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Abstract. We study the quasi-static limit for the L∞ entropy weak so-
lution of scalar one-dimensional hyperbolic equations with strictly con-
cave or convex flux and time dependent boundary conditions. The quasi-
stationary profile evolves with the quasi-static equation, whose entropy
solution is determined by the stationary profile corresponding to the
boundary data at a given time.
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1. Introduction

The term quasi-static evolution refers to dynamics driven by external boundary
conditions or forces that change in a time scale much longer than the typical
time scale of the convergence to stationary state of the dynamics. In the time
scale of the changes of the exterior conditions the system is very close to
the corresponding stationary state. This ideal evolutions are fundamental in
Thermodynamics and in many other situations. We are interested in studying
dynamics where the corresponding quasi-stationary state is of non-equilibrium,
i.e. it presents non-vanishing currents of conserved quantities.

In a companion article [1] we study the quasi-static limit for the one-
dimensional open asymmetric simple exclusion process (ASEP). The symmet-
ric case was studied in [2]. This is a dynamics where the stationary non-
equilibrium states are well studied [3–5]. The macroscopic equation for the
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ASEP is given by the traffic flow equation on the one-dimensional finite inter-
val [0, 1]:

∂tu + ∂xJ (u) = 0, (1.1)

with the flux J(u) = u(1 − u), with time dependent boundary conditions
u(t, 0) = ρ−(t), u(t, 1) = ρ+(t), resulting from the interaction with external
reservoirs. Notice that, after the linear transformation v = 1 − 2u, (1.1) is
equivalent to Burger’s equation ∂tv + ∂x(v2

2 ) = 0.
For time independent boundary conditions and a special choice of the

dynamics of the reservoirs for the open ASEP, equation (1.1) is obtained as
hydrodynamic limit in [6]. More precisely the hydrodynamic limit generates
the L∞ entropy weak solution of (1.1) in the sense of [7].

Let us consider now the situation when the boundary conditions change in
a slower time scale: for ε > 0 small, consider for (1.1) the boundary conditions
u(t, 0) = ρ−(εt), u(t, 1) = ρ+(εt). In order to see the effect of the changes in
the boundaries, we need to look at the evolution in this time scale, i.e. defining
uε(t, x) = u(ε−1t, x), it will satisfy the equation{

ε∂tu
ε + ∂xJ (uε) = 0, x ∈ (0, 1), t > 0

uε(t, 0) = ρ−(t), uε(t, 1) = ρ+(t), uε(0, x) = u0(x).
(1.2)

The main result in this article concerns the convergence of uε to the entropy
weak solution of the quasi-static equation (see section 3.1 for the definition)

∂xJ(u) = 0, u(t, 0) = ρ−(t), u(t, 1) = ρ+(t). (1.3)

It turns out that such solutions can only achieve two values with at most one
upward discontinuity (shock) in the interior of the interval [0, 1], so they are
necessarily of bounded variation (see Proposition 3.1). Outside the critical line
{ρ−(t) + ρ+(t) = 1, ρ−(t) < 1/2} the solution is unique and constant in space
(see Proposition 3.2). On the other hand on the critical line there are infinitely
many entropy solutions, corresponding to different position of the single shock,
associated to the same value of the current. Consequently we can prove the
convergence of uε to the unique quasi-static solution of the quasi-static equa-
tion only if (ρ−(t), ρ+(t)) remains outside the critical line for almost every t
(see Theorem 3.5). On the critical line we can only prove the convergence to
a measure-valued solution (cf. Remark 4.4). In all cases the quasi-stationary
current J (t) is constant in space, and its value is determined by a variational
problem (cf. (3.10)): the entropy quasi-stationary solution minimize J(ρ) when
ρ−(t) < ρ+(t) (drift up-hill) and maximize it when ρ−(t) � ρ+(t) (drift down-
hill).

Since the ideas contained to this article do not depend on the specific
choice of the flux J , we will expose our results for a generic scalar equation
(1.1) with J(u) strictly convex or concave and J(0) = 0 = J(u1) with for some
u1 > 0. Without losing generality we can set u1 = 1 and J(u) non-negative
and strictly concave.
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2. A scalar hyperbolic equation with boundary conditions

Consider the following initial–boundary problem for a scalar equation on the
one-dimensional finite interval [0, 1]⎧⎪⎨

⎪⎩
∂tv(t, x) + ∂xJ(v(t, x)) = 0, t > 0, x ∈ (0, 1),

v(t, 0) = ρ−(t), v(t, 1) = ρ+(t), t > 0,

v(0, x) = v0(x), x ∈ (0, 1),
(2.1)

where ρ±(t) ∈ L∞(R+) and v0(x) ∈ L∞([0, 1]). Assume that

J ∈ C2(R), J ′′ < 0, J(0) = J(1) = 0. (2.2)

Also assume that the boundary and initial data are bounded: ρ±(t) ∈ [0, 1]
for all t > 0 and v0(x) ∈ [0, 1] for almost all x ∈ [0, 1]. The solution v ∈
L∞(R+ × [0, 1]) is intended in the weak sense: for any φ ∈ C∞

0 (R × (0, 1)),∫ ∞

0

∫ 1

0

[
v∂tφ + J(v)∂xφ

]
dx dt +

∫ 1

0

v0(x)φ(0, x)dx = 0. (2.3)

Furthermore, u satisfies the entropy inequality: for any ϕ ∈ C∞
0 (R × (0, 1))

such that ϕ � 0,∫ ∞

0

∫ 1

0

[
S(v)∂tϕ + Q(v)∂xϕ

]
dx dt +

∫ 1

0

S(v0(x))ϕ(0, x)dx � 0, (2.4)

where (S,Q) is any pairs of functions such that

S,Q ∈ C2(R), S′′ � 0, Q′ = J ′S′. (2.5)

A pair of functions (S,Q) that satisfies (2.5) is called a Lax entropy–entropy
flux pair associated to (2.1). Observe that (2.4) implies the Rankine–Hugoniot
jump condition for (2.1): inside the interval eventual discontinuities must be
upwards shocks.

Notice that discontinuities can appear at the boundaries. The boundary
conditions in (2.1) are satisfied in the following sense. Assume for the moment
that v(t, ·) is of bounded variation for each t, so that the limits

v−(t) = lim
x→0+

v(t, x), v+(t) = lim
x→1−

v(t, x)

are well-defined. Then the Bardos–LeRoux–Nédélec boundary conditions [8]
of the entropy solution v reads for all t > 0,

sign(v−(t) − ρ−(t))
[
J(v−(t)) − J(k)

]
� 0 (2.6)

for all k ∈ I[v−(t), ρ−(t)] and

sign(v+(t) − ρ+(t))
[
J(v+(t)) − J(k)

]
� 0 (2.7)

for all k ∈ I[v+(t), ρ+(t)], where I[a, b] denotes the closed interval with ex-
tremes given by a and b.

Otto in [7] extended the characterization of boundary conditions to gen-
eral entropy solutions v ∈ L∞ by the use of boundary entropy–entropy flux pair.
A pair of two-variable functions (S,Q) is called a boundary entropy–entropy
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flux pair if S, Q ∈ C2(R2), (S,Q)(·, w) is a entropy–entropy flux pair for each
w ∈ R and

S(w,w) = Q(w,w) = ∂vS(v, w)|v=w = 0, ∀ w ∈ R. (2.8)

The boundary conditions in (2.1) are then given by

esslim
r→0+

∫ ∞

0

Q(v(t, r), ρ−(t))β(t)dt � 0,

esslim
r→0+

∫ ∞

0

Q(v(t, 1 − r), ρ+(t))β(t)dt � 0,

(2.9)

for any boundary flux Q and β ∈ C0(R) such that β � 0. Later on it has been
proven that entropy solution of (2.1) has strong traces at the boundaries even
for initial condition in L∞ (cf. [9–11]), so that the Bardos–LeRoux–Nédélec
boundary conditions still hold. Nevertheless, boundary entropy–entropy flux
pairs are useful in our proof of the quasi-static limit.

The entropy solution v of (2.1) introduced above can be obtained through
the viscous approximation. For δ > 0, let vδ = vδ(t, x) be the classical solution
of the viscous problem{

∂tv
δ + ∂xJ(vδ) = δ∂xxvδ, t > 0, x ∈ (0, 1),

vδ(·, 0) = ρ−, vδ(·, 1) = ρ+, vδ(0, ·) = v0,δ,
(2.10)

where the mollified initial value v0,δ ∈ C∞([0, 1]) satisfies that

lim
δ→0+

∫ 1

0

|v0,δ(x) − v0(x)|dx = 0 (2.11)

and the compatibility conditions

v0,δ(0, 0) = ρ−(0), v0,δ(0, 1) = ρ+(0). (2.12)

By [12, Theorem 8.20], vδ → v in C([0, T ], L1[0, 1]) for each T > 0.

3. Quasi-static evolution

3.1. The quasi-static equation

For ε > 0, let uε ∈ L∞(R+ × [0, 1]) be the entropy solution of{
ε∂tu

ε + ∂xJ(uε) = 0, t > 0, x ∈ (0, 1),

uε(t, 0) = ρ−(t), uε(t, 1) = ρ+(t), uε(0, x) = u0(x),
(3.1)

in the sense of (2.3), (2.4) and (2.9).
Our aim is to prove that, as ε → 0, the entropy solution uε of (3.1)

converge to some u ∈ L∞ that is the entropy solution of the quasi-static
conservation law

∂xJ(u) = 0, u(t, 0) = ρ−(t), u(t, 1) = ρ+(t). (3.2)

We assume now that ρ±(t) ∈ C1(R+). There is a physical reason for such
assumption, as this macroscopic changes at the boundaries should be slow
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and smooth. Also we need such condition in the proof of the quasi-static limit
(see proof of Proposition 4.2).

The entropy solution of the quasi-static problem (3.2) is defined as a
function u ∈ L∞([0,+∞)×[0, 1]) such that, for any ϕ ∈ C∞

0 ((0,+∞)×(0, 1)),∫ ∞

0

∫ 1

0

J(u)∂xϕdx dt = 0. (3.3)

Furthermore for a flux function Q associated to a convex entropy S,∫ ∞

0

∫ 1

0

Q(u)∂xϕdx dt � 0, ∀ϕ ∈ C∞
0 ((0,+∞) × (0, 1)), ϕ � 0, (3.4)

while the boundary conditions are satisfied in the same sense as in (2.9) with re-
spect to a boundary entropy flux Q(v, w). Notice the difference with respect to
(2.4): quasi-static solutions are determined by the boundary conditions ρ±(t),
there is no need to specify an initial condition.

Observe from (2.2) that the current function J reaches its maximum at
some unique m ∈ (0, 1). Moreover, for any y ∈ [0, J(m)] the equation J(u) = y
has two solutions: u1(y) ∈ [0,m] and u2(y) ∈ [m, 1].

Proposition 3.1. Let u(t, x) be L∞ entropy solution of (3.2). Then there exists
z1(t) ∈ [0,m], z2(t) ∈ [m, 1] such that J(z1(t)) = J(z2(t)) and

u(t, x) ∈ {z1(t), z2(t)}, (t, x) − a.s. (3.5)

Furthermore, or u(t, x) is a.s. constant in x ∈ (0, 1) for almost every t, or there
is at most one upward jump from z1(t) to z2(t) inside (0, 1). In particular u(t, ·)
is of bounded variation for a.e. t.

Proof. Since u(t, x) solves ∂xJ(u) = 0 in the weak sense, there exists a bounded
function J (t) such that J(u(t, x)) = J (t) almost surely in (t, x). Due to (2.2),
we can find z1(t) � m � z2(t) such that J(z1(t)) = J(z2(t)) = J (t), and (3.5)
thus follows.

The entropy condition (3.4) yields that ∂xQ(u(t, x)) is negative in the
sense of distribution. Observe that for any z1 ∈ [0,m], z2 ∈ [m, 1] s.t. J(z1) =
J(z2) = J0 ∈ [0, J(m)],

Q(z1) − Q(z2) =
∫ z2

z1

Q′(u)du =
∫ m

z1

S′(u)J ′(u)du +
∫ z2

m

S′(u)J ′(u)du

=
∫ J(m)

J0

S′(u1(y))dy +
∫ J0

J(m)

S′(u2(y))dy

= −
∫ J(m)

J0

∫ u2(y)

u1(y)

S′′(v)dv dy � 0,

as S is convex. Hence, only upward jumps from z1(t) to z2(t) can decrease the
entropy flux Q(u(t, x)). This implies that we can have at most one such jump
inside (0, 1). �

Since, by Proposition 3.1, entropy solution must have bounded variation,
then the boundary conditions are satified in the Bardos–LeRoux–Nédélec sense
given by (2.6) and (2.7).
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For u ∈ [0, 1]\{m}, let u∗ ∈ [0, 1]\{m} be such that J(u∗) = J(u).
Furthermore we fix u∗ = m for u = m.

Define the critical segment

Θ = {(z, z∗) ∈ [0, 1]2; z < m}. (3.6)

The entropy solution of (3.2) is unique outside Θ and it can be calculated
explicitly as below.

Proposition 3.2. Suppose that (ρ−(t), ρ+(t)) /∈ Θ for almost every t � 0. Then
(3.2) has a unique entropy solution u(t, x) given by

u(t, x) =

⎧⎪⎨
⎪⎩

ρ−(t), if ρ−(t) < m, ρ+(t) < ρ∗
−(t),

ρ+(t), if ρ+(t) > m, ρ−(t) > ρ∗
+(t),

m, if ρ−(t) � m, ρ+(t) � m.

(3.7)

Proof. We have to specify z1(t) through the boundary values ρ±(t). From the
argument above, u(t, ·) has bounded total variation for each t, hence

u−(t) = lim
x→0+

u(t, x), u+(t) = lim
x→0−

u(t, x) (3.8)

are well-defined. Furthermore, u±(t) ∈ {z1(t), z∗
1(t)} and u−(t) � u+(t). Rewrite

(2.6) and (2.7) explicitly as

ρ−(t) < m ⇒ u−(t) = ρ− or u−(t) ∈ [ρ∗
+(t), 1],

ρ−(t) � m ⇒ u−(t) � m,

ρ+(t) � m ⇒ u+(t) � m,

ρ+(t) > m ⇒ u+(t) = ρ+ or u+(t) ∈ [0, ρ∗
+(t)].

(3.9)

If ρ− � m, ρ+ � m, then u− = u+ = m so that u(t, x) = m. If ρ− < m,
ρ+ < ρ∗

−, then u− � u+ � max{m, ρ+} < ρ∗
−, so that u− = ρ−. In view of

(3.5), we have z1(t) = ρ− and u+ = ρ−, hence u(t, x) = ρ−. The case in which
ρ+ > m, ρ− > ρ∗

+ is proved similarly. �

Remark 3.3. If (ρ−(t), ρ+(t)) ∈ Θ for an interval of time of positive measure,
then the entropy solution is not unique, but for any solution there exists one
single shock with position X(t) such that u(t, x) = ρ−(t) for x < X(t) and
u(t, x) = ρ+(t) = ρ∗

−(t) for x > X(t).

Remark 3.4. The entropy solution can also be characterized as the solution of
the following variational problem:

J (t) =

{
sup {J(ρ); ρ ∈ [ρ+(t), ρ−(t)]}, if ρ−(t) � ρ+(t),
inf {J(ρ); ρ ∈ [ρ−(t), ρ+(t)]}, if ρ−(t) < ρ+(t).

(3.10)

This also includes the critical line (ρ−(t), ρ+(t)) ∈ Θ, where J = J(ρ−) =
J(ρ+) minimizes the current J(ρ) in the interval [ρ−, ρ+].



NoDEA Quasi-static limit for a hyperbolic conservation law Page 7 of 12 53

3.2. The quasi-static limit

Theorem 3.5. Suppose that ρ± ∈ C1(R+) and (ρ−(t), ρ+(t)) /∈ Θ for almost
all t, then the solution uε of (3.1) converges to u = u(t, x) defined in (3.7)
with respect to the weak-	 topology of L∞([0, T ] × [0, 1]) for all T > 0.

Remark 3.6. As ε → 0, J(uε(t)) �
⇀ J (t) given by (3.10). Particularly, in the

case (ρ−(t), ρ+(t)) ∈ Θ we can prove that uε converges weakly-	 to a Young
measure concentrated on {ρ±(t)}, thus J(uε) �

⇀ J = J(ρ−) = J(ρ+). See
Remark 4.4 at the end of the section.

Remark 3.7. Notice that the quasi-static limit in Theorem 3.5 does not depend
on the initial condition u0 for uε.

Example 3.8. Consider the current function J(u) = u(1 − u) in (1.1). Propo-
sition 3.2 and Theorem 3.5 hold in this case with m = 1/2 and u∗ = 1 − u.

On the other hand, let vδ = vδ(t, x) be the classical solution of the quasi-
static problem associated to the viscous equation (2.10):

∂xJ(vδ) = δ∂xxvδ, vδ(t, 0) = ρ−(t), vδ(t, 1) = ρ+(t). (3.11)

When (ρ−(t), ρ+(t)) /∈ Θ, it is not hard to see that vδ also converges point-
wisely to the solution u of quasi-static problem given by (3.7):

lim
δ→0+

vδ(t, x) = u(t, x), ∀x ∈ (0, 1), (3.12)

and the convergence is uniform on [γ, 1 − γ] for any γ > 0. On the critical line
(ρ−(t), ρ+(t)) ∈ Θ, vδ is explicitly given by

vδ(t, x) =
1
2

+ δC(δ, t) tanh
[
C(δ, t)

(
x − 1

2

)]
, (3.13)

where C = C(δ, t) is such that C tanh(C/2) = δ−1(2ρ+(t) − 1). Then vδ

converges pointwisely to the profile with an upward shock at 1/2:

lim
δ→0+

vδ(t, x) = ρ−(t)1[0, 12 )(x) + ρ+(t)1( 1
2 ,1](x), ∀x ∈ [0, 1], (3.14)

and the convergence is uniform on any closed interval excludes 1/2.

4. Proof of theorem 3.5

For ε > 0, δ > 0, consider viscous approximation of (3.1) given by{
ε∂tu

ε,δ + ∂xJ(uε,δ) = δ∂xxuε,δ, t > 0, x ∈ (0, 1),

uε,δ(t, 0) = ρ−(t), uε,δ(t, 1) = ρ+(t), uε,δ(0, x) = u0,δ(x),
(4.1)

where u0,δ is the mollified initial function satisfying (2.11) and the compati-
bility conditions. Let uε,δ = uε,δ(t, x) be the classical smooth solution of (4.1).
We first present a priori estimate for ‖∂xuε,δ‖L2 .

Proposition 4.1. For any t � 0, there is a constant C = Ct such that

ε

∫ 1

0

uε,δ(t, x)2dx + δ

∫ t

0

∫ 1

0

(
∂xuε,δ(s, x)

)2
dx ds � C. (4.2)
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Proof. Denote by G(u) a primitive of uJ ′(u): G′(u) = uJ ′(u). Multiply (4.1)
by uε,δ and integrate over (0, t) × (0, 1) to obtain

ε

2

∫ 1

0

uε,δ(t, x)2dx − ε

2

∫ 1

0

u0,δ(x)2dx +
∫ t

0

[
G(ρ+(s)) − G(ρ−(s))

]
ds

= δ

∫ t

0

[
ρ+(s)∂xuε,δ(s, 1) − ρ−(s)∂xuε,δ(s, 0)

]
ds − δ

∫∫
(∂xuε,δ)2dx ds.

(4.3)

In order to estimate the last line of (4.3) we test (4.1) against ψ(s, x) :=
ρ−(s) + x[ρ+(s) − ρ−(s)], obtaining that

ε

∫ 1

0

[
ψ(t, x)uε,δ(t, x) − ψ(0, x)u0,δ(x)

]
dx − ε

∫∫
uε,δ∂sψ dx ds

+
∫ t

0

[
J(ρ+(s))ρ+(s) − J(ρ−(s))ρ−(s)

]
ds −

∫∫
J(uε,δ)∂xψ dx ds

= δ

∫ t

0

[
ρ+(s)∂xuε,δ(s, 1) − ρ−(s)∂xuε,δ(s, 0)

]
ds − δ

∫∫
∂xuε,δ∂xψ dx ds.

Then, Young inequality allows to estimate∣∣∣∣δ
∫ t

0

[
ρ+(s)∂xuε,δ(s, 1) − ρ−(s)∂xuε,δ(s, 0)

]
ds

∣∣∣∣
� C +

ε

4

∫ 1

0

uε,δ(t, x)2dx +
δ

2

∫ t

0

∫ 1

0

(∂xuε,δ(s, x))2dxds,

which, inserted into (4.3) gives the conclusion. �

In the following we denote ΩT = [0, T ]× [0, 1], Ω = R+ × [0, 1]. As stated
in §2, for each fixed ε > 0,

lim
δ→0

∫∫
ϕ(t, x)F (t, x, uε,δ(t, x))dx dt =

∫∫
ϕ(t, x)F (t, x, uε(t, x))dx dt,

for all F ∈ C(ΩT × [0, 1]) and ϕ ∈ L1(ΩT ), where uε ∈ L∞(ΩT ) is the entropy
solution of (3.1). Observe that uε is uniformly bounded: ‖uε‖L∞(ΩT ) � 1.
Therefore, we can extract a weakly-	 convergent subsequence:

lim
εn→0

∫∫
ϕ(t, x)F (t, x, uεn(t, x))dx dt =

∫∫
ϕ(t, x)

∫ 1

0

F (t, x, λ)νt,x(dλ)dx dt

where {νt,x(dλ)}(t,x)∈ΩT
is the limit Young measure.

It suffices to show that νt,x coincides with the delta measure concentrated
on u(t, x) given by (3.7). To this end, given boundary entropy–entropy flux pair
(S,Q), define the boundary entropy production

Q±(t, x) :=
∫

Q(λ, ρ±(t))νt,x(dλ), (t, x) ∈ ΩT . (4.4)

The following proposition is the key argument.

Proposition 4.2. For any boundary entropy flux Q,

Q−(t, x) � 0, Q+(t, x) � 0, (t, x) − a.s. (4.5)

Moreover, ∂xQ± � 0 in the sense of distribution.
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Proof. Recall that uε,δ is the classical solution of (4.1). For w ∈ C1([0, T ]) and
boundary entropy–entropy flux (S,Q),

ε∂tS(uε,δ, w) = ε∂uS(uε,δ, w)∂tu
ε,δ + ε∂wS(uε,δ, w)w′

= δ∂2
xS(uε,δ, w) − δ∂2

uS(uε,δ, w)(∂xuε,δ)2

− ∂xQ(uε,δ, w) + ε∂wS(uε,δ, w)w′.

Therefore, for ϕ ∈ C∞(ΩT ) such that ϕ(0, x) = ϕ(T, x) = 0,∫∫ [
εS(uε,δ, w)∂tϕ + Q(uε,δ, w)∂xϕ + ε∂wS(uε,δ, w)w′ϕ

]
dx dt

= δ

∫∫ [
∂xS(uε,δ, w)∂xϕ + ∂2

uS(uε,δ, w)(∂xuε,δ)2ϕ
]
dx dt

+
∫ T

0

[
Q(uε,δ(t, 1), w(t)) − δ∂xS(uε,δ(t, 1), w(t))

]
ϕ(t, 1)dt

−
∫ T

0

[
Q(uε,δ(t, 0), w(t)) − δ∂xS(uε,δ(t, 0), w(t))

]
ϕ(t, 0)dt.

Taking w = ρ−, since uε,δ(·, 0) = ρ− and Q(w,w) = ∂uS(w,w) = 0 for all
w ∈ R, the last line above is 0. Hence, choosing ϕ = ϕ+ such that

ϕ+(t, 1) = 0, ϕ+(0, x) = 0, ϕ+(T, x) = 0, (4.6)

we obtain for any convex boundary entropy S that∫∫ [
εS(uε,δ, ρ−)∂tϕ+ + Q(uε,δ, ρ−)∂xϕ+ + ε∂wS(uε,δ, ρ−)ρ′

−ϕ+

]
dx dt

� δ

∫∫
∂uS(uε,δ, ρ−)∂xuε,δ∂xϕ+dx dt.

Let δ → 0+ and apply the priori estimate in Proposition 4.1,∫∫ [
εS(uε, ρ−)∂tϕ+ + Q(uε, ρ−)∂xϕ+ + ε∂wS(uε, ρ−)ρ′

−ϕ+

]
dx dt � 0.

Eventually, let ε → 0+ along the convergent subsequence,∫∫
Q−(t, x)∂xϕ+(t, x)dx dt � 0. (4.7)

Since this holds for all nonnegative, smooth test function ϕ+ satisfying (4.6),
we conclude that Q− � 0 almost everywhere and ∂xQ− � 0 as a distribution.
For Q+, we replace (ρ−, ϕ+) with (ρ+, ϕ−) such that

ϕ−(t, 0) = 0, ϕ−(0, x) = 0, ϕ−(T, x) = 0, (4.8)

and repeat the same argument. �

Theorem 3.5 follows directly from the following consequence.

Corollary 4.3. The followings hold for a.e. (t, x):
(1) If ρ−(t) < m, ρ+(t) < ρ∗

−(t) then νt,x = δρ−(t),
(2) If ρ+(t) > m, ρ−(t) > ρ∗

+(t) then νt,x = δρ+(t),
(3) If ρ−(t) � m, ρ+(t) � m then νt,x = δm,
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where for u ∈ [0, 1], u∗ is defined above (3.6).

Proof. Consider the following boundary entropy

S(u,w) =

{
w ∧ m − u, u ∈ [0, w ∧ m),
0, u ∈ [w ∧ m, 1].

Note that S is not smooth, but it can be approximated by convex, smooth
functions easily. For instance, let s ∈ C∞(R) be such that

s(u) = −u, ∀u � −1, s(u) = 0, ∀u � 1, s′′ � 0.

Then Sa(·, w) → S(·, w) as a → 0+, where

Sa(u,w) := as
(
a−1(u − w)

)
, a > 0.

The flux corresponding to S is

Q(u,w) =

{
J(w ∧ m) − J(u), u ∈ [0, w ∧ m),
0, u ∈ [w ∧ m, 1].

Since Q(u, ρ−) � 0 for all u ∈ [0, 1] and Q− � 0, we know that νt,x concentrates
on its zero set [ρ−(t) ∧ m, 1] where Q(u, ρ−) = 0. A similar argument yields
that νt,x concentrates on [0, ρ+(t) ∨ m]. Hence, νt,x concentrates on

It =
[
ρ−(t) ∧ m, ρ+(t) ∨ m

]
.

Case 3 follows directly. In order to prove case 1 and 2, we choose

S∗(u,w) = |u − w|, Q∗(u,w) = sign(u − w)(J(u) − J(w)).

In case 1, Q∗(u, ρ−(t)) � 0 on It and the only zero point is ρ−(t). As Q− � 0,
we know that ν(t,x) = δρ− . In Case 2, Q∗(u, ρ+(t)) � 0 on It and the only zero
point is ρ+(t), so the conclusion holds similarly. �

Remark 4.4. Concerning the case (ρ−, ρ+)(t) ∈ Θ, Q∗(u, ρ±(t)) has oppo-
site sign in It except two zero points ρ±(t), therefore νt,x concentrates on
{ρ−(t), ρ+(t)}. Suppose f(t, x) = νt,x(ρ+(t)), then

νt,x(dλ) = [1 − f(t, x)]δρ−(t)(dλ) + f(t, x)δρ+(t)(dλ). (4.9)

Observing that J(ρ+) = J(ρ−), so that

J(uε(t, x)) �
⇀

∫ 1

0

J(λ)νt,x(dλ) = J(ρ−(t)) = J(ρ+(t)), ε → 0, (4.10)

as stated in Remark 3.4.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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