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Abstract

Bedding-perpendicular joints striking parallel (longitudinal) and perpendicular (transverse) to
both the axis of the hosting anticline and the trend of the foredeep-belt system are widely
recognized in fold-and-thrust belts. Their occurrence has been commonly attributed to fold-
ing-related processes, such as syn-folding outer-arc extension, although they can also be con-
sistent with a pre-folding foredeep-related fracturing stage. Here we report the pre-folding
fracture pattern affecting the Pietrasecca Anticline, in the central Apennines (Italy), resolved
by a detailed field structural analysis. Field observations, scan-lines and interpretation of virtual
outcrops were used to study the intensity, distribution and the orientations of fracture pattern
along the anticline. The fracture pattern of the Pietrasecca Anticline consists of longitudinal and
transverse joints, oriented approximately perpendicular to bedding, and of a pre-folding longi-
tudinal pressure-solution cleavage set, which is oblique to bedding regardless of the bedding dip.
Cross-cutting relationships show that joints predated the development of the pressure-solution
cleavage. Furthermore, joint intensity does not relate to the structural position along the
anticline. Taken together, these observations suggest that jointing occurred in a foredeep envi-
ronment before the Pietrasecca Anticline growth. Our work further demonstrates that joints
striking parallel and orthogonal to the main fold axis do not necessarily represent syn-folding
deformation structures.

1. Introduction

Fractures (i.e. joints, veins, faults, pressure-solution seams) may represent preferential pathways
for geofluids within anticline reservoirs, and the relationships between the development of anti-
clines and fracturing have been extensively studied in the last 50 years (e.g. McQuillan, 1974;
Dietrich, 1989; Lemiszki et al. 1994; Cosgrove & Ameen, 1999; Lacombe et al. 2011; Carminati
et al. 2014a; Watkins et al. 2015; Beaudoin et al. 2020; Labeur et al. 2021). These studies showed
that anticlines are commonly affected by two frequent orientations of joints and veins, striking
parallel (i.e. longitudinal) and orthogonal (i.e. transverse) to the fold axis. In the past, the for-
mation of such joint and vein sets has been attributed to the layer bending accommodating the
growth of folds (Ramsay, 1967; Stearns, 1967; Murray, 1968; Dietrich, 1989; Price & Cosgrove,
1990; Lemiszki et al. 1994). The presence of joints and veins in the ‘undeformed’ foreland of
fold-and-thrust belts (e.g. Dunne & North, 1990; Railsback & Andrews, 1995; Zhao &
Jacobi, 1997; Billi & Salvini, 2003; Whitaker & Engelder, 2006; Martinelli et al. 2019; Tavani
et al. 2020) suggests, however, that several joints and veins observed on anticlines of accretionary
wedges might have developed before folding, i.e. during foreland deformation. Joints and veins
oriented parallel and orthogonal to the trend of the foredeep and forebulge have indeed been
recognized on anticlines of different fold-and-thrust belts worldwide, e.g. Appalachian chain
(Zhao & Jacobi, 1997; Lash & Engelder, 2007), Zagros Mountains (Casini et al. 2011;
Lacombe et al. 2011), Rocky Mountains (Beaudoin et al. 2012), Indochina (Arboit et al.
2015), and Andes (Branellec et al. 2015). These observations confirm that a significant number
of joints affecting anticlines developed in the foreland region before folding and thrusting
(Tavani et al. 2015).

The simplest criterion to distinguish pre-folding from syn-folding joints is based on the
analyses of joint orientation with respect to the orientation of the fold axis. Syn-folding, bend-
ing-related structures are oriented parallel and orthogonal to the fold axis, whereas pre-
folding structures can develop oblique to the fold axis (Lash & Engelder, 2007; Tavani
et al. 2015; Labeur et al. 2021), as they reflect the direction of pre-folding layer-parallel
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shortening or the foreland flexure direction, both of whichmay be
oblique with respect to the direction of compressional strain dur-
ing folding. Since folds are generally elongated parallel to the
trend of the hosting foredeep-belt system, the distinction between
pre-folding and syn-folding joints can be challenging. In this
sense, the common parallelism between the foredeep- and
thrust-related anticlines introduces a possible source of error
(both terminological and interpretative), as ‘longitudinal’ and
‘transverse’ joints are nearly parallel and perpendicular to both
fold axes and the foredeep. In this case, cross-cutting relation-
ships with pressure-solution cleavages developed during layer-
parallel shortening could help to differentiate pre-folding and
syn-folding joints. For example, vertical joints and veins oriented
orthogonal to the fold axis, when closely associated with (i.e.
perpendicular to and coeval with) tectonic stylolites oriented
orthogonal to both joints and bedding, are very likely to have been
formed during pre-folding layer-parallel shortening (e.g.
Beaudoin et al. 2020; Labeur et al. 2021). Another observation
that could allow structural geologists to distinguish pre-folding
from syn-folding opening-mode fractures regards their intensity
distribution across different structural positions along a fold (i.e.
backlimb, hinge, forelimb, periclinal closure). In the case of syn-
folding fracturing, joint intensities should vary along the fold,
reaching their highest values in high-strain regions of the fold
(e.g. Watkins et al. 2015). Pre-folding joints and veins are instead
characterized by intensity values that are quite homogeneous
along a fold (Tavani et al. 2015). The achievement of a complete
characterization of joint orientation and intensity along a fold is,
however, often complicated by the lack of extensive outcrops and,
more importantly, by the severe influence exerted by the
mechanical stratigraphy (e.g. Ladeira & Price, 1981; Huang &
Angelier, 1989; Gross et al. 1995; Peacock & Mann, 2005; Wu
& Pollard, 1995; Laubach et al. 2009; Cawood & Bond, 2018),
by the occurrence of faults (e.g. Peacock et al. 2017) or by
variations in strain directions due to non-cylindrical folding or
flexuring (i.e. Billi, 2005; Petracchini et al. 2015). For these rea-
sons, the investigation of the relationship between folding and
fracturing requires the collection of robust and well-distributed
(both spatially and stratigraphically) datasets.

A typical case study where the application of the simple cri-
terion of parallelism between joints and fold axis could be risky
in terms of tectonic interpretations is represented by the
Apennine fold-and-thrust belt (Italy). In this belt, several pio-
neering studies on fold-related fracturing were carried out
during the 1970s and 80s (e.g. Alvarez et al. 1978; Marshak
et al. 1982; Engelder & Marshak, 1985; Geiser, 1988). More
recent studies demonstrated the occurrence of a pre- to early-
folding fracture pattern in reservoir-scale anticlines (e.g.
Tavarnelli & Peacock, 1999; Tavani et al. 2012, 2015;
Francioni et al. 2019).

In the present work, we report on the fracture pattern hosted
in the Pietrasecca Anticline, located in the central Apennines.
The deformation structures exposed in the study anticline
include cm- to m-sized joints, pressure-solution cleavages and
the km-scale Pietrasecca Fault (Smeraglia et al. 2016). Our
detailed field investigations coupled with digital outcrop model
interpretation, allowed us to set robust constraints on the pre-
folding nature of the fracture pattern in this sector of the central
Apennines. This study constitutes a new case history that may
help geologists working on the field of fractured reservoirs to
better understand the fracture pattern expected within subsur-
face structures.

2. Geological setting

2.a. Central Apennines

The central Apennines developed since late Oligocene time on top
of the westward subduction of the Adriatic plate under the
European plate (Doglioni, 1991; Carminati et al. 2012). The sub-
duction trench retreat produced a progressive northeastward
migration of the NE-verging folds and thrusts. The thrusts scraped
off and piled up the pre- to syn-orogenic sedimentary succession of
the Adriatic plate (Cosentino et al., 2010). The pre-orogenic depos-
its of the central Apennines mostly consist of a 3000–4000 m thick
carbonate succession characterized by limestones and dolostones
deposited in a carbonate platform environment (i.e. Latium–
Abruzzi Carbonate Platform) between Late Triassic and Late
Cretaceous time (Parotto & Praturlon, 1975; Damiani et al.,
1991; Cosentino et al., 2010). Syn-orogenic deposits include
~100–200 m thick carbonate ramp limestones (Lithothamnion
and Bryozoan limestones Formation; Sabbatino et al. 2021),
capped by ~100 m-thick hemipelagic marls (Orbulina marls
Formation) and ~1600 m thick flysch (e.g. Milli & Moscatelli,
2000). These three units form the infill of the lateMiocene foredeep
basin developed due to the flexure of the subducting Adriatic litho-
sphere (e.g. Royden et al. 1987; Cipollari et al. 1995).

The subduction and flexure of the foreland Adria plate gener-
ated bending and bulging accommodated by early orogenic exten-
sional structures oriented both parallel and perpendicular to the
compressive front (Doglioni, 1995; Bigi & Costa Pisani, 2003;
Carminati et al. 2014b).

Since early Pliocene time, the central Apennines were dis-
sected by post-orogenic extensional fault systems that formed,
or partially reactivated thrust faults, in response to hinterland
extension and the associated opening of the Tyrrhenian back-
arc basin (Doglioni, 1991; Doglioni et al. 1997; Curzi et al.
2020). Extensional faults mainly strike NW–SE with subordinate
WSW–ENE- to SW–NE-striking extensional to transtensional
faults (Cavinato & De Celles, 1999; Morewood & Roberts, 2000).

2.b. Stratigraphy and main structural features of the study
area

The study area is located in the Carseolani Mountains, which
represent a tectonic unit characterized by NW–SE-trending folds
and NW–SE-striking thrust faults with tectonic transport towards
the NE (Fig. 1a; Mostardini & Merlini, 1986; Patacca et al. 2008).
The study area is characterized by the Pietrasecca Anticline, an
open anticline with a steeply SW-dipping axial plane (Fig. 1c;
Smeraglia et al. 2016). The Pietrasecca Anticline is located at the
NW termination of the Caresolani Mountains (Fig. 1), where
the fold axis and the thrust sheet are characterized by an arcuate
shape in map view. The fold axis trends NW–SE (~320° N trend)
south of Pietrasecca village and rotates ~20° counterclockwise (to
~300° N trend) northwards, near Tufo village (Fig. 1a, c). The
Pietrasecca Anticline is dissected by two ENE–WSW-striking
and SSE-dipping normal faults (Fig. 1c). Of these, the best-exposed
fault is the Pietrasecca Fault, which is ~3 km long, dips ~80°
towards SSE, and crops out ~500 m E of Pietrasecca village (struc-
tural station 13 in Fig. 1c). Major and minor slip surfaces in this
outcrop suggest that the Pietrasecca Fault accommodated mainly
dip slip movements. The Pietrasecca Fault shows a maximum ver-
tical displacement of ~100 m (Smeraglia et al. 2016, 2021).

Pre- and syn-orogenic rocks can be identified in the study area
(Fig. 1; Civitelli & Brandano, 2005; Smeraglia et al. 2016): (1)
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Fig. 1. (Colour online) Geological setting of the study area. (a) Tectono-stratigraphic framework of the portion of the central Apennines of Italy indicated with a black square in
the inset. The Pietrasecca Anticline pertains to the Carseolani Mountains tectonic unit. In the inset: blue lines = thrust faults, red lines = normal faults. (b) Simplified stratigraphic
column of the study area. (c) Simplified geological map and cross-section after Smeraglia et al. (2016). Locations where photos of Figure 2a, b have been taken and positions of
structural stations are indicated on map.
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Radiolitidae limestones (Lower Cretaceous), (2) Lithothamnion
and Bryozoan limestones (lower to middle Miocene), (3)
Orbulina marls (upper Miocene) and (4) flysch deposits (upper
Miocene). The pre-orogenic Radiolitidae limestones consist of
calcareous mudstones with isolated rudist rudstones bodies
deposited in a patch reef environment. They crop out with a
thickness of ~50 m south of Pietrasecca village (Fig. 1b–c), where
the upper stratigraphic boundary is also exposed. The syn-oro-
genic Lithothamnion and Bryozoan (LB) limestones paracon-
formably rest on the Radiolitidae limestones and are ~100 m
thick (Fig. 1b). Three main lithostratigraphic units of LB lime-
stones can be recognized: LB1, LB2 and LB3 from bottom to
top (Fig. 1b; Civitelli & Brandano, 2005). LB1 and LB3 have a
thickness of ~25 m and consist of havana-brown bioclastic calcar-
enite deposits with grainstone to packstone texture (Civitelli &
Brandano, 2005). LB2 consists of ~50 m thick white packstones,
wackestones and floatstones with Bryozoans and large bivalves
(Civitelli & Brandano, 2005). Lithothamnion and Bryozoan lime-
stones are affected by two sets of pressure-solution cleavages. One
set is oriented roughly parallel to bedding and developed during
burial and diagenesis (Civitelli & Brandano, 2005). The other set
is oriented oblique to bedding and developed during the incipient
phases of shortening of the central Apennines (Tavani & Cifelli,
2010). Although pressure-solution cleavages mainly affect LB3,
they are present (and locally pervasive) also in LB1 and LB2.
Lithothamnion and Bryozoan limestones are topped by ~60 m
thick hemipelagic marls with planktonic foraminifers
(Orbulina marls), and by ~1600 m of siliciclastic sandstones
and marls (flysch; Milli & Moscatelli, 2000).

3. Methods

We collected data from 13 structural stations located in different
positions of the Pietrasecca Anticline (Fig. 1c). Despite the study
area being densely vegetated (Fig. 2), locations of the structural
stations were chosen to best cover all the structural positions
of the Pietrasecca Anticline (i.e. backlimb, forelimb, periclinal
closure, hinge) and all the different stratigraphic units
(Fig. 1c). Due to vegetation cover and/or the high erodibility of
rocks, the Orbulina marls and most of the flysch exposures in
the study area did not allow the collection of structural data.
We therefore collected data within the same flysch in six supple-
mentary structural stations located near the study area (F1–6 in
Fig. 1a, c).

Deformation structures in the study area, in addition to minor
faults, mostly consist of joints and pressure-solution cleavages,
with rare and usually mm-thick veins. In the following, we will
use the term fracture to collectively indicate an assemblage that
includes joints, veins and pressure-solution seams. In each station
we collected data on bedding, faults (orientation and, if visible,
slickenline orientations), oblique-to-bedding pressure-solution
cleavage and joints. Structural data were collected through scan-
lines, scan-areas and virtual outcrop model analysis (Fig. 1c).
The orientations of bedding, pressure-solution cleavage, fault sur-
faces and slickenlines were collected in all the structural stations.
The joint data were collected using sub-horizontal scan-lines (e.g.
Priest & Hudson, 1981) in most structural stations, allowing us to
obtain the linear intensity of joints (see below for further details).
The orientation of scan-lines with respect to that of the outcrop
produces an orientation bias during sampling of joints
(Terzaghi, 1965), with joints striking sub-parallel to the trend of
scan-line being relatively under-sampled. To minimize the sam-
pling bias, we avoided scan-lines with orientations parallel to
the strike of joints. Orientation data were collected using
FieldMove Clino App on iPhone 6S. During data-recording ses-
sions, we carefully avoided interference of metal objects and elec-
tronic devices that could affect the magnetic field (Allmendinger
et al. 2017). Furthermore, we periodically checked the accuracy
of structural measurements taken using iPhone by comparing
them with a handheld compass. For each scan-line, we manually
classified the joints in different orientation sets using 1 % area con-
touring of poles to fractures. For each set, we determined its
(1) mean orientation (dip and dip azimuth), (2) mean orientation
after data rotation for bed dip removal, (3) mean spacing and
(4) linear intensity. For the calculation of mean spacing (s) and lin-
ear intensity (I), we accounted for the orientation bias using the
Terzaghi correction (Terzaghi, 1965):

s ¼ L0=n½m�; I ¼ n=L0 ¼ 1=s½m�1� (1)

where n is the number of fractures collected along the scan-line,
and L 0 is the length of the scan-line component orthogonal to
the mean orientation of the fracture set:

L0 ¼ L � cos�½m� (2)

where α is the angle between scan-line and vector normal to the
mean orientation of the joint set. To avoid an overestimation of

Fig. 2. (Colour online) Panoramic view of the backlimb (a) and forelimb (b) of the Pietrasecca Anticline with interpretation. Locations where photos have been taken are reported
in Figure 1. RL: Radiolitidae limestones; LB1, LB2 and LB3: Members of the Lithothamnion and Bryozoan Limestones.
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the bias correction, we fixed the maximum correction angle α
to 75°.

In addition to scan-lines, we performed 14 scan-areas
(Dershowitz & Herda, 1992) on bedding surfaces to better charac-
terize (1) the abutting and/or cross-cutting relationships between
joints and (2) the orientation of fractures on the top of Radiolitidae
limestones (station 1; Fig. 1c). It was possible to perform scan-areas
only for structural stations 1 (11 scan-areas) and 2 (3 scan-areas).
The orientation of fractures in each scan-area was retrieved using
the NetworkGT plugin for QGIS (Nyberg et al. 2018).

Regarding structural stations 9, 10, 11, 12 and F1–6, outcrops
were too discontinuous to perform useful scan-lines. In these
stations, only bedding, joint and pressure-solution cleavage ori-
entations were collected, and no scan-line data were recorded.

For structural station 13, which represents the best exposure of
the Pietrasecca Fault (see Fig. 1c), we combined field data with
data derived from a virtual outcrop model (Fig. 3). In detail,
we collected joint data along two scan-lines to constrain joint data
retrieved from the virtual outcrop model (Fig. 3). The virtual out-
crop model was built using Unmanned Aerial Vehicle imagery
and the Structure from Motion Multi View Stereo photogram-
metry algorithm (Remondino & El-Hakim, 2006; James &
Robson, 2012). The model consists of a textured mesh of
17 × 106 triangular faces obtained from a point cloud containing
143 × 106 points, representing a surface of ~14 000 m2. The vir-
tual outcrop model was employed to collect a large amount of
data, also from inaccessible portions of the outcrop. Structural
data (fault, fractures and bedding orientations) were collected
from the virtual outcrop model by manual digitization of traces
(i.e. the intersection of fault, fractures and bedding surfaces with
the outcrop topography) using the OpenPlot software (Fig. 3;
Tavani et al. 2011).

Due to the parallelism between the Pietrasecca Anticline and
the Miocene foredeep, fractures striking roughly parallel and
perpendicular to the Pietrasecca Anticline do strike parallel and
perpendicular to the Miocene foredeep too. Accordingly, the terms
‘longitudinal’ and ‘transverse’ will henceforth be used to refer only
to the orientation of joints with respect to the local fold axis, with-
out any genetic correlation to folding, which will instead be
addressed in the discussion section.

4. Results

4.a. Bedding and joints

The study area is mainly characterized by sub-horizontal to gently
dipping bedding (Figs 1c, 2, 4a). In detail, dip angles are generally
<18° with the exceptions of structural stations located in the fore-
limb of the Pietrasecca Anticline, where bedding generally dips 25–
28° to the NE (i.e. stations 4, 10 and 12; Fig. 4a).

In all the structural stations, joints are barren, not filled by
cement, and non-strata-bound. They do not show evidence of
reactivation on shear (except for one joint set at station 13, as dis-
cussed later). Joints are arranged in two main orientations,
roughly striking NE–SW and NW–SE, transverse and longi-
tudinal with respect to the trend of the fold-and-thrust belt,
respectively (Fig. 4a). Joints are orthogonal to bedding and gen-
erally maintain the same main strike also after data rotation for
bed dip removal (Fig. 4a, b). In most structural stations, both the
transverse and the longitudinal joints are evident (structural sta-
tions 1–3, 5, 7–9, 11, 12; Fig. 4a). The transverse joints are NE–
SW to E–W oriented and are characterized by linear intensities
ranging between 2 m−1 and 24 m−1 (Fig. 4a). The longitudinal
joints are NW–SE to N–S oriented and are characterized by

Fig. 3. (Colour online) Virtual outcrop model of the main outcrop of the Pietrasecca Fault after Smeraglia et al. (2021). Positions of scan-lines performed in the field are rep-
resented in yellow. Bottom left corner: example of real-time orientation data extraction from traces using Open Plot.
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Fig. 4. (Colour online) Joints. (a) Cumulative (left) and local joint orientations from stations 1–12 and supplementary stations F1–6. The location of all structural stations is
reported in a simplified version of the map of the study area. See Figure 1 for a more detailed version of the map. The mean orientation and linear intensity of each fracture
set is reported in the stereoplots and is colour-coded based on the strike angle (see legend). Dashed lines represent fracture set orientations after rotation of data for bed dip
removal. Black arrows indicate the local orientation of the axis of the Pietrasecca Anticline. (b) Field imagewith interpretation (right) showing joints that are oriented orthogonal to
bedding. The photo was taken from structural station 8 (see (a) for its location).
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intensities I = 2–11 m−1 (Fig. 4a). In structural station 12, the
transverse joints are not observed (Fig. 4a). In some structural
stations, groups of joints with a common orientation are not well
defined (i.e. structural stations 4, 6 and 10; Fig. 4a). In these sta-
tions, joints are always orthogonal to bedding regardless of their
highly variable strike angle, as their poles are distributed along the
cyclographic representing bedding (Fig. 4a). In the additional
structural stations F1–6, joints are arranged in longitudinal
and transverse sets also within flysch (Fig. 4).

4b. Pressure-solution cleavage and cross-cutting
relationships with joints

The oblique-to-bedding pressure-solution cleavage dips gently
(25–30°) to the WSW-SW (except for station 6, where it dips to
the S), and their poles form a single cluster also when bedding
is restored to horizontal (Fig. 5a). Pressure-solution cleavage forms
angles between 10° and 40° with respect to bedding, independently
of the dip angle of the latter (Fig. 5b, c). At the hand sample scale,
pressure-solution cleavage is composed of closed stylolites, which
show no evidence of reactivation in opening or shear
mode (Fig. 5d).

Relative age relationships between joints and pressure-solution
cleavages can be inferred from cross-cutting and/or abutting rela-
tionships (Fig. 6). The longitudinal and transverse joints are char-
acterized by mutually cross-cutting relationships (Fig. 6a). In our
study area, the analysis of cross-cutting or abutting relationships
between joints and pressure-solution cleavage can be performed
only in a few outcrops, where pressure-solution cleavage is inci-
pent, due to the lack of joints on outcrops pervaded by pres-
sure-solution cleavage (i.e. where the spacing between the seams
of pressure-solution cleavage is ~1–2 cm). Where pressure-solu-
tion cleavages and joints occur together, pressure-solution cleavage
oblique to bedding abuts on or crosses the joints (Fig. 6b, c).Where
both bedding-parallel and oblique-to-bedding pressure-solution
cleavages are visible, we observe joints that often arrest on bed-
ding-parallel pressure-solution cleavage (Fig. 6d, e), whereas joints
cross (Fig. 6d) or are deformed (Fig. 6e) by the oblique-to-bedding
pressure-solution cleavage.

4.c. Structural data from the main outcrop of the Pietrasecca
Fault

The Pietrasecca Fault (Figs 3, 7) is characterized by a ~15 m thick
fault core, which accommodates ~50 m of displacement, delimited
by two SSE-dipping (~80°) main fault surfaces (Fig. 3 and stereo-
plot 1 in Fig. 7a). The fault core separates the hangingwall damage
zone hosted in LB3 from the footwall damage zone hosted in LB2
(Fig. 7a, b). Slickenlines and cm- to m-scale wavelength grooves
along the main fault surfaces indicate pure dip-slip extensional
kinematics (stereoplot 1 in Fig. 7a and c). Normal and reverse
minor faults affect both hangingwall and footwall damage zones
(stereoplots 2 and 3 in Fig. 7a). The hangingwall damage zone is
characterized by sub-horizontal bedding with pressure-solution
cleavages, oriented parallel and oblique to bedding, dipping ~30°
to SW-WSW (stereoplots 3 and 4 in Fig. 7a). Reverse faults in
the hangingwall damage zone dip 10–50° to E-ENE, and slicken-
lines indicate hangingwall motion towards theW-SW (stereoplot 3
in Fig. 7a). Steeply dipping (60–90°) extensional faults in the hang-
ingwall strike NW–SE, NNW–SSE and ENE–WSW, and display
mostly dip-slip to dextral transtensional kinematics (stereoplot 3
in Fig. 7a). The scan-line performed in the hangingwall damage
zone (SL12; Fig. 7a) highlights a pervasive sub-vertical joint set

striking E–W (I= 23 m−1; stereoplot 4 in Fig. 7a). Moreover,
two minor sub-vertical joint sets strike NE–SW and have intensity
of 2–4 m−1 (stereoplot 4 in Fig. 7a). The manual interpretation of
the virtual outcrop confirms the predominance of NE–SW to
E–W-striking sub-vertical joints, with poles that are distributed
along the cyclographic representing the bedding orientation (ster-
eoplot 5 in Fig. 7a).

The bedding in the footwall damage zone is gently dipping (15–
30°) towards the NE (stereoplot 2 in Fig. 7a). In the footwall dam-
age zone, reverse faults dip ~40° towards ESE, with hangingwall
motion towards WNW (stereoplot 2 in Fig. 7a). Extensional faults
steeply dip (70–90°) towards SE-SSE and show dip-slip to right lat-
eral transtensional kinematics (stereoplot 2 in Fig. 7a). The contour
stereoplot of poles to joint data collected along the scan-line (SL11)
shows one cluster representing sub-vertical joints striking NE–SW
to ENE–WSW (stereoplot 6 in Fig. 7a). This cluster can be regarded
as the sum of two main subsets with slightly different strike angle,
one with intensity 21 m−1 and the other with intensity 8 m−1 (ster-
eoplot 6 in Fig. 7a). Other poles to joints are distributed along the
cyclographic representing the mean bedding orientation (stereo-
plot 7 in Fig. 7a). Shear fractures with the same orientation of joints
show, in places, slickenlines compatible with dextral strike-slip
kinematics.

4.d. Joints vs stratigraphy and vs main tectonic structures

In this section, we report on the relationship between joints and
stratigraphy (Fig. 8) and between joints and the main tectonic
structures (i.e. the Pietrasecca Anticline and fault; Figs 9, 10).
All the joints recognized in each structural station (see Figs 4, 7)
have been classified as longitudinal or transverse depending on
their orientation with respect to the axis of the Pietrasecca
Anticline.

The longitudinal and transverse joints are clearly recognizable
in all the investigated stratigraphic units except for LB3, where
joints are variably oriented, with slightly higher concentrations
for the NE–SW and WNW–ESE orientations (Fig. 8a). The orien-
tations of the transverse and longitudinal joints remain constant
throughout the stratigraphic column and are characterized by
median strike angles of 60–80° N and 150–170° N, respectively
(Fig. 8a). An evident rotation of the mean orientation of joints
occurs at structural station 1, where the stratigraphic boundary
between Upper Cretaceous rocks (RL) and middle Miocene lime-
stones (LB1 unit) is exposed. Here the transverse and longitudinal
joints in RL are oriented ~N45° E and N130° E respectively, show-
ing a 20–30° counterclockwise rotation with respect to the orien-
tation measured immediately above within the LB1 unit (Fig. 8a;
see also Fig. 1 for the location of stations 1 and 3). Similarly, a
clockwise rotation of the orientation of joints by ~20° occurs
among scan-lines SL1, SL2 and SL3, which have been performed
moving horizontally towards ESE within LB1 at station 1 (Fig. 4).

All stratigraphic units are characterized by linear joint intensity
with amedian value of 3–4m−1 (Fig. 8b). No relevant differences in
linear intensity can be observed between the longitudinal and
transversal joints in all the studied stratigraphic units (Fig. 7b).

The relationship between joints and the Pietrasecca Anticline
has been evaluated by analysing changes in joint orientations
and/or linear intensities with respect to the position of the fold axis
(Fig. 9). Longitudinal joints have been tested against distance from
the fold axis (Fig. 9a, c), whereas transverse joints have been tested
along the fold axis (Fig. 9b, d). The orientation of both the longi-
tudinal and the transverse joints has been expressed as relative
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orientation with respect to the Pietrasecca Anticline. In detail, we
call α the acute angle that a longitudinal joint set makes with the
local direction of fold axis (Fig. 9). Analogously, we call β the acute
angle that a transverse joint set makes with the local orthogonal
direction to the fold axis (Fig. 9).

The orientation of longitudinal and transverse joint sets is gen-
erally close to that of the fold axis and to its orthogonal direction,
respectively (i.e. −15° < α, β < 15°; Fig. 9b–d). The orientation of
joints significantly deviates from the trend of the Pietrasecca
Anticline axis at stations 4–7, 9 and 12 (Fig. 9b, c; see also

Fig. 5. (Colour online) Pressure-solution cleavage. (a) Cumulative (left) and specific (right) orientation of pressure-solution cleavage (after and before data rotation for bed dip
removal) and bedding for the structural stations reported on the map. Data are represented in lower-hemisphere Schmidt nets. Explanation of symbols is reported within stereo-
plots 1 and 4. (b, c) Photograph (top) and interpretation (bottom) of outcrops where the angular relationships between pressure-solution cleavage (PSC) and bedding can be
appreciated. Pressure-solution cleavage is oblique with respect to bedding, forming an angle of ~30°, both for gently (b) and steeply (c) dipping bedding. (d) Polished section of a
rock sample showing pressure-solution cleavage sets oriented parallel and oblique to bedding.
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Fig. 4), mostly located on the forelimb of the Pietrasecca Anticline.
The orientation of transverse joints significantly differs from the
direction orthogonal to the axis of the Pietrasecca Anticline only

at stations 4 and 6 (Fig. 9d; see also Fig. 4). The linear intensity
of longitudinal joints does not show any relevant trend with dis-
tance from the Pietrasecca Anticline (Fig. 9c). Similarly, transverse

Fig. 6. (Colour online) Cross-cutting relationships. (a) Scan area and related rosediagram showing mutual cross-cutting relationships between two joint sets. (b) The trace of a
pressure-solution cleavage abuts on a joint. (c) Pressure-solution cleavages oriented oblique to bedding both cross and abut on (see black arrow) a joint. (d) Joints abut on
bedding-parallel pressure-solution cleavages (black arrow). (e) A longitudinal joint is deformed by pervasive pressure-solution cleavage. Black arrows indicate portions of
the outcrops where the joint is dislocated by pressure-solution cleavage.
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Fig. 7. (Colour online) Structural data from structural station 13, i.e. themain outcrop of the Pietrasecca Fault. The location of the outcrop is reported in the simplified geological
map in the upper left corner. See Figure 1 for a more detailed version of the geological map. (a) Field data from the main fault surface and from the footwall and hangingwall
damage zones are reported in stereoplots 1–4 and 6. Rotax or slip-normal (i.e. the direction perpendicular to striation and lying along the fault plane) is reported in stereoplot 2 for
minor normal faults in the footwall damage zone. Data collected on the virtual outcrop model after Smeraglia et al. (2021) are reported in stereoplots 5 and 7 for the hangingwall
and footwall damage zone respectively. All stereoplots are Schmidt-net lower hemisphere. Contouring is performed with 1 % area method. (b) Close-up view of the fault core.
Yellow arrows indicate the clay-rich layer within the fault core (Smeraglia et al. 2016). (c) Dip-slip grooves and striations on the main slip surface of the Pietrasecca fault.
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joints are characterized by linear intensities <8 m−1 everywhere
except stations 8 and 13, which are located near the main outcrop
of the Pietrasecca Fault and show linear intensities of transverse
joints >20 m−1.

The role of the Pietrasecca Fault on joints has been further
investigated by testing the linear intensity of transverse and longi-
tudinal joints against distance from and along the Pietrasecca Fault
(Fig. 10). The intensity of longitudinal joints does not vary along
the Pietrasecca Fault (Fig. 10a), whilst, as previously seen, the
intensity of the transverse joints abruptly increases in the vicinity
of the Pietrasecca Fault (Fig. 10b).

5. Discussion

5.a. Pre- vs syn- folding fracturing

The fracture pattern of the Pietrasecca Anticline includes two joint
sets and two sets of pressure-solution cleavages. Despite the

occurrence of local variability, joints are mainly bedding-
perpendicular and oriented roughly parallel (longitudinal) and
perpendicular (transverse) to the axis of the Pietrasecca
Anticline (Figs 4, 7–10), which is in turn oriented parallel to the
Apennines fold-and-thrust belt and associated foredeep. The pres-
sure-solution cleavages are organized in a bedding-parallel and an
oblique-to-bedding set. The oblique-to-bedding pressure-solution
cleavage strikes roughly parallel to the fold axis and forms a con-
stant angle of 30–40° with respect to bedding, regardless of the bed-
ding dip (Fig. 5).

Previous studies conducted on several anticlines of the
Apennines, specifically in the northern Apennines, highlighted a
deformation pattern mainly composed of joints (and/or veins)
and tectonic stylolites (e.g. Tavarnelli, 1997; Tavani et al. 2012;
Beaudoin et al. 2016, 2020; Labeur et al. 2021). These studies
showed that most of the joints and veins are oriented orthogonal
to bedding and strike parallel and orthogonal to the fold axis. Joints

Fig. 8. (Colour online) Joint orientation and
intensity vs stratigraphy. (a) Rosediagrams rep-
resenting strike angle of joints after bed dip
removal for each geological formation. Petals
of the rosediagrams are 10° wide. On the right
side: close view of structural station 1 where a
local rotation of joint orientation occurs
between Radiolitidae Limestones (RL) and
Lithothamnion & Bryozoan Limestones (LB).
Rosediagrams on the right represent joint orien-
tations from scan-areas performed on the top
bedding surface of RL (green stereoplot at bot-
tom left) and from scan-lines performed on
the LB cliff. (b) Violin plot representing distribu-
tion of linear intensities of joints for each strati-
graphic unit.

Pre-folding fracturing in a foredeep environment 11

https://doi.org/10.1017/S0016756821001291
Downloaded from https://www.cambridge.org/core, IP address: 87.7.188.68, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0016756821001291
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


and veins oriented orthogonal to bedding and striking oblique to
the fold axis have also been reported (e.g. Labeur et al. 2021).
Tectonic stylolites are characterized by two sets of orientations
striking sub-parallel to the fold axis: one is sub-vertical and occurs
in the near-vertical fold limbs, and the other, by far the more
common, is oriented orthogonal to the bedding. These structures
record all the compressive deformation stages from pre-folding
foreland flexuring to the late stage of fold tightening and have been

interpreted as follows: (1) joints and veins oriented orthogonal to
bedding and striking oblique to the fold axis have been interpreted
as structures related to foreland flexuring and bulging; (2) joints
oriented orthogonal to the fold axis and tectonic stylolites oriented
nearly orthogonal to bedding and striking parallel to the fold axis
are considered as the result of a pre- to syn-folding layer-parallel
shortening; (3) joints and veins striking parallel to the fold axis are
associated with a syn-folding outer-arc extension; and (4) the

Fig. 9. (Colour online) Joints vs Pietrasecca Anticline. (a) Portion of the BB 0 cross-section (see Fig. 1) with approximate location of the structural stations. The structural stations
are positioned in the cross-section based on their distance on the map from the axis of the Pietrasecca Fault (see also Fig. 1). (b) Simplified geological map of the study area (see
Fig. 1 for a more detailed version) with positions of structural stations projected along the fold axis and rosediagrams of strike angle of joints after bed dip removal. Petals of the
rosediagrams are 10° wide and are colour-coded depending on the geological formation in the corresponding structural station (see also Fig. 1). Black arrows indicate the local
orientation of the axis of the Pietrasecca Anticline. The actual location of the structural station is reported transparently in the background. (c) Relative orientation of longitudinal
joints with respect to the trend of the fold axis (above) and linear intensity of longitudinal joints vs map distance from the fold axis (below). Relative orientation of joints is
represented by their angular deviation from the local orientation of the axis of the Pietrasecca Anticline (α angle) as shown in the legend. The linear intensity of all the joints
(i.e. number of all joints divided by the length of scan-line) is also represented. (d) Relative orientation of transverse joints with respect to the direction orthogonal to the trend of
the fold axis (above) and linear intensity of transverse joints vs map distance from point 0 (see (b)) measured along the fold axis (below). Relative orientation of joints is rep-
resented by their angular deviation from the direction orthogonal to the local orientation of the axis of the Pietrasecca Anticline (β angle) as shown in the legend. Blue and red
colours in (c) and (d) are graduated depending on the relative linear intensity of the joint set for a single scan-line.
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sub-vertical tectonic stylolites striking parallel to the fold axis are
associated with late-stage fold tightening.

The main peculiarity of our study area is hence the orientation
of the pressure-solution cleavage, which is neither sub-vertical nor
orthogonal to bedding, contrary to what is reported for other anti-
clines in the northern Apennines (e.g. Beaudoin et al. 2020; Labeur
et al. 2021). Such observation suggests that pressure-solution cleav-
age is not related to layer-parallel shortening or to late-folding
tightening. We propose that the pressure-solution cleavage
reported in this study formed in a pre-folding stage. Coherently
with this inference, Tavani & Cifelli (2010) carried out a regional
study on this pressure-solution cleavage oblique to bedding and
showed that it regionally affects syn-orogenic Lithothamnion
and Bryozoan limestones with rather constant strike, angle to bed-
ding, and frequency, suggesting a pre-folding origin (fig. 10 in
Tavani & Cifelli, 2010).

The relative timing between pressure-solution cleavage and
joints, with the former postdating the latter, can be deduced from
field observations. The mutual cross-cutting relationships between
longitudinal and transverse joints suggest they are coeval on a geo-
logical timescale (Fig. 6a). Most outcrops are characterized by pres-
sure-solution cleavage oblique to bedding, where this cleavage
crosses or abuts on the joints (Fig. 6b, c). In places, relicts of joints
dissolved by pressure-solution cleavages also occur (Fig. 6e), pro-
viding further evidence that joints already existed during the for-
mation of the pressure-solution cleavage. In this framework of
abundant pressure-solution cleavages, the absence of mineraliza-
tion within joints is enigmatic. In our interpretation, the already
existing longitudinal and transversal joints should have repre-
sented potential reprecipitation loci for the carbonate dissolved
during the development of oblique-to-bedding pressure-solution
cleavage. Nevertheless, the vast majority of joints are barren, with
a sporadic occurrence of mm-thick veins. Providing a plausible
explanation for the absence of calcite within transversal and

longitudinal joints is beyond the scope of this work. We can specu-
late that both joint sets were closed at the time of pressure-solution
cleavage formation, each being non-orthogonal to the orientation
of the minimum principal stress orientation (σ3).

Although the orientation of longitudinal and transverse joints
might suggest that joints formed in response to layer bending and
stretching during fold growth (i.e. Ramsay, 1967; Dietrich, 1989;
Lemiszki et al. 1994; Richard, 1994; Bobillo-Ares et al. 2000;
Fischer & Wilkerson, 2000; Twiss & Moores, 2007; Watkins
et al. 2015), we support a pre-folding origin. This preference is
based on the pre-folding nature of the pressure-solution cleavage
(postdating jointing) and on the lack of clear relationships between
the intensity of joints and their structural position along the
Pietrasecca Anticline (Fig. 9c, d). In fact, folding-related longi-
tudinal joints should be characterized by: (1) orientation of joints
parallel to the fold axis and (2) intensity related to the curvature of
the fold (e.g. Ramsay, 1967). This is clearly not the case for the
longitudinal joints of the Pietrasecca Anticline, where the joints
strikingly occur in areas where no curvature exists, such as the anti-
cline backlimb (Fig. 1c). Analogously, as the Pietrasecca Anticline
does not show any evident along-axis curvature (see the section in
Fig. 10b), transverse joints cannot be associated with folding. In
summary, although we cannot rule out a syn-folding reactivation
of longitudinal and transverse joints, as documented in other anti-
clines worldwide (e.g. Bergbauer & Pollard, 2004), our data suggest
that both sets of joints exposed in the Pietrasecca Anticline origi-
nated before folding.

Finally, we remark the abrupt increase of the intensity of trans-
verse joints in the vicinity of the Pietrasecca Fault (Fig. 10b), the
high dip angle (i.e. ~80°) of the main fault surface (the optimal
dip angle of normal faults is ~60°; Anderson, 1905), and the geo-
metrical affinity between the transverse joints and the subsidiary
faults within the damage zone of the Pietrasecca Fault (Fig. 7a).
These observations clearly indicate a close relationship between

Fig. 10. (Colour online) Joints vs Pietrasecca Fault. (a) Linear intensity of longitudinal joints vs map distance from point 0measured along the Pietrasecca Fault. Projection of the
locations of structural stations along the Pietrasecca Fault are represented in the portion of geological map above. Structural stations which are located far from the main fault
(map distance >300 m) are displayed transparently both on the map and in the graph. (b) Linear intensity of transverse joints vs map distance from the Pietrasecca Fault. The
structural stations are positioned in the cross-section AA 0 (see Fig. 1 for location) based on their map distance from the Pietrasecca Fault. The linear intensity of all the joints (i.e.
number of all joints divided by the length of scan-line) is also represented.
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the jointing event and the development of the Pietrasecca Fault and
thus point towards a main pre-folding origin for the fault.
Assuming that slip occurred under an Andersonian stress field,
the fact that the fault rotaxes (also known as slip-normals, i.e.
the direction perpendicular to striation and lying along the fault
plane; Salvini & Vittori, 1982) of subsidiary faults in the footwall
of the Pietrasecca Fault are contained in the bedding plane (stereo-
plot 2 in Fig. 7a) suggests that the Pietrasecca Fault has been pas-
sively rotated during folding.

5.b. Tectonic evolution of the study area

The interpretation of field data indicates that joints, pressure-sol-
ution cleavage and faulting predate the folding event that generated
the Pietrasecca Anticline. Fracturing hence occurred in the upper-
most Miocene, obviously after the deposition of flysch (late
Miocene) and before the folding event. Moreover, since the
Lithothamnion and Bryozoan limestones seal (and thus postdate)
the forebulge unconformity of the central Apennines (Sabbatino
et al. 2021), the tectonic setting of fracturing can be placed in
the foredeep region in between the fold-and-thrust belt and the
forebulge (Fig. 11).

The longitudinal joints developed in the outermost sector of
the foredeep in response to the Adria foreland subduction-related
flexure (stage 1 in Fig. 11). Extensional structures that formed in a

foreland-to-foredeep tectonic setting are widely documented
worldwide (e.g. Tavani et al. 2015) and in the Apennines
(Calamita & Deiana, 1980; Scisciani et al. 2001; Mazzoli et al.
2005; Tavani et al. 2012; La Bruna et al. 2018). Although our data
do not unequivocally shed light on the origin of transverse strain,
the mutual cross-cutting relationship between longitudinal and
transverse joints (Fig. 6a) indicates that they are coeval on a geo-
logical timescale. Two possible explanations exist for the develop-
ment of transverse joints at the same time as longitudinal joints.
The first possibility is that the transverse joints are also related
to foreland flexuring. In this scenario they can be cross-joints of
longitudinal joints developing from temporal/local permutations
between σ2 and σ3 causing transverse fracturing of blocks bounded
by longitudinal joints (e.g. Gross, 1993; Bai et al. 2002; Billi, 2005;
Ferrill et al. 2021), or can be related to the damage zone of release
faults (Destro, 1995). A second possible explanation for cross-
joints is that they accommodated along-foredeep stretching due
to cross-sectional (e.g. Tavani et al. 2020) and/or planar (e.g.
Doglioni, 1995) arching of the foredeep. This latter mechanism
is favoured in our view, as it is supported by the occurrence of a
major transverse element, i.e. the Pietrasecca Fault, and by the lack
of any remarkable longitudinal fault.

After the development of longitudinal and transverse bedding-
perpendicular joints and formation of the Pietrasecca Fault, the
advancement of the fold-and-thrust belt caused the development

Fig. 11. (Colour online) Cartoon representing the tectonic evolution of the study area. (1) Development of longitudinal (blue) and (transverse) joint sets and Pietrasecca Fault in a
foredeep environment. (2) WSW-SW-dipping pressure-solution (PS) cleavages develop because of a top to the NE-ENE layer-parallel shear. (3) The thrust-related Pietrasecca
Anticline grows and joints, PSCs and Pietrasecca Fault passively rotate with bedding. (4) The Pietrasecca Fault eventually reactivates under the Pliocene extensional tectonics.
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of a regional brittle–ductile basal décollement level (Tavani &
Cifelli, 2010). This décollement includes pressure-solution cleav-
ages regionally oriented at 45° with bedding and consistent with
NE shearing accommodated within the entire LB limestones for-
mation (stage 2 in Fig. 11). This regional décollement decoupled
the deformation of the overlying clastic foredeep infill from the
underlying pre-orogenic multilayer. The peculiarity of this
regional décollement level, developing in ‘stiff’ carbonates at shal-
low structural levels (i.e. <5 km depth) instead of the overlying
apparently weaker marly layer (Orbulina Marls), has already been
pointed out (Tavani & Cifelli, 2010) and discussion of the reason
for this puzzling observation is beyond the scope of this work.

With ongoing collision, the basal décollement of the accretion-
ary wedge migrated to deeper structural levels. A blind thrust
developed in the Mesozoic multilayer and the Pietrasecca
Anticline grew (stage 3 in Fig. 11). Joints, pressure-solution cleav-
ages and the Pietrasecca Fault were passively rotated with bedding
during fold growth. In our opinion, the absence of folding-related
deformation structures, contrary to what is observed in other anti-
clines of the Apennines (e.g. Beaudoin et al. 2016, 2020; Labeur
et al. 2021), is attributable to joints and pressure-solution cleavage
already present during the onset of folding. Pre-existing disconti-
nuities likely inhibited the formation of new fractures and were
likely reactivated in opening or shear-mode during folding.

Finally, as witnessed by purely dip-slip grooves and slickenlines
on the main fault surfaces (Fig. 7c), after the folding event the
Pietrasecca Fault was reactivated as a dip-slip fault (stage 4
in Fig. 11).

6. Conclusions

Structural field data of joints collected along the Pietrasecca
Anticline, in the central Apennines (Italy), highlight pre-orogenic
fracturing events (pressure-solution cleavage and joints) which
occurred in a foredeep setting, unrelated to folding. Although
the arrangement of joints in two sets of orientations, longitudinal
and transverse to the fold axis, would suggest a folding-related ori-
gin, the following pieces of field evidence suggest a pre-folding
origin of joints: (1) cross-cutting relationships show that joints pre-
date pressure-solution cleavages oblique to bedding, where this
cleavage, in turn, certainly predates the folding event; (2) the inten-
sity of both longitudinal and transverse joints does not relate to the
structural position on the studied anticline (e.g. hinge, backlimb,
forelimb). We thus conclude that both longitudinal and transverse
joints must have formed in response to a foreland flexure-related
strain. The procedure adopted in this study represents a robust
approach to determine the timing of fracturing in outcropping
analogues of anticline reservoirs, with important implications
for the modelling of fluid migration.
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