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Abstract
In the present paper we propose to rewrite a nonsmooth problem subjected to convex 
constraints as an unconstrained problem. We show that this novel formulation shares 
the same global and local minima with the original constrained problem. Moreover, 
the reformulation can be solved with standard nonsmooth optimization methods if 
we are able to make projections onto the feasible sets. Numerical evidence shows 
that the proposed formulation compares favorably against state-of-art approaches. 
Code can be found at https:// github. com/ jth3g alv/ dfppm.

Keywords Nonsmooth constrained optimization · Derivative-free

1 Introduction

In this paper, we consider the optimization of a nonsmooth function f ∶ ℝ
n
→ ℝ 

over a closed convex set, namely

We assume that f is locally Lipschitz continuous and that first order information is 
unavailable or impractical to obtain.

The aim of the optimization, for nonsmooth problems, is to find Clarke-stationary 
points [6, 9].

(1)min f (x)

s.t. x ∈ X.
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Literature on derivative-free methods for smooth constrained optimization (i.e. 
when f is differentiable even tough derivatives are not available) is wide. Several 
approaches, based on the pattern search methods dating back to [13], have been 
developed for bound and linearly constrained problems in [16] and [17] and more 
general type of constraints in [18]. Other works stem from research presented in [11, 
21] whose line-search approach has been extended for box and linearly constrained 
problems in [20] and [22] while more general constraints are covered in [19]. An 
interesting work in the field of global optimization is [8]. We refer the reader inter-
ested in derivative-based methods, which are not considered in this work, to [7].

The nonsmooth case has seen less development. One of the two major approaches 
that have emerged is represented by Mesh adaptive direct search (MADS) that dates 
back to [3, 4] and that has been later modified in [1, 5]. This method combines a 
dense search with an extreme barrier to deal with the constraints. A second main 
approach, proposed in [10], is instead based on an exact penalty function.

In this case, the feasible set is expressed by a possibly nonsmooth set of inequali-
ties g ∶ ℝ

n
→ ℝ

m and the original problem is replaced by the penalized version, for 
a given 𝜖 > 0,

It can be shown (see Proposition 3.6 in [10]) that, under suitable assumptions, a 
value �∗ exists such that ∀� ∈ (0, �∗] every Clarke-stationary point x̄ of (2) is also a 
stationary point of the original problem. Thus, any algorithm for nonsmooth uncon-
trained optimization can be applied. In [10], however, a linesearch based algorithm 
that employs a dense set of directions alongside the 2n coordinate directions (CS-
DFN) is proposed. This latter reformulation combined with CS-DFN is shown to be 
favorably comparable against state-of-art MADS based software like NOMAD [15].

The value of �∗ is, however, in general unknown and choosing a proper value of 
� can be a difficult task. Setting a wrong value of � can be extremely harmful to the 
performance of the algorithm. For example, if f is unbounded outside the feasible set 
setting too high a value of � can drive the algorithm towards minus infinity. On the 
other hand, too small a value ( < 𝜖∗ ), even if theoretical convergence is assured, can 
yield extremely poor performances because the algorithms may be forced to take 
really small steps near the boundary of the feasible set.

In this work we propose a novel way of treating convex constraints that is not 
based on penalty functions. We assume that the feasible set X is a closed convex set 
and that a projection operator onto the feasible set is available. We do not require X 
to have an analytical expression nor make any other regularity assumptions. How-
ever, we make the assumption that the computational effort needed to compute the 
projection is negligible compared to the evaluation of the objective function. Indeed, 
the only computational cost we consider is the number of evaluations of the objec-
tive function.

The paper is organized as follows. In Sect. 2 we recall some necessary defini-
tions and known results before introducing the proposed reformulation in Sect. 3. 
Then, in Sect.  4, we prove the equivalence between the novel formulation and the 

(2)min
x

f (x) +
1

�

m∑

i=1

max{0, gi(x)}.
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original problem. Some numerical results are given in Sect. 5. In particular, we 
propose a comparison between the exact penalty approach of [10] and the pro-
posed reformulation. We make use of the CS-DFN algorithm, used in [10], for 
both formulations to make a fair comparison. Finally, we give some concluding 
remarks in Sect. 6.

2  Preliminary background

We recall that optimality conditions for nonsmooth problems can be given in 
terms of the Clarke generalized directional derivative [9]. In particular, in the 
unconstrained case, we have that

Definition 1 (Clarke stationarity–unconstrained case) A point x̄ ∈ X is Clarke sta-
tionary w.r.t. problem minx f (x) if

where

is the Clarke generalized directional derivative.

We follow [6] for the treatment of Clarke stationarity for constrained prob-
lems. First, we define the cone of the hyper-tangent directions.

Definition 2 (Hyper-Tangent Cone) A vector d ∈ ℝ
n is said to be a hyper-tangent 

vector to the set X at x̄ ∈ X if there exists 𝜖 > 0 such that

The set of all hyper-tangent vector is called the hyper-tangent cone to X at x̄ and is 
denoted TH

X
(x̄) . For a more detailed treatment we refer the reader to [6]. Figure 6.5 of 

[6] offers a graphical illustration of the hyper-tangent cone.

Then we can give a definition of Clarke-stationary points as expressed by the 
following.

Definition 3 (Clarke stationarity-constrained case) A point x̄ ∈ X is Clarke station-
ary w.r.t. problem minx∈X f (x) if

where

f ◦(x̄;d) ≥ 0 ∀d ∈ ℝ
n,

f ◦(x;d) = lim sup

y → x, t → 0

f (y + td) − f (y)

t
≥ 0

y + tw ∈ X ∀y ∈ X ∩ B(x, �), w ∈ B(d, �), t ∈ (0, �).

f ◦(x̄;d) ≥ 0 ∀d ∈ TH
X
(x̄),
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We will make use of the following result which relates to the Clarke-derivative 
and classical directional derivative in the case of convex functions. For the proof we 
refer the reader to Theorem 3.42 in [14].

Theorem 1 Let f ∶ ℝ
n
→ ℝ be a convex functional which is Lipschitz continuous at 

some x̄ ∈ X . Then the Clarke derivative f at x̄ coincides with the directional deriva-
tive of f at x that is

3  A novel formulation

Generalizing a bit, all the approaches that have been proposed in the literature to 
deal with general constraints, try to steer the search towards the feasible set by add-
ing (maybe in a sequential manner) to the objective function some kind of penalty � , 
which, in its most general form, can be described by

Such function can be a smooth quadratic or an exact nonsmooth penalty or, also, a 
hard barrier that takes +∞ outside the feasible set. The problem is thus rewritten as

where 𝜖 > 0 is a parameter that must be set.
Consider a local minimum of the original problem x∗ . We have that, for some 

neighborhood B(x∗, �),

The strategy of penalty-based approaches is making the penalty large enough (either 
by making � large or by using a hard barrier) so that

and, hence, x∗ is also a local minimum of the penalized problem.
The idea behind the proposed reformulation is, instead, to avoid penalties by 

“assigning” to a point x outside the feasible set the value of the objective function 
computed at its projection �(x) . In this way, we do not ever compute f outside the 

f ◦(x;d) = lim sup

y → x, y ∈ X

t → 0

f (y + td) − f (y)

t
≥ 0.

f ◦(x̄;d) = lim sup

y → x̄, t → 0

f (y + td) − f (y)

t
= lim

t→0

f (x̄ + td) − f (x̄)

t
= f �(x̄;d).

𝜙(x) =

{
0 if x ∈ X

> 0 otherwise.

min
x

P(x;�) = f (x) + ��(x),

f (x∗) ≤ f (x) ∀x ∈ B(x∗, �) ∩ X.

f (x) + p(x) ≥ f (x∗) + p(x∗) = f (x∗), ∀x ∈ B(x∗, �)
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feasible set and we do not need to “correct” f with a penalty for points outside the 
feasible set.

Let � be the projector operator over X defined as

Notice that since X is compact and convex the projection has a unique solution. A 
proof of the uniqueness of the projection for convex sets alongside other proper-
ties of the projection can be found in Proposition 2.1.3 of [7]. One property that 
will be extensively used in the following is the non expansiviness of the projection 
i.e. |�(x) − �(y)| ≤ |x − y| ∀x, y ∈ X . Dealing with non convex sets would require a 
more complex treatment since the projection may not be unique. We leave the study 
of a possible extension to future work.

We can thus define the problem

where each point outside the feasible set assumes the value of its projection. In the 
latter formulation it is guaranteed that no point outside the feasible set can take a 
value lower than some point in X. We have however that all the points that share 
the same projection (consider a ray perpendicular to the constraints) share the same 
function value. To overcome this issue is sufficient to add to the previous formula-
tion a term that penalizes the distance of a point from its projection. We thus pro-
pose to replace the original problem by

where dX(x) = ‖x − �(x)‖ is the distance from x to the feasible set X.
We note also that since the projection operator is continuous we have that f̃  is 

continuous. Moreover, if f is bounded from below on the feasible set X then f̃  is 
bounded on ℝn since f̃ (x) ≥ f (𝜋(x)) ≥ infx∈X f (x) . On the contrary in the penalty 
approach f (x) + 1

�

∑m

i=1
max{0, gi(x)} can be unbounded.

Consider, as a simple example, the problem HS224 from the test suite [26].

The level curves of the original objective function f and of the modified problem f̃  
are shown in Fig. 1.

Notice how the solution to the problem x∗ = (4, 4) becomes an unconstrained 
global minimum in the proposed formulation.

�(x) ∈ argmin
z∈X

‖z − x‖.

min
x

f (�(x))

(3)min
x

f̃ (x) = f (𝜋(x)) + dX(x),

min
x

2x2
1
+ x2

2
− 48x1 − 40x2

s.t. x1 + 3x2 ≥ 0

18 − x1 − 3x2 ≥ 0

x1 + x2 ≥ 0

8 − x1 − x2 ≥ 0

0 ≤ x ≤ 6.
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4  Equivalence of the formulations

In this section, we prove the equivalence between the original constrained prob-
lem (1) and the proposed formulation (3) in terms of both local/global minima 
and stationary points. We also show that by modifying the objective function we 
do not lose Lipschitz continuity so that if f is (locally) Lipschitz f̃  is (locally) 
Lipschitz too. We start with the latter.

Lemma 1 Let f be locally Lipschitz continuous. Then the modified function 
f̃ = f (𝜋(x)) + ‖x − 𝜋(x)‖ is also locally Lipschitz.

Proof Let x0 ∈ ℝ
n . Since f is locally Lipschitz there exists L0 and �0 so that

Now consider f̃  . For every x ∈ B(x0, �0) we have

where we have used the local Lipschitz continuity of f and the non expansiveness 
property of the projection operation. Now, by the triangular inequality we have 
��x0 − �(x0)

�� ≤ ��x0 − x�� + ‖x − �(x)‖ + ���(x) − �(x0)
�� so that

|f (x) − f (x0)| ≤ L0
‖‖x − x0

‖‖ ∀x ∈ B(x0, �0).

�f̃ (x) − f̃ (x0)� = �f (𝜋(x)) + ‖x − 𝜋(x)‖ − f (𝜋(x0)) −
��x0 − 𝜋(x0)

���
≤ �f (𝜋(x)) − f (𝜋(x0))� + �‖x − 𝜋(x)‖ − ��x0 − 𝜋(x0)

���
≤ L0

��𝜋(x) − 𝜋(x0)
�� + �‖x − 𝜋(x)‖ − ��x0 − 𝜋(x0)

���
≤ L0

��x − x0
�� + �‖x − 𝜋(x)‖ − ��x0 − 𝜋(x0)

���,

��x0 − �(x0)
�� − ‖x − �(x)‖ ≤ ��x0 − x�� + ���(x) − �(x0)

��
≤ 2��x0 − x��.
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Fig. 1  Level curves of f (left) and f̃  (right) for the two-variables problem HS224. The color bar indicates 
the objective function values. The feasible set is represented by the area shadowed in gray. The solution 
is indicated by the red dot
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The same reasoning applies to the opposite sign −��x0 − �(x0)
�� + ‖x − �(x)‖ so that 

�‖x − �(x)‖ − ��x − �(x0)
��� ≤ 2��x0 − x�� and we can conclude that

  ◻

We now consider the relationship between the global and local minimum of 
the two formulations. We first prove that each global (local) minimum of the 
original problem is also a global (local) minimum of the proposed formulation in 
Proposition 1 and 2.

Proposition 1 Every global minimum of problem (1) is also a global minimum for 
problem (3).

Proof Let x∗ ∈ X be a global minimum for problem (1). Suppose by contradiction 
that there exists x̄ ∈ ℝ

n such that f̃ (x̄) < f̃ (x∗) . Then

Thus, we have found a point y = 𝜋(x̄) ∈ X s.t.

which is a contradiction.   ◻

Proposition 2 Every local minimum of problem (1) is also a local minimum for 
problem (3).

Proof Let x∗ ∈ X be a local minimum for problem (1). Then there exists a ball 
B(x∗, �) with 𝜌 > 0 s.t.

Let x̄ ∈ B(x∗, 𝜌) and suppose by contradiction that f̃ (x̄) < f̃ (x∗) . Thus we have

Let y = 𝜋(x̄) ∈ X . We have, by the properties of the projection operator that

so that y ∈ B(x∗, �) ∩ X. Moreover, it holds that

which is a contradiction.   ◻

|f̃ (x) − f̃ (x0)| ≤ (2 + L0)
‖‖x − x0

‖‖ ∀x ∈ B(x0, 𝛿0).

f̃ (x̄) = f (𝜋(x̄)) + ‖x̄ − 𝜋(x̄)‖ < f̃ (x∗) = f (𝜋(x∗)) + ‖x∗ − 𝜋(x∗)‖ = f (x∗).

f (y) < f (x∗) − ‖x̄ − y‖ < f (x∗),

f (x∗) ≤ f (x) ∀x ∈ B(x∗, �) ∩ X.

f̃ (x̄) = f (𝜋(x̄)) + ‖x̄ − 𝜋(x̄)‖ < f̃ (x∗) = f (𝜋(x∗)) + ‖x∗ − 𝜋(x∗)‖ = f (x∗).

‖y − 𝜋(x∗)‖ = ‖y − x∗‖ ≤ ‖x̄ − x∗‖ ≤ 𝜌,

f (y) < f (x∗) − ‖x̄ − y‖ < f (x∗),
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Furthermore, since f and f̃  take the same values on X it holds that any global 
(local) minimum of the modified problem which belongs to the feasible set is also o 
global (local) minimum of the original problem.

Proposition 3 Every global (local) minimum x ∈ X for problem (3) is also a global 
(local) minimum of problem (1).

We now show, in Lemma 2, that no minimal point does exist outside the fea-
sible region X so that we have a perfect equivalence between global and local 
minima in the two formulation as remarked in Corollary 1

Lemma 2 Suppose x̂ ∈ ℝ
n ⧵ X then x̂ is not a global or local minimum for problem 

(3). In particular, d = 𝜋(x̂) − x̂ is a descent direction for f̃  at x̂.

Proof We will prove the thesis by showing that there exists a descent direction at x̂ 
and hence x̂ cannot be a minimum.

Consider the projection of x̂ onto the feasible set x̄ = 𝜋(x̂) . Let d = x̄ − x̂ and con-
sider a point x̂ + 𝛼d with � ∈ (0, 1] . For every y we have

where the latter holds because x̄ = 𝜋(x̂) . Since the projection has a unique solution, 
from (4) we conclude that x̄ = 𝜋(x̂) = 𝜋(x̂ + 𝛼d) ∀𝛼 ∈ [0, 1] . Thus we have that

so that d is a descent direction at x̂ .   ◻

By putting together Proposition 1, 2, 3 and Lemma 2 we establish the per-
fect equivalence of the two formulations in terms of local and global minima as 
expressed by the following.

Corollary 1 Every global (local) minimum of problem (1) is also a global (local) 
minimum of problem (3) and reciprocally.

To conclude the discussion we investigate on the relationship between station-
ary points. In particular, it is interesting to check if Clarke-stationary points of 
the modified problem are also Clarke-stationary for the original problem.

We are able to prove the latter under the following assumption.

(4)
(x̂ + 𝛼d − x̄)T (y − x̄) = (x̂ + 𝛼(x̄ − x̂) − x̄)T (y − x̄)

= (1 − 𝛼)(x̂ − x̄)(y − x̄) ≤ 0,

f̃ (x̂) − f̃ (x̂ + 𝛼d) = f (x̄) + ‖x̂ − x̄‖ − f (𝜋(x̂ + 𝛼d)) − ‖x̂ + 𝛼d − 𝜋(x̂ + 𝛼d)‖
= f (x̄) + ‖x̂ − x̄‖ − f (x̄) − ‖x̂ + 𝛼(x̄ − x̂) − x̄‖
= ‖x̂ − x̄‖ − (1 − 𝛼)‖x̂ − x̄‖
= 𝛼‖x̂ − x̄‖
> 0,
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Assumption 1 We assume that X is such that

for every hyper-tangent direction TH
X
(x̄) and every feasible point x̄ ∈ X.

We start by showing that any Clarke-stationary point of the modified problem 
must belong the feasible set.

Lemma 3 Let x̄ be a Clarke-stationary point of problem (3). Then x̄ ∈ X.

Proof Since x̄ is Clarke-stationary we have, by definition, that

In particular the latter must hold also for direction d = 𝜋(x̄) − x̄.
Now, let us suppose by contradiction that x ∉ X . Letting d̂ = 𝜋(y) − y we can 

write

where we have used, that d̂ is a descent direction for f̃  at y (Lemma 2) for the first 
term and that f̃  is Lipschitz continuous (Lemma 1) for the second one.

Now for every y → x̄ we have that ���d − d̂
��� = ‖𝜋(x̄) − x̄ − 𝜋(y) + y‖ → 0 and that 

‖𝜋(y) − y‖ → ‖𝜋(x̄) − x̄‖ = M > 0 since x̄ ∉ X . Thus we have that

which contradicts (5).
  ◻

Proposition 4 Let x̄ be a Clarke-stationary point of problem (3). Then, under 
Assumption 1, x̄ is also a Clarke-stationary point of problem (1).

Proof Let x̄ be a Clarke-stationary point for problem (3). By Lemma 3 it must be 
that x̄ ∈ X . Then from Definition 3 we have

for every hyper-tangent direction d ∈ TH
X
(x̄).

We can calculate

lim sup
y→x̄, t→0

‖‖‖‖
𝜋(y + td) − 𝜋(y)

t
− d

‖‖‖‖
= 0,

(5)f̃ ◦(x̄;d) = lim sup
y→x̄, t→0

f̃ (y + td) − f̃ (y)

t
≥ 0, ∀d ∈ ℝ

n.

f̃ (y + td) − f̃ (y)

t
=

f̃ (y + td̂) − f̃ (y)

t
+

f̃ (y + td) − f̃ (y + td̂)

t

≤ −‖𝜋(y) − y‖ + L̃
���d − d̂

���,

f̃ (y + td) − f̃ (y)

t
≤ −M < 0,

f̃ ◦(x̄;d) ≥ 0,
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Since dX is a convex function we have, by Theorem 1, that d◦
X
= d�

X
 . Thus

Hence

Thus, because of Assumption 1, we conclude that

  ◻

5  Numerical experiments

In the following, we propose some numerical experiments to investigate advantages 
of the proposed formulation comparing it against the exact penalty approach of [10]. 
To make a fair comparison we used the same algorithm to solve both formulations. 
In particular, we used the CS-DFN algorithm proposed in [10]. In the following, 
we call solver an algorithm applied to a particular formulation of a given problem. 
So we compare the exact penalty solver, i.e. the CS-DFN algorithm applied to the 
penalized formulation, and the Projection-based Penalty Method (PPM) solver, i.e. 
the CS-DFN algorithm applied to the proposed formulation.

Test problems We set up a benchmark composed of 28 problems belonging to 
different classes: general nonlinear functions subjected to (1) non-degenerate linear 
constraints from the collection [12, 26]; (2) degenerate linear constraints from [2]; 
(3) general convex constraints again from [12, 26]; and minmax programs under lin-
ear constraints from [23]. The problems are listed in Table 1.

Performance metric To compare the results we employ data profiles. Data profile 
for benchmarking derivative free algorithms have been proposed in [24]. They take into 

0 ≤ f̃ ◦(x̄;d) = lim sup
y→x̄, t→0

f̃ (y + td) − f̃ (y)

t

≤ lim sup
y→x̄, t→0

f (𝜋(y + td)) − f (𝜋(y))

t
+ lim sup

y→x̄, t→0

dX(y + td) − dX(y)

t

lim sup
y→x̄, t→0

dX(y + td) − dX(y)

t
= lim

t→0

dX(x̄ + td) − dX(x̄)

t
= 0.

0 ≤ lim sup
y→x̄, t→0

f (𝜋(y + td)) − f (𝜋(y))

t

≤ lim sup
y→x̄, t→0

f (𝜋(y) + td) − f (𝜋(y))

t
+ lim sup

y→x̄, t→0

f (𝜋(y + td)) − f (𝜋(y) + td)

t

≤ lim sup
y→x̄, t→0, y∈X

f (y + td) − f (y)

t
+ L lim sup

y→x̄, t→0

‖𝜋(y + td) − 𝜋(y) − td‖
t

≤ f ◦(x̄;d) + L lim sup
y→x̄, t→0

����
𝜋(y + td) − 𝜋(y)

t
− d

����
.

f ◦(x̄;d) ≥ 0.
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account the case of unconstrained problems. Consider a test set of P problems. We fix a 
tolerance parameter � and we say that a problem has been solved by if

where fL is an accurate estimate of the minimum of the problem (in our benchmark 
we can set fL = f ∗ since f ∗ is available). Note that, here, function values are referred 
to the original problem even if the solver employs a different formulation.

Then for each solver s we define its data profile as

(6)f (x) − fL ≤ �
(
f (x0) − fL

)
,

ds(�) =
1

|P|

|||||

{
p ∈ P s.t.

nf (�)

np + 1
≤ �

}|||||
,

Table 1  Benchmark problems details

Problem n m Type

HS24 2 5 Smooth with linear constraints from [12, 26]
HS36 3 7
HS37 3 8
HS44 4 10
HS86 5 15
HS224 2 5
HS231 2 2
HS232 2 5
HS250 3 8
HS331 2 4
AS6(n=6) 6 12 Smooth with linear degenerate constraints from [2]
AS6(n=7) 7 14
AS6(n=8) 8 16
AS7(n=6) 6 12
AS7(n=7) 7 14
AS7(n=8) 8 16
HS22 2 2 Smooth with convex non linear from [12, 26]
HS29 3 1
HS43 4 3
HS65 3 7
HS66 3 8
HS270 5 5
MAD1 2 1 Minmax with linear constraints [23]
MAD2 2 1
MAD4 2 1
MAD5 2 1
PENTAGON 6 15
WONG2 10 3
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where np is the number of variables of problem p and nf (�) is the number of function 
evaluations needed to satisfy the convergence criterion (6).

Data profiles are extracted for different values of � to compare the solvers against 
different balances of speed versus accuracy.

In the constrained case, however, the proposed scheme is not readily applicable. 
We propose to modify condition (6) by considering also the constraint violation as 
follows:

where � ∈ (0, 1) is a new parameter which balances function value and constraint 
violation.

Note that, by violating the constraints, the function values can be lower than the 
f ∗ . Naturally, by choosing a high value for � this situation can be arbitrarily penal-
ized as long as f does not go to −∞ . These cases must be removed before computing 
the profiles.

We extract different data profiles for different values of both � and � . In particular 
we extract the curves for �−k with k ∈ {1, 3, 5, 7} and � ∈ {0.9, 0.99}

Solvers details As already mentioned for both solvers we employ the CS-DFN 
proposed in [10]. We report the pseudo-code of the method in Algorithm 1.

(7)(1 − �)(f (x) − fL) + �‖‖g+(x)‖‖ ≤ �(1 − �)(f (x0) − fL) + ��‖‖g+(x0)‖‖,
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We set � = 0.5, � = 10−6, � = 10−6 for Algorithm  1. The dense sequence of 
direction {dk} was obtained by the implementation available at [25] of the Sobol 
quasi-random generation proposed in [27].

For the exact penalty solver we employ the adaptive strategy for tuning � which is 
proposed in [10] and is deemed to be a better choice.

The implementation of the algorithms, alongside the code needed to reproduce 
all the following experiments is available as python code at https:// github. com/ jth3g 
alv/ dfppm.

https://github.com/jth3galv/dfppm
https://github.com/jth3galv/dfppm
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5.1  A first comparison

We start by comparing the PPM solver against the exact penalty. We let both solvers 
run for up to 104 function evaluations and then we extract the data profiles, which 
are reported in Fig. 2. From the plots we can see that the PPM solver enjoys gener-
ally better performance both in terms of speed and robustness (number of problems 
eventually solved). We note however that neither solver manages to solve more than 
the 65% of the test problems within the budget of function evaluations when a rela-
tively high precision ( � = 10−7 ) is required.

5.2  A parametrization

In this section, we introduce a scale factor � that controls how much to penalize 
points outside the feasible region. Namely we modify our formulation as

To understand the effect of � we start with a qualitative analysis. In Fig. 3 we show 
the iterates of the algorithm when run on the same problem with different values of 
�.

From Fig. 3 we can see that the iterates for greater values of � stay closer to the 
feasible set while for small values of � the algorithm is allowed to stay far from it.

To understand whether staying closer to the feasible set has a good or bad effect 
on the overall optimization process we measure the performance on the solver for 
different values of � . Namely we try � ∈ {0.1, 1, 10, 100} . We use the same setup of 
the previous experiments. In Fig. 4 we give the data profiles for the different solv-
ers (we include, for later reference, another configuration (� = 10, � = 2) which is 
explained later in the manuscript).

From Fig. 4 we can see that choosing a high value of � yields good performances 
when low precision is required although they quickly lessen for higher values of � . 
For instance for � = 10−7, � = 0.99 the algorithm with � = 100 manages to satisfy 
the convergence criterion only in roughly 40% of the test problems. The opposite is 
true for small values of � . The algorithm is generally slower but can achieve very 
good solutions if a greater number of function evaluations is allowed.

It is, thus, natural to ask if employing an adaptive strategy for � may be advan-
tageous. For example, one could start with � set to a large number and gradually 
decrease it to get to accurate solutions.

Coming up with a good schedule for � that works well for all problems can be a 
hard task. However, the CS-DFN algorithm offers a good way to understand in what 
regime the algorithm is working by looking at the length of the steps that the algo-
rithm takes at each iteration. We thus propose to set the value of � as a function of 
the set length �k . More precisely we set

In this way, at the beginning of the algorithm we can start with a large value of �0 
and then let it decreasing as the algorithm takes smaller steps.

min
x

f (�(x)) + �‖x − �(x)‖.

(8)�k+1 = ��k.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2  Data profiles for the PPM solver and the exact penalty 
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We found, by manually tuning, that good performances can be obtained by setting 
�0 = 10, � = 2 although other configurations perform similarly well. As we can see, 
again in Fig. 4, this configuration performs almost equally well when low or high 
precision is required. Moreover, notice that when high precision is required we go 
from less than 70% of solved problems to more than 90%.

5.3  Final comparison

To end the discussion we propose a final comparison of the PPM solver, in its 
parameterized version, equipped with the adaptive strategy for tuning � against the 
exact penalty approach. The results are reported in Fig. 5.

We can see that the PPM solver enjoys better performance for every threshold of 
accuracy although the exact penalty can be faster for some problems when a rela-
tively low precision is required. We note, furthermore, that the exact penalty fails to 
reach accurate solutions for a large portion of the test problems whether, as already 
noticed, the PPM solver manages to reach more than the 90% of solved problems 
even when high precision is required. We also report, for completeness, in Table 2 
the distance of the objective function from the optimum value and the constraint 
violation after the total budget of function evaluations has been used.

6  Conclusion

In this work we proposed to rewrite a nonsmooth optimization problem subjected to 
convex constraints as an unconstrained parameter-free problem. Such formulation is 
proven to be equivalent to the original problem, in terms of global and local minima. 
Furthermore we were able to prove, under suitable assumptions, that any Clarke-
stationary point of the proposed formulation is also a Clarke-stationary point of the 
original problem. The formulation can be solved by any optimization algorithm for 
nonsmooth optimization.
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Fig. 3  Iterates (in red) of CS-DFN for � = 0.1 (left) and � = 10 (right) for problem HS224. The feasible 
set is in gray, the initial point in green. Each dot is obtained after a search along the 2n coordinate direc-
tions and possibly a direction from the dense sequence
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4  Data profiles for different value of the parameter �.



50 G. Galvan et al.

1 3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5  Data profiles for the PPM and exact penalty solvers
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We compared the proposed formulation against a state-of-art approach for con-
strained nonsmooth optimization. In particular we compared it against the exact penalty 
method. We used the same solver that is shown to deliver state-of-art performances for 
the penalized problem to solve the proposed formulation. The results clearly show the 
advantages of the proposed formulation.

Future work will be devoted to (1) handle a mix convex and non-convex constraints 
by combining the proposed formulation with an exact penalty to deal with the non 
convex part of the constraints and (2) to study cases where the projection operation is 
expensive so that a truncated projection is to be employed.

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE 
Agreement.

Table 2  Details for the PPM and 
exact penalty solvers after the 
maximum budget of function 
evaluations have been used: �f ∗ 
is the difference between the 
final objective function f and 
the minimum value f ∗ , ‖g+‖ 
is the norm of the constraints 
violations

Problem PPM ( �
0
= 10 , � = 2) Exact penalty

�f ∗ ‖g+‖ �f ∗ ‖g+‖

HS36 4.03e-06 0.00e+00 1.32e+02 0.00e+00
HS37 1.02e-08 0.00e+00 2.40e+01 0.00e+00
HS44 2.88e-12 0.00e+00 0.00e+00 0.00e+00
HS86 8.27e-08 0.00e+00 3.58e+00 0.00e+00
HS224 7.87e-10 0.00e+00 1.47e+00 0.00e+00
HS231 5.52e-11 0.00e+00 5.52e-11 0.00e+00
HS232 9.23e-13 0.00e+00 4.44e-16 0.00e+00
HS250 3.99e-10 0.00e+00 1.32e+02 0.00e+00
HS331 −1.44e-05 0.00e+00 −1.44e-05 0.00e+00
AS6(n=6) 9.62e-29 0.00e+00 1.37e-28 0.00e+00
AS6(n=7) 7.18e-29 0.00e+00 1.04e-28 0.00e+00
AS6(n=8) 1.32e-28 0.00e+00 1.10e-28 0.00e+00
AS7(n=6) 1.49e-20 0.00e+00 4.86e-29 0.00e+00
AS7(n=7) 2.95e-21 0.00e+00 7.00e-29 0.00e+00
AS7(n=8) 5.89e-21 0.00e+00 2.54e-29 0.00e+00
HS22 4.71e-14 0.00e+00 7.06e-09 6.66e-15
HS29 6.22e-13 0.00e+00 5.84e+00 0.00e+00
HS43 1.08e-12 1.22e-15 2.13e+01 0.00e+00
HS65 −3.53e-07 0.00e+00 2.77e-01 0.00e+00
HS66 1.04e-10 0.00e+00 1.43e-02 0.00e+00
HS270 −3.55e-15 0.00e+00 1.00e+00 0.00e+00
MAD1 3.90e-09 7.22e-16 1.38e-01 0.00e+00
MAD2 −2.99e-09 2.41e-10 6.51e-02 0.00e+00
MAD4 3.89e-09 0.00e+00 7.30e-02 0.00e+00
MAD5 −4.62e-09 0.00e+00 2.27e-02 0.00e+00
PENTAGON 4.53e-02 0.00e+00 1.88e-01 0.00e+00
WONG2 6.27e-01 1.78e-15 4.00e+00 0.00e+00
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