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Abstract—In this paper we propose a novel client-transparent
Dynamic Adaptive Streaming over HTTP (DASH) -aware band-
width allocation strategy. The approach, while being applica-
tion layer transparent, guarantees fluidity to all users but it
provides priority-based services to premium users, identified by
their Willingness-To-Pay (WTP) profiles. Since different service
qualities can be accommodated using WTP, the approach can be
extended to XR services, immersive videos, live uplink streaming.
To achieve this goal, the allocation problem is firstly formulated
as a classical Game Theory problem whose closed form solution
is clearly understood in the literature. In a nutshell, the WTP-
based, Game Theoretically Optimal Bandwidth Allocation (WTP-
GTOBA), firstly satisfies the minimum bandwidth needs of each
user and then fairly distributes the residual bandwidth. WTP-
GTOBA can be approximately implemented by a greedy, applica-
tion layer transparent algorithm to be implemented at a DASH-
aware network element managing different neighbouring radio
access stations. Thereby, the proposed method is suitable for
integration of WTP and resource management among multiple
service providers and heterogeneous client groups. Numerical
simulations carried out under a realistic scenario show that
the proposed approach outperforms state-of-the-art application-
layer transparent competitors, providing premium quality and/or
guaranteed fluidity to different users based on their WTP.

Index Terms—Bandwidth allocation, quality of experience,
SAND/DASH, video streaming.

I. INTRODUCTION

V IDEO streaming, already deemed the killer application
in next generation mobile networks [1], experienced

an unprecedented boost during the 2020 pandemic. In pres-
ence of continuously increasing mobile streaming traffic load,
novel solutions are needed at the access and the core net-
work [2]–[4] in order to guarantee the desired user’s Quality
of Experience (QoE).

At the wireless access network, allocating resources for
mobile video streaming is challenging because of the large
video traffic fluctuations due to the heavy tailed distribution
of video packets’ sizes [5], [6]. According to the dynamic
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adaptive streaming based on HTTP (DASH) paradigm, band-
width limitations, delays, and errors during the transmission
result at the application layer into the depletion of the user’s
video buffer [7] and to possible stall events that may affect
the fluidity of the video playout and reduce the users QoE.
To cope with the communication channel limits, in DASH
the video bitrate is often adapted by application-layer rate
control [8], based on partial knowledge of the video traf-
fic [9], or of the channel state [10], [11]. Thereby, several
resource allocation methods pursue a cross-layer approach to
QoE optimization by video adaptive bitrate (ABR) selection,
based on throughput [12], [13], channel [14], buffer [15] or
network prediction [16]. The recent ETSI technical specifi-
cation [17] on server- and network- assisted DASH (SAND)
introduces network elements with partial knowledge of the
ongoing streaming session and of the client’s QoE met-
rics [18]. Leveraging SAND, multiuser optimization can be
addressed [19], [20]. Besides, ABR can be carried out at
the edge network, by multi-coordinators and multi-server
frameworks [21], [22], on top of video transcoders [23] or
proportional fair schedulers supporting premium users [24].
However, the feasibility of these cross-layer solutions requires
a strict joint control of radio access and video clients policies.
Therefore, these approaches are not suited for frameworks
including multiple service providers and heterogeneous client
groups.

Application-layer transparent resource allocation methods
differ from the above approaches because they pursue QoE
without interacting with the video client ABR strategy. This
difference is illustrated in Fig.1. Application-layer transpar-
ent schemes include scheduling strategies [25], as well as
frequency reuse policies [26]. The methods leverage infor-
mation regarding the ongoing streaming sessions conducted
at different users [27] or the video client buffer status for
DASH streaming [28]. They achieve relevant QoE goals,
such as minimal average buffer depletion for users sharing a
limited bandwidth [29]. Still, the impact of DASH aware radio
resources managers has not been addressed in the framework
of application layer transparent solutions. Furthermore, the
importance of QoE differentiation and users’ prioritization at
wireless access is expected to grow on next generation net-
works, where mixed reality streaming, live uplink streaming,
or 360 degrees streaming may simultaneously take place at dif-
ferent users’ clients. In this framework, we address prioritized,
application layer transparent, resource allocation to seamlessly
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Fig. 1. DASH-aware resource allocation strategies

provide efficient bandwidth resource management and cope
with heterogeneous users. This paper proposes a DASH-aware
bandwidth allocation strategy at the wireless access network.
The approach jointly addresses the needs of premium and
basic users in an optimized way. Specifically, the allocation
supports video services with prioritization of a subset of users,
while guaranteeing video fluidity to all users. Prioritization is
achieved by characterizing each user by a willingness-to-pay
(WTP) profile. This prioritization may be related to the user
service profile at the radio access network controller, e.g. it
can represent the revenue expected by the network operator
for the bandwidth allocated to the user. Furthermore, the
WTP can be used also to identify institutional users accessing
specific services, e.g. immersive video streaming services for
law enforcement or crisis management purposes.

The main paper contributions are as follows.

• We recast optimal bandwidth allocation as a classical
game theory problem, yielding the WTP-based game the-
oretically optimal bandwidth allocation (WTP-GTOBA).
In a nutshell, the optimal solution is found by i) assigning
to each user the minimum bandwidth needed not to stall
and ii) fairly sharing the excess bandwidth among the
others.

• We show that, under suitable scenarios, WTP-GTOBA
is well approximated by a two-stage greedy algorithm
(WTP-Greedy), viable for implementation at a DASH
aware network element (DANE) and managing different
cooperating radio cells.

• WTP-GTOBA, and its greedy approximation WTP-
Greedy, support prioritization for a set of users while
maintaining fluidity for all the users. This paradigm
paves the way to seamless integration of heterogeneous
users, i.e. users requiring conventional streaming services
with premium users requiring the new services available
on next generation networks, where mixed reality, live
uplink, or 360 degrees streaming may take place.

• The independence on the adopted ABR policy and the
integration of WTP in resource management enables
support of multiple service providers and heterogeneous
client groups.

The structure of the paper is as follows. In Section II
we introduce the system model. Section III presents the
WTP-GTOBA and Section IV its greedy version. Numerical
performance analysis is reported in Section V and Section VI
concludes the paper.

Fig. 2. System Model

TABLE I
MODEL NOTATION

Symbol Definition
τ [s] Chunk duration

λ
(n)
k [bits] k-th chunk size (n-th user)

K Chunks’ no.
M No of BSs

B(m) m-th BS BW [Hz]
N No of users

ω(n) n-th user WTP
η
(n)
k [(bit/s)/Hz] Spectral efficiency (n-th user, k-th time-slot)

II. SYSTEM MODEL

Mobile streaming services typically reflect the MPEG-
DASH paradigm, where the client requests, using HTTP, video
packets (chunks) from video bitstream pre-encoded at different
bitrates and available at the server. The video bitrate selected
by the client ABR policy typically depends on the current
throughput or client buffer status. We consider N mobile
streaming clients, moving within an area covered by a cluster
of M radio Base Stations (BSs) [30]. An Integrated Manager,
acting as a DANE [31], is used to control and manage the
radio resources of the BS cluster (see Fig. 2). Clients are
simultaneously streaming video chunks, each of duration τ ;
for the sake of simplicity and without loss of generality we
consider slotted DASH streaming sessions. The k-th chunk
(k = 1, · · ·,K) is available at the video servers at video-rates
Ri(Mbit/s), i = 1, · · ·, Q. The n-th client requires a video
chunk at a quality level qkn ∈ {1, · · ·, Q}, leading to a chunk of
length λk

n(bits). For a given chunk, the link between the user
and the serving BS is characterized by a spectral efficiency
η ((bit/s)/Hz) ; in order to deliver the k-th video chunk,
each user requires a communication channel bandwidth that
is equal to: λk

n/(τ · ηkn), n = 1, · · ·, N .
Each user is associated with a WTP factor ωn ($/Hz),

modeling the priority of the user by the pay that the client
is willing to make for the bandwidth allocated during the
service session. A bandwidth Bk

n [Hz] is allocated to the n-
th user for the k-th chunk, based on the specific wireless
technology adopted in the system (e.g., OFDM in LTE).
Table I summarizes the notations.
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III. WTP-GTOBA: WTP DEPENDENT GAME THEORETIC
OPTIMAL BANDWIDTH ALLOCATION

In the following, we introduce our novel bandwidth alloca-
tion as the solution to a game-theoretic problem.

We consider the N clients, served by a cluster of BSs M,
as players of a game. For the k-th chunk, the strategy of the
n-th client is expressed in terms of its allocated bandwidth
Bk

n. Each client specifies a minimum required video quality
level, which relates to its WTP level.

We design a client utility function based on the following
system relevant parameters:
Buffer status The buffer status ρkb,n ∈ [0, 1) is a decreasing
function of the buffer occupancy bnk :

ρkb,n = bstall/(b
n
k + 1),

where bstall is a buffer occupancy threshold. Large values of
ρkb,n ∈ [0, 1) indicate that the buffer occupancy is low, and are
associated with high risk of stalls.
Upgrade request The pursuit of higher visual quality by
means of an upgrade request is accounted for by the binary
parameter δks,n, which is equal to 1 if the nth user is requiring
a bitrate increase at kth chunk, and 0 otherwise.
Willingness-to-pay the WTP profile of the n-th user in the
k-chunk is represented by the constant ωn.

To this aim, we introduce the utility uk
n = Un(B

k
n) for user

n at chunk k. The utility achieved depends on the bandwidth
allocated B and the user’s QoE parameters ρb, δs, ω. We
herein consider the function u(B) = U(B; ρb, ω, δs) defined
as follows:

u(B) = U(B; ρb, ω, δs) =
Bη

αρρb + αwω + αsδs
= B· 1

γ
, (1)

where αp, αw and αs are weighting coefficients and γ com-
pactly summarizes the proportionality factor between the al-
located bandwidth and the QoE-related utility function. The
definition of the utility in (1) depends on the three relevant
QoE factors, namely visual quality, timeliness and prioritiza-
tion, and it is exploited to derive the solution.

We assume that each user requires a minimum quality level
umin
n that corresponds to the following minimum allocated

level:

Bmin
n = U−1(umin

n ; ρb, ω, δs) = γn · umin
n , (2)

where γn is the proportionality factor between the minimum
n-th user’s required utility umin

n , related to the user’s QoE
parameters, and the minimum allocated bandwidth Bmin

n . We
formulate the following maximization problem of the reward
R (B0, · · ·BN−1) = max

∏N−1
n=0

(
uk
n(Bn)− u

(min)
n

)
:

max
B0,···BN−1

R (B0, · · ·BN−1)

= max
B0,···BN−1

N−1∏
n=0

(
uk
n(Bn)− u(min)

n

)
s.t.
∑
n

Bn ≤ BT , Bn ≥ Bmin
n ,

(3)

where BT denotes the total bandwidth available at the IM
level (i.e. over the BSs’ cluster) and the utility u(B) is

proportional to the amount of resources allocated u(B) ∝ B.
The Nash bargaining solution (NBS) of (3) is defined as the
efficient, linear and symmetric solution that is independent
from irrelevant alternatives. For the problem in (3), the NBS
is known in closed form.

The above formulated problem is a particular case of the
following optimization problem: given a budget Ξ for N

players, characterized by an individual utility u
(min)
i , and a

utility versus budget function u(ξ), select the individual budget
ξi, i− 0, · · · , N − 1 so as to maximize the overall utility:

ΠN−1
i=0

(
u(ξi)− αu

(min)
i

)
subject to

N−1∑
i=0

ξi ≤ Ξ, α = max(p · Ξ/
N−1∑
i=0

ui, 1),
(4)

for any 0 < p ≤ 1. The solution of this problem is derived in
closed form in [32], and extended to the case of a parametric
utility function in [33].

For the problem presented in (3), the optimal allocated
bandwidth is written as:

Bn = Bmin
n +

(
BT −

∑
n

B(min)
n

)
/N,

with Bmin
n ∝ umin

n and the minimum utility in (3) evaluated
as umin

n = C · qmin
n , where C = C(p) is a normalization

factor introduced to comply with the constraints in (3) with∑
n Bn = p BT , 0 < p ≤ 1. Specifically,

Bn = γ(p)
n qn +

1

N

(
BT −

∑
n

γ(p)
n · qn

)
, (5)

being
γ(p)
n = γn ·min(1, p BT /

∑
i

γnq
min
n ),

i.e. p scales the bandwidth associated to the minimum quality
requirements so as to fit the assigned budget. Thereby, Bn

is the sum of two components, namely the bandwidth pBT

needed to support a minimum quality level, and that resulting
from a fair division of the (1 − p)BT remaining bandwidth;
in Section IV we leverage (5) to derive a two-stage allocation
algorithm.

We illustrate the method in a toy case scenario involving
N=2 users reading the buffer with a fixed playout rate equal
to 2Mbit/s, while the writing rate is Bk

n ·ηkn, with η1 = η2 =
1; no ABR control is performed. We set BT = 3.9 MHz,
p = 0.5, αr=αω=αs = 1, and qmin

1 = qmin
2 = 1Mbit/s. The

initial buffer occupancy is the same for the two users, with
b10= b20=6 chunks. As for WTP, ω1 = 0.8, ω2 = 0.5, i.e. the
first user is favored.

In Fig. 3(a) we plot the 2D reward function R (B1, B2) =(
uk
1(B1)− u

(min)
1

)
·
(
uk
2(B2)− u

(min)
2

)
versus the (B1, B2)

at the initial chunk k = 1. The vertical and horizontal red lines
represent the constraints on the minimal allocated bandwidths
B1 ≥ Bmin

1 , B2 ≥ Bmin
2 and the diagonal red line represent

the constraint on the overall bandwidth budget B1 + B2 ≤
BT . The maximum reward is obtained by for B1 > B2 since
ω1 > ω2, since all the other conditions are the same for both
the users.
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(a)

(b)

Fig. 3. WTP-GTOBA reward analysis: (a) Reward function at slot k = 1
and (b) at slot k = 50; red lines represent marginal and total bandwidths
constraints.

Then, the system evolves in time. Fig. 4 exhibits the
evolution of the allocation in terms of allocated bandwidth
(Fig. 4(a)) and buffer status (Fig. 4(b)). Initially, to user 1
is allocated a larger bandwidth because of its higher WTP;
this causes an increase of b1k and a decrease of b2k. When b2k
reduces such that the buffer of user 2 is close to depletion,
the maximum of the reward function

(
uk
1(B1)− u

(min)
1

)
·(

uk
2(B2)− u

(min)
2

)
shifts. This is exemplified in Fig. 3(b),

reporting the reward versus the (B1, B2) at chunk k = 50. In
this condition, the bandwidth allocated to user 2 increases so
as to guarantee fluidity. In the final phase of the simulation
the two users are granted a balanced allocation.

IV. WTP-GREEDY: A GREEDY VERSION OF GTOBA

Herein, the WTP-GTOBA bandwidth allocation in (5) is
used to define a greedy algorithm to be adopted in a mobile
DASH environment. Specifically, we seek for an allocation
policy that 1) is partially or totally decentralized, 2) accounts
for actual DASH requests, 3) is compatible on a fully granular
model for the rate request Ri, i = 1, · · ·, Q. Stemming from
(5), we present a greedy resource management policy, to which
we refer to as WTP-Greedy. Preliminary results about WTP-
Greedy appear in [31]. In the following, we show that, in
the considered scenario, its two-stage structure provides an

(a)

(b)

Fig. 4. WTP-GTOBA temporal evolution: (a) Allocated bandwidths (red and
blue lines) and minimal bandwidth components (yellow and purple lines); (b)
buffer states (red and blue lines).

accurate approximation of the novel WIP-GTOBA viable for
implementation at the DANE.

In (5), we recognize that, apart for possible rescaling due to
insufficient bandwidth resources, the optimal solution is split
into two terms, corresponding to the bandwidth required to
achieve the minimum quality, and to the redistribution of the
residual bandwidth, respectively. Thereby, we envisage two al-
location stages. Firstly, each user is guaranteed a bandwidth to
support a minimum quality level, and secondly the remaining
bandwidth is fairly divided among users.

For each video chunk time slot, WTP-Greedy dynamically
assigns users to the following QoE-related lists:

1) Lstall, users close to a stall event (buffer shortage as
measured by comparing ρkb,n against a fixed threshold
ρstall = bstall/(1 + bstall),

2) Lsteady, users requiring the same video rate quality as
in the previous chunk,

3) Lhigh, users requiring higher video rates.

The WTP-Greedy algorithm is realized by cascading a decen-
tralized and a centralized stage.

At the first stage, clients in Lstall are served with highest
priority in a decentralized way by their BS, according to
increasing requested bandwidth order. Let us notice that the
clients in Lstall are served up to the BS’s available bandwidth,
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which may or may not suffice to satisfy their requests. Then,
if there is any residual bandwidth, the clients in Lsteady are
served by their BS according to their increasing bandwidth
Bk

n and up to the BS’s available bandwidth.
The second stage allocates resources in a centralized way

to users that were not served at a decentralized level. Any
residual BS bandwidth is collected in a shared bandwidth pool
Bpool available for management at a centralized level. The
IM manages the bandwidth pool to serve with high priority
the remaining users in Lstall according to their increasing
bandwidth Bk

n. Then, the IM allocate the residual bandwidth
to the remaining users in Lsteady, Lhigh, which are served ac-
cording to their decreasing revenue Bk

n ·ωn. This prioritization
guarantees the maximum revenue for a given number of served
users. The method can be straightforwardly generalized to the
case where the IM manages the shared pool plus an additional
bandwidth amount [31].

In the following, we show that the decentralized and central-
ized stages of the WTP-Greedy algorithm, roughly providing
the minimum service level (reduced stall duration) and then
redistributing the remaining bandwidth among the other users,
according to a WTP based criteria, results in an accurate
approximation of the two-components bandwidth allocated
WTP-GTOBA in the considered scenario. Therefore WTP-
Greedy can act as a proxy of WTP-GTOBA, but it can be
feasibly integrated into a DASH environment, and specifically
it can be implemented at the IM level. The approach scales
with the number of users since it implements the per-chunk
optimization by segmenting and sorting the users lists. Differ-
ent from several state-of-the-art approaches, WTP-greedy is
transparent to the application layer ABR policy.

A remark on the additional signaling overhead of the WTP-
greedy algorithm is in order. The algorithm requires the back
and forth signaling of the unserved requests between the
decentralized and centralized levels, as well the signaling of
the residual resources from the decentralized to the centralized
level. It is worth noting that the signaling is carried out at the
application layer time scale, i.e. every few seconds, and it is
therefore much looser than typical link layer signaling. On the
other hand, an additional computational cost is required at the
IM for optimally managing the resources; still, this goes in
the way of incrementing the intelligence in network resource
managing in next generation cellular networks [34].

V. SIMULATIONS AND RESULTS

In this section, we analyse the performance of the optimal
WTP-GTOBA (5) and of the WTP-Greedy algorithm. Firstly,
we show that WTP-GTOBA is approximated by WTP-Greedy
in the considered scenario. Then, we assess the performance of
this latter in comparison with state-of-the-art in radio resources
management for mobile streaming.

We show that the WTP-Greedy algorithm approximates the
optimal WTP-GTOBA in (5) in the mobile video streaming
scenario simulated as follows.

For concreteness sake, we consider the scenario in Fig. 5,
encompassing M = 7 hexagonal BS cells. This can be
seen as a schematic representation of the resource sharing
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Fig. 5. Simulation Scenario: (a) Network scenario and (b) spectral efficiency.

architecture Fig. 2, where the IM manages the radio resources
of a BS cluster. Besides, it can be also deemed as an abstract
representation of future architecture involving multipoint coor-
dination [35], [36] which are currently under investigation in
5G [37] and 6G networks [38]. The adaptation of the scenario
parameter setting to future generation networks is left for
further study.

The overall bandwidth available at each BS is equal to
Bm = 10 MHz. During the session N = 75 users move
in a direction and at a speed randomly selected in [0, 2π] and
[0, 5m/s], respectively (bounce conditions are further inserted
to prevent users from leaving the area of interest). The users
are randomly assigned 5 WTP equally likely profiles, identified
by the values ω = [0.2, 0.4, 0.6, 0.8, 1] $/Hz. We consider a
slotted DASH session.

Synthetic 360-degrees video traffic traces are generated
according to the model in [39]. The traces refer to Q = 5
quality levels at rates [0.55, 1.06, 1.95, 4.01, 8.46] (Mbps); the
chunk sizes λk

n(bits) are generated using a Gamma distri-
bution, whose parameters are summarized in Table II. Each
user’s client implements a buffer-based ABR policy, out of
the control of the DANE. ABR policies as BOLA [40] require
solving an optimization step at each chunk. For the sake of
lowering the computational complexity, we implemented a
computationally lighter hybrid throughput/buffer based ABR1.
If a stall occurs, the client buffer is refilled in a fixed amount

1After been served for 3 time slots, the user requires a higher quality; after
having not been served in 2 out of 4 time slots, the user requires a lower
quality; if the user’s buffer is lower than a critical threshold bstall the lowest
available rate is selected.
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TABLE II
VIDEO PARAMETERS

q = 1 q = 2 q = 3 q = 4 q = 5
Ri (Mbps) 0.55 1.06 1.95 4.01 8.46

α 12.13 12.21 11.71 12.29 15.75
β 73850 140059 269005 526355 867408

of time; therefore, the number of stalls is proportional to the
overall stall duration. The bandwidth request is computed as:
Bk

n = λk
n/(τ · ηkn), n = 1, · · ·, N .

As for the mobile network model, we built a channel model
based on [41]. The spectral efficiency is set according to
the distance between user and BS as in Fig. 5(b). Since we
assess the performance of the optimal resource allocation at
the radio access network, during the simulation we assume an
ideal, constant delay, data transfer in the core network. For
each chunk, the allocated bandwidth is computed according
to the WTP-Greedy allocation policy. Furthermore, the WTP-
GTOBA optimization is carried out on a chunk-by-chunk
basis, and the WTP-GTOBA bandwidth is computed as in (5),
The parameters αr, αω, αs represent the weights of the buffer
status ρb, the willingness-to-pay ω, and the upgrade request
δs respectively. They are set as αr = 1, αω = 4, αs = 1.
Let us observe that the resource allocation could be molded
by different objectives, like preventing stalls by increasing the
parameter αr on one hand, or discouraging up-switching by
increasing the parameter αδ on the other hand. For the sake of
compactness, we restrict ourselves to the case αω > αs = αr,
so as to highlight the effect of the willingness-to-pay parameter
ω on the overall allocation. In the following we illustrate the
comparison of the WTP-GTOBA optimal allocated bandwidth
with that allocated by WTP-greedy. The results have been
obtained by setting p = 0.8, i.e. allocating up to 80% of
the available bandwidth for minimum quality provisioning
and the remaining 20% for further redistribution. This implies
that 80% of the bandwidth is distributed by accounting for
the current user QoE parameters whereas the remaining 20%
is distributed in a flat way. It is worth remarking that the
proposed allocation strategy boils down to uniform resource
allocation for p = 0, and in general it can be adapted to
different allocation criteria by suitable parameter settings.

Fig. 6 shows the boxplot, over 30 runs, of the bandwidths
averaged over K = 100 chunks. We compare the WTP-
GTOBA and the WTP-greedy average bandwidth; for both
the methods, the boxplot shows that the per run deviations
from the average are small. We recognize that WTP-greedy
tightly approaches the WTP-GTOBA allocated bandwidth. For
different WTPs the approximation is from below or above,
also given that the WTP-Greedy allocated bandwidths for each
chunk directly reflect the quantization of the users bitrate re-
quests while the WTP-GTOBA allocated bandwidths vary in a
continuous range. The results in Figure 6 clearly show that the
resource distribution by WTP-Greedy well approximates the
optimal WTP-GTOBA allocation in the considered scenario.
The reason why this occurs is to be found in the analogy
between the two approaches, which split the allocation into
two conceptual stages, i.e. the satisfaction of minimal QoE
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Fig. 6. WTP-Greedy vs WTP-GTOBA.

constraints, and the fair allocation of the remaining resources.
In the following, we illustrate by further simulations that

this guarantees prioritization to some users and fluidity to all
the users. In Fig. 7, we display the main QoE metrics averaged
over nRuns = 30 runs, for each group of users, namely:
Video quality, measured as the average playout rate of the
received chunks

Q =
1

KN

N−1∑
n=0

K−1∑
k=0

q
(n)
k ;

Video fluidity, measured as

F = K − nstalls,

where nstalls is number of equal-duration stalls experienced
by each user during the session;
Video smoothness, measured as the percentage of chunks over
which the quality does not decrease:
Fairness, computed as the Jain’s fairness index on video-
quality of users belonging to the same WTP profile, i.e.
characterized by the same WTP value:

Jω =

(
1

KN

∑
n s.t. ωn=ω

K−1∑
k=0

q
(n)
k

)2

1

N

∑
n s.t. ωn=ω

(
1

K

K−1∑
k=0

q
(n)
k

)2 .

It can be seen that WTP-Greedy achieves a good users dif-
ferentiation in QoE guaranteeing a high fluidity of the service
also to users with lower willingness-to-pay.

We now compare WTP-Greedy with proportional fair
(PF) [25], proportional fair quality-aware (PF-QAW) [28]
and minimum average delay (MAD) [29] resource allocation
algorithms. Let us first consider the case of uniform WTP
profiles.

The PF approach is a classic resource allocation method
used in LTE BSs, where the down-link radio resources are
organized in resource blocks (RB), which is a time-frequency
cell of 180 kHz bandwidth for a 1 ms transmission time
interval (TTI). In PF each RB is assigned to the user max-
imizing a factor proportional to the expected data rate and
inversely proportional to the average of the past throughput.
The QoE scheduler in [28] modifies the factor using estimates
of the user’s buffer in DASH streaming, trying to serve
with higher priority the users close to the stall. By contrast,
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Fig. 7. Performance for different WTPs.

the paper [29] proposes a cross-layer chunk-wise allocation
based on a reverse water-filling principle, aiming to minimize
the average chunk delays. We have integrated these policies
into the simulator and analyzed the performance for different
values of N and K. Let us observe that WTP-Greedy carries
out the transmission of a chunk or not, acting as an admission
control procedure. On the contrary, competing policies serve
all users, even if the bandwidth may not be sufficient to
transmit a whole chunk.

The performance indices in terms of video quality and
number of stalls, averaged over 30 runs, are summarized in
Table III. The results should be read as follows: the PF method
is DASH unaware; PF-QoE method, accounting for buffer
status, avoids some stalls at the expense of resource efficiency.
Similarly, the MAD method [29] avoids a larger number of
stalls by sacrificing more video quality. The WTP-Greedy
approach is able to avoid stalls caused by radio access network
bottleneck events, gaining in terms of resource efficiency. This
is due to the chunk-wise admission control procedure that
leads to serving users close to the bstall with the highest
priority.

Finally, we repeat the experiment equally dividing N = 100
users in two groups with 2 different WTPs, ω1 = 0.2 $/Hz
and ω2 = 1 $/Hz. The results exhibited in Table IV confirm
the effectiveness of the proposed approach to include quality
prioritization between the two classes and quantify the amount
of video quality difference in comparison with methods that do
not prioritize users. These results have been achieved without
introducing video stalls (more precisely, the stalls due to radio
access) affecting low WTP users. For comparison sake, we
have reported the performance of state of the art alternatives,
noting that these schemes do not support QoE differentiation.

VI. CONCLUSIONS

In this paper, we propose an application-layer transparent,
priority based, bandwidth allocation method for mobile video
streaming. We formulate the problem targeting both user qual-
ity of experience requirements and revenue-related parameters

TABLE III
PERFORMANCE COMPARISON (DIFFERENT N )

q (Mbps) nstalls

N WTP-
Greedy

MAD PF PF-
QAW

WTP-
Greedy

MAD PF PF-
QAW

75 7.31 7.00 7.23 7.21 0 2.75 3.07 2.95
100 5.83 5.38 5.64 5.57 0 3.16 3.85 3.66
125 4.91 4.44 4.68 4.61 0 3.38 4.39 4.12
150 4.05 3.66 3.88 3.80 0 3.70 5.10 4.83

TABLE IV
PERFORMANCE COMPARISON (DIFFERENT WTP ω)

q (Mbps) nstalls

ω WTP-
Greedy

MAD PF PF-
QAW

WTP-
Greedy

MAD PF PF-
QAW

0.2 5.26 5.36 5.63 5.56 0 3.16 3.83 3.61
1 6.61 5.49 5.76 5.69 0 3.16 3.85 3.65

based on willingness-to-pay (WTP). Then, we derive a game
theoretically optimal bandwidth allocation (WTP-GTOBA)
algorithm, and we show that it admits a greedy version
(WTP-greedy) that can be implemented at a DASH aware
network element managing radio resources. Simulations show
that WTP-GTOBA and its approximation by the WTP-Greedy
algorithm outperform state-of-the-art alternative schemes. The
proposed approach integrates users prioritization thus paving
the way for accommodating services at different qualities,
such as XR services, immersive videos, live uplink streaming.
Furthermore, being application layer transparent, it is suited
to multiple service providers and heterogeneous client groups.
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