 1

Q 4 7 4 7 4 7

MSE(RW) 0.0012 8.3e−4 0.0170 0.0108 0.0342 0.0213
MSE(RB) 2.4e−4 2.4e−4 0.0061 0.0056 0.0138 0.0126
% ARI = 1 100.0% 100.0% 100.0% 99.5% 68.5% 68.5%
ARI Mean 1.0000 1.0000 1.0000 0.9996 0.9591 0.9711

Scenario 2

Q 7 15 7 15 7 15

MSE(RW) 0.0049 0.0034 0.0243 0.0145 0.0377 0.0211
MSE(RB) 0.0045 0.0062 0.0297 0.0271 0.0398 0.0401
% ARI= 1 100.0% 100.0% 100.0% 82.0% 92.5% 56.0%
ARI Mean 1.0000 1.0000 1.0000 0.9847 0.9987 0.9772

the estimated one V̂. Furthermore, the Mean Squared Error (MSE) of the within-
concept consistency matrix RW and the between-concept correlation matrix RB is
computed. All the simulation study results are shown in Table 2.1.

We have generated 200 correlation matrices for each scenario (i.e., for each pairs
(p, Q) and each level of error). The variable partition of the model with a small
level of error is completely reconstructed (100% of samples with ARI equal to 1) in
both scenarios and it is always correctly detected. Whereas, when the error grows
it tends to mask the generated correlation structure as shown in Figure 2.2, and
the detection is not always correct. Nevertheless, the misclassification concerns a
reduced number of samples (at least 68.5% and 56% of samples with ARI equal to 1
in the first and the second scenario, respectively) and variables (the mean of the
ARI is always greater than 0.9). The MSE for RW and RB is extremely good.

In the whole scenarios the number of random starts has been set equal to 50.
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The algorithm has shown impressive performances in terms of running time and
it converges in few steps; thus, the chosen number of random starts turns out to
be enough to find the global optimum of Eq. (2.10). Nevertheless, it is advisable
to increase the initial random starts when the correlation structure is not clearly
determined.

2.6 Application

In this section two real data examples are considered. The first one is a benchmark
data set concerning mental abilities (Section 2.6.1), whereas the second one regards
drug consumption (Section 2.6.2). On the former, UCM is able to correctly detect
the theoretical variable groups associated with the six primary mental abilities
(latent concepts) and allows to investigate their hierarchical relationships. In the
second application, UCM is implemented to study drug consumption by identifying
groups of drugs highly correlated and their hierarchical relationships. An exploratory
in-depth analysis of this phenomenon through the proposed model can contribute to
its better understanding and to consequently implement policies aimed at reducing
it.

2.6.1 Bechtoldt data set

The Bechtoldt data set contains 17 variables, shown in Table 2.2, with 6 theoretical
latent factors (Bechtoldt, 1961; Kano, 1997). Our goal is to correctly estimate the
variable partition by identifying the 6 latent concepts - Memory, Verbal, Words,
Space, Number, Reasoning - and to explore the hierarchical structure of the Bechtoldt
correlation matrix in order to understand the relationships among the variable groups.

The data set is presented as a correlation matrix with all nonnegative values
(Figure 2.3a). The algorithm run with 50 random starts has found the right partition
in 6 main groups (Figure 2.3b) corresponding to the theoretical ones. All the groups
of variables are reliable except the first, i.e. Memory, whose Cronbach’s α is equal
to 0.6413.

The hierarchical structure pinpointed by the model starts from the first aggre-
gation of two groups, corresponding to the latent concepts Verbal and Reasoning,
to which the other concepts are merged one-by-one, as shown in Figure 2.4. Verbal
turns out to be the most reliable concept (the correlation within the group is 0.7887),
whereas Space, whose correlation within the corresponding group is equal to 0.6687,
is the concept less correlated with the others (the correlation between Space and the
other concepts is on average 0.1464). It is worthy to notice that even if the path
diagram in Figure 2.4 shows a constant trend in the definition of broader dimensions,
we could characterize three main concepts: (i) Intellectual Abilities composed of
the concepts Verbal, Reasoning, Number, Words (the correlation between them is
on average 0.346), (ii) Memory and (iii) Space that are defined according to the
theoretical groups of the original variables. This result can be confirmed by the
analysis of the Cronbach’s α at each level of the hierarchy, which increases up to
the third bottom-up level (0.8991) and then decreases (0.8946). Nevertheless, by
examining the path diagram in Figure 2.4 it can be observed the existence of a
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Table 2.2. List of Bechtoldt variables.

Specific Concept Variables ID Specific Concept Variables ID

Memory First Names 1 Space Flags 9
Word Number 2 Figures 10

Verbal Sentences 3 Cards 11
Vocabulary 4 Number Addition 12
Completion 5 Multiplication 13

Words First Letters 6 Three Higher 14
Four Letter Words 7 Reasoning Letter Series 15
Suffixes 8 Pedigrees 16

Letter Grouping 17

general concept, that is clearly evident and it may represent the dimension Mental
Abilities.

(a) Bechtoldt correlation matrix (b) Estimated correlation matrix via the
UCM

Figure 2.3. Comparison between heat maps of the observed and estimated correlation
matrices.

As shown in Figure 2.3, the model (2.2) is able to reconstruct the correlation
matrix of the observed variables with the main advantage of identifying its hierarchical
structure through the definition of the internal consistency of the concepts - each one
associated with a group of variables - and the correlations between them. Evidently,
the use of the matrix Ru defined in Eq. (2.2) entails biased point estimates of each
element of the original matrix due to the ultrametricity assumption. Nevertheless,
UCM can help the researcher to identify the hypothesized hierarchy of latent concepts,
e.g., in many psychometric applications, and to define and characterize broader
dimensions.

2.6.2 Drug consumption data set

Drug consumption is one of the most challenging problems in the modern societies.
Indeed, it contributes to rise the risk of poor health, crimes, social harm, environ-
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Figure 2.4. Path diagram of the Bechtoldt hierarchical structure.

mental damage and it has become a social problem over years - especially among
young people - governments have to face with. Many studies have been developed
to analyze this phenomenon, its individual and community effects, e.g., McGinnis
and Foege (1993).

The data set analyzed in this section4 (Fehrman et al., 2015) contains information
on 1885 respondents, mainly coming from UK (55.58%), USA (29.55%), Canada
(4.62%) and Australia (2.86%) and aged from 18 years old, on their drug consumption.
Specifically, the use of 18 legal (alcohol, caffeine, chocolate, nicotine) and illegal
(amphetamines, amyl nitrite, benzodiazepine, cannabis, cocaine, crack, ecstasy,
heroin, ketamine, legal highs, LSD, methadone, mushrooms, Volatile Substance
Abuse) drugs is investigated in terms of ordinal variables. The response classes are
the following: Never Used, Used over a Decade Ago, Used in Last Decade, Used in
Last Year, Used in Last Month, Used in Last Week and Used in Last Day.

In order to apply the methodology described in Section 2.3 to investigate the
correlation structure among drugs, the ordinal variables - each one representing
consumption of a specific drug - have to be quantified. This quantification is
implemented via the Categorical Principal Component Analysis (CatPCA) (Gifi,
1990) and the correlation matrix of the corresponding quantitative variables is
computed. Six correlation coefficients assume negative values (not lower than5 −0.05)
which turn out to be statistically nonsignificant; whereas, the variable Chocolate has

4Drug consumption (quantified) data set available at: https://archive.ics.uci.edu/ml/datasets/
Drug+consumption+%28quantified%29.

5In this case, the term not lower than refers to small negative correlation coefficients close to
zero.

https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29
https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29
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(a) Bar chart of the 18 ordinal variables (b) Correlation matrix of the quantified data
via the CatPCA

Figure 2.5. Drug consumption data set.

Table 2.3. Initial five groups identified by the Ultrametric Correlation Model.

Group Group Name Variables

Group 1 Depressant and Artificial Drugs Ampeth, Benzodiazepine, Crack, Heroine, Methadone
Group 2 Stimulant Drugs and Hallucinogens Cannabis Cocaine, Ecstasy, Ketamine, Legal highs,

LSD, Mushrooms, Nicotine
Group 3 Inhalant Drugs Amyl nitrite, Volatile Substance Abuse
Group 4 Legal Drugs of Daily Use Alcohol, Caffeine
Group 5 Chocolate Chocolate

negative correlations with all the other drugs (Figure 2.5a) - except for Alcohol and
Caffeine - which are not lower than −0.09 and considered nonsignificant in literature
(Fehrman et al., 2015). For this reason, in both cases the negative correlations are
set to zero such that the non-negativity condition necessary for UCM holds (Figure
2.5b). Furthermore, the number of the variable groups necessary to implement the
exploratory, parsimonious model described in Section 2.3 is set according to the
scree plot and it is equal to five. It is worthy of remark that hierarchical clustering
methods could be implemented to study the correlation between usage of different
drugs, but they would not guarantee the correct identification of the underlying
hierarchical structure as we will see in Chapter 3.

The application of UCM to the aforementioned data set provides a representation
of drug consumption through the identification of different groups of drugs mostly
correlated (Figure 2.5b), and broader ones defined by merging the initial five groups
(Figure 2.6). In this framework, a model-based approach to analyze correlations
between variables can back up the experts’ theories on this phenomenon. The initial
five groups identified by the model are reported in Table 2.3. All of them are reliable
according to the Cronbach’s α, except for Inhalant Drugs and Legal Drugs of Daily
Use. It is worthy of remark that the Cronbach’s α of a group is affected by its
number of variables.
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Figure 2.6. Path diagram representation of the drug consumption.

The hierarchy over the five groups gives rise to broader concepts: Soft and Hard
Drugs obtained by lumping together Group 1 and Group 2 (α = 0.87); Illegal Drugs
obtained by merging the latter with Group 3 (α = 0.87); Legal Drugs obtained
by lumping together Group 4 and Group 5 (α < 0.7). The existence of a general
concept representing Drug Consumption is assessed through the Cronbach’s α of
the whole data set, which is equal to 0.84. These results turn out to be coherent
with the specialized literature on drug consumption (e.g., Fehrman et al., 2015).

2.7 Conclusions

The model proposed herein allows to investigate the hierarchical structure of a non-
negative correlation matrix of observed variables via an ultrametric correlation one
in an exploratory, simultaneous and non-compensatory approach. In psychometric
studies, many multidimensional phenomena underlie a hierarchy of latent concepts
that defines a general concept through the identification of more specific ones. In
this field, the non-negativity assumption turns out to be realistic.

The ultrametric correlation structure of the model allows to disclose a parsi-
monious hierarchy from the observed variables up to the most general concept,
composed of all variables. The identification of this hierarchical structure of latent
concepts - each one associated with a group of variables - is based upon the definition
of two main features: the within-concept consistency and the between-concept corre-
lation. These two characteristics pinpoint the reliability of the concepts and their
hierarchical relationships, respectively, and they allow to define broader dimensions
starting from the initial ones. Moreover, a relationship between these features and
the Cronbach’s α is provided. The methodology is developed in a reflective approach
since it assumes the existence of a general concept that causes some nested specific
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ones, differently correlated to each other, but very low or close to zero values can
occur in the ultrametric matrix providing the researcher with a useful information
about the formative nature of the general latent concept.

A LS estimation of UCM is proposed in order to detect consistent latent concepts
and the correlation between them. Hence, the whole hierarchy of latent concepts is
built by the levels of correlation. The simulation study and the two applications
provided show the good performances of the model. Furthermore, the algorithm for
the UCM estimation results very fast and stable.

A further development of the model presented in this chapter is its extension
to general correlation (or covariance) matrices by relaxing the non-negativity con-
straint. In Chapter 4 the definition of an ultrametric matrix will be extended to a
generic covariance matrix and then implemented into a Gaussian mixture model, in
order to identify a different characterization of a multidimensional phenomenon in
heterogeneous populations.
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Chapter 3

Exploring hierarchical concepts:
theoretical and application
comparisons

3.1 Introduction

The investigation of the relationships between latent concepts defining a multidi-
mensional phenomenon is the aim of the model proposed in Chapter 2, in which a
parsimonious hierarchy of nested partitions of the variable space is formally defined
via an ultrametric matrix. As already introduced in Chapter 1 (Section 1.2), an
ultrametric matrix (Definition 2.2) does not correspond to an ultrametric distance
matrix (Definition 1.1), even if there exists a relationship between the two. However,
the researchers could think to use a procedure based on a classical (agglomerative)
hierarchical clustering algorithm to inspect the hierarchical relationships among
observed variables (see Chapter 1, Section 1.1). The latter can be implemented
building the whole hierarchy from p observed variables up to the most general latent
concept, and cutting the tree identifying Q main latent concepts by maintaining the
corresponding hierarchy. Nonetheless, this sequential strategy does not guarantee an
optimal solution since the classification errors made in the first steps can never be
corrected; indeed, hierarchical clustering algorithms can be characterized as greedy.
It is worthy of remark that the study of multidimensional phenomena needs the
detection of reliable latent concepts together with the corresponding hierarchy.

In this chapter we compare the above described procedure based on traditional
agglomerative clustering methods - in particular, single linkage (Florek et al., 1951),
complete linkage (McQuitty, 1960), Ward’s method (Ward, 1963) and average linkage
(Sokal & Michener, 1958) - with the Ultrametric Correlation Model (UCM) proposed
by Cavicchia, Vichi, and Zaccaria (2020b) and presented in Chapter 2. Their
application to a benchmark data set made up of variable groups identifying latent
concepts highlights the potential of UCM with respect to the classical hierarchical
clustering algorithms. Furthermore, the aforementioned proposal is based upon a
parsimonious representation of the relationships among variables which allows to
reduce the time complexity of the bottom-up algorithms.

The chapter is organized as follows. In Section 3.2, a brief review of the four
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Figure 3.1. N-tree representation: root node (a), internal nodes (b, c, d, e, f, g), terminal
nodes (h, i, j, k, l, m, n, o).

aforementioned agglomerative clustering methods is depicted and UCM is briefly
recalled in Section 3.3. Section 3.4 provides a deep comparison among the aforemen-
tioned methods via a benchmark data set, in order to highlight their advantages
and weaknesses in searching for hierarchical relationships among variables - not only
with the clustering objective - associated with a latent concept structure. A final
discussion completes the chapter in Section 3.5.

3.2 Hierarchical classification of variables

Hierarchical classification defines a set of methods that have been proposed to
pinpoint hierarchically-nested classes of units, even variables1, by defining a set of
partitions represented by tree-shape structures. For completeness, we firstly define
an n-tree (Bobisud & Bobisud, 1972; McMorris, Meronk, & Neumann, 1983) as
follows.

Definition 3.1. An n-tree on a set of objects O = {1, 2, . . . , p} is a set T of subsets
of O satisfying the following conditions: O ∈ T , ∅ ̸∈ T , {j} ∈ T ∀j ∈ O and
A ∩B ∈ {∅, A, B} ∀A, B ∈ T .

An n-tree is composed of a root node, which represents the whole set of objects,
some internal nodes, which define the nested classes of objects, and the terminal
nodes (leaves), which are the observed objects. All nodes are connected by branches
as represented in Figure 3.1, with at most p− 2 internal nodes corresponding to a
binary tree.

A particular n-tree, called dendrogram, is defined in Definition 3.2. This is the
main graphical representation used in this chapter (see Section 3.4).

1In this chapter we use the term objects as a synonym of both units and variables.
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Definition 3.2. A dendrogram is a valued n-tree, where given a mapping b on R+ any
two internal nodes A and B of T, such that A ∩B ̸= ∅, then b(A) ≤ b(B)⇔ A ⊂ B.

The hierarchical classification methods usually produce a complete dendrogram.
Nonetheless, especially for large data sets, a complete hierarchy of nested partitions
frequently has low interest. The construction of a parsimonious tree, that contains
a limited number of internal nodes, is preferred and turns out to be clearer albeit
the loss of information related to the dimensionality reduction (Gordon, 1999).

The hierarchical clustering algorithms we take into account are the agglomerative
ones, whose criterion for the construction of the dendrogram starts from p singleton
sets of objects and recursively merges two of them - from the bottom upwards - to
obtain the whole hierarchy. All these methods are computed on a distance matrix,
as a measure of dissimilarity, and they differ in the way of defining distance between
two groups of objects (or between a group of objects and a singleton). It is worthy of
remark that the distance matrices have diagonal elements equal to zero, nonnegative
off-diagonal elements and they must be symmetric.

For variables, it is often suggested to use the correlation coefficient to quantify
the similarity among them (e.g., Cliff et al., 1995; Gordon, 1999; Strauss, Bartko, &
Carpenter, 1973). Therefore, even if the classical hierarchical clustering methods are
defined for clustering units, they can be employed for classifying variables. Indeed,
it is possible to transform a measure of similarity - the correlation coefficient in this
case - into a dissimilarity between objects, as follows

djh = 1− rjh → djh ∈ [0, 1] when rjh is assumed to be nonnegative, (3.1)

where djh is the distance between the object {j} and the object {h} of O, and rjh is
their correlation coefficient. Moreover, if a similarity matrix is positive semi-definite,
as the correlation matrix is, then the distance matrix defined by

djh =
√

1− rjh (3.2)

is Euclidean (Gower, 1966).
The four hierarchical clustering methods we consider herein - single linkage,

complete linkage, average linkage, Ward’s method - can be obtained as special
cases of the following equation proposed by Lance and Williams (1966, 1967), and
generalized by Jambu (1978),

d(Ci ∪ Ch, Ck) = αi d(Ci, Ck) + αh d(Ch, Ck) + β d(Ci, Ch)
+γ |d(Ci, Ck)− d(Ch, Ck)|, (3.3)

where Ci, Ch, Ck are clusters of objects of O with 1 ≤ |Ci| ≤ p− 2, ∀Ci ∈ O. The
parameters αi, αh, β, γ in Eq. (3.3) define different clustering techniques, as shown
in Lance and Williams (1967) and Everitt et al. (2011).

All these methods are agglomerative techniques which do not produce reversals in
the dendrogram representation, i.e., the following conditions for Lance and William’s
Eq. (3.3) hold:

γ ≥ −min{αi, αh},
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αi +αh ≥ 0,

αi +αh + β ≥ 1.

Moreover, these methods - as Definition 3.2 in turn - satisfy a fundamental condition:
the ultrametric property (e.g., Hartigan, 1967). This property may be expressed
in two different ways, i.e., with respect to distances and the components of a
dendrogram, respectively as follows:

d(Ci, Ch) ≤ max{d(Ci, Ck), d(Ch, Ck)} Ci, Ch, Ck ∈ O, (3.4)
b(A, B) ≤ max{b(A, C), b(B, C)} A, B, C ∈ T. (3.5)

Starting from a distance matrix, the hierarchical clustering algorithms produce a
complete dendrogram. In this framework, the optimal number of clusters is chosen
by cutting the n-tree at a specific level. For a deeper review of the hierarchical
classification algorithms see Gordon (1987).

The procedure based on the above described hierarchical clustering algorithms
for the classification of variables works as follows:

Step 1 (Transformation of correlations into distances) Given a nonnegative
correlation matrix R, the corresponding distance matrix is obtained by applying Eq.
(3.1) w.r.t. the elements of R.

Step 2 (Hierarchical clustering algorithm) According to Eq. (3.3), a hierarchical
clustering algorithm is chosen and computed on the distance matrix defined in Step
1. A complete dendrogram and the corresponding estimated ultrametric distance
matrix are obtained.

Step 3 (Parsimonious hierarchy) To define a parsimonious hierarchy in Q groups
of variables, for a given Q, that may correspond to Q latent concepts, the dendrogram
obtained in Step 2 is cut at the Qth level. The bottom-up aggregations from the
aforementioned level upwards identify the parsimonious hierarchy.

Step 4 (Model fit) To evaluate the solution obtained in Step 3, the estimated
ultrametric distance matrix has to be transformed into an ultrametric correlation
matrix through the inverse relationship to that of Eq. (3.1). The least-squares differ-
ence between the nonnegative correlation matrix R and the estimated - according to
the hierarchical clustering method chosen in Step 2 - correlation matrix is computed
with respect to the total correlation of the data2.

It is worth noticing that herein we consider a nonnegative correlation matrix R
in order to compare the hierarchical clustering algorithms with the model presented
in Chapter 2. If the non-negativity assumption does not hold, Eq. (3.1) can be
used to transform similarities into dissimilarities by taking the absolute value or the
square of the correlation coefficients (Revelle, 1979; Soffritti, 1999; Liu et al., 2012).
However, the latter case is out of the scope of this chapter.

2We use the term loss to refer to it.
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3.3 The Ultrametric Correlation Model: a brief review

In this section we briefly recall the main features of the model presented in Chapter
2.

Considering a nonnegative correlation matrix R of order p, the Ultrametric
Correlation Model is defined by the following equation

R = Ru + E, (as Eq. 2.1)

where Ru is the (p × p) matrix representing the hierarchical structure of latent
concepts and E is the (p×p) random error matrix, i.e., the residual matrix. The non-
negativity assumption on R, and consequently Ru, lets avoid a compensatory effect
into the hierarchy. Therefore, this assumption allows to compare the hierarchical
clustering methods recalled in Section 3.2 with UCM, since both distances and
correlations turn out to be nonnegative. Moreover, they belong to the interval [0, 1]
according to Eq. (3.1).

Ru is an ultrametric correlation matrix, where the ultrametric property formalizes
the mathematical counterpart of the latent concept hierarchy. It is formally specified
as follows

Ru = V(RB − IQ)V′ + VRWV′ − diag
(
VRWV′) + Ip, (as Eq. 2.2)

subject to constraints

V = [vjq ∈ {0, 1} : j = 1, . . . , p, q = 1, . . . , Q]; (as constr. 2.3)

V1Q = 1p i.e.
Q∑

q=1
vjq = 1 j = 1, . . . , p; (as constr. 2.4)

RB is an ultrametric correlation matrix (Definition 2.2); (as constr. 2.5)
min{W rqq : q = 1, . . . , Q} ≥ max{Brqh : q, h = 1, . . . , Q, h ̸= q}, (as constr. 2.6)

where V is the (p×Q) membership matrix that defines a partition of the variable
space, i.e., it identifies Q non-overlapping groups of variables (C1, . . . , CQ); RB
is the (Q × Q) between-concept correlation matrix, whose off-diagonal elements
Brqh (q, h = 1, . . . , Q, h ̸= q) denote the correlation between two latent concepts, each
one associated with a variable group (Cq and Ch), and RW is the (Q×Q) diagonal
within-concept consistency matrix, whose diagonal elements W rqq (q = 1, . . . , Q)
represent the consistency within each group of variables. The two latter matrices,
RB and RW, embody two different features related to the variable groups: the
correlation between concepts and the internal consistency of a concept, respectively
(Cavicchia, Vichi, & Zaccaria, 2019).

UCM is estimated in a least-squares framework, minimizing the squared norm
of the difference between the observed correlation matrix R and the reconstructed
ultrametric correlation matrix Ru (see Section 2.4).

In the next section, a comparison between the models described herein is carried
out. This stresses the strong potential of UCM in investigating the hierarchical
relationships between latent concepts, whenever they exist and even if not known a
priori, with respect to the traditional agglomerative clustering algorithms.
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3.4 A comparison between the Ultrametric Correlation
Model and the agglomerative clustering algorithms

Figure 3.2. Heatmap of the Holzinger (14× 14) correlation matrix of
ability tests.

Table 3.1. Holzinger data set: variables and latent dimensions (ability) description.

Cth
q Latent concept (ability) Variables

Cth
1 Spatial Tests T1, T2, T3.4

Cth
2 Mental Speed Tests T6, T28, T29

Cth
3 Motor Speed Tests T32, T34, T35, T36a

Cth
4 Verbal Tests T13, T18, T25b, T77

The Holzinger data set3 (Holzinger & Swineford, 1937) is a benchmark example
very useful to inspect the hierarchical factorial structure of a multidimensional
phenomenon. In this case, the latter is represented by the general ability of an
individual that is composed of different latent dimensions (concepts). The data set is

3Available on psych package in R.
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defined as a (14×14) correlation matrix (p = 14), with Q = 4 latent concepts (Spatial,
Mental Speed, Motor Speed and Verbal) corresponding to the abilities tested for 355
individuals and described in Table 3.1. The optimal number of latent concepts may
be assessed by means of the classical criteria to choose the number of factors or
principal components (e.g., the Kaiser’s method, Kaiser, 1960).

We aim at defining reliable concepts and, additionally, identifying the hierarchical
structure over them. To achieve this goal we assess the potential of the model
described in Section 3.3 with respect to the traditional hierarchical clustering
methods cited in Section 3.2, when there exists a particular hierarchical latent
structure underlying the data.

Firstly, we implemented UCM on the Holzinger correlation matrix to obtain the
parsimonious bottom-up structure of the four latent concepts. It is worth noticing
that in order to apply UCM the non-negativity condition on the correlation matrix
must hold. The original one has three negative correlation coefficients very close to
zero which turn out to be statistically nonsignificant (Holzinger & Swineford, 1937),
as well as the other values in the Holzinger correlation matrix whose magnitude is
lower than 0.1; we can thus take the absolute value of these negative terms. The
resulting nonnegative correlation matrix shown in Figure 3.2 points out the existence
of the four theoretical groups - corresponding to the latent concepts of the Spatial,
Mental Speed, Motor Speed and Verbal abilities: three out of four are internally
highly correlated, whereas the variables representing the Motor Speed ability have
lower correlations within the group. As a result, this weak relationship between the
objects in Cth

3 could entail their misclassification, as we will see thereafter. Moreover,
the variables belonging to the first two groups, which correspond to the Spatial and
Mental Speed abilities, are highly correlated between them.

Unlike the traditional hierarchical clustering algorithms that produce complete
dendrograms, i.e., they define a complete hierarchy over p variables, UCM starts
from the classification of variables in Q < p groups before searching for their optimal
bottom-up aggregations. As shown in Table 3.2, UCM groups together the Spatial
and Mental Speed abilities into CUCM

1 , and let the variable T36a define a singleton,
i.e., CUCM

2 , rather than be merged with the variables belonging to CUCM
4 . CUCM

3 is
instead well defined and associated with the Verbal ability as in Cth

4 .
The UCM estimates of the between-concept correlation matrix and the within-

concept consistency matrix are the following

RB =


1.000 0.309 0.332 0.143
0.309 1.000 0.309 0.143
0.332 0.309 1.000 0.143
0.143 0.143 0.143 1.000

 RW =


0.447 0 0 0

0 1.000 0 0
0 0 0.606 0
0 0 0 0.332

 .

It has to be highlighted that the UCM algorithm involves an UPGMA step, adapted
for correlations, in order to obtain the ultrametric correlation matrix RB (see Section
2.4). The results of the application of UCM on the Holzinger correlation matrix
are shown in Figure 3.3. The dendrogram is obtained by applying Eq. (3.1) to the
ultrametric correlation matrix estimated by UCM. Since the observed correlation
coefficients are nonnegative by hypothesis, the distances belong to the interval [0, 1]
and vice versa. Looking at Figure 3.3, the hierarchy over the four variable groups
and the corresponding latent concepts is built by merging the Spatial and Mental
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Figure 3.3. Dendrogram of the ultrametric distance matrix obtained by computing the
Ultrametric Correlation Model on the Holzinger (14× 14) correlation matrix of ability
tests and applying Eq. (3.1) on the result.

Speed abilities with the Verbal ability first, that are all related to the brain; then,
this broad group with the variable T36a. It has to be noticed that this variable
has a lower correlation (on average) with those in Cth

3 than with those in the other
groups (Figure 3.2). The last aggregation lumps together the broad group composed
of {CUCM

1 , CUCM
2 , CUCM

3 } and CUCM
4 , whose corresponding latent concept is related

to the movement ability. It is worthy of remark that the Holzinger data set has been
analyzed by many authors; in particular, Loehlin and Beaujean (2017, pp. 235-239)
conducted a higher-order exploratory analysis (Schmid & Leiman, 1957) on the
Holzinger correlation matrix by pinpointing a strong correlation between the Spatial
and Verbal abilities, and a low correlation between the Motor Speed and the other
abilities. The latter bears UCM out since CUCM

4 is lumped together with the other
groups in the last aggregation, as an additional ability. Therefore, the examination
of the Cronbach’s α (Cronbach, 1951) was carried out, revealing the existence of a
general latent concept associated with all variables.

In order to make a comparison between UCM and the hierarchical classification
methods, we applied the Single, Complete, Average Linkage and Ward’s Method
to the distance matrix obtained by transforming the Holzinger correlation matrix
by means of Eq. (3.1), and complying the procedure described in Section 3.2. The
results are shown in Figure 3.4, where the groups corresponding to the 4th level of
the hierarchy (Q = 4) are colored. It is worthy of remark that in order to identify the



3.4 A comparison between the Ultrametric Correlation Model and the agglomerative
clustering algorithms 37

Table 3.2. Variable groups of UCM with Q = 4.

CUCM
q Variables

CUCM
1 T1, T2, T3.4, T6, T28, T29

CUCM
2 T36a

CUCM
3 T13, T18, T25b, T77

CUCM
4 T32, T34, T35

Table 3.3. Variable clusters at the 4th level (Q = 4) of the clustering methods hierarchy.

Cm
q Single Link and Average Link Complete Link and Ward’s Method

Cm
1 T1, T2, T3.4, T6, T28, T29, T13, T18, T25b, T77 T1, T2, T3.4, T6, T28, T29

Cm
2 T34, T36a T32

Cm
3 T32 T13, T18, T25b, T77

Cm
4 T35 T34, T35, T36a

aforementioned level of the hierarchy, and the corresponding partition of variables,
a complete dendrogram must be computed. Indeed, the hierarchical clustering
algorithms taken into account herein do not allow to choose the optimal number of
clusters a priori, as UCM does. The four groups identified at the 4th top-down level
of the hierarchy by each hierarchical clustering method are illustrated in Table 3.3.
The different composition of these groups with respect to the theoretical and the
UCM ones stands out. On one hand, the variable T36a is merged with at least one
of the other variables of Cth

3 , conversely to UCM. On the other hand, it is evident
that the partitions in 4 groups obtained by the Complete Linkage and the Ward’s
Method are more similar to that of UCM than those of the Single and Average
Linkage. For all methods, the Adjusted Rand Index (ARI, Hubert & Arabie, 1985)
is computed at the Qth level of the hierarchy in order to compare the theoretical
variable partition in 4 groups with the estimated ones. Looking at Table 3.4, it can
be noticed that the Complete Linkage, Ward’s Method and UCM have the same
ARI, even if the singleton of UCM is composed of the variable T36a instead of T32.

To have a deeper comparison between the hierarchical clustering methods and
UCM in terms of the hierarchical relationship detection, we computed their loss
as the least-squares difference between the observed correlation matrix and the
estimated one over the total correlation of the data. The results are shown in Table
3.4. The loss of UCM turns out to be lower than that of the other methods by
revealing that UCM is better able to reconstruct the observed data matrix than the
competing methods. Indeed, even if the ARI of UCM is equal to that of the Complete
Linkage and Ward’s Method, the UCM hierarchy over the 4 variable groups better
reconstructs the hierarchical relationships among the fourteen variables. Only the
Average Linkage has a similar loss to UCM, whereas the Single, Complete Linkage
and Ward’s method have a three times higher loss. Therefore, the ARI of the Average
Linkage is extremely lower than that of UCM. Thus, we can state that UCM is able
to balance a good performance on the variable partition recovery in Q groups and
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(a) (b)

(c) (d)

Figure 3.4. Dedrogram of (3.4a) Single Linkage, (3.4b) Complete Linkage, (3.4c) Average
Linkage, (3.4d) Ward’s Method on the distance matrix obtained by transforming the
Holzinger (14× 14) correlation matrix of ability tests according to Eq. (3.1).

on detecting the hierarchical relationships among them.
The results shown in this section illustrate the difference between the procedure

based on the traditional hierarchical classification methods (see Section 3.2) and
the Ultrametric Correlaton Model described in Section 3.3. Indeed, starting from
p observed variables and building a complete hierarchy over them turns out to
be not sufficient to properly identify a hierarchy of latent concepts, when there
exists a hierarchical latent structure in the data. Moreover, if the number of the
original variables is too large a dimensionality reduction of the problem, means
a parsimonious representation, is needed. UCM provides both a parsimonious
representation of the relationships among variables and a model-based approach to
build a hierarchy starting from Q variable groups, each one associated with a latent
concept. It is worth highlighting once again that the hierarchical clustering methods
are not able to repair the errors done in the initial levels of the complete hierarchy,
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Table 3.4. ARI between the theoretical membership matrix defined in Holzinger and
Swineford (1937) and the membership matrices obtained by UCM and the traditional
hierarchical clustering methods at level Q = 4 and their loss.

Method/Model ARI Loss

UCM 0.6308 0.0423

Single Link 0.1703 0.1440

Complete Link 0.6308 0.1536

Average Link 0.1703 0.0449

Ward’s Method 0.6308 0.1354

whenever they occur. Conversely, thanks to its features, UCM does not suffer from
the errors underneath the Qth level of the hierarchy, because Q variable groups are
directly pinpointed in a dimensionality reduction approach, without going through
binary aggregations of variables from p up to Q. Moreover, since UCM works on a
correlation matrix, the latent concepts of a phenomenon might also be quantified.

3.5 Conclusions

In this chapter a comparison between a procedure based on the well-known hierar-
chical clustering methods applied on variables and the novelty model proposed in
Chapter 2 is provided. The latter allows to pinpoint a parsimonious representation
of multidimensional phenomena through the partition of the observed variables into
a reduced number of groups, each one associated with a latent concept, and to
study the relationships among them. The difference between the procedure based
on the traditional clustering algorithms and the Ultrametric Correlation Model is
appreciated thanks to their application to a benchmark data set with a hierarchical
“factorial” structure.

UCM entails a dimensionality reduction of the problem under study, starting
from a parsimonious representation of the variables into groups, and the construction
of a hierarchy of latent concepts. The number of groups is chosen a priori by means
of the traditional criteria for selecting the optimal number of factors/components
instead of cutting the n-tree, as usually done for the hierarchical clustering methods.
Differently from the latter algorithms, UCM does not suffer from the errors that
could turn up in the lower levels of the dendrogram, since it starts from a partition
of variables into groups.



40

Chapter 4

Gaussian Mixture Model with
an extended ultrametric
covariance structure

4.1 Introduction

Finite mixture models are one of the most widespread methodologies to model the
density of a heterogeneous population. They assume that the observed data are
collected from a population composed of a finite set of G homogeneous subpopulations
with a given distribution (Titterington, Smith, & Makov, 1985; McLachlan & Basford,
1988; McLachlan & Peel, 2000a). When each distribution has a multivariate Gaussian
form, the model is called Gaussian Mixture Model (GMM). In general, the GMM
density assumes the form

f(x|Ψ) =
G∑

g=1
πg ϕ(x|µg, Σg), (4.1)

where each component of the mixture has the density of a multivariate Gaussian,
denoted by ϕ(x|µg, Σg), with a p-dimensional mean vector µg and a covariance
matrix Σg. The quantities π1, . . . , πG are the mixing proportions (prior probabilities)
such that πg ≥ 0 and

∑G
g=1 πg = 1, and Ψ = {π1, . . . , πG, µ1, . . . , µG, Σ1, . . . , ΣG}

is the overall parameter vector. Relevant specialized literature and complete reviews
of the GMM are found in McLachlan and Basford (1988), McLachlan and Peel
(2000a), Fraley and Raftery (2002), and Bouveyron et al. (2019).

Finite mixture models are used for model-based clustering (McNicholas, 2016;
Bouveyron et al., 2019), as well as discriminant analysis and multivariate density
estimation. Considering the GMM, in the model-based approach to clustering each
component of the mixture is associated with an ellipsoidal cluster, centered at the
mean vector µg and with volume, shape and orientation derived by the covariance
matrix Σg.

Although GMMs represent a conceptually and mathematically elegant class
of models, they suffer from the curse of dimensionality (Bellman, 1957) due to
the fact that their application for clustering with high-dimensional data is often
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computationally demanding; indeed, this requires a large amount of data for the
estimation of the large number of parameters, that is G−1+Gp+Gp(p+1)/2, (i.e., G−
1 for mixing proportions; Gp for mean vectors; Gp(p + 1)/2 for covariance matrices).
Since most parameters are produced by the covariance matrices, parsimonious
parameterizations of the latter were proposed in literature. One of the most used is
the eigen-decomposition (Banfield & Raftery, 1993) of the form Σg = λgDgAgD′

g,
where λg is a scalar determining the cluster volume, Ag is a diagonal matrix
controlling the cluster shape, and Dg is an orthogonal matrix which specifies the
cluster orientation. The eigen-decomposition allows defining different parsimonious
GMMs, called Gaussian Parsimonious Clustering Models (GPCMs), by imposing
specific geometric features to the cluster covariance structure and/or by constraining
the covariance components to be equal or unequal across clusters (Celeux & Govaert,
1995; Fraley & Raftery, 1998, 2002). The fourteen different models based on the
eigen-decomposition are implemented into the R packages mixture (Langrognet
et al., 2020), mclust (Fraley & Raftery, 1999; Scrucca et al., 2016), Rmixmod
(Biernacki et al., 2006). McNicholas and Murphy (2008) proposed a class of eight
Parsimonious GMMs (PGMMs), then increased to twelve (Expanded PGMMs,
EPGMMs, McNicholas & Murphy, 2010), based on Factor Analysis (FA, Spearman,
1904; Anderson & Rubin, 1956; Horst, 1965) by extending both the mixtures of factor
analyzers (Ghahramani & Hinton, 1997; McLachlan & Peel, 2000b; McLachlan, Peel,
& Bean, 2003) and the mixtures of probabilistic principal component analyzers
(Tipping & Bishop, 1999b, 1999a). The mixture of factor analyzers model assumes
a cluster covariance structure of the form Σg = ΛgΛ′

g + Ψg, where Λg is the (p×Q)
factor loading matrix and Ψg is the diagonal covariance matrix of the error of
order p. Also in this case, the twelve models are obtained by considering equal
or unequal covariance components across clusters. EPGMMs are implemented
into the R package pgmm (McNicholas et al., 2019). In order to further reduce
the number of parameters of the cluster covariance matrices, Baek, McLachlan,
and Flack (2010) provided an extension of the mixture of factor analyzers with
common component-factor loadings. The latter results effective when the number of
dimensions p is large relative to the sample size n and/or the number of clusters G is
not small. In the high-dimensional context, Bouveyron, Girard, and Schmid (2007)
proposed the High-Dimensional Data Clustering (HDDC) model which is a GMM
based on the eigen-decomposition with a reduced number of different eigenvalues
for each cluster covariance matrix. HDDC therefore parameterizes the diagonal
matrix of the eigenvalues as Ag = diag([ag1, . . . , agdg , bg, . . . , bg]′), where diag(a) is
a diagonal matrix with diagonal entries equal to the vector a, dg ∈ {1, . . . , p− 1}
is the intrinsic dimension of each mixture component, agj , j = 1, . . . , dg, are the
first dg greatest eingenvalues of Σg modeling the variance in the cluster-specific
subspace, and bg represents the variance of the noise. As well as GPCMs and
EPGMMs, HDDC enables to define a family of parsimonious models by fixing
some parameters to be common between and/or within clusters. A subset of the
twenty-eight models resulting from the HDDC parameterization is implemented in
the R package HDClassif (Bergé, Bouveyron, & Girard, 2012, 2019). For a complete
review of the existing methodologies for model-based clustering in high-dimensional
spaces see Bouveyron and Brunet-Saumard (2014) and Fop and Murphy (2018).

In this chapter, we introduce a new GMM with a parameterization of the
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(a) Concordant blocks (b) Discordant blocks (c) Uncorrelated blocks

(d) Concordant concepts (e) Discordant concepts (f) Uncorrelated concepts

Figure 4.1. Examples of the extended ultrametric covariance matrices (4.1a)-(4.1c) and the
corresponding path diagrams (4.1d)-(4.1f) representing different hierarchical relationships
among nested concepts.

covariance matrix by assuming an extended ultrametric covariance matrix for each
cluster. The latter extends the definition of an ultrametric matrix provided in
Chapter 2 (Definition 2.2) to a generic covariance matrix, i.e., by relaxing the
non-negativity constraint. The extended ultrametric covariance matrix defined in
this chapter is thus modeled with a similar structure to UCM (Chapter 2) - but
for covariances - which is one-to-one associated in turn with a tree describing a
hierarchy of relations among groups of variables. The hierarchy defines frequently
used hierarchical relations: (i) a unique, consistent and reliable general latent
concept identified by even more reliable, nested and specific concepts. In this case,
the extended ultrametric covariance matrix has all nonnegative values and it is
formed by nested blocks of more positive covariance sub-matrices (Fig. 4.1a). Thus,
there is a relevant internal consistency (concordance, agreement) among all observed
variables that can allow one to identify the general latent concept at the root of the
tree (Fig. 4.1d). From this matrix a composite indicator corresponding to the general
concept can be estimated (OECD, 2008); (ii) an inconsistent and unreliable general
latent concept, formed by two or more discordant ones which are characterized by
specific and internally consistent concepts. Thus, there exists a general concept,
but it is formed by discordant specific ones. The extended ultrametric covariance
matrix has positive values that define the specific initial concepts in the hierarchy,
with nested blocks of more positive covariance sub-matrices. However, between the
last two (or more) blocks of nested sub-matrices the covariances are on average
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negative (Fig. 4.1b). For several levels, the hierarchy finds at least two (or more)
internally consistent sub-hierarchies, which identify two (or more) discordant (on
average) groups of variables (Fig. 4.1e); (iii) no general concept, since the last
two (or more), which should form the general one, are substantially uncorrelated.
Moreover, it should be noted that, in this case, the hierarchy does not form a unique
tree (Fig. 4.1f). The extended ultrametric covariance matrix has positive values,
with nested blocks of sub-matrices, to define the specific concepts, but the covariance
is (on average) null between the last two (or more) (Fig. 4.1c). This situation is
frequently observed in higher-order factor models (G. H. Thompson, 1948; Cattell,
1978a; Gorsuch, 1983).

The extended ultrametric covariance matrix, which has this important flexibility
in modeling hierarchical relationships among variables, is finally implemented into a
GMM. On one hand, our approach allows modeling multidimensional phenomena
which present a nested hierarchical structure on variables by considering a limited
number of parameters, and, on the other hand, it allows defining a new parsimonious
GMM. The parsimony of the ultrametric structure motivates its use to model complex
multidimensional phenomena.

The chapter is organized as follows. In Section 4.2, the notation used throughout
the chapter and a background about ultrametric matrices are given to allow the
reader to follow the specification of the model herein. Section 4.3 introduces the
extended ultrametric covariance structure with its features. The Gaussian Mixture
Model with an Extended Ultrametric Covariance Structure is provided in Section
4.4, along with computational aspects and the model selection criterion. Section 4.5
shows the performance of the proposal on synthetic data and Section 4.6 on real
data. A final discussion completes the chapter in Section 4.7.

4.2 Notation and theoretical background

For the convenience of the reader, the notation used in this chapter is listed here.
n, p, G, Q Number of observations, variables, clusters, groups of variables,

respectively.
Σ = [σjl] Covariance matrix of order p.
V = [vjq] (p × Q) membership matrix, where vjq = 1 if the jth variable

belongs to the qth group; vjq = 0 otherwise. It is binary and
row-stochastic, i.e., with one non-zero element per row, identifying
a partition of variables in Q groups.

ΣV = [V σqq] Diagonal matrix of order Q with diagonal entries representing
variances of the groups of variables.

ΣW = [W σqq] Diagonal matrix of order Q with diagonal entries representing
covariances within groups of variables.

ΣB = [Bσqh] Matrix of order Q with off-diagonal entries representing covariances
between groups of variables, and diagonal ones equal to zero.

In Chapter 2, we introduce the Ultrametric Correlation Model (UCM, Cavicchia,
Vichi, & Zaccaria, 2020b) to reconstruct a nonnegative correlation matrix by using
the definition of an ultrametric matrix (Dellacherie, Martínez, & San Martín, 2014,
pp. 58-59). The latter differs from an ultrametric distance matrix, but preserves
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the non-negativity property, i.e., the entries of the matrix are nonnegative (see
Chapter 1, Section 1.2). The ultrametric correlation matrix Ru = [urjl] is related
to an ultrametric distance matrix Du = [udjl] by the relationship udjl = 1 − urjl,
j, l = 1, . . . , p.

In this chapter, we extend the definition of a nonnegative ultrametric correlation
matrix to a generic covariance matrix by relaxing the non-negativity constraint. Let
us recall that a covariance matrix Σ of order p, with elements σjl ∈ R, j, l = 1, . . . , p,
satisfies the following properties:

(i) symmetry: σjl = σlj for j, l = 1, . . . , p;

(ii) non-negativity of the diagonal: σjj ≥ 0 for all j = 1, . . . , p;

(iii) positive semi-definiteness: x′Σx ≥ 0 for all x ∈ Rp.

The ultrametric definition of a nonnegative matrix (Dellacherie, Martínez, & San
Martín, 2014, pp. 58-59) requires to satisfy property (i) and the following two
additional properties (see Definition 2.2), which can be extended to a matrix Σ with
real values:

(iv) ultrametric inequality: σjl ≥ min{σjh, σlh}, for j, l, h = 1, . . . , p;

(v) column pointwise diagonal dominance: σjj ≥ max{|σlj |, l = 1, . . . , p} for
j = 1, . . . , p.

Condition (iv) can be equivalently rewritten as follows

(iv’) for each triplet j, l, h = 1, . . . , p, there exists a reordering {j, l, h} of the
elements s.t. σjl ≥ σjh = σlh. It corresponds to state that for each triplet the
smallest two elements are equal;

and, together with (i), it implies condition (v) when a matrix is nonnegative.

Definition 4.1 (Weak Extended Ultrametric Matrix). A matrix Σ is a weak
extended ultrametric matrix if all its elements σjl ∈ R, for j, l = 1, . . . , p, and
conditions (i), (ii), (iv), (v) hold.

Remark 4.1. Condition (v) is sufficient for a nonnegative ultrametric matrix to
be positive semi-definite (Dellacherie, Martínez, & San Martín, 2014, pp. 60-61).
However, if a matrix meets conditions (i), (ii) and (iv), without the non-negativity
constraint on the off-diagonal elements, condition (v) is not sufficient to guarantee
its positive semi-definiteness.

According to Remark 4.1, under condition (v) Σ is a weak extended ultrametric
matrix, but not a covariance matrix, since condition (iii) cannot be necessarily
satisfied. A stronger condition is thus needed to guarantee Σ to be weak extended
ultrametric and positive semi-definite. This is achieved with the following property:

(v’) diagonal dominance: σjj ≥
∑p

l=1
l ̸=j

|σjl| for j = 1, . . . , p.
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In fact, condition (v’), together with conditions (i) and (ii), is sufficient for the
positive semi-definiteness of a matrix as shown in Brouwer and Haemers (2012,
pp. 30-31). Therefore, we can extend the definition of a nonnegative ultrametric
correlation matrix to a covariance matrix with real values.

Definition 4.2 (Weak Extended Ultrametric Covariance Matrix). A matrix Σ is
said to be a weak extended ultrametric covariance matrix if all its elements σjl ∈ R,
for j, l = 1, . . . , p, and conditions (i), (ii), (iv), (v’) hold.

Remark 4.2. If properties (ii) and (v’) are strict in Definition 4.2, then we say that
Σ is a (strict) extended ultrametric covariance matrix. The latter is positive definite
(Gerschgorin, 1931; Horn & Johnson, 2013, Corollary 7.2.3).

Remark 4.3. It is worth highlighting that the diagonal dominance and the column
pointwise diagonal dominance are defined for a generic matrix Σ (i.e., not necessarily
with nonnegative diagonal entries) as |σjj | ≥

∑p
l=1,l ̸=j |σjl| and |σjj | ≥ max{|σlj |, l =

1, . . . , p}, j = 1, . . . , p, respectively. However, they can be respectively written as
(v’) and (v) under condition (ii).

Remark 4.4. If Σ is a weak extended ultrametric covariance matrix, it can be
transformed into an ultrametric distance matrix Du = [udjl] by the relationship
udjl =

√
σjjσll−σjl

2√
σjjσll

, for j, l = 1, . . . , p, where σjj , σll are the variances of the jth and
lth variables, respectively, and σjl is their covariance.

In the next section, we formalize the extension of UCM to an extended ultrametric
covariance matrix.

4.3 Extended Ultrametric Covariance Structure

We introduce a parameterization of an extended ultrametric covariance matrix, called
Extended Ultrametric Covariance Structure (EUCovS), which is formally defined as
follows

Σu = V(ΣW + ΣB)V′ − diag(VΣWV′) + diag(VΣVV′) (4.2)

subject to constraints

V = [vjq ∈ {0, 1} : j = 1, . . . , p, q = 1, . . . , Q]; (4.3)

V1Q = 1p i.e.
Q∑

q=1
vjq = 1 j = 1, . . . , p; (4.4)

ΣB = Σ′
B, diag(ΣB) = 0, Bσqh ≥ min{Bσqs , Bσhs} q, h, s = 1, . . . , Q,

s ̸= h ̸= q; (4.5)
min{W σqq : q = 1, . . . , Q} ≥ max{Bσqh : q, h = 1, . . . , Q, h ̸= q}; (4.6)

V σqq > |W σqq|
( p∑

l=1
vlq − 1

)
+

Q∑
h=1
h̸=q

|Bσqh|
p∑

l=1
vlh q = 1, . . . , Q, (4.7)

where diag(A) is a diagonal matrix with diagonal entries equal to the diagonal of
the matrix A, 1p and 1Q are the unitary vectors of order p and Q respectively.
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Σu is an extended ultrametric covariance matrix. In fact, it is symmetric
since (4.5) holds; it has positive entries on the main diagonal (4.7); it satisfies the
ultrametric inequalities due to (4.5), (4.6) and (4.7); and it is strictly diagonally
dominant given (4.7). Therefore, Σu represents a covariance matrix where the
variances on the diagonal are expressed by the diagonal elements of ΣV, while the
covariances (i.e., the off-diagonal elements) are expressed by the diagonal entries of
ΣW and the off-diagonal entries of ΣB. The strict inequality in (4.7) guarantees to
obtain Σu as an extended ultrametric covariance matrix; however, if the equality is
included, Σu results in a weak extended ultrametric covariance matrix. We define
Σu as an extended ultrametric covariance matrix in order to allow the use of the
EUCovS in the GMM, as we will show in the following section.

Remark 4.5. The strictly diagonal dominance in (4.7) is a strong condition which
may lead to an overestimation of the parameter ΣV.

A solution to the overestimation problem is given by replacing (4.7) with the following
constraints

V σqq ≥ max{|W σqq|, |Bσqh|, h = 1, . . . , Q, h ̸= q} q = 1, . . . , Q, (4.8)
Σu = Σu + aIp, with a > 0, and such that Σu is positive definite, (4.9)

where Ip is the identity matrix of order p. The factor a is the absolute value of the
smallest eigenvalue of Σu (Cailliez, 1983) plus an arbitrary small positive constant
(e.g., in our algorithm it is equal to 0.16). Under constraints (4.3)-(4.6), (4.8) and
(4.9), Σu is still an extended ultrametric covariance matrix. It is worth noticing
that (4.9) guarantees the positive definiteness of Σu by changing as few elements as
possible, i.e., only the elements of ΣV and not those of ΣW and/or ΣB.

One of the main properties of the EUCovS in (4.2) is to be parsimonious in terms
of the number of parameters involved. Indeed, the number of different diagonal
elements of ΣV and ΣW varies between 1 and Q, Q ∈ {1, . . . , p}; whereas, the
number of different off-diagonal elements of ΣB ranges between 0 (all the variables
are in the same group) and Q− 1, Q ∈ {1, . . . , p}. Thus, Σu can have as few as 2
and as many as 3Q− 1 different elements.

Remark 4.6. Given the EUCovS in (4.2), then 3Q − 1 is an upper bound for the
number of different elements of Σu. Indeed, if Q ≥ p/2 and p is an even number
or Q ≥ ⌊p/2⌋+ 1 and p is an odd number, then the maximum number of different
elements of Σu might be lower than 3Q− 1 since some groups of variables can be
singletons, and thus the corresponding diagonal elements of ΣV can be equal to the
corresponding diagonal elements of ΣW.

Corollary 4.1. Σu is one-to-one associated with a hierarchy of Q variable groups - each
one representing a specific concept (dimension) of a multidimensional phenomenon
characterized by at most 3Q−1 hierarchical levels. Values V σqq, q = 1, . . . , Q, define
the initial level of the hierarchy for each group, W σqq, q = 1, . . . , Q, are associated
with the first aggregation levels of the hierarchy and represent the covariance within
the first Q groups. While, values Bσqh, q, h = 1, . . . , Q, h ̸= Q, identify the remaining
Q− 1 levels and represent the covariance between groups of variables. The hierarchy
therefore depicts the relationships within and between groups of variables, from the
most concordant to the most discordant.
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(a) EUCovS (b) Hierarchy over Q variable groups: path
diagram representation

Figure 4.2. Relationship between EUCovS and the corresponding hierarchy of variable
groups.

Corollary 4.1 is based upon Lemma 1 in Cavicchia, Vichi, and Zaccaria (2020b) for
a (2Q−1)-ultrametric correlation matrix and it can be demonstrated in the same way.
This means that each (3Q− 1)-EUCovS Σu defines a hierarchy of variables, because
each pair of variables might belong either to the same variable group (i.e., latent
concept) if their covariance is W σqq, or to distinct groups if their covariance is Bσqh.
Furthermore, it is worth underlying that the variable groups are disjoint (as defined
by the membership matrix V) and nested due to the ultrametricity of Σu. Note that
ΣW and ΣB only determine the 2Q − 1 aggregation levels of the latent concepts,
whereas ΣV defines the starting position of the variables in the path diagram (Figure
4.2). EUCovS therefore models the relationships among the dimensions defining
a multidimensional phenomenon by means of a set of hierarchically nested latent
concepts, each one associated with a group of variables, from the most concordant
to the most discordant. The specific concepts are located at the beginning of the
hierarchy and are the most internally highly consistent and reliable; the groups
are therefore visible along the diagonal blocks of EUCovS, after a row permutation
of V such that the variables belonging to the same group are contiguous. The
covariance tends to decrease in the hierarchy when groups of variables aggregate
and the associated latent concepts become less consistent (concordant), thus the
aggregation levels are discernible as the off-diagonal blocks of EUCovS. The last
aggregations in the hierarchy may occur between: (i) concordant concepts defining a
general one; (ii) discordant concepts with negative between-group covariance; (iii)
uncorrelated concepts. These three scenarios are graphically represented in Figure
4.1.

Finally, the point where each of the Q groups enters the hierarchy assesses
the group’s initial average level of consistency. The distance between the initial
consistency of each group and the corresponding internal node of the tree measures
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the non-uniqueness of the concept associated with the group. If the distance is zero,
the variance of the group is equal to the covariance within the group and, thus, a
unique eigenvalue explains the overall variance of the group.

Our proposal differs from methods which aim at clustering variables by consid-
ering - after the transformation of covariances into correlations - the magnitude of
the correlation coefficient as a measure of similarity (e.g., taking into account the
absolute value or the square of the correlation coefficient, Revelle, 1979; Soffritti,
1999; Liu et al., 2012). The correlation coefficient is thereby transformed into
distance in order to apply a hierarchical clustering algorithm (Cliff et al., 1995;
Gordon, 1999; Strauss, Bartko, & Carpenter, 1973). Cavicchia, Vichi, and Zaccaria
(2020a) showed that this approach has several limitations (see Chapter 3).

The elements of the matrices ΣW and ΣB represent a concordance measure
among variables. Equation (4.6) ensures that variables belonging to the same group
are more concordant than those in two different groups, i.e., the covariances within
groups are greater than the covariances between groups. Thus, the higher the
covariances measured on R are, the stronger the concordance between the two
corresponding variables is; the lower the covariances measured on R are, the higher
the discordance between the two corresponding variables is.

In the next section, we introduce a new Gaussian Mixture Model with the
proposed covariance structure by inspecting the advantages of assuming this parsi-
monious parameterization for a covariance matrix.

4.4 Gaussian Mixture Model with an Extended Ultra-
metric Covariance Structure

The proposal consists of a new Gaussian Mixture Model with the assumption of
the Extended Ultrametric Covariance Structure (GMMEUCovS) defined in Section
4.3 for each component of the mixture. On one hand, GMMEUCovS aims at
clustering observations by assuming a parsimonious covariance structure for each
component of the mixture; on the other hand, when the phenomenon under study
is characterized by different dimensions, GMMEUCovS is able to pinpoint the
hierarchical relationships among variables within each cluster. We can now formalize
the proposed model.

Let x = (x1, x2, . . . , xn) be a random sample - where xi is a p-dimensional
random vector - which is drawn from a population composed of G subpopulations.
Suppose that, conditional on the membership to the subpopulation, the density of
xi is a multivariate Gaussian with mean vector µg and covariance matrix Σug =
Vg(ΣWg

+ΣBg
)V′

g−diag(VgΣWg
V′

g)+diag(VgΣVg
V′

g), where Σug is the EUCovS
defined in (4.2) and subject to constraints (4.3)-(4.7) - or, under a less strong
condition, constraints (4.3)-(4.6), (4.8) and (4.9). The GMMEUCovS density is

f(xi|Ψ) =
G∑

g=1

πg

(2π)p/2|Vg(ΣWg
+ ΣBg

)V′
g − diag(VgΣWg

V′
g) + diag(VgΣVg

V′
g)|1/2

× exp
{
− 1

2(xi − µg)′[Vg(ΣWg
+ ΣBg

)V′
g − diag(VgΣWg

V′
g) + diag(VgΣVg

V′
g)]−1

(xi − µg)
}

, (4.10)
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where πg, g = 1, . . . , G, are the mixing proportions (prior probabilities) and Ψ =
{πg, µg, ΣVg , ΣWg , ΣBg , Vg : g = 1, . . . , G} is the overall parameter vector.

The log-likelihood of GMMEUCovS in (4.10) is

ℓ(Ψ) =
n∑

i=1
log

( G∑
g=1

πg ϕ(xi|µg, ΣVg , ΣWg , ΣBg , Vg)
)
. (4.11)

As shown by Hathaway (1986), maximizing (4.11) is equivalent to maximize

ℓH(W, Ψ) =
n∑

i=1

G∑
g=1

wig log
(
πg ϕ(xi|µg, ΣVg , ΣWg , ΣBg , Vg)

)

−
n∑

i=1

G∑
g=1

wig log(wig), (4.12)

w.r.t. W = [wig] ∈ M = {W ∈ RnG : 0 ≤ wig ≤ 1,
∑G

g=1 wig = 1, 1 <
∑n

i=1 wig <
n, i = 1, . . . , n, g = 1, . . . , G} and Ψ.

GMMEUCovS is estimated via a grouped coordinate ascent algorithm (Zangwill,
1969; Bezdek et al., 1987) by maximizing (4.12) w.r.t. the parameters W and
Ψ. As demonstrated by Hathaway (1986), the EM algorithm (Dempster, Laird, &
Rubin, 1977; Redner & Walker, 1984) usually used to estimate the parameters of a
GMM can be interpreted as a method of coordinate ascent on a particular objective
function, i.e., (4.12) with Σg as a generic covariance matrix.

The fundamental steps of the algorithm for the estimation of GMMEUCovS are
described as follows.

(a) Estimation of W = [wig]: it can be easily demonstrated that the estimates of
wig are obtained by maximizing (4.12) over M . Thus,

ŵig =
π̂g ϕ(xi|µ̂g, Σ̂Vg , Σ̂Wg , Σ̂Bg , V̂g)∑G

h=1 π̂h ϕ(xi|µ̂h, Σ̂Vh
, Σ̂Wh

, Σ̂Bh
, V̂h)

, (4.13)

where ŵig is the posterior probability that the ith observation belongs to the
gth component (i = 1, . . . , n, g = 1, . . . G).

(b) Estimation of π = [πg]: for the estimates of the mixing proportions we can
note that (4.12) can be written as

ℓH(Ŵ, Ψ) =
n∑

i=1

G∑
g=1

ŵig log(πg) + C, (4.14)

where C is a constant function w.r.t. π1, . . . , πG. (4.14) is maximized when

π̂g = ng

n
g = 1, . . . , G, (4.15)

where ng =
∑n

i=1 ŵig.
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(c) Estimation of µ = [µg]: for the estimates of the mean vectors we can note
that (4.12) can be written as

ℓH(Ŵ, Ψ) = −1
2

n∑
i=1

G∑
g=1

ŵig

[
(xi − µg)′[Vg(ΣWg

+ ΣBg
)V′

g − diag(VgΣWg

V′
g) + diag(VgΣVg

V′
g)]−1(xi − µg)

]
+ C, (4.16)

where C is a constant function w.r.t. µ1, . . . , µG. Equation (4.16) is maximized
when

µ̂g =
∑n

i=1 ŵig xi

ng
g = 1, . . . , G. (4.17)

(d) Estimation of the parameters of Σu = [Σug ]: for the estimates of ΣVg , ΣWg ,
ΣBg , Vg we can note that (4.12) can be written as

ℓH(Ŵ, Ψ) = −1
2

n∑
i=1

G∑
g=1

ŵig

[
log(|Σug |) + (xi − µg)′[Vg(ΣWg

+ ΣBg
)V′

g

− diag(VgΣWg
V′

g) + diag(VgΣVg
V′

g)]−1(xi − µg)
]

+ C

= −1
2

G∑
g=1

ng

[
log(|Σug |) + tr

(
[Vg(ΣWg

+ ΣBg
)V′

g − diag(Vg

ΣWg
V′

g) + diag(VgΣVg
V′

g)]−1Sg

)]
+ C, (4.18)

where C is a constant function w.r.t. ΣVg , ΣWg , ΣBg , Vg, and Sg = (1/ng)∑n
i=1 ŵig(xi − µg)(xi − µg)′ (g = 1, . . . , G).

(d1) Estimation of ΣV = [ΣVg ]: given V̂g, g = 1, . . . , G, we have

Σ̂Vg = (V̂′
gV̂g)−1V̂′

gdiag(Sg)V̂g g = 1, . . . , G, (4.19)

subject to constraint (4.7).
(d2) Estimation of ΣW = [ΣWg ]: given V̂g, Σ̂Vg , g = 1, . . . , G, we have

Σ̂Wg = [(V̂′
gV̂g)2 − V̂′

gV̂g]−1diag
[
V̂′

g

(
Sg − diag(V̂gΣ̂Vg

V̂′
g)

)
V̂g

]
g = 1, . . . , G, (4.20)

subject to constraint (4.6).
(d3) Estimation of ΣB = [ΣBg ]: given V̂g, g = 1, . . . , G, we have

Σ̃Bg = V̂+
g Sg(V̂′

g)+ g = 1, . . . , G, (4.21)

where V̂+
g represents the Moore-Penrose inverse of V̂g. It is worth noticing

that the off-diagonal elements of Σ̃Bg simply denote the covariances
between Q groups of variables and they do not fulfill the ultrametric
condition. To fully satisfy constraint (4.5), Σ̂Bg is computed such that
property (iv) holds.
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(d4) Estimation of V = [Vg]: Vg, g = 1, . . . , G, is estimated row by row, i.e.,
for each vgj , j = 1, . . . , p, g = 1, . . . , G, when all the remaining rows are
fixed and the corresponding Σ̂Vg , Σ̂Wg , Σ̂Bg , g = 1, . . . , G, are computed.
This means that the jth variable is assigned to the group q that most
increases (4.18). Formally, each row vgj , j = 1, . . . , p, of Vg is estimated
byv̂gjq = 1 if arg max

q=1,...,Q
ℓH(Ŵ, Ψ̂−g, [v̂g1 , . . . , vgj = iq, . . . , v̂gp ]′) in (4.18),

v̂gjq
= 0 otherwise

(4.22)
where Ψ̂−g = {π̂, µ̂, Σ̂V, Σ̂W, Σ̂B, V̂h, h = 1, . . . , G, h ≠ g}, g = 1, . . . , G,
and iq is the qth row of the identity matrix of order Q.

The details of the estimates in steps (d1)-(d4) are provided in Appendix B.

Remark 4.7. The solution Σ̂Bg is obtained by optimizing (4.18) w.r.t. ΣBg only,
when all the other parameters are fixed, by requiring that constraints in (4.5) are
verified. The multivariate constraint problem is solved with an “interior-point”
algorithm that satisfies bounds at all iterations. Alternatively to the interior-point
algorithm, an adapted average linkage (UPGMA) algorithm for covariance matrices
can be used in order to satisfy property (iv). It was used with success in the proposed
algorithm.

4.4.1 GMMEUCovS algorithm

The steps described in the previous section are iteratively alternated until convergence.
We can briefly show the steps of the algorithm.

Step 0: Initial values for Ŵ = [ŵig] and V̂ = [V̂g] are chosen. Then,
initial values for π̂ = [π̂g], µ̂ = [µ̂g], Σ̂V = [Σ̂Vg ], Σ̂W = [Σ̂Wg ], Σ̂B = [Σ̂Bg ]
are computed according to (4.15), (4.17), (4.19), (4.20), (4.21), respectively,
subject to the corresponding constraints. Ŵ(1) = [ŵ(1)

ig ] is computed according
to (4.13) given the initial values of the other parameters.

For iteration t = 1, . . . , T :

Step 1: each π̂
(t)
g is updated by (4.15), given ŵ

(t)
ig , i = 1, . . . , n, g = 1, . . . , G;

Step 2: each µ̂(t)
g is updated by (4.17), given ŵ

(t)
ig , i = 1, . . . , n, g = 1, . . . , G;

Step 3: each Σ̂(t)
ug

is computed by updating Σ̂(t)
Vg

, Σ̂(t)
Wg

, Σ̂(t)
Bg

according to
(4.19), (4.20), the closest - in the Frobenius norm - matrix to (4.21) which
satisfies (4.5), respectively, and subject to the corresponding constraints, which
correspond to the configuration of V̂(t)

g in (4.22), given Σ̂(t)
Vh

, Σ̂(t)
Wh

, Σ̂(t)
Bh

, for
h < g, and Σ̂(t−1)

Vh
, Σ̂(t−1)

Wh
, Σ̂(t−1)

Bh
, for h > g, g, h = 1, . . . , G, h ̸= g;
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Step 4: each ŵ
(t+1)
ig is updated according to (4.13), given Ψ̂(t).

Stopping rule: Compute ℓH(Ŵ(t+1), Ψ̂(t)) in (4.12). Steps from 1 to 4 are
repeated if

ℓH(Ŵ(t+1), Ψ̂(t))− ℓH(Ŵ(t), Ψ̂(t−1))
|ℓH(Ŵ(t), Ψ̂(t−1))|

> ϵ,

where ϵ is an arbitrary small positive constant, and t < T .

Some remarks on the algorithm are necessary. Firstly, the posterior probabilities
ŵig at convergence are computed and used to determine the cluster membership
of observations according to the Maximum A Posteriori (MAP) approach, when a
hard partition is required. Secondly, the stopping rule is based upon the sequence of
likelihood values as reported in McLachlan and Krishnan (2008). The log-likelihood
function generally increases, or does not decrease, at each iteration fulfilling the
coordinate ascent (and EM) algorithm properties. It can be noted that ℓ(Ψ̂(t)) is
equal to ℓH(Ŵ(t+1), Ψ̂(t)), for all t (Hathaway, 1986). The arbitrary constant ϵ
was set to 0.110, which was considered small enough to be neglected, whereas the
maximum number of iterations T was set to 500. It is worth underscoring that in
our experiments the algorithm always stopped after a limited number of steps very
far from the maximum number of iterations showing that it converges in a finite
number of iterations.

One product of GMMEUCovS is also the classification of variables for each
component; however, since the problem of optimally partitioning a set of multivariate
objects is known to be an NP-hard problem (Krivánek & Morávek, 1986), the global
optimal solution cannot be guaranteed. The solution found at convergence is thus
at least a local optimum, and to increase the chance to reach the global optimum
the algorithm is run several times starting from different initial values. In our
experiments, the number of running times was set to 20 and this was sufficient to
obtain the optimal solution. As shown in Step 0, in order to start the algorithm the
posterior probabilities wig, i = 1, . . . , n, g = 1, . . . , G, and the membership matrices
Vg, g = 1, . . . , G, are needed. They can be initialized randomly (i.e., random values
for W ∈M and random partitions for Vg, g = 1, . . . , G, with nonempty groups of
variables). However, we suggest to start the algorithm from the solution of k-means
with k = G in order to find the starting values of W = [wig], and from the solution
of an adapted UCM algorithm to covariance matrices applied to Sg, g = 1, . . . , G, to
find the partitions of variables in Vg, g = 1, . . . , G. The initial values of ΣVg , ΣWg

and ΣBg are accordingly obtained as reported in Step 0.
Remark 4.5 stated that the diagonal dominance in (4.7) results in a strong

condition which generally leads to an overestimation of the parameters on the
diagonal of Σu. The proposed algorithm presented above and used in Section 4.5
and 4.6 replaces this condition with (4.8) and (4.9), searching for the solution of Σu
in the positive definite and column pointwise diagonally dominant matrix space.

It is worth highlighting that GMMEUCovS is a parsimonious model since the
EUCovS assumed for each component of the GMM allows modeling a generic
covariance structure via a limited number of parameters. Specifically, 3Q − 1
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parameters are needed to build a consistent hierarchy of variable groups, each
one associated with a concept/dimension (see Corollary 4.1). EUCovS therefore
reconstructs a covariance structure in terms of 2Q + p− 1 unknown free parameters
in ΣV, ΣW, ΣB and V. In detail, Q parameters in ΣV, Q parameters in ΣW, Q− 1
parameters in ΣB and p−Q parameters in V must be considered. The parameters of
GMMEUCovS, hence, are ν = G(2p+2Q)−1, by including also the G−1 parameters
from the mixing proportions and the Gp parameters from the mean vectors.

4.4.2 Model selection

One popular model selection criterion is the Bayesian Information Criterion (BIC,
Schwarz, 1978). For a model with parameter vector θ, the BIC is given by

BIC = 2ℓ(θ̂)− ν log n, (4.23)

where ℓ(θ̂) is the maximized log-likelihood, θ̂ is the maximum likelihood estimate of
θ and ν is the number of free parameters in the model. Given a set of candidate
models, specified for different values of G and Q, the preferred model is the one
which maximizes BIC. The BIC has several good properties. It is usually considered
as standard in clustering context due to the consistent estimates of the number of
components of a mixture model (Keribiin, 1998, 2000), and the results provided by
Fraley and Raftery (1998, 2002) show that BIC performs well as model selection
criterion for mixture models. Moreover, BIC is selected as default model selection
criterion in Scrucca et al. (2016) and McNicholas and Murphy (2008), among others.

There are several alternatives to the BIC for GMMs. One of the most popular
is the Integrated Completed Likelihood (ICL, Biernacki, Celeux, & Govaert, 2000),
which is based on the BIC and penalizes the latter by subtracting an entropy term
measuring the clusters’ overlapping. It means that ICL prefers solutions with well-
separated clusters. Although Scrucca et al. (2016) showed that the performance of
BIC and ICL is often comparable, we propose using BIC to choose the number of
mixture components G and groups of variables Q in the proposed model.

The performance of GMMEUCovS is evaluated in Section 4.5 through the cross-
table of the MAP classification of the observations and the true (generated) cluster
membership, which may be quantified using the Adjusted Rand Index (ARI, Hubert
& Arabie, 1985). The variable partition in Q groups and the hierarchy over them
are evaluated according to the ARI as well.

4.5 Simulation

A simulation study was implemented in order to evaluate the clustering performance
of GMMEUCovS. We assessed the classification performance of the proposed model
in terms of recovering both the generated cluster structure, and the true classification
of variables in Q groups together with their hierarchical relationships. In detail,
three hierarchical scenarios were considered (Scenario 1, Scenario 2, Scenario 3)
and one non-hierarchical scenario (Scenario 4) completed the simulation study in
order to evaluate the performance of GMMEUCovS when the component covariance
structures were non-hierarchical.
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For all scenarios, each simulated random sample was generated from the density
(4.1), with the component label of each unit generated from a multinomial distribution
with fixed probabilities π1, . . . , πG, determining the cluster sizes, vector means
µg, g, = 1, . . . , G, generated from a uniform distribution in [0, 10] and covariance
matrices generated according to the EUCovS in (4.2) for the hierarchical scenarios
and non-spherical and heteroscedastic structure for the non-hierarchical scenario.
Moreover, different levels of overlapping were set for all scenarios. The overlapping
measure chosen for the simulation study is the one proposed by Maitra and Melnykov
(2010) and implemented in the R package MixSim, used for the simulation of the
random samples in the non-hierarchical scenario, and the MATLAB package FSDA
(Riani, Perrotta, & Torti, 2012; Riani et al., 2015), whose function MixSim() was
modified to impose the EUCovS on the cluster covariance matrices in the hierarchical
scenarios. Three levels of maximum overlapping (ωmax) were set in the simulation
study: 0.01, 0.1, 0.2. Thus, 2400 random samples were generated in the whole
simulation study, i.e., 200 samples for each scenario and overlapping level.

GMMEUCovS was also compared to GPCMs (R package mixture), EPGMMs (R
package pgmm) and HDDC (R package HDClassif) in all scenarios. For comparability
reasons, the R package mixture was preferred to the other ones cited in Section
4.1 for GPCMs since its gpcm() function enables to use a k-means start. The R
packages pgmm and HDClassif provide an initialization via k-means as well. GPCMs,
EPGMMs and HDDC were let free to choose their best model, i.e., the constrained
or fully unconstrained covariance structures, according to the BIC. It is worth noting
that, as for the competitors, the covariance structure of the proposed model could be
constrained to be equal across and within clusters. This extension of GMMEUCovS
will be introduced in a future work together with an extensive comparison with the
aforementioned models.

In the hierarchical scenarios, the covariance matrices were generated according
to the EUCovS in (4.2). The parameters of Σug were generated as follows. For each
component of the mixture, vgj ∼ Multinomial(Q : prob(q) = 1

Q , q = 1, . . . , Q), j =
1, . . . , p; each diagonal element of ΣVg , ΣWg , and off-diagonal element of ΣBg

was uniformly distributed according to different ranges specifically chosen for each
hierarchical scenario and such that constraints (4.3)-(4.6), (4.8) and (4.9) held.
Positive values were generated for the diagonal entries of ΣWg , g = 1, . . . , G. In
detail, the three hierarchical scenarios are defined as follows.

• Scenario 1 : n = 200, p = 10, G∗ = 3, Q∗ = 3, π = [0.25, 0.25, 0.5], negative,
near-zero and positive values for the off-diagonal entries of ΣB1 , ΣB2 and ΣB3 ,
respectively.

• Scenario 2 : n = 300, p = 25, G∗ = 4, Q∗ = 3, π = [0.15, 0.15, 0.3, 0.4],
negative values for the off-diagonal entries of ΣB1 , ΣB4 and positive values for
the off-diagonal entries of ΣB2 , ΣB3 .

• Scenario 3 : n = 400, p = 50, G∗ = 5, Q∗ = 4, π = [0.1, 0.15, 0.15, 0.5, 0.1],
one positive and two negative values for the different off-diagonal entries of
ΣB1 , one positive and two near-zero values for the different off-diagonal entries
of ΣB2 , three positive values for the different off-diagonal entries of ΣB3 and
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Table 4.1. Mean and standard deviation of the ARI (mARI and sARI, respectively) between
the generated and the estimated clusters for the three hierarchical scenarios.

Scenario 1
GMMEUCovS GPCMs EPGMMs HDDC
mARI sARI mARI sARI mARI sARI mARI sARI

ωmax = 0.01 0.982 0.050 0.902 0.154 0.958 0.098 0.954 0.096
ωmax = 0.10 0.800 0.081 0.444 0.198 0.681 0.217 0.581 0.239
ωmax = 0.20 0.572 0.110 0.215 0.121 0.232 0.228 0.280 0.195

Scenario 2
GMMEUCovS GPCMs EPGMMs HDDC
mARI sARI mARI sARI mARI sARI mARI sARI

ωmax = 0.01 0.993 0.008 0.474 0.128 0.896 0.149 0.873 0.137
ωmax = 0.10 0.919 0.042 0.268 0.059 0.608 0.206 0.623 0.169
ωmax = 0.20 0.803 0.082 0.242 0.046 0.435 0.153 0.487 0.143

Scenario 3
GMMEUCovS GPCMs EPGMMs HDDC
mARI sARI mARI sARI mARI sARI mARI sARI

ωmax = 0.01 0.947 0.072 0.040 0.049 0.363 0.116 0.353 0.103
ωmax = 0.10 0.812 0.053 -0.018 0.014 0.111 0.070 0.046 0.040
ωmax = 0.20 0.747 0.104 0.515 0.222 0.574 0.225 0.587 0.256

ΣB4 , and two positive and one negative values for the different off-diagonal
entries of ΣB5 .

It is worth noting that in order to correctly compare the generated and the
estimated partitions of variables in Q groups and their hierarchical relationships, i.e.,
to compare the generated and estimated variable classification w.r.t. the same cluster
of units, the label switching problem was solved by implementing the Complete
likelihood-based labelling (COMPLH) method proposed by Yao (2015). For each
random sample and cluster, the variable partition recovery was assessed by means
of the ARI and the hierarchy evaluation was performed by computing the mean of
the ARI across the hierarchical levels, i.e., from Q to 2.

The four models’ performances were compared on the correct identification of the
cluster structure by fixing G = G∗ (and Q = Q∗ for GMMEUCovS and EPGMMs)
and letting GPCMs, EPGMMs and HDDC free to choose their best model, i.e., the
covariance structure, according to the BIC. Additionally, on the same generated
random samples for each hierarchical scenario we fitted the four models with G in
{G∗ − 1, G∗, G∗ + 1} (and Q in {Q∗ − 1, Q∗, Q∗ + 1}, Q ≤ G, for GMMEUCovS
and EPGMMs) in order to evaluate the performance of the models in correctly
identifying G (and Q for GMMEUCovS and EPGMMs). We used the BIC to choose
G and Q for GMMEUCovS, as described in Section 4.4.2, and to choose both G
(and Q for EPGMMs) and the covariance structure for the competitors.

Table 4.1 provides the results of the simulation study evaluated in terms of the
mean and standard deviation of the ARI between the generated and the estimated
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Table 4.2. Mean of the ARI between the generated and the estimated variable partitions
for each cluster of GMMEUCovS both for the Qth level of the hierarchy (mARI) and
across the hierarchical levels Q, . . . , 2 (hARI) for the three hierarchical scenarios.

ωmax = 0.01 ωmax = 0.10 ωmax = 0.20

Scenario 1

Cluster 1 mARI 0.988 0.982 0.981
hARI 0.872 0.868 0.868

Cluster 2 mARI 0.965 0.936 0.786
hARI 0.898 0.860 0.742

Cluster 3 mARI 0.998 0.991 0.992
hARI 0.966 0.962 0.968

Scenario 2

Cluster 1 mARI 0.993 0.967 0.793
hARI 0.838 0.765 0.661

Cluster 2 mARI 0.999 0.981 0.942
hARI 0.930 0.902 0.898

Cluster 3 mARI 1.000 0.987 0.977
hARI 0.984 0.949 0.966

Cluster 4 mARI 1.000 0.995 0.998
hARI 0.905 0.885 0.901

Scenario 3

Cluster 1 mARI 0.895 0.964 0.447
hARI 0.839 0.885 0.429

Cluster 2 mARI 0.946 0.995 0.692
hARI 0.829 0.864 0.606

Cluster 3 mARI 0.916 0.927 0.599
hARI 0.807 0.796 0.523

Cluster 4 mARI 0.999 1.000 0.972
hARI 0.879 0.884 0.833

Cluster 5 mARI 0.904 0.980 0.414
hARI 0.853 0.924 0.391

clusters, for each hierarchical scenario and overlapping level. The results show
that GMMEUCovS outperforms GPCMs, EPGMMs and HDDC in identifying the
true clusters. As the maximum overlapping grows, the performance of the four
models deteriorates; however, the proposed model always performs better than the
competitors even when the maximum overlapping is high. The simulation study
underlines the need to use the specific GMMEUCovS methodology when data have
a hierarchical covariance structure, since this last strongly influences the clustering
results of the other GMM considered competitors.

The GMMEUCovS performance was also evaluated in terms of the correct
classification of variables in Q groups and the overall hierarchy in the hierarchical
scenarios (Table 4.2). The proposed model shows good results in identifying the
variable partitions, especially when ωmax = 0.01, 0.1. Finally, the four models were
compared in the correct identification of G∗ for GPCMs and HDDC, and G∗ and
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Table 4.3. % of samples with a correct choice of G (and Q for GMMEUCovS and EPGMMs)
for the three hierarchical scenarios.

Scenario 1
GMMEUCovS GPCMs EPGMMs HDDC

ωmax = 0.01 98.5% 85.5% 84.5% 91.5%
ωmax = 0.10 97.0% 41.0% 61.5% 53.0%
ωmax = 0.20 99.5% 15.5% 33.5% 22.0%

Scenario 2
GMMEUCovS GPCMs EPGMMs HDDC

ωmax = 0.01 92.0% 1.5% 62.0% 53.5%
ωmax = 0.10 80.5% 5.5% 37.0% 31.0%
ωmax = 0.20 84.0% 5.5% 29.0% 16.0%

Scenario 3
GMMEUCovS GPCMs EPGMMs HDDC

ωmax = 0.01 94.5% 23.5% 6.0% 25.0%
ωmax = 0.10 91.0% 44.5% 4.0% 33.0%
ωmax = 0.20 21.0% 7.5% 13.0% 12.0%

Table 4.4. Mean and standard deviation of the ARI (mARI and sARI, respectively) between
the generated and the estimated clusters for the non-hierarchical scenario.

Scenario 4
GMMEUCovS GPCMs EPGMMs HDDC
mARI sARI mARI sARI mARI sARI mARI sARI

ωmax = 0.01 0.953 0.009 0.901 0.019 0.893 0.022 0.894 0.022
ωmax = 0.10 0.730 0.004 0.733 0.041 0.767 0.017 0.636 0.050
ωmax = 0.20 0.255 0.091 0.205 0.068 0.214 0.058 0.192 0.092

Q∗ for GMMEUCovS and EPGMMs, as shown in Table 4.3.
In the non-hierarchical scenario, the covariance matrices were generated such

that the mixture components turned out to be non-spherical and heteroscedastic. In
detail,

• Scenario 4 : n = 200, p = 10, G∗ = 3, πmin
g = 0.25, non-spherical and

heteroscedastic components.

As shown in Table 4.4, the results of the proposal are comparable with those of
the competitors with fixed G = G∗ (and Q = Q∗ for GMMEUCovS and EPGMMs).
Indeed, GMMEUCovS often outperforms GPCMs, EPGMMs and HDDC even if the
differences between the ARI of the four models are much weaker than those in the
hierarchical scenarios. This last scenario verifies that GMMEUCovS still performs
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Table 4.5. List of the OECD countries.

Country Code Country Code Country Code Country Code

Australia AUS France FRA Korea KOR Portugal PRT
Austria AUT Germany DEU Latvia LVA Slovak Republic SVK
Belgium BEL Greece GRC Lithuania LTU Slovenia SVN
Canada CAN Hungary HUN Luxembourg LUX Spain ESP
Chile CHL Iceland ISL Mexico MEX Sweden SWE
Czech Republic CZE Ireland IRL Netherlands NLD Switzerland CHE
Denmark DNK Israel ISR New Zealand NZL Turkey TUR
Estonia EST Italy ITA Norway NOR United Kingdom GBR
Finland FIN Japan JPN Poland POL United States USA

well also when a general (non-hierarchical) covariance structure is observed for the
data. Also in this case there is not risk to strongly fail in the correct classification
when the data are heterogeneous and well-structured.

4.6 Application

In this section we consider two real data examples: the first one concerning well-being
(Section 4.6.1) and the second one on the chemical properties of coffee (Section 4.6.2).
The application of GMMEUCovS on the Well-Being Indicators data set pinpoints
positive (concordant) and near-zero hierarchical relationships among variable groups.
In the second example, a benchmark data set is considered (see, for example,
McNicholas & Murphy, 2008) in order to evaluate GMMEUCovS on well-known
data. The latter example also shows the capability of the proposal in identifying
discordant latent concepts, since it assesses negative hierarchical relationships among
the variable groups.

4.6.1 Well-Being Indicators data set

GMMEUCovS was applied on the Well-Being Indicators data set1 provided by the
Organization for Economic Co-operation and Development (OECD) and collected
on the 36 OECD countries at 2018 (Table 4.5).

The data set is comprised of eleven dimensions of well-being: Education (1),
Jobs (2), Income (3), Safety (4), Health (5), Environment (6), Civic Engagement
(7), Accessibility to Services (8), Housing (9), Community (10) and Life Satisfaction
(11). They are related to material living conditions concerning economic aspects
(2, 3, 9), and to quality of life pertaining to individual aspects (1, 4, 5, 6, 8, 11) and
relational ones (7, 10). Notwithstanding the two aforementioned broader concepts, i.e,
material living conditions and quality of life, countries can differ for the importance
of the eleven dimensions in the definition of well-being. In order to investigate
these differences, GMMEUCovS was fitted to the Well-Being Indicators data set
for G = 1, 2, . . . , 5 and Q = 1, 2, . . . , 5. The optimal model was selected according
to the highest BIC, as described in Section 4.4.2, and corresponded to G = 2 and
Q = 4. The resulting clusters (Table 4.6) separate the 36 OECD countries into more

1Source: https://www.oecdregionalwellbeing.org/.

https://www.oecdregionalwellbeing.org/
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Table 4.6. GMMEUCovS clusters of countries.

Cluster Countries

Cluster 1 AUS, AUT, BEL, CAN, DNK, FIN, FRA, DEU, ISL, IRL, ITA, JPN, LUX,
NLD, NZL, NOR, ESP, SWE, CHE, GBR, USA

Cluster 2 CHL, CZE, EST, GRC, HUN, ISR, KOR, LVA, LTU, MEX, POL, PRT,
SVK, SVN, TUR

developed and less developed economies. These two clusters differ in the partition of
the eleven dimensions into groups and their hierarchical structures defining well-being,
as shown in Figure 4.3, even if some similarities between the two hierarchies can be
highlighted. Indeed, Income and Housing are in the same group of variables both for
cluster 1 and 2 since they are strictly related to monetary dimensions, but associated
with Education for more developed economies. Thus, in those countries the higher
the level of education, the higher the income. In both cases, the group associated
with those dimensions seems to identify a unique broader concept, specifically in
Figure 4.3b where the distance between the initial consistency of the group and
the corresponding internal node is very small. Safety and Health are merged in
both clusters and grouped together with Environment and Civic Engagement in
less developed economies. Since the latter are related to air and water quality, and
voter turnout and consultation on rule making, respectively, we can state that, in
cluster 2, less polluted countries are those where the health conditions are better
and countries where the population is more involved in political life are those where
citizens feel safer. Furthermore, Life Satisfaction is associated with Community only
for more developed economies by detecting that citizens with high social connections
are more satisfied in their lives. The last two groups of dimensions described are
strongly associated with a unique concept in Figure 4.3a (trivial for Life Satisfaction
in Figure 4.3b). Finally, Jobs is lumped together with Accessibility to Services in
both clusters of countries, but associated with Environment and Civic Engagement
in more developed economies and with Education and Community in less developed
ones.

The hierarchical structures built over the aforementioned groups of variables
pinpoint a broader group which turns out to be uncorrelated with the others. Indeed,
after a first aggregation which lumps together Jobs, Environment, Civic Engagement,
Accessibility to Services, Community, Life Satisfaction for more developed economies,
and Income, Housing, Safety, Health, Environment, Civic Engagement for less
developed economies, these broader groups are faintly associated with the others.
Thus, GMMEUCovS identified two different structures of the eleven dimensions,
which differently characterize well-being in the two clusters of countries, but detect
uncorrelated concepts associated with groups of dimensions.

4.6.2 Coffee data set

We applied GMMEUCovS on coffee data2 (Streuli, 1973) in order to assess its
performance also on a benchmark data set. The latter is composed of 43 coffee

2Available within the R package pgmm.
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(a) Cluster 1 (b) Cluster 2

Figure 4.3. GMMEUCovS variable hierarchies for each cluster of countries.

samples pertaining two varieties of beans, namely Arabica and Robusta, which 13
chemical properties were measured on. We compared the results of GMMEUCovS
with the ones reported in McNicholas and Murphy (2008), other than GPCMs and
HDDC. For comparability reasons, we did not consider the variable total chlorogenic
acid as done by McNicholas and Murphy (2008), since it is the sum of other three
chemical constituents. Twelve variables were therefore taken into account.

GMMEUCovS was fitted to the coffee data with G = 1, . . . , 5 and Q = 1, . . . , 5.
According to the BIC, the best model is that one with G = 2 and Q = 4, as also
found by PGMMs in McNicholas and Murphy (2008). The two theoretical clusters
corresponding to the coffee species, composed of 36 samples of Arabica and 7 of
Robusta, are perfectly recovered (ARI = 1) by GMMEUCovS. Compared to the
results in McNicholas and Murphy (2008), the proposal performs as well as PGMMs,
whereas the ARI for Mclust() in the R package mclust is 0.38 with G = 3. In order
to complete the comparison w.r.t. the other models used in Section 4.5, GPCMs and
HDDC were fitted to the data with G = 1, . . . , 5. The former perfectly recovers the
theoretical clusters (G = 2, ARI = 1), whereas the latter identifies 3 clusters with
ARI = 0.97. It is worth noting that the coffee data set is not high-dimensional, so
that the HDDC performance is not as good as the other competitors and numerical
instability occurs in the algorithm.

The four groups of variables pinpointed by GMMEUCovS are the following
(Figure 4.4).

• Arabica

1. Fat, Caffeine;
2. Bean weight, Extract yield, pH value;
3. Trigonelline, Isochlorogenic acid;
4. Water, Free acid, Mineral content, Chlorogenic acid, Neochlorogenic acid.

• Robusta
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(a) Arabica (b) Robusta

Figure 4.4. GMMEUCovS variable hierarchies for each cluster of coffee data, i.e., Arabica
and Robusta.

1. Water, Extract yield, pH value, Caffeine, Chlorogenic acid, Isochlorogenic
acid;

2. Free acid, Fat;
3. Bean Weight;
4. Mineral content, Trigonelline, Neochlorogenic acid.

As shown in Figure 4.4a, for the first cluster (Arabica) GMMEUCovS merges
group 2 and group 3, then this broader group with group 1, and finally group 4. Only
the last aggregation corresponds to a negative covariance between the corresponding
variable groups by showing that group 4 is discordant with the others. Looking at
Figure 4.4b, for the second cluster (Robusta) GMMEUCovS lumps together group 2
and group 4 with a positive covariance between them, whereas the other aggregations
correspond to negative covariances between (discordant) groups - group 1 is firstly
merged with the broader group composed of groups 2 and 4, and then with group 3.

4.7 Conclusions

We propose a parsimonious Gaussian Mixture Model with a new parameterization
of the component covariance structure. After having extended the definition of
a nonnegative ultrametric correlation matrix given in Chapter 2 (Definition 2.2)
to a generic covariance one by illustrating its properties, we assume that each
component of the GMM has an extended ultrametric covariance structure. The
proposal, called Gaussian Mixture Model with the Extended Ultrametric Covariance
Structure (GMMEUCovS), aims at modeling multidimensional phenomena which
are usually defined by hierarchically nested latent concepts, by inspecting the
different characterizations that these phenomena can have in subpopulations. The
model is able to identify common hierarchical scenarios: firstly, the presence of
a unique, consistent and reliable general concept which is defined by even more
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reliable, nested and specific concepts. This situation is characterized by a general
concordance (positive covariances) among all observed variables. Secondly, two
(or more) discordant concepts which form an unreliable general concept. These
concepts are internally consistent yet discordant to each other corresponding to
negative covariances among some of the variables. Thirdly, the absence of a general
concept. In detail, the latter means that the last two (or more) concepts, which
should form the general one, are substantially uncorrelated and define two (or more)
separated hierarchies. The last scenario corresponds to sparse covariance matrices.
In literature, some methodologies were proposed to deal with model-based clustering
with sparse covariance matrices. Among others, Galimberti and Soffritti (2013)
introduced a parsimonious Gaussian Mixture Model with block diagonal covariance
matrices derived from a partition of variables into groups, which were conditionally
independent within clusters. Moreover, Fop, Murphy, and Scrucca (2019) proposed
a mixture of Gaussian covariance graph models in which the component covariance
matrices were sparse, without necessarily imposing a block structure on them. These
two methodologies differ from GMMEUCovS since the latter also allows inspecting
the hierarchical relationships among variables. Additionally, GMMEUCovS can
be interpreted as a bi-clustering method with the special feature that it produces
a partition or hierarchy of variables per cluster of units, whereas a bi-clustering
method generally produces a unique variable partition (see Rocci & Vichi, 2008, for
some extensions).

In order to estimate the GMMEUCovS parameters, we propose a coordinate
ascent algorithm which is strictly related to the EM algorithm. Its application
on synthetic data shows good performance in terms of cluster recovering, even
by comparison with the Gaussian Parsimonious Clustering Models, Parsimonious
Gaussian Mixture Models and High-Dimensional Data Clustering models, and correct
identification of the variable groups and their hierarchical relationships. The proposed
model works particularly well in situations where groups of highly concordant
variables exist and a hierarchy over them can be identified. Nonetheless, the
proposal shows good performance also when a general (non-hierarchical) covariance
structure is assumed for the data. The application of the proposal to real data
concerning well-being and a benchmark data set illustrates its potentials to explore
multidimensional phenomena in a heterogeneous population.

The number of the GMMEUCovS parameters grows linearly with both the data
dimension and the number of the variable groups; this sheds light on the parsimony
of the proposed model. Our goal for future studies is to extend our proposal by
including constrained covariance structures across and within clusters which further
reduce the number of parameters of the model.
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Chapter 5

Hierarchical Disjoint Principal
Component Analysis

5.1 Introduction

The methodologies proposed in Chapter 2 and 4 aim at modeling a hierarchical
structure of nested latent concepts underlying a multidimensional phenomenon
via an ultrametric correlation matrix and its extension to a generic covariance
one (i.e., including also negative values) implemented into a Gaussian mixture
model, respectively. The purpose of this chapter is to introduce a new hierarchical
model which inspects the relationships among latent dimensions, as well as the
aforementioned methodologies, but quantifying the latent concepts throughout the
hierarchy. Differently from the proposals illustrated in Chapter 2 and 4, the model
proposed herein is not directly based upon an ultrametric (covariance or correlation)
matrix; nonetheless, it works toward the construction of a hierarchy of nested
latent dimensions whose quantification is computed via an extension of Principal
Component Analysis (Pearson, 1901; Hotelling, 1933). It is worth underlying that
the Ultrametric Correlation Model presented in Chapter 2 is implemented herein in
order to generate data with a hierarchical structure.

One of the main ideas motivating Principal Component Analysis (PCA) and
Factor Analysis (FA, Spearman, 1904) is to reduce the dimensionality of the data by
computing a reduced number of components or factors, respectively, but preserving
as much information as possible regarding the relationships among the observed
variables. Despite the difference between the two methodologies (e.g., Jolliffe, 2002),
both suffer from the interpretation problem of the components or factors. In the case
of PCA, uncorrelated components are identified as linear combinations of all observed
variables by maximizing the explained total variance of the data. The weights of
the observed variables in each linear combination are different in magnitude, and
sometimes irrelevant insofar they are artificially set to zero. Cadima and Jolliffe
(1995) demonstrated that this procedure may be misleading. Several methodologies
were proposed in order to improve the component interpretation by identifying
consistent subsets of observed variables (Cadima & Jolliffe, 1995; Vines, 2000;
Jolliffe, Trendafilov, & Uddin, 2003; Zou, Hastie, & Tibshirani, 2006; d’Aspremont
et al., 2007; Ferrara, Martella, & Vichi, 2016, among others). These methodologies
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result in a sparse structure of the component loading matrix which might be a simple
structure when the subsets of the observed variables are not necessarily disjoint
(Thurstone, 1947), or the sparsest one when they are disjoint. In those cases, as
well as after an oblique rotation, components can be significantly correlated and a
dimension reduction technique as PCA can be further applied on the component
score vectors thereby obtaining a hierarchy of higher-order components. Several
methods were introduced in an attempt to investigate hierarchical relationships
among observed variables, such as Higher-Order Factor Models (HOFMs, Cattell,
1978b; Rindskopf & Rose, 1988; Undheim & Gustafsson, 1988; Le Dien & Pagès,
2003) and Bi-Factor or Hierarchical Factor models (Holzinger & Swineford, 1937;
Wherry, 1959), illustrated in Chapter 1 (Section 1.1). HOFMs are based upon
sequential applications of FA on the covariance or correlation matrix of the observed
variables first, and on that of higher-order factors then, followed each time by an
Oblique Rotation Method (ORM) until zero correlation occurs among factors or a
single factor is detected (Gorsuch, 1983). Hierarchical models are instead based on
the solution of HOFMs followed by the Schmid-Leiman transformation (Schmid &
Leiman, 1957) in order to pinpoint a single general factor and a set of orthogonal
specific ones, all directly associated with the observed variables. Both methodologies
can be applied in an exploratory approach, i.e., without fixing the relationships
between observed and unobserved variables a priori. Contrariwise, simultaneous
methodologies like Structural Equation Modeling (SEM, Kline, 2015) were introduced
in order to evaluate the relationships among observed and unobserved variables,
as well as among the latter ones, but in a confirmatory approach and without a
hierarchy in the broad sense over them (see Chapter 1, Section 1.1).

By considering the limitations of PCA as a technique of dimension reduction
when complex relations among variables exist, and especially when these relations
have a hierarchical structure, in this chapter we propose a new methodology to
identify a reduced (parsimonious) hierarchy of disjoint principal components with
the highest variance. In order to define a hierarchical structure, the nature of the
relationships among variables belonging to two sequential levels of the hierarchy
needs to be established. Their “direction” formally describes the measurement
model (Blalock, 1964; Bollen & Bauldry, 2011) and affects the relationships between
observed and unobserved variables as well as unobserved variables and “higher-order”
ones. For simplicity and clarity reasons, we focus on the relationships between
observed and unobserved variables. Nonetheless, the following definition can be
easily extended to the relationships between unobserved variables of two sequential
hierarchical levels.

Two different directions exist, reflective and formative, as described in Chapter
1, Section 1.3. We recall that the former occurs when a set of correlated observed
variables reflects the unobserved one; whereas the latter arises when the unobserved
variable is defined/formed by a set of observed variables - each one representing a
unique part of it - that are generally uncorrelated to each other or little correlated.
Reflective relationships are usually modeled via FA, whereas formative relation-
ships are formalized via multiple and multivariate linear regression (Blalock, 1964;
Bollen & Lennox, 1991, among others). PCA is often considered as a formative
measurement model (Edwards & Bagozzi, 2000); nonetheless, Mazziotta and Pareto
(2019) demonstrated that PCA is more suited to model reflective relationships than
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(a) Fully reflective (b) Reflective/formative

Figure 5.1. Examples of the heat maps of two correlation matrices representing the different
nature of relationships in a hierarchy over observed variables.

formative ones (see also Götz, Liehr-Gobbers, & Krafft, 2010). With respect to the
aforementioned models, HOFMs and Hierarchical Factor models were developed
to build only a reflective hierarchy. In SEM, the measurement model underlying a
multidimensional phenomenon is usually chosen by the researcher. Nevertheless, in
some situations researchers may not have a theoretical definition of the hierarchical
relationships among variables, or maybe this may not be empirically confirmed by a
test.

In order to understand the hierarchical relationships among observed and unob-
served variables we show two examples in which a hierarchy over observed variables
measuring a multidimensional phenomenon is associated with a correlation matrix.
Let 15 observed variables be arranged into 5 thoroughly internally correlated groups,
which correspond to the blocks of higher correlations in Figure 5.1. The relationships
among these groups are depicted by nested blocks of correlation sub-matrices. In
Figure 5.1a, statistically significant correlations among the 5 groups exist and can be
sorted in a decreasing order according to their magnitude by defining a hierarchical
structure of relationships. Indeed, the highest correlation (0.84 on average) occurs
between the variables belonging to the third and the fourth groups, then between
the ones in the first and second groups (0.80 on average), and so on, up to the last
one (0.60 on average) between the two nested groups composed of the first two
and the last three groups out of the five original ones. Thus, we can assume that
the hierarchy associated with this block correlation matrix has a reflective nature.
Contrariwise, in Figure 5.1b two uncorrelated nested groups of observed variables
are identified, which, in turn, are composed of 3 and 2 groups. Hence, if each of
the five original groups and the broader ones are associated with an unobserved
variable, we can state that the hierarchy ends with the definition of two uncorrelated
unobserved variables which do not reflect the general one, but rather form it.

In this chapter, we propose a hierarchical extension of the Disjoint Principal
Component Analysis (Ferrara, Martella, & Vichi, 2016) which aims at detecting a
parsimonious hierarchy of disjoint principal components of maximum variance, and
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defining a model-based approach to choose the “direction” (reflective or formative)
of relationships among disjoint principal components in two contiguous levels of the
hierarchy. The new methodology, called Hierarchical Disjoint Principal Component
Analysis (HierDPCA), is exploratory, but the researcher can fix some (or all) relations
between observed variables and disjoint principal components of the lowest level
of the hierarchy so that the methodology becomes partially (or fully) confirmatory.
Moreover, HierDPCA overcomes the duality between HOFMs and Hierarchical Factor
models (Yung, Thissen, & McLeod, 1999) by quantifying direct relationships between
observed variables and disjoint principal components at each hierarchical level, but
building a hierarchy over them thanks to the nestedness assumption among variable
partitions in two contiguous hierarchical levels. The proposed methodology can also
be considered for preliminary analyses in other dimension reduction techniques in
order to choose the optimal number of components to retain. Indeed, HierDPCA
builds a hierarchy of disjoint principal components which is associated with a tree
structure (Gordon, 1999), from the leaves to the root which represent the specific
(disjoint principal) components and the general one, respectively. According to this
representation, the number of components to be used in a further dimensionality
reduction analysis can be chosen by cutting the tree visually evaluating the difference
among levels or, for instance, where the hierarchy turns from reflective to formative.

The overview of the chapter is defined as follows. In Section 5.2, the notation
used herein is listed to help the reader following the mathematical parts of the
chapter. Section 5.3 is dedicated to the in-depth explanation of the Hierarchical
Disjoint Principal Component Analysis model: the least-squares estimation of the
proposal is given (Section 5.3.1) and a coordinate descent algorithm is provided
(Section 5.3.2). Section 5.4 illustrates a simulation study in order to assess the
performances of the model, and two applications on real data are implemented in
Section 5.5. A final discussion completes the chapter in Section 5.6.

5.2 Notation

For the convenience of the reader, the notation and terminology used in all sections
of this chapter are set out below.
n, p Number of units and observed variables, respectively.
Q Number of disjoint principal components that firstly

reduce the dimensionality of the data.
M First bottom-up level of the hierarchy at which the

correlation among disjoint principal components turns
out to be not statistically significant. If M = 1, the
hierarchy is reflective; if M > 1 (up to Q), the hierarchy
is reflective/formative.

X = [xij : i =
1, . . . , n, j = 1, . . . , p]

(n× p) data matrix, where xij is the observed value on
the ith unit for the jth variable.
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PH = {PMH , . . . ,PQH} Hierarchical partition set of the variable space in
M, . . . , Q non-overlapping groups, i.e., set of parti-
tions for each hierarchical level q = M, . . . , Q, M ∈
{1, . . . , Q}.

Jh(q) Number of observed variables in the hth group of the
qth partition PqH . For any q = M, . . . , Q, J1(q)+J2(q)+
· · ·+ Jq(q) = p.

diag(a), diag(A) Diagonal matrix with diagonal entries equal to the
vector a and diagonal matrix with diagonal entries
equal to the diagonal of the matrix A, respectively.

blkdiag([A1, . . . , Aq]) Block diagonal matrix with diagonal entries equal to
the matrices A1, . . . , Aq.

1Q, 1p (Q× 1) and (p× 1) unitary vectors, respectively.
Vq = [vjh(q)] = [vh(q) :
h = 1, . . . , q]

(p× q) membership matrix defining a partition of the p
observed variables into q groups, each one represented
by a (disjoint principal) component. vjh(q) = 1 if the
jth observed variable belongs to the hth group of the
qth partition PqH ; vjh(q) = 0 otherwise.

Bq = diag(b(q)) =
diag([b1(q), . . . , bp(q)])

Diagonal matrix of order p, whose diagonal elements
bj(q), j = 1, . . . , p, represent the unique loading of
each observed variable on the corresponding disjoint
principal component of PqH , i.e., according to Vq.

Yq = [yih(q)] = [yh(q) :
h = 1, . . . , q]

(n × q) component score matrix, where yih(q) is the
value on the ith unit for the hth disjoint principal
component of PqH .

g (n× 1) vector whose elements represent a measure of
synthesis for the n units.

Eq = [eij(q)] = [ej(q) : j =
1, . . . , p]

(n× p) error matrix associated with the partition PqH .

5.3 Hierarchical Disjoint Principal Component Analysis

Let X be a (n× p) centered data matrix which consists of n units and p quantitative
observed variables. Let us recall that PCA can be written in a model form, i.e.,
X = YA′ + E, where Y = XA is the (n × Q) component score matrix, A is the
(p×Q) component loading matrix s.t. A′A = IQ, and E is the (n× p) error matrix.
The LS estimates of the PCA model parameters are the matrix Â of orthonormal
eigenvectors associated with the Q largest eigenvalues of X′X, and the matrix
Ŷ = XÂ. It is worth noting that YA′ is the best approximation of rank Q ≤ p to
X in the least-squares sense (Magnus & Neudecker, 2007, Th. 7, p. 402). Based on
the model formalization of PCA, Ferrara, Martella, and Vichi (2016) proposed the
Disjoint Principal Component Analysis (DPCA) in which the component loading
matrix A had a single non-null value per row, and thus was rewritten into the product
of a weighting matrix B of order p and a (p × Q) membership matrix V. DPCA
for centered data was formally specified as X = YV′B + E, subject to constraints
that (i) V was binary and row stochastic, (ii) B was diagonal and (iii) A = BV
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was semi-orthogonal. It is worth highlighting that constraint (i) corresponds to a
partition of the variable space, and, consequently, Y = XBV contains Q disjoint
principal components which can be correlated unlike standard principal components.
The estimates of DPCA parameters are obtained in a LS framework by searching
for the disjoint principal components of maximum variance (see Ferrara, Martella,
& Vichi, 2016, 2019, for further details).

The Hierarchical Disjoint Principal Component Analysis (HierDPCA) can be
formally specified by the following system of Q−M + 1 simultaneous equations,

X = YM V′
M BM + EM

. . . . . . . . .

X = YQ−1V′
Q−1BQ−1 + EQ−1

X = YQV′
QBQ + EQ

(5.1)

subject to constraints (for q = M, . . . , Q)

Vq = [vjh(q) ∈ {0, 1} : j = 1, . . . , p, h = 1, . . . , q] (binary); (5.2)
Vq1q = 1p (row stochastic); (5.3)

Vq−1 = [Vq \ {vq−1(q), vq(q)}, vq−1(q−1)] (nested partitions); (5.4)
vq−1(q−1) = vq−1(q) + vq(q)

Bq = diag([b1(q), . . . , bp(q)]) (diagonal); (5.5)
V′

qBqBqVq = Iq (semi-orthogonal). (5.6)

It has to be pointed out that constraint (5.4) does not hold for q = M .
Each equation of model (5.1) is expressed by means of a DPCA, where the

component loading matrix Aq is rewritten into the product of Bq and Vq, q =
M, . . . , Q. The former is a diagonal matrix of order p (constraint 5.5), whose diagonal
elements represent the unique loading of each observed variable on the corresponding
disjoint principal component, whilst the latter identifies the variable partition PqH

in q groups. Without loss of generality, we define the last column of Vq−1, i.e.
vq−1(q−1), by the sum of the last two columns of Vq, i.e., vq−1(q) and vq(q), for
q = M + 1, . . . , Q. On the whole, the equations of model (5.1) aim at reconstructing
the data matrix by means of a decreasing number of disjoint principal components

Yq = XBqVq q = M, . . . , Q, (5.7)

linked by constraint (5.4). HierDPCA therefore gives rise to a parsimonious tree of
nested partitions, starting from Q up to M groups of observed variables.

Model (5.1) represents the reflective part of the hierarchy. The choice of M
is crucial to determine the remaining hierarchical levels of the model. Indeed,
M ∈ {1, . . . , Q} is defined as the first bottom-up level at which no statistically
significant correlation occurs among the disjoint principal components. By testing
for this correlation, HierDPCA provides a model-based approach to select the
measurement model from the Mth level upwards. If the correlation among the M
disjoint principal components results to be not statistically significant, the remaining
part of the hierarchy is modeled via a multiple linear regression, as we will depict
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hereinafter. It is worth noticing that the relationship between the p observed
variables and the Q disjoint principal components is always supposed reflective
for Q < p by obtaining a dimensionality reduction of the data. Under the same
assumptions of the Probabilistic Disjoint Principal Component Analysis (PDPCA,
Ferrara, Martella, & Vichi, 2019), M can be determined according to the Student’s
T statistic (Cramer, 1946, p. 400) by testing for the absence of correlation among
any pair of disjoint principal components. Therefore, this parametric approach
needs assumptions which can turn out to be unrealistic in some applications, and
does not implement a multivariate test for the component correlation matrix. For
these reasons, HierDPCA carries out a test for identity of covariance (or correlation)
matrices proposed by Chen, Zhang, and Zhong (2010) in a non-parametric framework,
i.e., without assuming a specific distribution for the data. The following hypothesis
system has to be tested {

H0 : RYq = Iq

H1 : RYq ̸= Iq

(5.8)

for each q = Q, . . . , 2, where RYq is the correlation matrix of the q disjoint principal
components. M is thus defined as the first bottom-up level q ∈ {2, . . . , Q} such that
P

(
(1/2)nT CZZn ≥ zα

)
> α, where T CZZ is the Chen-Zhang-Zhong statistic with an

asymptotic normal distribution under the null hypothesis H0 in (5.8), and zα is the
α-upper quantile of the standard normal distribution (for further details see Chen,
Zhang, & Zhong, 2010).

If the null hypothesis in (5.8) is rejected for all hierarchical levels, M is settled
on one and the equations in (5.1) model the whole hierarchy. It is worth highlighting
that for q = 1 constraints (5.2)-(5.4) are trivial since V1 = 1p, thus the definition of
the general concept g1 is independent of the whole hierarchy. In order to determine
the last equation of model (5.1) such that it depends on the previous hierarchical level,
we can replace it with Y2 = gV′

1B1 +E1, where g is the column vector corresponding
to the synthesis of the two disjoint principal components in Y2. Whereas if the null
hypothesis in (5.8) is not rejected at the Mth level of the hierarchy, the correlation
among the M disjoint principal components is not statistically significant and they
are supposed to form a general concept g, rather than reflect disjoint principal
components of “higher-order”. The model that formalizes the relationship between
the M uncorrelated (or little correlated) disjoint principal components and the
general concept g is the following multiple linear regression

g = YM β + ϵ, (5.9)

where β is the (M × 1) regression coefficient vector and ϵ is the (n× 1) error vector.
It is worth noticing that in order to apply a multiple linear regression model, the
response variable, that is represented by the general concept g, needs to be quantified.
When M > 1, g is assumed to be the first (standard) principal component of the
p observed variables (gPC). Thus, the relationship between the general concept
and the M disjoint principal components is inspected by estimating the regression
coefficients.

The hierarchy ensued from HierDPCA strictly depends on the initial choice of
the number of disjoint principal components Q, that might be determined by several

1g stands for Y1, i.e., the general concept identified at the last level of the hierarchy.
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methods, such as the Kaiser’s one (Kaiser, 1960). Moreover, Q can be chosen as
the minimum number of disjoint groups of observed variables such that each one
is represented by a unidimensional component. The unidimensionality is evaluated
according to the second largest eigenvalue of the covariance sub-matrix related to
each variable group: if it is lower than the mean of the eigenvalues, the disjoint
principal component associated with the variable group is unidimensional. The
optimal number of disjoint principal components for the first bottom-up level of the
hierarchy is therefore chosen by starting from 1 up to the value which corresponds to
the first Q with unidimensional disjoint principal components. If Q is set greater than
the optimal one, the identified disjoint principal components result highly correlated
and there is no real interest that this duplication of components is preserved. In
addition, the increase of the explained variance is negligible with respect to the ones
obtained up to the optimal Q.

5.3.1 Least-squares estimation of HierDPCA

The least-squares estimations of model (5.1) are obtained by minimizing the following
loss function representing a quadratic mixed continuous and combinatorial problem

F (BM , . . . , BQ, VM , . . . , VQ, YM , . . . , YQ) =
Q∑

q=M

∥X−YqV′
qBq∥2 (5.10)

subject to constraints (5.2)-(5.6), where ∥·∥ denotes the Euclidean norm. If M = 1,
the sum in (5.10) ends with q = 2 and ∥Y2 − gV′

1B1∥2 is added to it. If M > 1,
∥g−YM β∥2, where g = gPC (see Section 5.3), is added to (5.10). From now on, to
simplify we will refer to F (BM , . . . , BQ, VM , . . . , VQ, YM , . . . , YQ) as F .

Before illustrating the least-squares estimators, some properties of HierDPCA
are provided.

Property 0. According to Eq. (5.7), each equation of model (5.1) can be
re-written as X = XBqVqV′

qBq + Eq, q = M, . . . , Q, where, given constraint (5.6),
the first term of the r.h.s. is the orthogonal projection of the rows of X onto the
q-dimensional subspace of Rp spanned by the columns of BqVq.

Property 1. The following decomposition of the total deviance, multiplied by a
constant, holds

(Q−M + 1) ∥X∥2 =
Q∑

q=M

∥X−YqV′
qBq∥2 +

Q∑
q=M

∥YqV′
qBq∥2. (5.11)

The proof of (5.11) is provided in Appendix C.

If M = 1 and the last equation of model (5.1) is replaced such that it depends
on the whole hierarchy, the decomposition of the total deviance in Property 1 results
into
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(Q− 1) ∥X∥2 =
Q∑

q=3
∥X−YqV′

qBq∥2 +
Q∑

q=3
∥YqV′

qBq∥2 + ∥X− gV′
1B1V′

2B2∥2

+ ∥gV′
1B1V′

2B2∥2.

This can be easily proved by extending the proof of (5.11) and substituting the last
equation of model (5.1).

Remark 5.1. Since the l.h.s. of (5.11) is known and fixed given X and Q, minimizing
the first term of the r.h.s., i.e., the total residual deviance of model (5.1), corresponds
to maximize the second term of the r.h.s., i.e., the total deviance reconstructed by
model (5.1).

Property 2. HierDPCA defines a parsimonious hierarchy formed by 2Q − M
components, corresponding to disjoint or nested groups of observed variables, that
maximize the total explained variance.

Property 2 therefore shows that maximizing the total reconstructed deviance
corresponds to maximizing the explained variance of the disjoint principal components
for each bottom-up level q = Q, . . . , M , that matches in turn the selection of the
first principal component for each non-overlapping variable group of PqH :

Q∑
q=M

∥YqV′
qBq∥2 =

Q∑
q=M

tr(BqVqY′
qYqV′

qBq) =
Q∑

q=M

tr(Y′
qYq)

= n
Q∑

q=M

tr(ΣYq ),

where ΣYq is the covariance matrix of the q disjoint principal components. Indeed,
tr(ΣYq ) = tr( 1

nV′
qBqX′XBqVq) = tr(V′

qBqΣXBqVq) =
∑q

h=1 v′
h(q)Bq ΣXBqvh(q),

where v′
h(q)BqΣXBqvh(q) represents the variance of the first principal component

associated with the hth variable group, h = 1, . . . , q, of PqH .

Property 3. HierDPCA minimizes the decrease of the explained deviance that
occurs after having merged two groups of PqH to obtain the partition Pq−1H , which
is formally defined as

Id(Vq, Vq−1) = ∥X−Yq−1V′
q−1Bq−1∥2 − ∥X−YqV′

qBq∥2

= ∥YqV′
qBq∥2 − ∥Yq−1V′

q−1Bq−1∥2
Constr. (5.6)= ∥Yq∥2 − ∥Yq−1∥2 (5.12)

and is always nonnegative.

Id(Vq, Vq−1) actually depends only on vq−1(q), vq(q) and vq−1(q−1). Indeed,
inasmuch as the membership matrix Vq−1 has the first q − 2 columns equal to
Vq, then Id(Vq, Vq−1) = ∥yq−1(q)∥2 + ∥yq(q)∥2 − ∥yq−1(q−1)∥2. Moreover, it holds
(Vigneau & Qannari, 2003) that

∥yq−1(q−1)∥2 ≤ ∥yq−1(q)∥2 + ∥yq(q)∥2,
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where the equality occurs when the covariance between yq−1(q) and yq(q) reaches
its maximum. Id(Vq, Vq−1) is thus nonnegative and the variance explained by
the disjoint principal components declines at each level of the hierarchy with the
component number reduction.

Remark 5.2. According to (5.12), when M = 1 the loss function (5.10) can be
rewritten as follows

F = Q∥X−YQV′
QBQ∥2 +

Q∑
q=2

(q − 1) Id(Vq, Vq−1). (5.13)

The proof of (5.13) is provided in Appendix C.

In order to present the least-squares estimators of the HierDPCA parameters,
let us simplify the structure of the weighting and membership matrices. Given
a partition PqH , q = M, . . . , Q, we consider an appropriate row permutation of
the membership matrix Vq such that the observed variables associated with the
same disjoint principal component are contiguous. It follows that the weighting
matrix Bq = blkdiag([B1(q), . . . , Bq(q)]) is a block diagonal matrix, where each Bh(q),
h = 1, . . . , q, is the diagonal sub-matrix of order Jh(q) whose diagonal elements are
the loadings of the contiguous observed variables associated with the hth disjoint
principal component. The columns of the data matrix X can be ordered as well.

Given Q, the HierDPCA parameter estimates are the following.

(0) Estimation of VQ, BQ and YQ: the estimates of VQ, BQ and YQ are
obtained according to the DPCA estimation (Ferrara, Martella, & Vichi, 2016).
See also Vichi and Saporta (2009) for the details on the DPCA estimates,
where K = n, i.e., the clustering structure for the observations is not taken
into account.

The hierarchy is estimated as follows.

(a) Test on the component correlation matrix: the Chen, Zhang, and Zhong
(2010) nonparametric test is applied to the correlation matrix of Ŷq. If the null
hypothesis in (5.8) is rejected, the number of disjoint principal components
is reduced by one and the estimates of Vq−1, Bq−1 and Yq−1 are computed
as in (b), (c) and (d), respectively; otherwise, M = q and the estimates of
the regression coefficients, which link the general concept to the M disjoint
principal components, are computed as in (e).

(b) Estimation of Vq−1: the membership matrix Vq−1 is estimated by merging
two columns of V̂q, say s, h ∈ {1, . . . , q}, such that ∥X − Ŷq−1V̂′

q−1B̂q−1∥2,
or equivalently Id(V̂q, V̂q−1), is minimum.
Formally, recalling constraint (5.4), V̂q−1 = [{(v̂1(q), . . . , v̂q(q)) \ v̂s(q), v̂h(q)},
v̂q−1(q−1)], where v̂q−1(q−1) = v̂s(q) + v̂h(q). It is worth noting that, only for
simplicity reasons, constraint (5.4) is written with respect to vq−1(q) and vq(q)
by assuming a reordering of the columns of Vq such that the ones to be merged
are the last two.
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(c) Estimation of Bq−1: given V̂q−1, let us consider the spectral decomposi-
tion of the covariance matrix associated with the (s ∪ h)th subset of Pq−1H ,
ΣXs∪h(q−1) = Ds∪h(q−1)Λs∪h(q−1)D

′
s∪h(q−1), where Ds∪h(q−1) and Λs∪h(q−1) are

the orthonormal matrix of the eigenvectors and the diagonal matrix of the
eigenvalues of ΣXs∪h(q−1) , respectively. B̂q−1(q−1) = diag(D(1)

s∪h(q−1)), where
D(1)

s∪h(q−1) is therefore the eigenvector corresponding to the largest eigenvalue
λ

(1)
s∪h(q−1) of the matrix ΣXs∪h(q−1) . Inasmuch constraint (5.4) holds, the weight-

ing matrix estimator is computed by substituting the loadings of the observed
variables which belong to the sth and hth group with the one obtained by merg-
ing them, i.e., B̂q−1 = blkdiag([{[B̂1(q), . . . , B̂q(q)] \ B̂s(q), B̂h(q)}, B̂q−1(q−1)]).

(d) Estimation of Yq−1: given V̂q−1 and B̂q−1, the component score matrix
is computed as Ŷq−1 = XB̂q−1V̂q−1, which corresponds to the Bartlett’s
weighted least-squares scores (Ferrara, Martella, & Vichi, 2019).

(e) Estimation of β and g: given ŶM , the regression coefficient vector is
estimated as in a multiple linear regression analysis, i.e., β̂ = (X′X)−1X′ŶM ,
and ĝ = ŶM β̂.

If M = 1 and the last equation of model (5.1) is replaced such that it depends on
the whole hierarchy, the estimates of B1 and Y1 are obtained by replacing X with
Ŷ2.

Property 4. HierDPCA identifies the sparsest component loading matrices which
correspond to disjoint principal components of maximum variance and cannot be
further simplified. Additionally, the solution is unique.

In fact, since model (5.1) identifies a partition of the variable space for each
hierarchical level, the component loading matrix turns out to be the sparsest one
which corresponds to disjoint principal components of maximum variance and
no orthogonal transformation can improve its simplification because, given an
orthogonal matrix Q of order q and the component loading matrix Aq = BqVq, the
transformation AqQ = BqVqQ (q = Q, . . . , M) does not return a matrix with only
one non-null loading per row. Property 4 is formalized in the following theorem,
whose proof is similar to that provided by Vichi (2017, pp. 573-574).

Theorem 5.1. [Uniqueness] For each level q (q = M, . . . , Q) of HierDPCA, the
component loading matrix is unique and no Orthomax rotation γQ satisfies the
parameterization constraint Aq = BqVq, i.e. AqγQ = BqVqγQ, other than the
identity matrix Iq, for all q = M, . . . , Q.

The solution of the minimization of (5.10) is thus unique, i.e., the whole hierarchy
obtained by the least-squares estimation of the model parameters is unique both
in the reflective and reflective/formative cases. HierDPCA is therefore identifiable
thanks to the uniqueness of the weighting matrices Bq and the membership matrices
Vq (q = M, . . . , Q), as well as β in (5.9). Nevertheless, since the tight relation
with PCA, model (5.1) is not scale-invariant. For this reason, the analysis has
to be performed by standardizing the observed variables when data have different
measurement scales.



5.4 Simulation study 74

5.3.2 Coordinate descent algorithm for HierDPCA

Given Q, the least-squares estimates of the HierDPCA parameters are computed by
using a coordinate descent algorithm implemented in MATLAB, which is described
in Algorithm 2. The estimates recalled in Algorithm 2 have been presented in Section
5.3.1.

The HierDPCA algorithm converges to a solution which is at least a local
minimum. To increase the chance to find a global optimum, Algorithm 2 should be
run several times starting from different random initial partitions V(0)

Q .
Albeit the HierDPCA algorithm is NP-hard (Krivánek & Morávek, 1986), it is

computationally efficient. The parsimony and the sparsity properties of model (5.1)
guarantee a low complexity both in terms of the execution time and the storage
space needed for computation. To improve the computational efficiency of the
HierDPCA algorithm, Step 1, which represents a step of the DPCA algorithm, can
be led to convergence and run several times before building the whole hierarchy.
Recalling that the latter is in turn a coordinate descent algorithm and according
to our experience based on the simulation study presented in Section 5.4, Step 1
could be run at least 30 times so that the starting point of the hierarchy completion
is the optimal solution of DPCA.

Furthermore, the HierDPCA algorithm allows some options. The first one is
the possibility to constrain some (or all) observed variables to load, necessarily, on
a disjoint principal component at the Qth level of the hierarchy if some (or all)
relationships between the observed variables and the (disjoint principal) components
are known a priori. Moreover, the researcher may impose the non-negativity of the
loadings s.t. positive and negative relationships between observed variables and
(“higher-order”) disjoint principal components do not balance out in the estimation
of the latter.

5.4 Simulation study

The performances of HierDPCA were evaluated through a large-scale simulation
study with different scenarios. Before analyzing its results in details, let us illustrate
the data generation process.

Each simulated random sample of n > p multivariate observations xi (i =
1, . . . , n) is generated according to X = Xt + E, where Xt ∼ MV Np(0, Ru) and
E ∼ σE ·MV Np(0, I), with σE which represents the error level. The correlation
structure Ru is modeled as presented by Cavicchia, Vichi, and Zaccaria (2020b, see
Chapter 2)

Ru = VQ (RB − IQ) V′
Q + VQ RW V′

Q − diag(VQ RW V′
Q) + Ip. (5.14)

In detail, VQ is a (p×Q) membership matrix which partitions p variables into
Q groups, RW a (Q×Q) diagonal matrix describing correlations within the groups
and RB a (Q × Q) ultrametric correlation matrix representing the hierarchical
relationships among the Q groups. The parameters of Ru were set as follows. The
membership matrix VQ was randomly generated such that constraints (5.2) and (5.3)
held and no empty group occurred. Moreover, the cardinality of the variable groups
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Algorithm 2: HierDPCA
Input: X, Q

1 Fixed values ϵ← small nonnegative converge tolerance value;
2 maxiter ← maximum number of iterations;
3 Initialization t← 0;
4 V(0)

Q ← random variable partition s.t. (5.2) and (5.3) are satisfied and the Q

variable groups are non-empty;
5 B̂(0)

Q ← see (0) in Section 5.3.1;
6 Ŷ(0)

Q ← see (0) in Section 5.3.1;
7 Hierarchy: build the hierarchy by testing the correlation among the disjoint

principal components at each hierarchical level. If the null hypothesis is
rejected, reduce the number of disjoint principal components by one,
compute (b), (c), (d) and (a); otherwise the hierarchy ends with (e);

8 F (0) ← objective function in (5.10) plus ∥Ŷ(0)
2 − ĝ(0)V̂(0)′

1 B̂(0)
1 ∥2 if M = 1,

or ∥gPC(0) − Ŷ(0)
M β̂

(0)∥2 if M > 1;
9 F

(0)
diff ← F (0);

10 while F
(t)
diff > ϵ and t ≤ maxiter do

11 t← t + 1;
12 Step 1. Given V̂(t−1)

Q , compute V̂(t)
Q , B̂(t)

Q and Ŷ(t)
Q s.t.

∥X− Ŷ(t)
Q V̂(t)′

Q B̂(t)
Q ∥2 ≤ ∥X− Ŷ(t−1)

Q V̂(t−1)′
Q B̂(t−1)

Q ∥2, i.e., starting from
V̂(t−1)

Q and searching for a new variable partition s.t. the DPCA
objective function is improved;

13 for q = Q-1, . . . , 1 do
14 Step 2. Test for the correlation matrix RŶ(t)

q+1
as in (a);

15 if the null hypothesis in (5.8) is rejected then
16 Step 3a. Compute V̂(t)

q , B̂(t)
q and Ŷ(t)

q according to (b), (c) and
(d), respectively;

17 if q == 1 then
18 M ← 1;
19 end
20 end
21 else
22 Step 3b. M ← q;
23 Given Ŷ(t)

M , compute β̂
(t) and ĝ(t) as in (e);

24 break
25 end
26 end
27 F (t) ← objective function in (5.10) plus ∥Ŷ(t)

2 − ĝ(t)V̂(t)′
1 B̂(t)

1 ∥2 if M = 1,
or ∥gPC(t) − Ŷ(t)

M β̂
(t)∥2 if M > 1;

28 F
(t)
diff ← F (t−1) − F (t).

29 end
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Table 5.1. Scenarios of the simulation study.

Scenario 1 Scenario 2 Scenario 3

N. units n 200, 500 200, 500 200, 500
N. variables p 60, 120 60, 120 98
N. groups Q 6 6 7
M th 1 3 4
RB off-diagonal values {0.9 0.85 0.78 0.65 0.37} {0.9 0.85 0.7 0 0} {0.9 0.85 0.7 0 0}
Error levels σE 0.66, 1.33, 2.66 0.66, 1.33, 2.66 0.66, 1.33, 2.66

was fixed to p/Q in order to evaluate their bottom-up aggregations net of their size.
For simplicity, RW was assumed to be an identity matrix, i.e., the highest linear
relationship within groups existed. The Q− 1 different off-diagonal elements of RB
were set such that the relationships among the Q groups were hierarchically ordered.
These values defined the membership matrices Vq, q = M th, . . . , Q− 1, where M th

is a parameter as well. The simulation study was implemented by generating 200
random samples according to the aforementioned structure of the data matrix for
each scenario reported in Table 5.1. In each one, both a small and large scale data
generation were provided in terms of units and variables (except for Scenario 3 ) and
both reflective (Scenario 1 ) and reflective/formative hierarchies (Scenario 2 and
Scenario 3 ) were considered in the simulation study. Overall, 6000 random samples
were generated.

It can be highlighted that the data matrix X was not directly generated from
HierDPCA by avoiding a privileged position for the proposal, especially in compar-
isons with other methodologies, and its correlation matrix was not exactly equal to
Ru since an error perturbed this structure. In Figure 5.2, a representation of the
error level effect is provided. Some correlation matrices of the generated samples are
represented for each scenario. Increasing σE corresponds to mask the ultrametric
correlation structure of the generated data by making the distinct groups of variables
less clearly distinguishable, as well as the difference of their hierarchical relationships.

HierDPCA was also compared to other two existing methods: PCA + Oblique
Rotation Method (oblimin, quartimin, geomin) and the hierarchical clustering
algorithms (single, complete, average linkage and Ward’s method). The former
is a sequential procedure similar to HOFMs, where PCA was used instead of FA
for comparability reasons. For each hierarchical level q = Q, . . . , M th, the variable
partition of PCA + ORM was obtained by assigning each variable (or component)
to the higher-order component it loads more on in absolute term after an oblique
rotation, whereas the one resulting from the hierarchical clustering algorithms was
derived by cutting the hierarchy at the qth level. It is worth noticing that PCA +
ORM was firstly applied on the variable correlation matrix to obtain Q components,
and then on the component correlation matrix by reducing the number of components
by one. Both PCA + ORM and hierarchical clustering algorithms were implemented
by fixing Q and M = M th.

The models’ performances were evaluated in terms of similarity between the
true (generated) and the estimated (through HierDPCA, PCA + ORM, hierarchical
clustering algorithms) partitions of variables for each hierarchical level via the
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(a) n = 200, p = 60, Q =
6, M = 1, σL

E = 0.66
(b) n = 200, p = 60, Q =

6, M = 1, σM
E = 1.33

(c) n = 200, p = 60, Q =
6, M = 1, σH

E = 2.66

(d) n = 500, p = 120, Q =
6, M = 3, σL

E = 0.66
(e) n = 500, p = 120, Q =

6, M = 3, σM
E = 1.33

(f) n = 500, p = 120, Q =
6, M = 3, σH

E = 2.66

(g) n = 200, p = 98, Q =
7, M = 4, σL

E = 0.66
(h) n = 200, p = 98, Q =

7, M = 4, σM
E = 1.33

(i) n = 200, p = 98, Q =
7, M = 4, σH

E = 2.66

Figure 5.2. Heat maps of the correlation matrices corresponding to some generated data
sets in different scenarios.

Adjusted Rand Index (ARI, Hubert & Arabie, 1985). It ranges between −∞
and 1, assuming the latter in case of perfect agreement between the true and the
estimated membership matrices. Moreover, since the positiveness of the off-diagonal
values of RB, the Cronbach’s α (Cronbach, 1951) was computed on the estimated
variable groups in order to evaluate their internal consistency for each level of the
hierarchy. Specifically, for all samples, the Cronbach’s α of each group of PqH ,
q = M th, . . . , Q, was calculated and its mean was computed for q = M th, . . . , Q, i.e.
ᾱq = 1

200
∑200

s=1
1
q

∑q
h=1 αhs(q).

Table 5.2 and Table 5.3 report the performances of HierDPCA in terms of the
ARI and ᾱ for Scenario 1 and Scenario 2 and 3, respectively, by imposing M = M th.
The results for the last aggregation of Scenario 1 were not reported inasmuch as
the membership matrix turned out to be a unitary vector whatever the variable
partition in two groups was. In Table 5.3, the only part of the hierarchy which
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Table 5.2. Mean of the ARI, % of samples with ARI equal to one (in brackets) and ᾱ of
HierDPCA for Scenario 1.

n p q
σL

E = 0.66 σM
E = 1.33 σH

E = 2.66

ARI ᾱ ARI ᾱ ARI ᾱ

200

60

2 1.000 (100.0) 0.977 0.997 (99.5) 0.900 0.802 (8.0) 0.776
3 1.000 (100.0) 0.970 0.978 (93.0) 0.882 0.623 (0.5) 0.709
4 1.000 (100.0) 0.966 0.934 (64.0) 0.871 0.474 (0.0) 0.671
5 1.000 (100.0) 0.962 0.883 (25.0) 0.861 0.347 (0.0) 0.641
6 1.000 (100.0) 0.958 0.855 (7.0) 0.848 0.287 (0.0) 0.618

120

2 1.000 (100.0) 0.988 1.000 (100.0) 0.963 0.926 (15.5) 0.862
3 1.000 (100.0) 0.985 1.000 (100.0) 0.944 0.646 (1.0) 0.816
4 1.000 (100.0) 0.983 0.973 (84.0) 0.930 0.474 (0.0) 0.790
5 1.000 (100.0) 0.980 0.949 (33.5) 0.925 0.383 (0.0) 0.771
6 1.000 (100.0) 0.979 0.932 (5.0) 0.917 0.378 (0.0) 0.754

500

60

2 1.000 (100.0) 0.977 1.000 (100.0) 0.929 0.991 (88.0) 0.775
3 1.000 (100.0) 0.970 1.000 (100.0) 0.896 0.926 (39.5) 0.697
4 1.000 (100.0) 0.966 0.982 (95.5) 0.872 0.769 (2.5) 0.655
5 1.000 (100.0) 0.962 0.990 (92.5) 0.863 0.618 (0.0) 0.618
6 1.000 (100.0) 0.958 0.981 (66.0) 0.849 0.530 (0.0) 0.592

120

2 1.000 (100.0) 0.988 1.000 (100.0) 0.947 0.999 (97.5) 0.867
3 1.000 (100.0) 0.986 1.000 (100.0) 0.945 0.970 (37.0) 0.835
4 1.000 (100.0) 0.983 1.000 (100.0) 0.936 0.928 (8.5) 0.788
5 1.000 (100.0) 0.980 0.999 (98.5) 0.926 0.824 (0.0) 0.758
6 1.000 (100.0) 0.979 0.996 (84.5) 0.919 0.651 (0.0) 0.738

was considered is that one pertaining the system in (5.1). It can be observed that
the hierarchy is always covered by the model for a low level of error (σL

E), both in
Table 5.2 and Table 5.3. For medium (σM

E ) and high error (σH
E ), the mean of the

ARI increases from the Qth level of the hierarchy upwards as expected, since the
possibility of misclassification is reduced as the number of groups decreases. ᾱ has
an increasing - from Q upwards - behavior in turn; it is greater than 0.95, 0.80 and,
almost always, 0.60 in the whole hierarchy for the low, medium and high levels of
error, respectively. It has to be noticed that the Cronbach’s α is affected by the
number of variables in a group, which is hypothesized to be the same at the Qth
level of the hierarchy, but changes when the number of groups decreases. The strong
internal consistency of the variable groups stresses that HierDPCA pinpoints groups
of highly correlated variables, even if the ARI differs from 1. The theorized reflective
structure of the three scenarios therefore turns out to be correctly estimated.

The simulations reported in Table 5.2 and Table 5.3 were computed by fixing M
to the theoretical one, i.e., M th. To fully evaluate the performances of HierDPCA, all
scenarios reported in Table 5.1 were assessed according to the correct identification
of M on the samples previously generated. As shown in Table 5.4, M was almost
always correctly estimated in Scenario 1. For the two samples in which M differed
from one, it was estimated to be two. In Scenario 2 and Scenario 3, the magnitude
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Table 5.3. Mean of the ARI, % of samples with ARI equal to one (in brackets) and ᾱ of
HierDPCA for Scenario 2 and Scenario 3.

n p q
σL

E = 0.66 σM
E = 1.33 σH

E = 2.66

ARI ᾱ ARI ᾱ ARI ᾱ

200

60

3 1.000 (100.0) 0.971 1.000 (100.0) 0.905 0.976 (63.5) 0.715
4 1.000 (100.0) 0.966 0.998 (98.5) 0.879 0.826 (3.0) 0.662
5 1.000 (100.0) 0.961 0.931 (47.0) 0.860 0.649 (0.0) 0.628
6 1.000 (100.0) 0.958 0.882 (9.0) 0.847 0.489 (0.0) 0.605

120

3 1.000 (100.0) 0.985 1.000 (100.0) 0.951 0.993 (75.0) 0.832
4 1.000 (100.0) 0.983 1.000 (100.0) 0.936 0.915 (1.0) 0.788
5 1.000 (100.0) 0.980 0.959 (49.5) 0.925 0.715 (0.0) 0.762
6 1.000 (100.0) 0.978 0.942 (7.5) 0.918 0.548 (0.0) 0.745

500

60

3 1.000 (100.0) 0.971 1.000 (100.0) 0.906 1.000 (100.0) 0.715
4 1.000 (100.0) 0.966 1.000 (100.0) 0.880 0.952 (37.5) 0.654
5 1.000 (100.0) 0.962 0.986 (93.5) 0.862 0.767 (0.0) 0.615
6 1.000 (100.0) 0.958 0.986 (73.0) 0.849 0.607 (0.0) 0.590

120

3 1.000 (100.0) 0.986 1.000 (100.0) 0.951 1.000 (100.0) 0.833
4 1.000 (100.0) 0.983 1.000 (100.0) 0.936 1.000 (100.0) 0.787
5 1.000 (100.0) 0.980 0.996 (97.5) 0.925 0.841 (0.0) 0.757
6 1.000 (100.0) 0.979 0.997 (88.0) 0.918 0.692 (0.0) 0.738

200

98

4 1.000 (100.0) 0.977 1.000 (100.0) 0.920 0.979 (49.0) 0.747
5 1.000 (100.0) 0.974 1.000 (100.0) 0.906 0.883 (1.0) 0.712
6 1.000 (100.0) 0.972 0.955 (50.5) 0.895 0.721 (0.0) 0.689
7 1.000 (100.0) 0.970 0.931 (10.0) 0.886 0.590 (0.0) 0.672

500

4 1.000 (100.0) 0.977 1.000 (100.0) 0.920 1.000 (100.0) 0.749
5 1.000 (100.0) 0.974 1.000 (100.0) 0.906 0.986 (45.5) 0.712
6 1.000 (100.0) 0.972 0.997 (98.0) 0.895 0.842 (0.0) 0.685
7 1.000 (100.0) 0.970 0.992 (75.5) 0.887 0.716 (0.0) 0.666

of the error affects the estimation of M , although not equivalently in all settings.
Indeed, in some cases (e.g., n = 200, p = 60, Q = 6, M th = 3) the percentage of
samples in which M is correctly estimated decreases when the error level increases,
whereas in some other cases (e.g., n = 500, p = 60, Q = 6, M th = 3) the opposite
occurs.

Tables 5.5 and 5.7 provide the results of PCA + ORM, whereas Tables 5.6
and 5.8 those of the hierarchical clustering algorithms in the three scenarios with
fixed Q and M = M th. It can be noticed that in all scenarios HierDPCA performs
better than or equal to (e.g., to Ward’s method with the low level of error) the
competing methods. For PCA + ORM, the mean of the ARI decreases from the
Qth level of the hierarchy upwards by stressing the incorrectness of component
aggregations, although, for instance, the variable partition at the Qth level is always
perfectly recovered for the low level of error. Contrariwise, the mean of the ARI for
the hierarchical clustering algorithms increases from the Qth level of the hierarchy
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Table 5.4. % of samples whose value of M estimated by HierDPCA corresponds to the
true one, i.e., M th, for each scenario in Table 5.1.

N. units N. variables M th σL
E = 0.66 σM

E = 1.33 σH
E = 2.66

n = 200
p = 60 1 100.0 99.5 99.5

3 96.5 95.5 93.0

p = 120 1 100.0 100.0 100.0
3 95.0 95.5 92.0

n = 500
p = 60 1 100.0 100.0 100.0

3 94.5 96.0 98.0

p = 120 1 100.0 100.0 100.0
3 99.5 95.0 98.5

n = 200
p = 98 4 89.5 89.0 81.0

n = 500 88.5 90.0 89.0

upwards, as well as HierDPCA, by recovering the errors which occur at the lower
levels of the hierarchy as the number of groups decreases, even if the mean of the
ARI is always lower than that of HierDPCA.

5.5 Application

The proposed methodology described in Section 5.3 was applied to two real data
sets. The first one is the Big Five Personality Test data set (Adachi & Trendafilov,
2018) on personality traits (Section 5.5.1) and the second one is the ASia-Europe
Meeting (ASEM) Connectivity Sustainability Index data set (W. Becker et al., 2018)
on relationships among countries, people and societies of the two regions (Section
5.5.2). The data sets are analyzed in an exploratory and mixed exploratory and
confirmatory approach, respectively.

5.5.1 Big Five Personality Test

The Big Five Personality Test data set2 detects personality traits by means of
self-ratings reported on 25 items by 190 university students. The Big Five model
(Digman, 1990; Goldberg, 1990, 1992; Costa & McCrae, 1992) defines the personality
trait organization in five dimensions shown in Table 5.9. As observed by Digman
(1997), in many studies two higher-order dimensions arise: Alpha and Beta, also called
Stability and Plasticity, respectively, by DeYoung, Peterson, and Higgins (2002).
The former is a combination of Neuroticism, Agreeableness and Conscientiousness,
whereas the latter of Extraversion and Openness (see Digman, 1990, Table 1 for
a complete review of the five dimensions’ names). Some authors as Musek (2007)
theorized the existence of a general single superordinate dimension, i.e., the Big One.

HierDPCA was applied on this data set in an exploratory approach in order
to test its performances on recovering the theorized Big Five structure. Before

2Available at http://bstat.jp/en_material/.

http://bstat.jp/en_material/


5.5 Application 81

T
ab

le
5.

5.
M

ea
n

of
th

e
A

R
I,

%
of

sa
m

pl
es

w
ith

A
R

I
eq

ua
lt

o
on

e
(in

br
ac

ke
ts

)
an

d
ᾱ
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ᾱ

A
R

I
ᾱ
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Table 5.9. Observed variables of the Big Five Personality Test data set, corresponding
dimensions and their Cronbach’s α.

Dimension Variable ID Variable α Dimension Variable ID Variable α

Neuroticism

1 Worry

0.789 Agreeableness

16 Mild

0.787
2 Sensitive 17 Tenderhearted
3 Pessimistic 18 Altruistic
4 Unrest 19 Cooperative
5 Careful 20 Sympathetic

Extraversion

6 Sociable

0.874 Conscientiousness

21 Deliberate

0.807
7 Talkative 22 Reliable
8 Voluntary 23 Diligent
9 Cheerful 24 Systematic
10 Showy 25 Methodical

Openness

11 Creative

0.754
12 Adventurous
13 Progressive
14 Flexible
15 Imaginative

analyzing its hierarchical structure, the optimal Q was chosen. The implemented
criterion based on the unidimensionality of each variable group converges to retain
Q equal to five. Figure 5.3 displays the results of the HierDPCA application on
the Big Five Personality Test data set. The path diagram is built such that the
aggregation level of each node representing a disjoint principal component is the sum
of the disjoint principal component deviance and the maximum disjoint principal
component deviance of the lower hierarchical level over the total deviance of the
data matrix. If M > 1, the aggregation level of the last node is the sum of the
deviance reconstructed by model (5.9) and the maximum disjoint principal component
deviance of the lower hierarchical level over the total deviance of the data matrix.
To help the reader to follow the path diagram representation, dashed horizontal lines
are included, that correspond to the highest aggregation level for each q = Q, . . . , M ;
the difference between the node and the lower dashed horizontal line represents the
ratio between the disjoint principal component deviance (or the reconstructed one
for the formative index) and the total deviance of the data. The size of each node
of the reflective part of the hierarchy is set according to the Cronbach’s α of the
corresponding variable group: the thresholds are set according to the rule of thumb
given by George and Mallery (2003), by considering 0.7 as the acceptable level of α
(Nunnally, 1978). As shown in Figure 5.3, HierDPCA perfectly identifies the five
dimensions as well as the “higher-order” two, i.e., Alpha/Stability and Beta/Plasticity.
The five dimensions are reliable, unidimensional and positively correlated with the
corresponding observed variables; the two “higher-order” dimensions are reliable in
turn. The two broader dimensions turn out to be uncorrelated such that M = 2 and
the general personality index is built in a formative approach. Alpha/Stability and
Beta/Plasticity contribute to the definition of the general index with coefficients
equal to 0.773 and 0.635, respectively. HierDPCA thus seems to be suitable to
detect the Big Five structure of personality traits since it is able to pinpoint the five
variable groups and the whole hierarchy over them.
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Figure 5.3. Path diagram of HierDPCA on the Big Five Personality Test data set.
Dashed arrows connecting the five dimensions with the corresponding variables represent
correlations < 0.7.

5.5.2 ASEM Connectivity Sustainability Index

The ASia-Europe Meeting (ASEM) Connectivity Sustainability Index aims at quan-
tifying the relationships among countries, people and societies of the two regions
in a social and economic sense. The ASEM data set3 comprises 51 countries - 31
European and 20 Asian - and 49 observed variables grouped in two main dimen-
sions: Connectivity and Sustainability. These are in turn composed of five and three
pillars, respectively (Table 5.10). The Connectivity and Sustainability indices were
calculated by firstly averaging the normalized indicators at pillar level, and then
the pillars to obtain the two composite indicators. This approach was based upon
experts’ consultations (see W. Becker et al., 2018, for further details).

HierDPCA was implemented on this data set in a mixed confirmatory and
exploratory approach, i.e., by imposing the membership of each observed variable
to the corresponding pillar at the Qth level of the hierarchy and letting the pillar
aggregations be chosen by the model. The application of HierDPCA presented
herein aims at investigating the conceptual framework of the ASEM sustainable
connectivity, which is based on experts’ review of literature on globalization indicators,
and inspecting the relationships among pillars with a model-based approach. Data
were normalized via the min-max normalization, s.t. each observed variable ranges
between 0 and 100, as done by W. Becker et al. (2018), and centered.

The results of the HierDPCA application on the ASEM data set are shown in
Figure 5.4. The proposed methodology detects some negative correlations between

3Available at https://composite-indicators.jrc.ec.europa.eu/asem-sustainable-connectivity/
repository.

https://composite-indicators.jrc.ec.europa.eu/asem-sustainable-connectivity/repository
https://composite-indicators.jrc.ec.europa.eu/asem-sustainable-connectivity/repository
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Table 5.10. ASEM Connectivity and Sustainability pillars. Source: W. Becker et al. (2018,
pp. 23-25).

Connectivity
ID vars. Pillar Description

1 : 8 Physical Physical infrastructure in terms of transport, energy
and ICT between countries.

9 : 13 Economic/Financial Trade of goods and services and financial flows.
14 : 16 Political Political relations with other countries.
17 : 22 Institutional Regulatory environment to facilitate trade, investment,

mobility of people.
23 : 30 People-to People Mobility of people in education, tourism and migration,

exchange of culture and communication.

Sustainability
ID vars. Pillar Description

31 : 35 Environmental Countries’ CO2 emissions, domestic material consump-
tion, forest loss, intensity of renewable energies.

36 : 44 Social Poverty, inequality, education, gender balance and in-
clusive and open societies.

45 : 49 Economic/Financial Financial sustainability, economic growth, research
expenditure and youth unemployment.

variables and pillars, specifically for variables 19, 35, 48, 49, and/or low correlations,
i.e., < |0.7| (dashed arrows in Figure 5.4). All pillars are not reliable, except for the
People-to-People and Social ones. HierDPCA builds a hierarchy over the eight pillars
which turns from reflective to formative at level M = 2. Before analyzing the two
broader variable (and pillars) groups, it is noteworthy to highlight some lower level
aggregations. Indeed, HierDPCA merges: Economic/Financial (Connectivity) with
People-to-People first, whose indicators are connected with trades in different areas
(e.g., goods, services, culture and research), and then these pillars with Physical;
Political and Institutional, whose indicators are connected with international networks
and agreements; and the three pillars which define the theoretical Sustainability
index. The two broader variable groups are composed of three out of the five pillars of
Connectivity and the Sustainability pillars merged with the Political and Institutional
ones. This result highlights that the Sustainability pillars are significantly related to
the ones affecting political relations and international agreements on flows (of goods,
people and investments) among countries.

In order to compare the theoretical structure in two dimensions (Connectivity
and Sustainability) with that one obtained by HierDPCA at q = 2, we can compute a
confirmatory DPCA on the ASEM data set by fixing the membership of the variables
to the corresponding dimensions. The percentage of the variance explained by the
components corresponding to Connectivity and Sustainability is 40.29%, whereas the
two components identified by HierDPCA at q = 2 explain 45.17% of the variance of
the data.
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Figure 5.4. Path diagram of HierDPCA on the ASEM data set. Dashed arrows represent
correlations between the observed variable and the corresponding pillar < |0.7|. Colors,
purple and green, identify the pillars corresponding to Connectivity and Sustainability,
respectively.

5.6 Conclusions

In this chapter a hierarchical extension of DPCA, called Hierarchical Disjoint Princi-
pal Component Analysis, is proposed. The proposal aims at: 1) building a hierarchy
of disjoint principal components with the largest explained variance by starting
from a dimensionality reduction of the observed variables into Q disjoint correlated
groups, each one associated with a component, and, eventually, merging them in
pairs up to the identification of a general component; 2) estimating the variable
partition for each hierarchical level, that is connected with the one of lower level of
the hierarchy by the nestedness assumption, is identified; 3) defining a model-based
approach to choose the “direction” of relationships (reflective or formative) between
the disjoint principal components of two contiguous hierarchical levels. The latter
is usually based upon a theoretical conceptualization of the phenomenon under
study and defined a priori by the researcher, without any empirical confirmation.
Contrariwise, HierDPCA tests for correlation among disjoint principal components
at each bottom-up level of the hierarchy such that the model turns from reflective
to formative if this correlation is not statistically significant. The analysis can be
conducted either through a confirmatory approach, in case the researcher has a
theory to confirm, or through an exploratory approach guided by the observed data.

Differently from the existing methodologies proposed to investigate hierarchical
relationships among observed variables, which are based upon sequential appli-
cation of Factor Analysis followed by an Oblique Rotation Method, HierDPCA
is a simultaneous model. The proposal allows to overcome the duality between
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Higher-Order Factor and Bi-Factor or Hierarchical Factor models. Indeed, HierD-
PCA both estimates direct relationships between observed variables and disjoint
principal components for each hierarchical level, and defines a hierarchy, since the
disjoint principal components of two sequential hierarchical levels are linked by the
nestedness assumption among the corresponding variable partitions.

The parameters of HierDPCA are estimated in a least-squares framework ac-
cording to a simultaneous approach in which a constrained minimization problem is
solved for the whole hierarchy. A coordinate descent algorithm is proposed for the
parameter estimation. Some properties of the proposed methodology are illustrated;
these highlight the similarities (e.g., the maximization of the total variance for each
level of the hierarchy) and differences (e.g., the uniqueness of the component loading
matrices for each level of the hierarchy) with the modeling approach to PCA. Further-
more, it is worth noticing that HierDPCA can be applied also in the context of wide
data (more variables than observations), and the fact that variables are partitioned
into groups allows computing the eigen-decomposition also for a large number of
variables. A large-scale simulation study demonstrates the good performances of
HierDPCA in identifying the variable partition for each hierarchical level, also w.r.t.
competing methods as PCA + ORM and hierarchical clustering algorithms, and
correctly choosing the level at which the model turns from reflective to formative,
i.e., the “direction” of the relationship among disjoint principal components in two
contiguous levels. Two real data set are analyzed according to the proposal by
highlighting its potential in detecting a hierarchy of disjoint principal components
corresponding to different dimensions of a multidimensional phenomenon.
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Chapter 6

Discussion

In the last decades, the complexity of real phenomena has grown. Consequently,
the need for methodologies to study multidimensional phenomena in different fields
like psychometrics, economics, social sciences, environment, etc., arises. This thesis
intends to contribute to the current research on modeling multidimensional phe-
nomena via a hierarchical dimensionality reduction approach by introducing a new
class of simultaneous, exploratory and parsimonious models. The dissertation is
composed of an introduction (Chapter 1), and four main chapters (Chapters 2-5) in
which the proposals are illustrated. In particular, Chapter 1 introduces the reader
into the problem under study by illustrating the existing methodologies proposed to
deal with the construction of hierarchical structures of nested latent concepts, and
the key notion of the thesis: ultrametricity. The latter arises in different fields, as
mathematics, physics and taxonomy, thanks to its relation with nested partitions and
tree-shape structures, and usually known in statistics in connection with distances in
hierarchical cluster analysis. In Chapter 1, we introduce the little-known definition of
an ultrametric matrix, which is related to a hierarchy of latent concepts and underlies
the models proposed in Chapter 2 and 4. The nature of the relationships among
levels in a hierarchy is discussed by presenting the difference between reflective and
formative models.

Chapter 2 presents a new model, called Ultrametric Correlation Model (UCM),
with the aim of detecting consistent latent concepts and their hierarchical rela-
tionships. UCM is an exploratory, parsimonious and simultaneous model that
reconstructs a nonnegative correlation matrix via an ultrametric correlation one,
and supplies a parsimonious representation of multidimensional phenomena through
a partition of the observed variables into a reduced number of groups, each one
associated with a latent concept. Two main features related to concepts are high-
lighted: the within-concept consistency and the between-concept correlation. A
relationship between these features and the Cronbach’s α (Cronbach, 1951), which is
a well-known measure of internal consistency, is provided in the chapter. It has to be
highlighted that a measure of internal consistency does not correspond to a measure
of unidimensionality (homogeneity), even if the former is necessary for the latter
(see Schmitt, 1996, for further details). UCM is developed in a reflective approach
by assuming the existence of a general concept which accounts for the relationships
among the more specific ones, and illustrated through two real data applications.
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Chapter 3 discusses a comparison between the traditional, agglomerative hierar-
chical clustering algorithms and the model presented in Chapter 2. The former are
usually implemented to build a hierarchy of units and associated with an ultrametric
distance matrix. Therefore, one could assume to transform a correlation matrix into
a distance one (Gordon, 1999), and then apply a hierarchical clustering algorithm
to the latter. We compare UCM and four (agglomerative) hierarchical clustering
methods through their application on the Holzinger data set, that represents a bench-
mark epitome for the study of a hierarchical structure underlying a multidimensional
phenomenon. The data set is presented as a nonnegative correlation matrix of
fourteen observed variables associated with four latent concepts. UCM turns out to
be more suitable (efficient) in terms of hierarchy construction and goodness of fit
than the hierarchical clustering algorithms, when dealing with variables. Moreover,
UCM directly pinpoints a partition of the variable space in a reduced number of
groups without suffering from the aggregation errors in the first levels of a complete
hierarchy.

Chapter 4 presents an extension of the model developed in Chapter 2 to a generic
covariance matrix with its implementation into a Gaussian Mixture Model (GMM).
Specifically, we first extend the definition of an ultrametric matrix to an extended
ultrametric matrix, which allows to include negative values by preserving the semi-
definiteness of the matrix; then, we use this definition to model the covariance matrix
of each component of a GMM. The proposal, called Gaussian Mixture Model with an
Extended Ultrametric Covariance Structure (GMMEUCovS), is able to pinpoint a
hierarchical structure on variables for each component of the GMM, thus identifying
a different characterization of a multidimensional phenomenon for each component
(cluster, subpopulation) of the mixture. It is worth noticing that the large number of
parameters of a GMM is produced by the covariance matrices. In order to reduce this
number, parsimonious parameterizations of the latter were proposed in literature,
e.g., the eigen-decomposition (Banfield & Raftery, 1993) and the parsimonious
GMMs based on mixtures of probabilistic principal component analyzers (Tipping &
Bishop, 1999b, 1999a) and mixtures of factor analyzers (Ghahramani & Hinton, 1997;
McLachlan & Peel, 2000b; McLachlan, Peel, & Bean, 2003). GMMEUCovS defines
a new parsimonious GMM since the ultrametric covariance structure reconstructs
the relationships among variables with a limited number of parameters. The model
proposed in Chapter 4 is illustrated via two real data examples. The first one
concerns the study of well-being in the OECD countries. The application pinpoints a
different characterization of this phenomenon in more developed and less developed
economies, even if some similarities between the hierarchies over the eleven variables
can be detected. The second example is the coffee data set on which GMMEUCovS is
applied in order to both assess the performance of the proposal in recovering the true
clustering structure, represented by the two varieties of beans (Arabica and Robusta),
in comparison with Gaussian Parsimonious Clustering Models (GPCMs, Celeux
& Govaert, 1995; Fraley & Raftery, 1998, 2002), Parsimonious Gaussian Mixture
Models (PGMMs, McNicholas & Murphy, 2008, 2010) and High-Dimensional Data
Clustering (HDDC, Bouveyron, Girard, & Schmid, 2007), and to identify a hierarchy
composed also of discordant concepts, i.e., negative covariances among groups.

Chapter 5 illustrates a new simultaneous, exploratory and parsimonious model,
called Hierarchical Disjoint Principal Component Analysis (HierDPCA), for hier-
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archical dimensionality reduction. Principal Component Analysis (PCA) is often
employed to obtain a dimensionality reduction of the variable space via a reduced
set of components, but preserving the largest possible part of the total variance
of the data. Nonetheless, PCA is not suitable to detect hierarchical relationships
among variables. Contrariwise, HierDPCA aims at building a hierarchy of nested
components associated with disjoint groups of observed variables, by improving their
interpretation. Moreover, HierDPCA allows to choose the type of the relationship
among components of two sequential levels, from the lowest upwards, by testing
the component correlation per level and changing from a reflective to a formative
approach when this correlation turns out to be not statistically significant. The goal
of this proposal is in turn to build a hierarchical structure of nested latent concepts,
even if this is not directly associated with an (extended) ultrametric matrix as the
models illustrated in Chapter 2 and 4. Additionally, HierDPCA introduces the
quantification of the latent concepts for each level of the hierarchy. The proposal is
implemented on two real data examples, in an exploratory and mixed exploratory
and confirmatory approach.

Appendices to Chapters 2, 4 and 5 provide supplementary materials relating
to further properties of the proposed methodology, details on the estimates of the
model parameters and proofs of some equations, respectively.

6.1 Further developments

The models introduced herein are all developed in the context of hierarchical di-
mensionality reduction and associated with binary tree (Gordon, 1987, 1999, among
others). Indeed, they aim at building a hierarchy of nested variable partitions,
whose groups are characterized by specific features (Chapter 2) and distinguished
in heterogeneous populations (Chapter 4) or associated with unobserved variables
(Chapter 5). Some further developments for each proposal of this thesis may be
outlined.

Firstly, latent concepts identified by UCM may be quantified. For instance,
components associated with variable groups may be computed by maximizing the
explained variance for each level of the hierarchy, thus optimizing a common objective
function between the models presented in Chapter 2 and 5, in a LS framework.

One of the main goals for future studies on GMMEUCovS presented in Chapter
4 is to constrain the parameters of EUCovS, i.e., V, ΣV, ΣW, ΣB, to be equal across
and within clusters. This extension gives rise to a new class of parsimonious models
that further reduces the number of parameters of GMMEUCovS, and allows an
extensive comparison with GPCMs, PGMMs, HDDC also in terms of the model
parsimony.

By considering the model presented in Chapter 5, it may be of interest to extend
HierDPCA in a cluster analysis framework, i.e., by getting a simultaneous hierarchical
parsimonious clustering of units, aggregated around centroids, and dimensionality
reduction of variables, aggregated around components. This simultaneous model
might also be seen as a hierarchical extension of the Clustering and Disjoint Principal
Component Analysis proposed by Vichi and Saporta (2009), where the membership
matrices of units and variables in two sequential levels of the corresponding hierarchy
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are linked by the nestedness assumption.
The ultrametricity notion illustrated in this dissertation has a manifold of

applications. One of the most important development of the ultrametric models
presented herein is the definition of the Ultrametric Factor Analysis (UFA). As
already mentioned in Chapter 1 (Section 1.1), Factor Analysis is one of the most
used models to reconstruct relationships among variables via a reduced number
of factors, but is not apt to pinpoint hierarchical structures over them. The idea
we will work on is to define a new structure of the loading matrix Au such that
Σu = AuA′

u + Ψu is an extended ultrametric covariance matrix. UFA will overcome
the limitations of UCM and EUCovS, i.e., the lack of the latent concept quantification,
by identifying a set of hierarchically nested partitions of variables into groups, each
one associated with a factor, and detecting an ultrametric structure. UFA could
also be implemented into a GMM in order to define an ultrametric extension of the
mixture of factor analyzers with the edge of studying different characterizations of a
multidimensional phenomenon in heterogeneous populations and, at the same time,
quantifying its latent dimensions. Another interesting application of the ultrametric
models presented in this thesis, that we would inspect in the future, is their use
into (Gaussian) graphical models (Whittaker, 1990). The latter are very useful to
model the relationships among random variables, especially when their number is
very high, and the introduction of a (strict) extended ultrametric covariance matrix
into these models can tackle the problem of the curse of dimensionality (Bellman,
1957) and the precision matrix, i.e., the inverse of the covariance matrix, estimation.

Finally, all the methodologies presented in this thesis aim at being applicable by
other researchers, hence it is essential to let them available for free. For this reason,
we will develop an R and/or MATLAB package containing all the routines used to
implement the models proposed herein.
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Appendix A

Appendix to Chapter 2
Relationship between RW, RB
and the Cronbach’s α

As shown in Section 2.2, the standardized Cronbach’s α of a variable group Cq

(q = 1, . . . , Q), i.e. αS
q , can be rewritten in terms of the within-concept consistency

of Cq, i.e. W rqq. Furthermore, if we consider two groups of variables Cq and Ch

(h ̸= q) merged together, the total within-concept consistency coefficient W rtot of
Cq ∪Ch (h ̸= q) can be written as a function of the within-concept consistency of the
two groups Cq and Ch, i.e., W rqq and W rhh respectively, and the correlation between
them, i.e. Brqh. As a consequence, the standardized Cronbach’s α of the merged
group Cq ∪ Ch (αS

tot) can in turn be rewritten as a function of the standardized
Cronbach’s α of the two groups Cq and Ch, i.e., αS

q and αS
h respectively, and the

correlation between them. These two relationships are stated and proved as follows.
Let R be a nonnegative correlation matrix of order p. For simplicity, let us

assumes that UCM estimates only two groups, i.e., V̂ is a (p×2) membership matrix
where two groups of variables C1 and C2 are pinpointed. Let us suppose that the
first J1 variables belong to C1 and the remaining p− J1 to C2, so that the variables
which belong to the same group are contiguous in R. Since the hierarchical nature of
UCM, the researcher could be interested in evaluating the consistency of the broader
dimension obtained by merging the two groups C1 and C2, i.e. C1 ∪ C2.

Firstly, we can rewritten the diagonal elements of R̂W estimated by Eq. (2.11)
and the off-diagonal values of R̂B estimated by Eq. (2.14) as follows:

ˆW r11 =

J1∑
j=1

J1∑
l=1
l ̸=j

rjl

J1(J1 − 1) ; ˆW r22 =

p∑
j=J1+1

p∑
l=J1+1

l ̸=j

rjl

(p− J1)(p− J1 − 1) ; ˆBr12 =

J1∑
j=1

p∑
l=J1+1

l ̸=j

rjl

J1(p− J1) .

Thus, the total within-concept consistency coefficient of C1 ∪ C2 turns out to be

ˆW rtot =

p∑
j=1

p∑
l=1
l ̸=j

rjl

p(p− 1) =

p∑
j=1

[ p∑
l=1

rjl − rjj

]
p(p− 1) =

p∑
j=1

p∑
l=1

rjl − p

p(p− 1)
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=

J1∑
j=1

J1∑
l=1

rjl +
p∑

j=J1+1

p∑
l=J1+1

rjl + 2
J1∑

j=1

p∑
l=J1+1

rjl − p

p(p− 1)

=

[ J1∑
j=1

J1∑
l=1

rjl − J1
]

+
[ p∑

j=J1+1

p∑
l=J1+1

rjl − (p− J1)
]

+ 2
J1∑

j=1

p∑
l=J1+1

rjl

p(p− 1)

=

J1∑
j=1

J1∑
l=1
l ̸=j

rjl +
p∑

j=J1+1

p∑
l=J1+1

l ̸=j

rjl + 2
J1∑

j=1

p∑
l=J1+1

rjl

p(p− 1)

= J1(J1 − 1) ˆW r11 + (p− J1)(p− J1 − 1) ˆW r22 + 2 J1(p− J1) ˆBr12
p(p− 1) .

Considering the relationship with the within-concept consistency coefficient defined
in Section 2.2, the standardized Cronbach’s α of C1 ∪ C2 can be rewritten as a
function of α̂S

1 and α̂S
2 and ˆBr12 as follows

α̂S
tot = p ˆW rtot

1 + (p− 1) ˆW rtot
= p

1 + (p− 1) ˆW rtot

1
p(p− 1)

[
J1(J1 − 1) ˆW r11

+ (p− J1)(p− J1 − 1) ˆW r22 + 2 J1(p− J1) ˆBr12
]

= 1
(p− 1)[1 + (p− 1) ˆW rtot]

[
(J1 − 1)[1 + (J1 − 1) ˆW r11] α̂S

1

+ (p− J1 − 1)[1 + (p− J1 − 1) ˆW r22] α̂S
2 + 2 J1(p− J1) ˆBr12

]
.

The above decomposition of ˆW rtot and α̂S
tot can be easily generalized to all pairs of

groups belonging to the hierarchical partition HQ, which is obtained by applying
UCM on R and then computing a row-column permutation such that the variables
belonging to the same group turn out to be contiguous - with p replaced by J1 + J2.
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Appendix B

Appendix to Chapter 4
Maximum likelihood estimates
of the GMMEUCovS covariance
structure

We provide here the detail of the GMMEUCovS covariance structure estimation.
For the compactness of the equations, we substitute Σug to its definition Vg(ΣWg

+
ΣBg

)V′
g − diag(VgΣWg

V′
g) + diag(VgΣVg

V′
g). The following results are based on

Lütkepohl (1996, Chapter 9) and Magnus and Neudecker (2007, Chapters 8 and 9).
The maximum likelihood estimate of ΣVg , g = 1, . . . , G, is obtained by differenti-

ating Eq. (4.18) with respect to ΣVg

∂ℓH(Ŵ, Ψ)
∂ΣVg

= −ng

2
∂

∂ΣVg

[
log(|Σug

|)+tr(Σ−1
ug

Sg)
]

= −ng

2

[
∂ log(|Σug

|)
∂ΣVg

+
∂ tr(Σ−1

ug
Sg)

∂ΣVg

]
.

(A)
∂ log(|Σug

|)
∂ΣVg

= Σ−1
ug

∂Σug

∂ΣVg

= V′
g

[
Σ−1

ug
⊙ Ip

]
Vg, remembering that diag(VgΣVg

V′
g) = VgΣVg

V′
g ⊙ Ip, where ⊙ is the Hadamard product.

(B)
∂ tr(Σ−1

ug
Sg)

∂ΣVg

= −Σ−1
ug

∂Σug

∂ΣVg

SgΣ−1
ug

= −V′
g

[
Σ−1

ug
⊙ Ip

]
SgΣ−1

ug
Vg.

Given the other parameters of Σug
, we equal to zero the partial derivative of

ℓH(Ŵ, Ψ) w.r.t. ΣVg as follows

∂ℓH(Ŵ, Ψ)
∂ΣVg

= 0⇒
∂ log(|Σug

|)
∂ΣVg

+
∂ tr(Σ−1

ug
Sg)

∂ΣVg

= 0

⇒ V̂′
g

[
Σ−1

ug
⊙ Ip

]
V̂g − V̂′

g

[
Σ−1

ug
⊙ Ip

]
SgΣ−1

ug
V̂g = 0

which holds if and only if SgΣ−1
ug

= Ip. Thus,

Sg = Σug
⇒ Sg = V̂g(Σ̂Wg

+ Σ̂Bg
)V̂′

g − diag(V̂gΣ̂Wg
V̂′

g) + diag(V̂gΣVg
V̂′

g)⇒
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diag(V̂gΣVg
V̂′

g) = diag(Sg − V̂gΣ̂Wg
V̂′

g + diag(V̂gΣ̂Wg
V̂′

g)− V̂gΣ̂Bg
V̂′

g)⇒

diag(V̂gΣVg
V̂′

g) = diag(Sg)⇒

(V̂′
gV̂g)−1V̂′

g(V̂gΣVg V̂′
g ⊙ Ip)V̂g(V̂′

gV̂g)−1 = (V̂′
gV̂g)−1V̂′

gdiag(Sg)V̂g(V̂′
gV̂g)−1 ⇒

(V̂′
gV̂g)−1(V̂′

gV̂gΣVg )(V̂′
gV̂g)−1 = (V̂′

gV̂g)−1V̂′
gdiag(Sg)V̂g(V̂′

gV̂g)−1 ⇒
ΣVg (V̂′

gV̂g)−1 = (V̂′
gV̂g)−1V̂′

gdiag(Sg)V̂g(V̂′
gV̂g)−1 ⇒

Σ̂Vg = (V̂′
gV̂g)−1V̂′

gdiag(Sg)V̂g,

where diag(Sg − V̂gΣ̂Wg
V̂′

g + diag(V̂gΣ̂Wg
V̂′

g)− V̂gΣ̂Bg
V̂′

g) = diag(Sg) since the
diagonal of V̂gΣ̂Wg

V̂′
g is equal to the diagonal of diag(V̂gΣ̂Wg

V̂′
g), and the diagonal

of diag(V̂gΣ̂Bg
V̂′

g) is equal to zero.
The maximum likelihood estimate of ΣWg , g = 1, . . . , G, is obtained by differen-

tiating Eq. (4.18) with respect to ΣWg

∂ℓH(Ŵ, Ψ)
∂ΣWg

= −ng

2
∂

∂ΣWg

[
log(|Σug

|)+tr(Σ−1
ug

Sg)
]

= −ng

2

[
∂ log(|Σug

|)
∂ΣWg

+
∂ tr(Σ−1

ug
Sg)

∂ΣWg

]
.

(A)
∂ log(|Σug

|)
∂ΣWg

= Σ−1
ug

∂Σug

∂ΣWg

= V′
gΣ−1

ug
Vg − V′

g

[
Σ−1

ug
⊙ Ip

]
Vg, recalling that

diag(Vg ΣWg
V′

g) = VgΣWg
V′

g ⊙ Ip.

(B)
∂ tr(Σ−1

ug
Sg)

∂ΣWg

= −Σ−1
ug

∂Σug

∂ΣWg

SgΣ−1
ug

= −V′
gΣ−1

ug
SgΣ−1

ug
Vg + V′

g

[
Σ−1

ug
⊙ Ip

]
Sg

Σ−1
ug

Vg.

Given the other parameters of Σug
, we equal to zero the partial derivative of

ℓH(Ŵ, Ψ) w.r.t. ΣWg as follows

∂ℓH(Ŵ, Ψ)
∂ΣWg

= 0⇒
∂ log(|Σug

|)
∂ΣWg

+
∂ tr(Σ−1

ug
Sg)

∂ΣWg

= 0

⇒ V̂′
gΣ−1

ug
V̂g − V̂′

g

[
Σ−1

ug
⊙ Ip

]
V̂g − V̂′

gΣ−1
ug

SgΣ−1
ug

V̂g + V̂′
g

[
Σ−1

ug
⊙ Ip

]
SgΣ−1

ug
V̂g = 0

which holds if and only if SgΣ−1
ug

= Ip. Thus,

Sg = Σug
⇒ Sg = V̂gΣWg

V̂′
g + V̂gΣ̂Bg

V̂′
g − diag(V̂gΣWg

V̂′
g) + diag(V̂gΣ̂Vg

V̂′
g)⇒

V̂gΣWg
V̂′

g − V̂gΣWg
V̂′

g ⊙ Ip = Sg − V̂gΣ̂Bg
V̂′

g − diag(V̂gΣ̂Vg
V̂′

g)⇒

ΣWg
− (V̂′

gV̂g)−1V̂′
g(V̂gΣWg

V̂′
g ⊙ Ip)V̂g(V̂′

gV̂g)−1 = (V̂′
gV̂g)−1V̂′

g

[
Sg − V̂gΣ̂Bg

V̂′
g

− diag(V̂gΣ̂Vg
V̂′

g)
]
V̂g(V̂′

gV̂g)−1 ⇒

V̂′
gV̂gΣWg

V̂′
gV̂g − V̂′

gV̂gΣWg
= V̂′

g

[
Sg − V̂gΣ̂Bg

V̂′
g − diag(V̂gΣ̂Vg

V̂′
g)

]
V̂g ⇒

V̂′
gV̂gV̂′

gV̂gΣWg
− V̂′

gV̂gΣWg
= V̂′

g

[
Sg − V̂gΣ̂Bg

V̂′
g − diag(V̂gΣ̂Vg

V̂′
g)

]
V̂g ⇒

Σ̂Wg = [(V̂′
gV̂g)2 − V̂′

gV̂g]−1diag
[
V̂′

g

(
Sg − diag(V̂gΣ̂Vg

V̂′
g)

)
V̂g

]
.



96

The maximum likelihood estimate of ΣBg , g = 1, . . . , G, is obtained by differenti-
ating Eq. (4.18) with respect to ΣBg

∂ℓH(Ŵ, Ψ)
∂ΣBg

= −ng

2
∂

∂ΣBg

[
log(|Σug

|)+tr(Σ−1
ug

Sg)
]

= −ng

2

[
∂ log(|Σug

|)
∂ΣBg

+
∂ tr(Σ−1

ug
Sg)

∂ΣBg

]
.

(A)
∂ log(|Σug

|)
∂ΣBg

= Σ−1
ug

∂Σug

∂ΣBg

= V′
gΣ−1

ug
Vg.

(B)
∂ tr(Σ−1

ug
Sg)

∂ΣBg

= −Σ−1
ug

∂Σug

∂ΣBg

SgΣ−1
ug

= −V′
gΣ−1

ug
SgΣ−1

ug
Vg.

Given the other parameters of Σug
, we equal to zero the partial derivative of

ℓH(Ŵ, Ψ) w.r.t. ΣBg as follows

∂ℓH(Ŵ, Ψ)
∂ΣBg

= 0⇒
∂ log(|Σug

|)
∂ΣBg

+
∂ tr(Σ−1

ug
Sg)

∂ΣBg

= 0

⇒ V′
gΣ−1

ug
Vg −V′

gΣ−1
ug

SgΣ−1
ug

Vg = 0

which holds if and only if SgΣ−1
ug

= Ip. Thus,

Sg = Σug
⇒ Sg = V̂gΣ̂Wg

V̂′
g + V̂gΣBV̂′

g − diag(V̂gΣ̂Wg
V̂′

g) + diag(V̂gΣ̂Vg
V̂′

g)⇒

V̂gΣBV̂′
g = Sg − V̂gΣ̂Wg

V̂′
g + diag(V̂gΣ̂Wg

V̂′
g)− diag(V̂gΣ̂Vg

V̂′
g)⇒

Σ̃Bg = V̂+
g

[
Sg − V̂gΣ̂Wg

V̂′
g + diag(V̂gΣ̂Wg

V̂′
g)− diag(V̂gΣ̂Vg

V̂′
g)

]
(V̂′

g)+ ⇒

Σ̃Bg = V̂+
g Sg(V̂′

g)+.
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Appendix C

Appendix to Chapter 5
Proofs

In this Appendix the proofs of (5.11) and (5.13) defined in Section 5.3.1 are provided.
Eq. (5.11) can be proved by recalling Yq = XBqVq for q = M, . . . , Q, the trace

additive and invariance under scale permutation properties and constraint (5.6) of
HierDPCA.

Proof.
Q∑

q=M

∥X−YqV′
qBq∥2 +

Q∑
q=M

∥YqV′
qBq∥2 =

Q∑
q=M

(∥X−YqV′
qBq∥2 + ∥YqV′

qBq∥2)

=
Q∑

q=M

{
tr[(X−YqV′

qBq)′(X−YqV′
qBq)] + tr[(YqV′

qBq)′(YqV′
qBq)]

}

=
Q∑

q=M

[
tr(X′X)− tr(X′YqV′

qBq)− tr(BqVqY′
qX) + 2 tr(BqVqY′

qYqV′
qBq)

]

=
Q∑

q=M

[tr(X′X)− tr(X′XBqVqV′
qBq)− tr(BqVqV′

qBqX′X)

+ 2 tr(V′
qBqX′XBqVqV′

qBqBqVq)]

=
Q∑

q=M

tr(X′X) =
Q∑

q=M

∥X∥2 = (Q−M + 1)∥X∥2.

The proof of (5.13) is provided as follows by remembering that the difference
between two nested partitions Vq and Vq−1 is written in (5.12).

Proof.
Q∑

q=1
∥X−YqV′

qBq∥2 =
Q∑

q=1
∥X−YqV′

qBq∥2 + Q ∥X∥2 −Q ∥X∥2

= −
[

Q∑
q=1

(∥X∥2 − ∥X−YqV′
qBq∥2)

]
+ Q ∥X∥2 Eq. (5.11)= −

Q∑
q=1
∥YqV′

qBq∥2 + Q∥X∥2



98

= −
Q−1∑
q=1
∥YqV′

qBq∥2 − ∥YQV′
QBQ∥2 + Q ∥X∥2

= −
Q−1∑
q=1
∥YqV′

qBq∥2 − ∥YQV′
QBQ∥2 + Q (∥X−YQV′

QBQ∥2 + ∥YQV′
QBQ∥2)

= Q ∥X−YQV′
QBQ∥2 −

Q−1∑
q=1
∥YqV′

qBq∥2 + (Q− 1) ∥YQV′
QBQ∥2

= Q ∥X−YQV′
QBQ∥2 − ∥Y1V′

1B1∥2 − ∥Y2V′
2B2∥2 − ...− ∥YQ−1V′

Q−1BQ−1∥2

+ (Q− 1) ∥YQV′
QBQ∥2

= Q ∥X−YQV′
QBQ∥2 + ∥Y2V′

2B2∥2 − ∥Y1V′
1B1∥2 + 2 (∥Y3V′

3B3∥2 − ∥Y2V′
2B2∥2)

+ ... + (Q− 1) (∥YQV′
QBQ∥2 − ∥YQ−1V′

Q−1BQ−1∥2)

= Q ∥X−YQV′
QBQ∥2 +

Q∑
q=2

(q − 1) Id(Vq, Vq−1).
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