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Natural grid stretching for DNS of wall-bounded flows
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Abstract

We propose a natural stretching function for DNS of wall-bounded flows, which blends uniform near-wall spacing

with uniform resolution in terms of Kolmogorov units in the outer wall layer. Numerical simulations of pipe flow are

used to educe optimal value of the blending parameter and of the wall grid spacing which guarantee accuracy and

computational efficiency as a results of maximization of the allowed time step. Conclusions are supported by DNS

carried out at sufficiently high Reynolds number that a near logarithmic layer is the mean velocity profile is present.

Given a target Reynolds number, we provide a definite prescription for the number of grid points and grid clustering

needed to achieve accurate results with optimal exploitation of resources.

1. Introduction

Direct numerical simulation (DNS) of wall-bounded flows is by now an established practice, started from the

pioneering work of Kim et al. (1987) for channel flow. Although meshing is not a challenging issue given the simple

topology of canonical flows to which DNS is currently limited, the mesh parameters significantly affect computational

accuracy and efficiency. It is generally acknowledged (e.g. Lee and Moser, 2015) that mesh spacings in the order of ten

wall units in the streamwise direction and five in the spanwise direction are sufficient in pseudo-spectral calculations to

achieve good resolution of the buffer-layer energy-containing eddies, namely streaks and associated quasi-streamwise

vortices. The buffer layer is especially important as the topology of eddies changes from sheet-like near the wall to

rod-like away from it, corresponding to the inflectional point of the wall-normal velocity variance profile (Orlandi,

2013). Finite-difference schemes require similar or slightly higher number of grid points (Bernardini et al., 2014),

to achieve the same quality of results. More disputable is the selection of the mesh properties in the wall-normal

direction, which is strongly anisotropic for the flow, and for which no rule is consolidated yet. In fact, different

authors of state-of-art DNS have used vastly different mapping functions, and the selection of the total number of

grid points is mainly a matter of personal experience and feeling. Another important issue in the design of modern

DNS is computational efficiency. In fact, it turns out that the admissible time step is strongly affected by the wall-

normal distribution of the grid points, and changing the mapping function can yield substantial saving of computer

time, with little or no loss of accuracy. While some inefficiency is forgiven in small-scale DNS carried out on local
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computer clusters, this is clearly not allowed in leading-edge numerical simulations exploiting huge computational

resources. The purpose of this paper is to provide the community of DNS of wall-bounded flows with a tailored

mapping function and definite grid point number estimates, so as to satisfy natural resolution requirements and at the

same time to provide maximum computational performance. Although the forthcoming discussion is mainly focused

on the case of turbulent pipe flow, other canonical cases can also be handled with no or minimum modifications, as

plane channel and boundary-layer flows.

2. Wall-normal stretching functions

Considerations about the multi-scale nature of wall-bounded turbulence lead to conclude that several constraints

shall be satisfied for effective design of the wall-normal mapping function: i) the first off-wall grid node (say ∆y+w)

shall be placed close enough that the severe velocity gradients occurring in that region are resolved, which requires

∆y+w . 1; ii) grid points should be conveniently clustered within the buffer layer (say, y+ ≤ 50) which is the most

anisotropic region of the flow, and in which most intense phenomena occur; iii) the spacing in the outer part of the

wall layer, in which turbulence is not far from isotropic, should be proportionate to the local Kolmogorov length

scale. Synthetic information about previous DNS studies of channel and pipe flows is provided in Table 1, where

Reτ = uτδ/ν (with uτ the friction velocity, δ either the channel half-height or the pipe radius or the boundary layer

thickness, and ν the fluid kinematic viscosity) is the friction Reynolds number, Ny is the number of collocation points

in the wall-normal direction, and Nbu f is the number of grid points within the buffer layer. As can be seen, different

studies rely on different mapping functions (see Orlandi (2000) for an overview of classical ones), different near-wall

resolutions, and even very different total number of points for similar Reτ. In this respect it should be noted that

standard spectral methods only allow for cosine stretching in the vertical direction to exploit Chebyshev transform,

and alternate mappings can only be accommodated by changing the numerical treatment of the wall-normal direction.

For instance, Hoyas and Jiménez (2006) used sixth-order compact differencing, whereas Lee and Moser (2015) used

a B-spline collocation method. On the other hand, the finite-difference method allows use of arbitrary mappings.

We believe that, given the near universality of wall-bounded flows, a universal treatment of the stretching function

is possible and appropriate. We then reason as follows. First, following considerations of Hoyas and Jiménez (2006),

we believe that the grid spacing in the outer layer should be selected to be proportional to the local Kolmogorov

length scale, say η. By definition η+ = ε+−1/4, with ε the local dissipation rate, and + denoting wall units. Since under

equilibrium conditions in the log layer ǫ+ ∼ 1/y+, it follows (Jiménez, 2018) that

η+ ≈ cηy
+1/4
, (1)

with cη ≈ 0.8, which is consistent with all available DNS of channel and pipe flow, as we have directly checked.

Hence, the first requirement which we set is that the local grid spacing in the outer layer should be ∆y+ = αη+, with

α controlling adequate resolution of the dissipative eddies. The choice α = 1.5 yields a resolution in spectral space

kmaxη ≈ 2 (where kmax = π/∆y is the maximum resolved wavenumber) which is regarded to be sufficient in numerical
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Flow Reference Stretching function Reτ Ny ∆y+w Nbu f Symbol

Channel

Kim et al. (1987) Cosine 180 64 0.05 31 ×

Hoyas and Jiménez (2006) NA

550 128 0.041 36

934 192 0.031 40

2004 317 0.32 31 �

Lee and Moser (2015) Cosine/splines

182 96 0.074 48

544 192 0.019 56

1000 256 0.019 55

5186 768 0.50 54 ◦
Lozano-Durán and Jiménez (2014) NA 4180 540 0.32 31

Pirozzoli et al. (2016) Error function

548 192 0.06 79

995 256 0.018 79

2017 384 0.26 83

4088 512 0.38 73 △

Pipe

Wu and Moin (2008) NA
182 256 0.17 150

1142 300 0.41 69 ▽

Chin et al. (2014) NA

180 80 0.50 NA

500 160 0.07 NA

1002 192 0.6 NA

2003 320 0.35 NA

Ahn et al. (2015) NA

180 257 0.165 NA

544 279 0.176 NA

934 301 0.33 NA

3008 901 0.36 NA

Boundary layer Schlatter and Örlü (2010) NA 1271 212 0.033 40 ⋄

Table 1: List of mesh parameters for reference DNS studies. ∆yw is the distance of the first off-wall node, and Nbu f is the number of grid points

within y+ ≤ 50.
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simulations of isotropic turbulence (Jiménez and Wray, 1998), and similar to the resolution used in channel flow by

Hoyas and Jiménez (2006). Thus, let j be the wall-normal grid index (momentarily assumed to be continuous for

convenience), we require that

∆y+ =
dy+

d j
= αcηy

+1/4
, (2)

which upon integration yields

y+( j) =

(

3

4
αcη j

)4/3

, (3)

which defines the mesh stretching in the outer wall layer. Next to the wall, in the viscous sublayer the mean velocity

gradient is nearly constant up to y+ ≈ 5, and use of uniform spacing is appropriate, hence

y+( j) = ∆y+w · j. (4)

Whereas experience from most previous DNS suggests that a reasonable value of the wall grid spacing be ∆y+w ≈ 0.1,

its influence on the DNS statistics will be herein discussed. A smooth blending between the near-wall mapping (3)

and the outer-layer mapping (3) is further assumed, to yield

y+( j) =
1

1 + ( j/ jb)2















∆y+w j +

(

3

4
αcη j

)4/3

( j/ jb)2















, (5)

where the parameter jb defines the grid index at which transition between the near-wall and the outer mesh stretching

should take place, whose choice will also be discussed in detail. Straightforward differentiation of Eqn. (5) also yields

the local grid spacing,

∆y+ =
dy+

d j
=

1
(

1 + ( j/ jb)2
)2















(

1 − ( j/ jb)2
)

∆y+w +
2

3

(

3

4
αcη

)4/3
j7/3

j2
b

(

5 + 2( j/ jb)2
)















. (6)

Evaluating Eqn. (5) at the edge of the wall layer yields the number of grid points along the vertical direction as is an

implicit function of Reτ (as it should be), and of the stretching parameters jb, ∆y+w, α. However, under the assumption

j >> 1, hence at sufficiently high Reynolds number that the number of points within the buffer layer becomes small

compared to those in the outer layer, Eqn. (5) yields

Reτ =

(

3

4
αcηNy

)4/3

, (7)

whence the number of necessary grid points to achieve a given (large) Reτ can be estimated,

Ny =
4

3αcη
Re3/4
τ , (8)

where the nearest integer should be taken for practical purposes. Representative numbers are given in Table 2 .

Equation (8) is quite interesting as it suggests that the total number of grid points for DNS of wall-bounded turbulence

should scale as Nxyz ∼ Re
11/4
τ , whereas common estimates suggest Nxyz ∼ Re3

τ, on the grounds that the thickness of

the viscous wall region determines the smallest scales throughout the wall layer (Reynolds, 1990). Available channel

and pipe flow data further suggest that for Reδ & 105, Reτ ∼ Re0.92−0.94
δ

(where Reδ = 2ubδ/ν is the bulk Reynolds

number), thus yielding an estimated total number of grid points, Nxyz ∼ Re2.5−2.6
δ

.
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Reτ 500 1000 2000 5000 10000 20000

Ny 140 237 399 793 1333 2242

Table 2: Estimated number of grid points in wall-normal direction for DNS of wall turbulence, according to the asymptotic formula (8)
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Figure 1: Mapping functions (a) and corresponding grid spacing distributions in wall units (b) and in Kolmogorov units (c) for representative DNS

of wall-bounded flows. Symbols as given in Table 1. Straight horizontal and vertical lines denote the edge of the buffer layer (y+ = 50).
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Figure 2: Mapping functions (a) and corresponding grid spacing distributions (b), according to equations (5), (6), as a function of jb , assuming

∆y+w = 0.05, α = 1.25. Straight horizontal and vertical lines denote the edge of the buffer layer (y+ = 50).

The diversity of grid mappings used for DNS of wall-bounded flows is reflected in figure 1 , showing the dis-

tribution of grid points for representative simulations. The mappings differ in several respects, including position of

the first wall point, and number of points in the buffer layer, whose edge is marked with a horizontal line. Specifi-

cally, in the DNS of Kim et al. (1987) and Hoyas and Jiménez (2006) the grid points are more clustered towards the

wall, at the expense of having limited number of points in the buffer layer, about thirty. Other DNS (Wu and Moin,

2008; Pirozzoli et al., 2016) have larger wall spacing and more points in the buffer layer, up to seventy. Other

cases (Lee and Moser, 2015; Schlatter and Örlü, 2010) fall in between. This difference is appreciated in panel (b),

showing the mesh spacing as a function of the wall distance. Whereas most DNS have a spacing of 2-3 wall units

at the edge of the buffer layer, other have nearly uniform spacing in the viscous sublayer, and spacing of about one

wall unit at the edge of the buffer layer. To have a perception for the grid resolution in the outer layer, in panel (c) we

show the mesh spacing normalized by the local Kolmogorov length scale, limited to those cases in which the latter

is available. The effective resolution of most DNS in the outer layer is about 1.25-1.5 Kolmogorov units, and a bit

poorer in the case of the DNS of Schlatter and Örlü (2010) and Pirozzoli et al. (2016).

3. Numerical tests

3.1. Effect of the jb parameter

The stretching functions herein designed along with the associated grid spacing distributions are shown for various

jb in figure 2, where we assume ∆y+w = 0.05, α = 1.25. As intended, the jb parameter controls the number of grid

points within the buffer layer, changing from about 25 to about 70 as jb ranges between 4 and 128. The near-wall

spacing is increasing at low jb, whereas for all cases the grid spacing at the edge of the buffer layer is ∆y+ ≈ 3, and

∆y+ ≈ 2 for jb = 128. Comparison with figure 1 shows that change of jb allows to basically cover the range of

stretching functions used in previous studies.
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Figure 3: DNS of pipe flow at Reδ = 5300, effect of jb stretching parameter: profiles of (a) mean velocity, (b) r.m.s. velocity fluctuations (axial,

uz; wall-normal, ur ; azimuthal, uθ), (c) skewness and flatness of uz, and (d) turbulence kinetic energy production (P = −uruz dU/dy, solid lines),

and total dissipation (εt = νui∇
2ui, dashed lines). Symbols in panels (a, b) denote velocity statistics of Wu and Moin (2008). Lines in panels (c,

d) denote numerical results obtained with jb = 128, which are used as a reference. The square symbols denotes results obtained using the cosine

stretching function, with Ny = 64.
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In order to show how the choice of jb impacts the quality of numerical results and the involved computational effort

we have carried out a series of numerical experiments of pipe flow at modest Reynolds number (Reδ = 5300), using

a well-established solver (Verzicco and Orlandi, 1996; Orlandi and Fatica, 1997), modified with implicit treatment

of the azimuthal convective terms (Akselvoll and Moin, 1996; Stevens et al., 2013). The rationale is that, since the

buffer-layer dynamics is weakly affected by Reynolds number variations, the results of the analysis can be extrapolated

to higher Reynolds number. In all the simulations the computational domain is 15 pipe radii long, and 256 grid points

are used in the axial and azimuthal directions, with corresponding grid spacings ∆x+ ≈ 10.7, R+∆θ = 4.5. In these

exploratory simulations the value of Ny is varied from case to case, according to equation (5), from Ny = 66 for

jb = 4 to Ny = 116 for jb = 128. However, differences in the total number of points would become vanishingly

small at higher Re, as reflected in the asymptotic formula (8). The resulting flow statistics are shown in figure 3,

along with reference data of Wu and Moin (2008), who reported a friction Reynolds number Reτ = 181.4. Here, we

find that Reτ ranges between 181.1 and 182.1 as jb varies, hence the impact on frictional drag is less than 0.5%. The

impact is also small on the main flow statistics, including inner-scaled mean velocity profiles (panel (a)) and velocity

fluctuations intensities (panel (b)), although limited scatter and slight differences with respect to the reference data

are visible in the axial turbulence intensity towards the pipe axis. The higher-order moments of u (panel(c)) show that

lower resolution implies slight overprediction of the magnitude of skewness and flatness in the outer part of the buffer

layer. Some resolution effect is observed on the distribution of the turbulence kinetic energy production rate and total

dissipation rate (ǫt = νui∇
2ui, namely the sum of the viscous dissipation and diffusion terms), shown in panel (d). Not

surprisingly, dissipation is most affected being representative of the small-scale dynamics, and we find that coarser

mesh resolution in the buffer layer, i.e. lower jb, yields reduction of peak dissipation. Specifically, assuming the case

jb = 128 as a reference, we find that the underprediction is of about 2.5% for jb = 4, 1.0% for jb = 16, and 2.0%

with the cosine stretching function. Much smaller effect is found on the production term, which is underestimated by

at most 0.4% at jb = 4, and by less than 1% when using the cosine stretching function.

Computational efficiency in the numerical simulation of wall-bounded flows is critically affected by the admissible

time step. Given severe bounds placed by the viscous time step restriction, most DNS codes rely on implicit treatment

of the viscous terms in all coordinate directions, or at least in the wall-normal direction (Orlandi, 2000). Treatment of

the convective terms is instead typically explicit, and computations are time advanced at O(1) CFL number. A notable

exception is the case of pipe flow, in which the metric singularity yields unnecessarily small time step towards the

pipe axis, and implicit treatment of the convective terms, or progressive reduction of the Fourier modes towards the

axis, becomes necessary (Boersma, 2011). In any case, also given that the axial time step restriction can be alleviated

using a moving reference frame (Bernardini et al., 2013), the wall-normal time step restriction is typically the most

restrictive, and it can be mitigated through suitable design of the stretching function. This is portrayed in figure 4(a),

where we show the local convective time step restriction associated with each coordinate direction, assuming CFL=1,

hence ∆tmax,z = ∆z/(max |uz|) (axial, solid line), ∆tmax,r = min(∆y/|ur|) (radial, dashed lines), ∆tmax,θ = min(r∆θ/|uθ|)

(azimuthal, dash-dotted line). The viscous time step limitations are not shown as they can be easily by-passed by

implicit time integration. Also, since the axial and azimuthal mesh spacings are not changed, only one dashed line

8
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Figure 4: Time step limitations in DNS of pipe flow at Reδ = 5300 as a function of jb (a), and for jb = 16 at various Reδ (b). The line style indicates

the limitation associated with each spatial direction: wall-normal (solid), axial (dashed), and azimuthal (dash-dotted). The square symbols denote

results obtained using the cosine stretching function, with Ny = 64.

and one dash-dotted lines are shown. The figure confirms that the axial time step restriction is less compelling

than the other (the simulation is carried out in a moving frame of reference), and the spanwise restriction becomes

too demanding towards the axis, but this is disregarded in our simulations as we rely on implicit treatment of the

convective terms in the θ direction (Akselvoll and Moin, 1996). The wall-normal time step restriction (solid lines) is

thus found to be the most compelling, and to depend critically on the mesh stretching through the parameter jb, with

∆t+max,r ≈ 0.5 for jb ≤ 16, and reducing to ∆t+max,r ≈ 0.2, for jb = 128.

Given the previously noted improved resolution of the small scales at increasing jb, it seems that a good com-

promise between accuracy and computational efficiency (i.e. large time step) is achieved for jb = 16. This value

is thus retained in additional tests at higher Reynolds, whose results are shown in panel (b). There, results of pipe

flow DNS are reported for Reδ = 19000 on a 896 × 150 × 896 mesh (in z, r, θ, respectively), and at Reδ = 44000 on

a 1792 × 270 × 1792 mesh. The same qualitative behavior of the time step restriction is found at all Reδ, however

with reduction of the inner-scaled maximum time step as a consequence of the increased intensity of vertical velocity

fluctuations in the buffer layer.

3.2. Effect of the ∆y+w parameter

The effect of the wall spacing parameter ∆y+w, has then been evaluated by assuming jb = 16, α = 1.25. The

resulting stretching functions and the associated grid spacing distributions are shown for various ∆y+w in figure 5.

Whereas the distribution of the grid points outside the buffer layer is essentially the same for all ∆y+w, small values of

the wall spacing parameter yield smaller spacing near the wall, and larger spacing within the buffer layer. At extreme

values (∆y+w > 1), the grid spacing distribution may even exhibit a reversed trend with respect to the wall distance.

A series of pipe flow simulations have been carried out at Reb = 5300, by retaining the same number of grid

points in the radial direction, Nr = 67. As ∆y+w varies from 0.01 to 1, Reτ ranges between 180.9 and 181.5, hence with

scatter of less than 0.3%. Deviations become about 1% for ∆y+w = 5, with Reτ = 183.2. Detailed results of the grid
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jb = 16, α = 1.25. Straight horizontal and vertical lines denote the edge of the buffer layer (y+ = 50).
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Figure 6: DNS of pipe flow at Reδ = 5300, effect of the ∆y+w wall spacing parameter: profiles of (a) mean velocity, (b) r.m.s. velocity fluctuations

(axial, uz; wall-normal, ur ; azimuthal, uθ), (c) skewness and flatness of uz, and (d) turbulence kinetic energy production (P = −uruz dU/dy, solid

lines), and total dissipation (εt = νui∇
2ui , dashed lines). Symbols in panels (a, b) denote velocity statistics of Wu and Moin (2008). Lines in panels

(c, d) denote numerical results obtained with jb = 128, ∆y+w, which are used as a reference. The square symbols denote results obtained using the

cosine stretching function, with Ny = 64.
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Figure 7: DNS of pipe flow at Reδ = 44000: profiles of (a) mean velocity and (b) r.m.s. velocity fluctuations (axial, uz; wall-normal, ur ; azimuthal,

uθ), obtained using the new stretching function (with jb = 16, Ny = 270) and a traditional hyperbolic tangent stretching function (with β = 3.8,

Ny = 512). Symbols denote data of Wu and Moin (2008).

sensitivity study are shown in figure 6. The error in the mean velocity profiles (panel (a)) is limited to well less than

1% for ∆y+w ≤ 2, and it is only apparent for ∆y+w = 5. The velocity variances (panel (b)) are a bit more sensitive, and

some scatter in the outer layer is apparent already at ∆y+w = 1. The higher-order moments (panel (c)) are most affected

by the near-wall resolution, and especially the flatness keeps increasing in the viscous sublayer as ∆y+w is reduced.

Far from the wall, skewness and flatness are very weakly affected, as long as ∆y+w ≤ 1. Notably, the total dissipation

(panel (d)) is also weakly affected by ∆y+w, with the exception of the case ∆y+w = 5, which yields a reduced peak value.

The maximum allowed radial time step (not shown) is barely affected for small values of the wall spacing parameter,

although we find some limited gain with use of ∆y+w = 0.05, and it decreases for ∆y+w > 0.5 as a result of smaller grid

spacing in the buffer layer.

3.3. Assessment

As a final assessment of the proposed stretching function, in figure 7 we show the velocity statistics obtained

at Reδ = 44000 (yielding Reτ ≈ 1140) using the proposed stretching function with jb = 16, ∆y+w = 0.05, α =

1.25, Ny = 270. As a basis of comparison we consider DNS results obtained with the same code, using a classical

hyperbolic tangent stretching function (Orlandi, 2000), with stretching parameter β = 3.8, and Ny = 512, which can

be regarded as a well resolved DNS. We also compare with the reference DNS results of Wu and Moin (2008). Again,

no significant difference arises in the primary flow statistics, despite the vastly different distribution of grid points. On

the other hand, the time step is ∆t+ = 0.22 when using the new stretching, as compared to ∆t+ = 0.12 when using

hyperbolic tangent stretching, with clear reduction of computer time. Additional assessment of our stretching function

is reported in a separate publication, in which we carry out DNS of pipe flow up to Reτ ≈ 6000 (Pirozzoli et al., 2021).
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4. Conclusions

It is a fact that, although DNS of wall-bounded flows is by now a well established subject, the choice of the wall-

normal clustering of grid points is frequently made based on subjective judgement, or based on constraints from the

numerical algorithm. With the purpose of systematizing the matter, we propose a simple stretching function as given in

equation (5). By construction, this mapping has the natural property of yielding precisely constant resolution in terms

of the local Kolmogorov length scale in the outer part of the wall layer, where turbulence is not far from isotropic.

Consistent with previous DNS, we set the resolution parameter in such a way that the grid spacing is ∆y = 1.25η,

although it can probably be taken a bit higher and reduce the total number of grid points. Interestingly, imposing

constant resolution in Kolmogorov units implies that the number of grid points in the wall-normal direction should

scale as Re
3/4
τ , hence a bit milder rate than in the wall-parallel directions. The outer-layer stretching is combined with

a near-wall uniformly-spaced distribution by means of a blending function which is controlled by a parameter ( jb)

which may be interpreted as the grid node index at which transition takes place, thus larger values of jb imply a larger

number of grid points within the buffer layer. Another relevant parameter is the wall grid spacing, ∆y+w, controlling

resolution in the viscous sublayer. We have found that the computed buffer-layer statistics at low Reynolds number

are to a large extent independent of both jb and ∆y+w, with a sensitivity of O(1%) at most for properties associated with

small-scale turbulence activity as viscous dissipation.

On the other hand, the allowed computational time step is crucially affected by jb (much less by the wall grid

spacing), and compromise between accuracy and efficiency leads us to suggest jb = 16, ∆y+w = 0.05, as an optimal set

of stretching parameters. Numerical simulations carried out for pipe flow at moderate Reynolds number (Reτ ≈ 103)

support effectiveness and accuracy of the proposed stretching function at higher Reynolds number than considered

in the preliminary tests. Results obtained at more extreme Reynolds number are reported elsewhere (Pirozzoli et al.,

2021). Although DNS are shown here only for the case of pipe flow, we believe that the same mapping (perhaps with

slight modifications) can be adapted to study channel flow and boundary layers, on account of the near-universality

of wall-bounded turbulence (Monty et al., 2009). We thus trust that the proposed stretching can be profitably used as

a common basis for the design of future DNS to reach and exceed the current threshold of Reτ ≈ 104.
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