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Ab initio experimental violation of Bell inequalities
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The violation of a Bell inequality is the paradigmatic example of device-independent quantum information:
The nonclassicality of the data is certified without the knowledge of the functioning of devices. In practice,
however, all Bell experiments rely on the precise understanding of the underlying physical mechanisms. Given
that, it is natural to ask: Can one witness nonclassical behavior in a truly black-box scenario? Here, we
propose and implement, computationally and experimentally, a solution to this ab initio task. It exploits a
robust automated optimization approach based on the stochastic Nelder-Mead algorithm. Treating preparation
and measurement devices as black boxes, and relying on the observed statistics only, our adaptive protocol
approaches the optimal Bell inequality violation after a limited number of iterations for a variety photonic
states, measurement responses, and Bell scenarios. In particular, we exploit it for randomness certification from
unknown states and measurements. Our results demonstrate the power of automated algorithms, opening a venue
for the experimental implementation of device-independent quantum technologies.
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I. INTRODUCTION

The experimental guidance is quintessential in science.
Empirical evidence not only is crucial to the development
of models but also conversely allows one to test and im-
prove theories. To interpret the data, however, one needs
well-understood and well-calibrated instruments. For that,
theoretical assumptions are always needed, creating a seem-
ingly unstoppable circular argument. It is thus surprising that
in the device-independent framework [1], quantum informa-
tion tasks can be achieved simply from the data and without
the need of precise knowledge of the devices.

The paradigmatic example of device independence is the
violation of a Bell inequality [2]. It not only provides the most
radical departure of quantum theory from classical concepts
but also paves the way for applications ranging from cryp-
tography [3], randomness certification [4], self-testing [5],
and communication complexity [6,7]. In principle, all of that
is achieved simply by imposing the causal structure of the
experiment but without any knowledge of either the quan-
tum states being prepared or the measurements performed on
them. In practice, however, all Bell experiments performed to
date exploit the precise knowledge of the physical platform
under use to maximize the Bell inequality violation (see, for
instance, Refs. [8–11]). Otherwise, how could one optimize
the experimental setting in order to extract its most nonclassi-
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cal features? If our device is really treated as a black box, how
can we ever prove its quantum nature?

Apart from its relevance in Bell scenarios and related top-
ics, solving such a question might find application in a range
of fields such as quantum gravity [12,13] and quantum biol-
ogy [14], scenarios in which the detection of quantum effects
can be a crucial task. However, in all these cases, the quantum
mechanisms at play, if any, might not be well understood.
That is, simply by probing the system in different but not fully
understood ways and looking at its response we should be able
to witness its nonclassical nature.

Here, we propose an adaptive automated optimization
protocol exactly to solve this ab initio task, in particular,
focusing on optimizing the violation of Bell inequalities
without any prior knowledge of the quantum system and
measurements—that is, in a fully black-box scenario. We
exploit a stochastic Nelder-Mead algorithm [15] that is an
efficient, noise-resistant, and gradient-free algorithm for the
search of global optima of functions. By repeatedly tuning the
measurement parameters and collecting statistics, the adaptive
algorithm is able to optimize the Bell inequality violation after
a limited number of measurements. Remarkably, the protocol
is also robust against Poissonian fluctuations. We provide
the proof of the applicability of our method by performing
simulations and photonic experiments involving different bi-
partite states and measurement responses as well as a range of
different Bell inequalities. After a few hundreds of measure-
ments the algorithm is able to approach the maximum possible
violation for a given entangled state. In this way, we take a step
forward for the crucial task of testing automated protocols in
experimental noisy scenarios.

It is worth pointing out that machine learning techniques
are spreading out as powerful tools for quantum information
tasks, in particular, in the study of Bell nonlocality [16–20].
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For instance, reinforcement learning has been used for find-
ing the optimal quantum violations of Bell inequalities for
many-body systems with fixed known measurement settings
[21] and for the design of optical experiments optimizing Bell
inequality violations [22]. In such cases, however, a precise
quantum description was required. The implemented method
is a way to detect and optimize Bell nonlocality in a truly
black-box situation. To showcase its applicability, we exploit
it for maximizing the certified randomness extraction from an
unknown system and unknown measurements, thus opening
a fruitful venue for the device-independent quantum informa-
tion framework.

II. VIOLATION OF BELL INEQUALITIES AS A
BLACK-BOX OPTIMIZATION PROBLEM

Virtually any experiment in quantum physics can be un-
derstood as an instance of a prepare-and-measure scenario.
Physical systems described by a quantum state are prepared,
and measurements are used to reveal its statistical proper-
ties. Depending on the application, different levels of control
over and characterization of the preparation and measurement
devices can be allowed. In quantum tomography [23], for
instance, the unknown quantum state being prepared can be
reconstructed if we trust and know our measurement appa-
ratus. In other cases [24], the preparation can be assumed to
be known, while the measurements cannot. In the context of
quantum information, the more we assume, the more open is
the way to malicious attacks [25] or wrong conclusions [26].

In this sense, the violation of a Bell inequality provides
the ultimate security level, since by assuming only the causal
structure imposed on the experiment, but no knowledge of the
preparation and measurement devices, one can infer a number
of properties of the physical system under test [27]. More
precisely, in a Bell test a number of distant parties receive
shares of a quantum system prepared by an uncharacterized
device. Upon receiving their share, they can locally manip-
ulate and measure them using again unknown devices. That
is, each of the parties has a black box with knobs that can be
controlled, but the effect of these knobs within each device is
unknown.

Consider the bipartite case involving the observers Alice
and Bob. At each run of their experiment, input variables x
and y decide how the knobs will be turned, leading to the
corresponding measurement outcomes a and b, respectively
(see Fig. 1). The experimental data are thus encoded into the
conditional probability distribution p(a, b|x, y).

In a quantum description of such an experiment, their
observations are described as p(a, b|x, y) = Tr[(Mx

a ⊗ My
b )ρ],

where ρ describes the quantum state being prepared and Mx
a

and My
b describe the measurement operators. Classically, how-

ever, the assumption of local realism [27] implies that the
experimental data can be decomposed as

p(a, b|x, y) =
∑

λ

p(λ) p(a|x, λ) p(b|y, λ). (1)

Bell’s theorem [2] implies that some quantum predictions
are incompatible with the classical prescription (1). This is the
phenomenon known as quantum nonlocality that can be wit-
nessed by the violation of a Bell inequality, generally written
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FIG. 1. Bell inequality optimization through the stochastic
Nelder-Mead algorithm. An initial simplex in the parameter space
is chosen. At each iteration the algorithm performs tests of the Bell
inequality S � L using measurement parameters chosen according
to previous results. The numbers indicate the steps performed at each
iteration: (1) choice of the parameters based on the history of the pro-
cess, (2) setting of the chosen parameters, (3) evaluation of the cost
function, and (4) transmission of the result to the computer running
the stochastic Nelder-Mead algorithm. At the end of the protocol
we reach values close to the optimal measurement parameters α∗

and β∗ maximizing the Bell inequality. Measurements and states are
treated as black boxes; thus one has to choose functions f (·) and g(·)
mapping the parameters to the empirically observed value of S.

as a linear constraint over the observed probabilities given by

S =
∑

a, b, x, y

αa, b, x, y p(a, b|x, y) � L, (2)

where αa, b, x, y are integer coefficients and L is the bound
arising from the classical description (1).

Checking whether p(a, b|x, y) violates a Bell inequality,
we can conclude, for example, that the shared state has to
be entangled and that measurements being performed are
incompatible [5]. That is, we can probe some properties of
the system under test in a device-independent manner. In
practice, however, the quantum state ρ and the measurement
operators Mx

a and My
b have to be tuned precisely in order to

obtain and maximize a Bell inequality violation. In a number
of situations, such knowledge contradicts the basic black-box
assumption of the scenario. In what follows we will propose a
solution to deal with that.

The inputs x and y tell the parties how to turn their knobs
in their measurement devices. For instance, in a photonic
implementation using the polarization degree of freedom of
photons, the measurements are performed by changing the ori-
entation of half- and quarter-wave plates. Similarly, the degree
of entanglement of the source that we exploit can be tuned
by changing the pump polarization. In a black-box approach,
each of these changes in the preparation and measurements
are simply described by a knob that can be turned. However,
what this turning of knobs is doing inside the devices we
cannot speak of. The knobs for Alice and Bob are described
by a set of (continuous or discrete) variables α and β, each a
function of the inputs x and y, respectively. In turn, the source

013159-2



AB INITIO EXPERIMENTAL VIOLATION OF … PHYSICAL REVIEW RESEARCH 4, 013159 (2022)

is described by γ . That is, Mx
a = Ma(α(x)), My

b = Mb(β(y)),
and ρ = ρ(γ ).

Given a Bell inequality described by S = S(α,β, γ ), our
objective will be to maximize S, particularly obtaining a value
that surpasses the local bound L. Importantly, we want to
achieve that without knowing how function S depends on
the knob parameters α, β, and γ . That is, the optimization
is performed in a truly black-box scenario. As we will show,
changing iteratively the value of the parameters and observ-
ing, in real time, the change in S, we will be able to reach its
optimal value after a remarkably low number of iterations.

We employ a gradient-free and direct search algorithm, the
Nelder-Mead simplex method [28] and its stochastic variant
[15], able to efficiently optimize a multidimensional function
by simply comparing some of its values. This is achieved
even in the presence of noise, unavoidable in an experimental
implementation. In the following we will fix the parameter
γ describing the source, but the method can also be used to
optimize over it.

The algorithm adaptively evolves a simplex [29] living in
the space of the parameters t = (α,β) ∈ T . The Bell func-
tion S(t ) can be calculated for each of the n simplex points:
{t1, . . . , tn} ⊆ T −→ {S(t1), . . . , S(tn)}. As input of the op-
timization protocol an initial simplex �0 = {t0

1, . . . , t0
n} is

generated through Latin hypercube sampling [15]. Starting
from the initial simplex, the algorithm repeats an optimization
cycle that updates the simplex (Fig. 1). Each cycle of the
adaptive algorithm is composed of three main steps: (1) The
points of the simplex �k−1 are sorted, based on the values
of the associated cost function such that the worse point is
deleted; (2) from the barycenter of the simplex, a new point
t ref is generated through a reflection rule; and (3) according to
the cost of t ref , the simplex is updated by including t ref itself or
geometrically generating a further point. If such point is not
promising enough, an adaptive random search is employed
to generate a point tARS [30]. A more detailed account of the
above steps is provided in Appendix A, while a comparison
between the the devised algorithm and standard nonadaptive
approaches is provided in Appendix B.

III. SIMULATION AND NUMERICAL TESTS ON
THE CHSH INEQUALITY

To illustrate the main features of our approach, in the
following we will focus on the Clauser, Horne, Shimony, and
Holt (CHSH) scenario [31] consisting of dichotomic inputs
and outputs. The only class of Bell inequalities in this scenario
is given by

S = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 � 2, (3)

where 〈AxBy〉 ≡ ∑
a,b a b p(a, b|x, y) is the expectation value

(given the inputs x and y) of Alice and Bob outcomes (a, b) ∈
{+1,−1}. Moreover, the employed approach can be applied
for general optimization, and we consider a range of different
scenarios such as the chained [32], tilted [33], and nonlinear
Tsirelson-Landau-Masanes inequalities [34].

We performed simulated optimizations and experiments
covering a range of pure and noisy quantum states. Here, we

focus on quantum states given by

|ψγ 〉 = cos γ |HV 〉 + sin γ |V H〉. (4)

In turn, the most general projective measurement on a qubit
state is given by P̂(θ, φ) = 
r(θ, φ) · 
σ , where 
r(θ, φ) repre-
sents a unit vector in polar coordinates and 
σ = (σx, σy, σz )
are Pauli operators. Considering that the input of the CHSH
test defines the angles θ, φ of such measurements (noticing
that this knowledge is never used by the algorithm), we have
at least a total number of eight measurement parameters (two
for each measurement of Alice and Bob). This defines the
parameter space where the algorithm searches for the CHSH
optimization.

It is worth pointing out that, since we are in a fully black-
box scenario, the optimization process does not require the
exact form of the quantum state or measurements, which are
only chosen for simulation purposes. As a matter of fact, in the
optimization, one has to choose how the algorithm will map
the parameters α and β to the observable measured at a par-
ticular iteration. As discussed in Appendix C, we have tested
different nonlinear response functions, such as the hyperbolic

(a)

(b)

FIG. 2. Simulation results. The difference |Strue − Sbest| is plotted
as a function of the algorithm’s iteration. For all plots the curves
are obtained by averaging over 100 simulation runs. (a) Singlet
state with different numbers of events N . (b) Pure unbalanced states
(parametrized by γ in radians). The label Strue specifies the optimal
violation of the CHSH inequality for the corresponding states. The
mean number of Poissonian events relative to each measurement
is 105.
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FIG. 3. Experimental setup. A Sagnac-based source generates photonic pair states of the form cos γ |HV 〉 + eiφ sin γ |V H〉 unknown to
the optimization algorithm. The polarization of the two photons is measured by two wave plates whose angles are determined by unknown
functions f (·) and g(·) of known parameters α and β. New parameters α and β are chosen based on the results a and b of the previous iteration.
The numbers indicate the steps performed at each iteration. At the end of the process, optimal values α∗ and β∗ are chosen in order to optimize
the Bell inequality violation. QWP, quarter-wave plate; HWP, half-wave plate; DHWP, dual-wavelength half-wave plate; PBS, polarizing beam
splitter; DPBS, dual-wavelength polarizing beam splitter; SMF, single-mode fiber; APD, avalanche photodiode single-photon detector; ppKTP,
periodically poled potassium titanyl phosphate; M, mirror; DM, dichroic mirror.

sine or a logistic function. Finally, to mimic the experimental
situation, Poissonian fluctuations are added in the measure-
ments of operators. Such fluctuations are characterized by the
parameter N , corresponding to the total number of Poissonian
events used to calculate the CHSH parameter at each iteration.

The figure of merit of the optimization process is given by
� = |Strue − Sbest (i)|, where Sbest (i) corresponds to the best
value of the CHSH parameter inside the simplex at the ith iter-
ation step, while Strue is the maximum CHSH value achievable
by the considered state and that can be computed resorting to
the Horodecki criterion [35].

In Fig. 2(a) one can see that increasing N (thus reducing the
Poissonian fluctuations) leads to faster convergence to values
comparable to the expected error (i.e., � ∼ 1/

√
N). As shown

in Fig. 2(b) (considering N = 104), for quantum states with
different levels of entanglement, already with 200 iterations
the error reaches values close to � = 1/

√
N = 10−2.

IV. EXPERIMENTAL ab initio OPTIMIZATION TESTS

To demonstrate the described protocol, we exploited po-
larization states of pairs of photons. Entangled states of the
form (4) were generated through a type-II spontaneous para-
metric downconversion process inside a periodically poled
potassium titanyl phosphate (ppKTP) crystal, pumped by a
continuous-wave λ = 404 nm laser in a Sagnac interferomet-
ric geometry [36,37].

The photons exiting the source are measured through two
polarization analysis stages, each composed of a quarter-wave
plate (QWP) followed by a half-wave plate (HWP) and a
polarizing beam splitter (PBS). The measurement parameters
that are tuned determine the rotation angles of the wave plates
by means of functions f (α) for Alice’s and g(β) for Bob’s
station (Fig. 3).

We performed experimental optimization tests varying the
unknown states, number of parameters, and measurement re-
sponses. In the experimental case we compare the highest
reached violations Sbest (i) at the ith iteration with the max-
imum violation Stomo obtained by applying the Horodecki
criterion [35] to the density matrix reconstructed with quan-
tum state tomography [38]. Considering the maximally
entangled state, Fig. 4(a) shows that we reach � < 10−2 after
only 250 iterations, even considering an eight-parameter opti-
mization. Experiments with different initial entangled states
[Eq. (4)] show a similar fast convergence [see Fig. 4(b)].
Remarkably, we achieve experimental Bell violations even for
states with little entanglement and optimal CHSH violation as
low as Stomo = 2.161 ± 0.026 (see Table I for details).

V. BEYOND THE CHSH INEQUALITY

In the previous sections we have focused on the CHSH
inequality. In what follows, we will show how our approach
can be applied to a variety of different scenarios.

TABLE I. Experimental results. The average Bell violations
(Sbest) for different states, identified by γ as in (4), are listed along-
side the reference violation found by tomographic reconstruction of
the state (Stomo). Column σ represents the standard deviation associ-
ated with distribution of the single optimization runs.

γ Stomo Sbest σ

4π

45 2.161 ± 0.026 2.116 ± 0.025 0.056 ± 0.020
2π

15 2.503 ± 0.008 2.463 ± 0.024 0.054 ± 0.019
8π

45 2.535 ± 0.012 2.493 ± 0.031 0.069 ± 0.024
π

4 2.588 ± 0.006 2.581 ± 0.014 0.044 ± 0.010
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(a)

(b)

FIG. 4. Experimental results. Average difference Stomo − Sbest be-
tween the value Stomo, which is the maximum CHSH violation
achievable by the state from the quantum state tomography, and Sbest ,
which is the best value obtained by the algorithm as function of
the iteration of the algorithm. (a) The shaded blue area represents
the standard deviation of the mean. The mean number of events
for each CHSH measurement is ∼4 × 104. Stomo = 2.588 ± 0.006,
and Sbest = 2.581 ± 0.014. (b) Different values of the γ parameter
relative to the state are chosen: 4/45π , 2/15π , 8/45π , and π/4. For
all the data the number of parameters is 8 (four for each station), and
the mean number of collected photons for each CHSH measurement
is ∼4 × 104. Each curve is the average of five repetitions of the
optimization (see Table I).

A. Chained Bell inequalities

An important class of bipartite Bell inequalities are the so-
called chained Bell chained inequalities [32], given by

Sk =
k∑

i=1

|Ii| � k − 1, where Ii = 1

2

i∑
x=i−1

〈AxBi−1〉, (5)

with Ak = −A0. Differently from the CHSH case, Alice and
Bob can perform an arbitrary number of k measurements
each. This class of inequalities has found many applications,
ranging from randomness amplification [39] to self-testing of
quantum states [40].

Our simulation and experimental results for the chain in-
equality are shown in Fig. 5. Numerical simulations [Fig. 5(a)]
show that even for increasing k (up to k = 12) the black-
box optimization algorithm is still able to reach values very

close to the maximum possible Bell inequality violation.
Figure 5(b) shows that the number of iterations required to
obtain a value lower than 2% for the distance between the
maximum reachable violation and the violation achieved by
the optimization scales approximately linearly with k. Thus
the approach remains very efficient even by increasing the
number of measurements and complexity of the Bell scenario.
Finally, Fig. 5(c) shows our experimental results for k = 3 (in-
volving 12 measurement parameters in total), also comparing
them with a numerical simulation.

B. Tilted Bell inequality

Even though in the CHSH scenario the CHSH inequality
is the only tight Bell inequality (a facet of the local set), it is
known that nontight Bell inequalities might play an important
role for quantum information processing. For instance, the
maximal violation of the CHSH inequality allows the gener-
ation of 1.23 bits [41] of certified randomness. For optimal
randomness certification in a Bell scenario, even using non-
maximally entangled states of the form cos γ |00〉 + sin γ |11〉,
tilted Bell inequalities have been introduced in Ref. [33]. The
general form of the inequality for local classical models is
given by

Iα
β = β〈A1〉 + α〈A1 B1〉 + α〈A1 B2〉 + 〈A2 B1〉 − 〈A2 B2〉
� 2α + β, (6)

where α � 1 and β � 0.
To gauge the employed approach in the violation of

this inequality, we consider the case where α = 1 and
β = 2 − 2 sin2 γ are optimized to maximize the viola-
tion of Eq. (6), whose maximum quantum value is Iα

β =
2
√

(1 + α2)(1 + β2/4). As displayed in Fig. 6, compu-
tational simulations considering different quantum states
(parametrized by γ ) show that the black-box optimization is
able to approach the optimal value even with only 104 Poisso-
nian events per measurement. This shows that the black-box
optimization might find applications in device-independent
randomness certification as well. It is worth pointing out
that in this simulation we are already choosing the optimal
inequality for the given state. In the future, one might consider
the case where the underlying state is unknown and thus not
only the measurements have to be optimized in a black-box
scenario but also the objective function (the Bell inequality)
can be optimized over.

C. Black-box optimization of quantum inequalities

So far, we have considered only the case of classical Bell
inequalities. In some cases, however, one might also be in-
terested in exploring the boundary of the set of quantum
correlations [11,42,43].

To illustrate the applicability of the approach also in this
case, we consider the black-box optimization of the so-called
Tsirelson-Landau-Masanes (TLM) inequality [34] to bound
the set of quantum correlations in the CHSH scenario. We
consider a specific symmetry of these quantum inequalities
given by

−π � − sin−1 x1+ sin−1 x2+ sin−1 x3+ sin−1 x4 � π, (7)

where x = (〈A0B0〉, 〈A0B1〉, 〈A1B0〉, 〈A1B1〉).
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(a) (b) (c)

FIG. 5. Chained Bell inequalities optimization (simulation and experiment). (a) Mean results over 50 optimization runs of the chained Bell
inequalities, computed considering a singlet state, increasing k measurement per party, and Poissonian measurement uncertainty with N = 106.

Since the achievable maximal violation Sk
true varies with k, we report the rate

Sk
true−Sk

best
Sk

true
as a function of the algorithm’s iteration. The number of

optimization parameters increases linearly and is given by 4k. In all cases the algorithm is able to approach the expected minimum within ≈1%
after ≈ 5000 noisy evaluations. (b) Median (over 50 repetitions) number of measurements needed to reach a distance lower than 2% between
the ab initio evaluation of the chained parameter Sk and its maximum reachable value, as a function of the number of settings k. As can be
seen, the number of iterations grows linearly with the number of optimization parameters showing the efficiency of the employed method.

(c) Experimental optimization of the chain inequality with k = 3; hence 12 control parameters are necessary. We report the rate
S3

tomo−S3
best

S3
tomo

,

averaged over five experimental runs, as a function of the algorithm iteration. The number of events for each measurement is ∼3 × 104.
Here, S3

tomo is again the maximum violation of S3 achievable by the state from the quantum state tomography, computed through numerical
optimization. The blue line indicates the average simulation (repeated 100 times) for a Werner state with p = 0.90, employing N = 3 × 104

Poissonian events with added Gaussian noise (σ = 0.05) to simulate the real experimental conditions, where S3
tomo = 2.399 ± 0.003 and for

the average over the five runs we have S3
best = 2.28 ± 0.02 with a variance of 0.002.

We simulated the optimization of this quantum inequality
considering a singlet state and different numbers of Poisso-
nian events [Fig. 7(a)]. The goal here is to reach the optimal
value of the function of correlations in Eq. (7), possibly get-
ting as close as possible to the quantum bounds, which in the
case of maximally entangled states is equal to π . Moreover,
we have also performed an experimental test to demonstrate
the performance of the method also in a real noisy setup
[Fig. 7(b)]. The black-box optimization of the quantum in-
equality follows a similar trend, approaching its optimum
value after a reasonably small number of iterations. Thus our
approach can also find relevant applications in testing the
limits of quantum predictions for possible deviations from
quantum theory.

FIG. 6. Tilted Bell inequality black-box optimization. Computa-
tional simulation considering a mean (over 100 repetitions) of the
tilted Bell inequality in Eq. (6) with parameters α = 1 and β =
2 − 2 sin2 γ optimized on the source state, simulating a Poissonian
statistic with N = 104 events for each measurement.

VI. Ab Initio RANDOMNESS CERTIFICATION

Now, we show how the presented approach can be ex-
ploited to certify and maximize randomness, the paradigmatic
application of Bell nonlocality [4,44–47]. While randomness
can be certified via the violation of Bell’s inequalities [4,48–
55] and the algorithm is able to find them, our aim here is
to maximize the certified randomness directly from the data,
instead of an a priori known Bell inequality [56]. Following
Ref. [57], we have approached this problem by constraining
the guessing probability of the adversary (Eve) directly on the
observed behavior. Denoting as e the outcome associated with
Eve, randomness can be quantified via the guessing probabil-
ity [58] given by

pguess(x, y) = max
{p∈Q}

∑
a,b

p(a, b, e = (a, b)|x, y), (8)

where p(a, b, e|x, y) ∈ Q is the unknown global behavior
including Eve, constrained to belong to the set of quan-
tum correlations Q. The distribution pguess represents the
amount of knowledge that she can extract on the out-
comes of Alice and Bob, and it must be compatible with
the observed distribution p∗(a, b|x, y) = Tr(Aa|x ⊗ Bb|y ρ).
Combining the stochastic Nelder-Mead algorithm with the
Navascués-Pironio-Acín (NPA) hierarchy [59], we are able to
optimize the upper bound on pguess over unknown measure-
ments and states constrained on being compatible with p∗, i.e.,
we are solving the following maximization problem:

max pguess such that p(a, b, e|x, y) ∈ Qk

×
∑

e

p(a, b, e|x, y) = p∗(a, b|x, y), (9)
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(a) (b)

FIG. 7. Optimization of quantum Bell inequalities (simulation and experiment). (a) The rate Strue−Sbest
Strue

is plotted as a function of the
algorithm’s iteration. We report the mean results obtained by averaging 50 simulation runs of the stochastic Nelder-Mead (SNM) optimization
of the TLM inequality [34] considering a pure singlet state. The different curves represent the distinct trends for three separate values of
the Poissonian measurement uncertainty N . (b) Experimental results of the optimization of the TLM inequality proposed in Ref. [34]. The
difference Stomo−Sbest

Stomo
has been averaged over eight experimental repetitions with eight measurement parameters, and it is reported as a function

of the algorithms’ iteration. The average of the optimal value found is Sbest = 2.862 ± 0.007, with a variance of 0.00039, which is comparable
to the one found by performing the full quantum state tomography Stomo = 2.98 ± 0.01. The average number of events for each measurement
is ≈4.4 × 104.

where Qk represent the relaxation of quantum set at the k
order of the NPA hierarchy [59]. In Fig. 8 we show, fixing a
state of the form (4) with a specific value of the parameter
γ , how the algorithm is able, in less than 500 iterations,
to approach the optimal value of the pguess for pure states
[56], optimizing on all the possible measurements allowed
by our setup. Considering experimental density matrices, we
are able to approach the higher value of pguess ≈ 0.7 as is
expected due to the noise of experimentally reconstructed
states.

The simulation results are reported in Fig. 9 and clearly
show that our approach is able to directly maximize the ran-
domness extraction in a fully black-box approach.

FIG. 8. Computational simulation of extracted randomness. Op-
timal pguess of an adversary as a function of iterations for selected
values of the parameter γ for states of the form |ψγ 〉 = cos γ |HV 〉 +
sin γ |V H〉. The experimental curves are obtained by considering
density matrices of states reconstructed using experimental data. As
in the main text, the behaviors used to evaluate Eve’s pguess are ob-
tained directly through Born’s rule p(a, b|x, y) = Tr(Aa|x ⊗ Bb|yρ ),
where ρ is the reconstructed density matrix. This is the trend of pguess

in Eq. (9) as a function of the iterations.

VII. DISCUSSION

The violation of a Bell inequality is often pictured as the
paradigmatic example of a device-independent task: From the
observed statistic alone, without knowing the internal working
of devices, one can conclude the nonclassical nature of it. To
obtain such violation, however, one often has to rely on a
precise description of the devices. Here, we propose a practi-
cal solution to this problem, exploiting an adaptive automated
algorithm able to maximize the Bell inequality violation in a
fully black-box setting. Employing both simulation and actual
experiments, we demonstrated the protocol by optimizing the
violation of many Bell inequalities for different unknown pho-
tonic bipartite states and measurement responses . Nicely, the
optimum values are achieved after a few hundred iterations.

Our approach can also be applied to quantum networks
of growing size and complexity that have started to be ex-
perimentally and theoretically explored in the recent years
[60–72]. Finding Bell inequalities in these cases can be very
difficult, but heuristic machine-learning-based approaches

FIG. 9. Simulated randomness certification. Optimal pguess, ob-
tained as an average over 50 runs of the optimal value reached
by the employed algorithm after 500 iterations, as a function of
the parameter γ for pure states in the form (4) (red stars) and for
experimentally reconstructed noisy density matrices (blue stars). The
noisy points can certify less randomness than the ideal ones.
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have been proposed to find and quantify nonclassicality
[16,17,73] opening the possibility of applying our framework
also in such scenarios. Moreover, from a more near-term per-
spective, practical experimental quantum information tasks,
where multiple parameters are tuned to optimize a desired cost
function, such as quantum communication and state engineer-
ing in noisy environments, can also benefit from our approach.
To demonstrate that, we have applied our framework for a
paradigmatic application of Bell’s theorem, showing that even
with no knowledge of states or devices, one can directly (i.e.,
without the need of Bell inequalities) maximize the amount of
certified randomness.
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APPENDIX A: DETAILS OF THE STOCHASTIC
NELDER-MEAD ALGORITHM

The stochastic Nelder-Mead algorithm is composed of
three main steps, continuously repeated during the optimiza-
tion process:

(1) The Bell inequality parameter S for all the points t of
the simplex �k−1 is evaluated, and the point with the maxi-
mum value is removed from the simplex, if dim(�k−1) > n.
Then the values S(t ) are sorted, and three elements are indi-
viduated: tmax, t2nd max, and tmin, which are the points for which
the CHSH parameter S(·) assumes the maximum, the second
maximum, and the minimum values, respectively.

(2) The barycenter tbar of the points in �k−1 \ {tmax} is
calculated, and a new point t ref is generated by the following
reflection rule: t ref = (1 + δ)tbar − δ tmax, where δ > 0 is the
reflection coefficient.

(3) Either step (a), (b), or (c) below is followed.
(a) If S(tmin) � S(t ref ) < S(t2nd max), impose �k = �k−1 ∪

{t ref}.
(b) If S(t ref ) < S(tmin), generate the expansion texp =

γ t ref + (1 − γ ) tbar, where γ > 1 is the expansion coefficient;
and if S(texp) < S(t ref ), impose �k = �k−1 ∪ {texp}, otherwise
�k = �k−1 ∪ {t ref}.

(c) If S(t ref ) � S(t2nd max), then either step (i) or step (ii)
below is followed.

(i) If S(t2nd max) � S(t ref ) < S(tmax), there will be an exter-
nal contraction given by

tcont = βt ref + (1 − β )tcent0 � β � 1.

If S(tcont ) � S(t ref ), the contraction is accepted.

(ii) If S(t ref ) � S(tmax), there will be an internal contrac-
tion given by

tcont = βtmax + (1 − β )tcent0 � β � 1.

If S(tcont ) � S(tmax), the contraction is accepted.
If the contraction is accepted, then �k+1 = �k ∪ {tcont},

otherwise an adaptive random search (ARS) is exploited as
described in the main text.

The standard control parameters used in the employed al-
gorithm are {δ, η, γ } = 1, 0.5, 2 [28] and ε equal to ≈10% of
the value of the parameter variation used to perform the ARS
global search process.

With respect to Ref. [15], we avoided the use of an adaptive
sample size scheme, which would require us to resample every
point of the simplex at each iteration of the algorithm. This
is motivated by the time-constrained nature of our experi-
mental test bed, since every cost function estimation requires
approximately 20 s to be performed, considering both the data
acquisition and the response time of the optical apparatus. The
computational time is negligible, being ∼1 ms for each run on
a commercial PC.

APPENDIX B: COMPARISON BETWEEN STOCHASTIC
NELDER-MEAD ALGORITHM AND NONADAPTIVE

ALGORITHMS

In this Appendix we compare our approach with two ba-
sic nonadaptive procedures for gradient-free optimization in
high-dimensional parameter space.

The first is a brute-force approach where the function is
optimized on an equally spaced grid in the parameter space.
The exponential increase in the number of points in the grid
given by nd , where d is the number of optimization param-
eters (for instance, d = 8 for the CHSH case) and n is the

FIG. 10. Comparison between different optimization procedures
(simulation). The plot considers the eight-dimensional parameter
space of the CHSH scenario. The grid optimization (blue curve) is
a brute-force search on an equally spaced grid in this space. The
plot shows the average of 100 runs where the starting point of the
grid was chosen at random. The random search method (orange
curve) instead performs sampling on random points trying to find
the optimum. Also in this case the average of 100 runs is shown.
As can be seen, the stochastic Nelder-Mead algorithm (green curve)
performs much better. All curves were generated by simulating noisy
samples following Poissonian statistics corresponding to N = 104

events.
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(a) (b) (c)

FIG. 11. Optimization with different measurement responses (simulation and experiment). (a) The difference |Strue − Sbest|, averaged over
100 runs, is plotted as a function of the algorithm’s iteration. Here, the optimization of the CHSH inequality is performed over pure singlet
states using nonlinear maps to the eight total projector parameters, accounting for Poissonian fluctuations with N = 104. (b) and (c) Mean
difference Stomo − Sbest as a function of the algorithm’s iteration considering the Osc(α) and Logi(α) nonlinear maps as the measurement
response in both Alice’s and Bob’s stations. In both cases the QWP position has been fixed on its optical axis; the algorithm is controlling
only the HWP. For both (b) and (c) the mean rate of events per measurement is ≈5 × 104, and nine experimental runs have been collected.
The orange lines indicate the average simulations (repeated 100 times) for a Werner state with p = 0.90, employing N = 5 × 104 Poissonian
events with added Gaussian noise (σ = 0.05) to simulate the real experimental conditions. In (b) we have obtained Stomo = 2.574 ± 0.015,
and our average over the optimization runs is Sbest = 2.491 ± 0.016 with a variance of 0.0023, while in (c) we have Stomo = 2.469 ± 0.017 and
Sbest = 2.435 ± 0.026 with a variance of 0.006.

number of samples for a single parameter, severely limits the
applicability of this method for high parameter space. As
a matter of fact, usually this approach is used in combina-
tion with other local optimization methods. To illustrate the
method, here we employ n = 3 which gives 6561 grid points
to sample.

Among the simplest and effective nonadaptive approaches
to multiparameter black-box optimization is to perform a ran-
dom search in the parameter space. Here, at each step, sets of
parameters are selected uniformly at random in the allowed
set and independently in respect to previous steps.

Employing such approaches and comparing them with our
optimization procedure shows a definite advantage of the lat-
ter. In particular, the convergence to the optimum is notably
faster, a feature of fundamental importance for real applica-

FIG. 12. Simulations for noisy states. Simulated scenario with
different mixed states, parametrized by p and λ, with a number of
events N = 104. The difference |Strue − Sbest| is plotted as a function
of the algorithm’s iteration. All the curves are obtained by averaging
over 100 simulation runs.

tions where the number of samples one can afford is severely
limited.

For comparison we performed both the grid and random
optimization simulating noisy measurements with Poissonian
statistics corresponding to N = 104 events. The results are
shown in Fig. 10, considering the average of 100 optimization
procedures, where in the grid case we randomized the starting
point of the grid in the parameter space.

APPENDIX C: CHSH INEQUALITY OPTIMIZATION WITH
DIFFERENT MEASUREMENT RESPONSES

AND NOISY STATES

In our photonic implementation with qubits, each projec-
tive measurement is described by two continuous angles (from
the half- and quarter-wave plates). In the black-box scenario,
however, we cannot assume how the actual measurement op-
erator depends on such inputs. To illustrate the role that the
choice of the response functions might have in the optimiza-
tion, we considered the following three response functions:

f (α) =
⎧⎨
⎩

5e−|α| sin(200α) ≡ Osc(α),
π

eα+1 ≡ Logi(α),
sinh(α).

As can be seen in Fig. 11(a) all such response functions
reach a reasonable accuracy in our simulations. As shown in
Figs. 11(b) and 11(c), we compare the numerical simulations
with an actual experiment, by choosing the oscillating and
logistic response functions. The experimental minimization is
done by fixing the QWP positions and optimizing on the four
measurement parameters associated with the HWP positions.

Furthermore, we simulate the optimization of CHSH in-
equality for different states of the form ρ = p|ψγ 〉〈ψγ | +
+(1 − p)(λ |ψ−〉〈ψ−|+|ψ+〉〈ψ+|

2 + (1 − λ) I4 ), with different val-
ues of noise parameters p and λ. The results are shown in
Fig. 12 and demonstrate how the algorithm can optimize all
the tested states with similar performances.
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