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Abstract. Here we study the integrality properties of singular moduli of

a special non-holomorphic function γ(z), which was previously studied by
Siegel, Masser, and Bruinier, Sutherland, and Ono. Similar to the modu-
lar j-invariant, γ has algebraic values at any CM-point. We show that primes
dividing the denominators of these values must have absolute value less than
that of the discriminant and are not split in the corresponding quadratic field.
Moreover, we give a bound for the size of the denominator.

1. Introduction and statement of results

We first recall the famous modular j-function given explicitly by

(1.1) j(τ ) :=

(
1 + 240

∑∞
n=1

∑
d|n d3qn

)3

q
∏∞

n=1 (1− qn)
24 = q−1+744+196884q+2149370q2+. . . ,

where q := e2πiτ . The term singular moduli classically refers to values of the j-
function at quadratic irrationalities, which for the remainder of this paper we will
refer to as CM -points. These numbers are at the center of the beautiful subject
known as complex multiplication, and they enjoy numerous important properties.
More specifically, these singular moduli are algebraic integers, and they generate
ring class fields for imaginary quadratic fields. Their minimal polynomials are
therefore important in the study of explicit class field theory. These polynomials
are known as the Hilbert class polynomial of discriminant D and are defined as

(1.2) HD(j;X) :=
∏

Q∈SL2(Z)\QD

(X − j(αQ)) ∈ Z[X]

(for example, see [11, Ch. 6] and [9, Ch. 7]). Here, QD is the set of reduced,
primitive, integral, binary quadratic forms of a fixed discriminant D; for a repre-
sentative quadratic form Q, αQ is the root of Q(x, 1) in the upper half-plane. Gross
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and Zagier in [5] further give exact factorization formulas for the constant terms
of HD(j;X) when the discriminant is fundamental, explaining the fact that they
seem to be highly factorizable integers.

Analogous “class polynomials” may be defined for non-holomorphic modular
functions. A natural first example is the function Ψ(z) defined as follows:

(1.3) Ψ(z) :=
E∗

2 (z)E4(z)

E6(z)
,

where

(1.4) E∗
2(z) := 1− 3

πIm(z)
− 24

∞∑
n=1

∑
d|n

dqn

is the usual weight 2 non-holomorphic Eisenstein series and where

(1.5) E4(z) := 1 + 240

∞∑
n=1

∑
d|n

d3qn, E6(z) := 1− 504

∞∑
n=1

∑
d|n

d5qn

are the usual weight 4 and weight 6 Eisenstein series, respectively. This function
has algebraic values at CM-points (see [11, Ch. 2]) and was previously studied by
Siegel in [10] in connection with computing CM-values for j′(z). Following Masser
we will also define the normalized modular function

(1.6) γ(z) :=
Ψ(z)

6j(z)
− 7j(z)− 6912

6j(z)(j(z)− 1728)
.

This function was important in [6] and [3], and its singular moduli were first studied
in Masser ([8, App. 1]).

As mentioned above, for any level 1 modular function f we may define an ana-
logue of the “class polynomial”,

(1.7) HD(f ;X) :=
∏

Q∈SL2(Z)\QD

(X − f(αQ)) ∈ Q[X].

We will generally refer to these polynomials simply as class polynomials. It is
suspected, but not yet proven, that for some non-holomorphic modular functions,
including Ψ and γ, these polynomials generate the appropriate ring class fields.
The following table gives the class polynomials HD(γ;X) and HD(Ψ;X) for several
small discriminants.
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D HD(γ;X) HD(Ψ;X)

−3 X − 23
211·33 X

−7 X − 181
36·537 X − 5

3·7

−8 X − 61
26·53·72 X − 5

2·7

−11 X − 172

214·72·11 X − 25

7·11

−12 X + 67
23·33·53·112 X − 5

11

−15 X2 + 313
34·5·113 ·X − 29·36061

38·53·74·115 X2 − 2·3
11 X + 1

72

−16 X + 179
36·72·113 X − 5

7

−19 X − 52·11
214·36·19 X − 25

3·19

−20 X2 − 52·7·251
26·113·192 ·X − 89·25931

218·53·115·192 X2 − 139
11·19X + 1

19

Several phenomena are apparent from this table. For example, the denominators
appear to be “highly factorizable”. In fact, it appears that the primes appearing
in the denominators are bounded by the size of the discriminant. This suggests
that a Gross-Zagier type phenomenon occurs, but now for the denominators of the
constant terms of the class polynomials rather than for the constant terms as a
whole. Based on numerics, Ono and Sutherland proposed the following:

Conjecture 1 (Ono-Sutherland). Let D be a negative discriminant, not equal to

−4. Then if p > −D or if p splits in Q(
√
D), we have that HD(γ;x) and HD(Ψ;X)

are p-integral.

We remark that throughout the paper, when we refer to a split, inert or ramified
prime, we mean that the prime is such in the appropriate quadratic field for the
discriminant in question. Our main result is the proof of this conjecture.

Theorem 1.1. The conjecture of Ono and Sutherland is true.

Remark. The relation between Ψ and γ given in equation (1.6) will play a crucial
role in the proof of Theorem 1.1. The fact that the denominators in HD(Ψ;X)
are in general simpler than those in HD(γ;X) should be apparent from (1.6). In
particular, Ψ is, in many ways, a more basic modular function than is γ.

The paper is organized as follows. In Section 2 we review relevant background
information including the formulas of Masser on singular moduli for γ(z) and the
formula of Gross and Zagier. In Section 3 we complete the proof of Theorem 1.1
by combining the cited results in Section 2 along with results from the theory of
reduced binary quadratic forms, basic elliptic curve theory, and Deuring lifting
theory.
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2. Nuts and bolts

Here we review some important facts which we need in the proof of Theorem
1.1.

2.1. Masser’s formulas. Our starting point is an elegant formulation due to
Masser in [8, App. 1]. His careful study of Ψ and γ yields two formulas for singu-
lar moduli of these functions in terms of modular polynomials and elliptic curves
which we require. The first concerns the function γ(z). We begin by reviewing the
definition of the classical modular polynomial ΦD.

Definition 2.1. We say that two matrices B1 and B2 are equivalent if B1 = X ·B2

for some X ∈ SL2(Z).

It is well-known that there are only finitely many equivalence classes of primitive
integer matrices of determinant −D. Write M1,M2, . . . ,Mn for representatives of
these equivalence classes and suppose M1 is such that αQ = M1αQ, where the
action of a matrix on a complex number is given by Möbius transformation.

Definition 2.2. We write ΦD(X,Y ) for the classical modular polynomial, i.e. the
polynomial such that

(2.1) ΦD(j(z), Y ) =

n∏
i=1

(Y − j(Miz)).

By [2], Theorem 1 of Section 3.4, the polynomial ΦD(X,Y ) is symmetric in X
and Y and has coefficients that are rational integers. In particular, we can expand
ΦD(X,Y ) in a power series about X = Y = j(αQ) as

(2.2) Φ(X,Y ) =
∑
μ,ν

βμ,ν(X − j(αQ))
μ(Y − j(αQ))

ν ,

where βμ,ν = βν,μ. We write β = β0,1 = β1,0.
We define Q to be special if there is more than one equivalence class of matrices

M such that MαQ = αQ. This can only happen if −D = 3d2 for some integer d
(see [8, App. 1]).

Lemma 2.1 (Masser). If Q is not special, we have β �= 0 and

(2.3) γ(αQ) =
β0,2 − β1,1 + β2,0

β
.

If Q is special, we have β �= 0 and

(2.4) γ(αQ) =
β4,0 − β3,1 + β2,2 − β1,3 + β0,4

β
.

Proof. See [8, App. 1] (in particular, the equations on page 118). �

By definition, the βμ,ν are algebraic integers. Thus, to study the integrality of
γ(αQ) it suffices to study the primes dividing β. From the definition of β, we have

(2.5) β =

n∏
i=2

(j(αQ)− j(MiαQ)).

We will later use this result to eliminate split primes by studying the lifting of
isomorphisms of elliptic curves over Fp to Q.
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In order to show that large primes cannot divide the denominators of our class
polynomials and to study bounds for the powers of primes appearing, we will find
convenient another formula of Masser.

Lemma 2.2 (Masser). Let τ be a CM point of discriminant D for 4 < −D and
A,B,C integers such that Aτ2 +Bτ + C = 0. Then we have that

(2.6) Ψ(τ ) = − −g2S

g3A(2C + 2Bτ )
.

Here, g2 and g3 are the usual invariants of the associated CM-elliptic curve (the
non-normalized Eisenstein series), and S is the sum of Cτ -division values of the
Weierstrass ℘-function (we note that Masser defines the coefficients such that Cτ2+
Bτ +A = 0).

2.2. The Gross-Zagier formula. Gross and Zagier [5] give an exact formula for
the factorizations of the constant terms of the Hilbert class polynomials HD(j;X)
when D is fundamental. In fact their result is more general. For two coprime
discriminants D1, D2, let wi be the number of roots of unity in the quadratic order
of discriminant di for i = 1, 2. Consider the norm of difference of singular moduli
defined by

(2.7) J(D1, D2) :=
(∏

(j(τ1)− j(τ2))
) 4

w1w2
,

where disc(τi) = Di and τi run through representatives of SL2(Z)\QDi
. Then for

primes � with
(
D1D2

�

)
�= −1 define

(2.8) ε(�) :=

{(
D1

�

)
if (D1, �) = 1,(

D2

�

)
if (D2, �) = 1.

We extend this definition to natural numbers by setting ε(
∏

i �
ni
i ) :=

∏
i ε(�i)

ni if(
D1D2

�i

)
�= −1 for all i. Their main result is the following factorization.

Theorem 2.1 (Gross-Zagier [5]). Suppose (D1, D2) = 1 are negative fundamental
discriminants. Then

(2.9) J(D1, D2)
2 = ±

∏
x,n,n′∈Z

n,n′>0
x2+4nn′=−D1D2

nε(n′).

We are particularly interested in the following corollary.

Corollary 2.3 (Gross-Zagier [5]). For � a rational prime dividing J(D1, D2)
2, we

have that
(
D1

�

)
�= 1,

(
D2

�

)
�= 1, and � < D1D2

4 .

For our proof, we will need a generalization to the case when D1 and D2 are
distinct, but not necessarily coprime. Lauter and Viray [7] prove a generalized
Gross-Zagier type formula for exactly this case. In particular, their Corollary 1.3
implies as a special case the following:

Theorem 2.2 (Lauter-Viray, Corollary 1.3 of [7]). Suppose D2 = −3 or −4, and
D1 is a negative discriminant not equal to D2. Then for � a rational prime dividing
J(D1, D2), we have � ≤ −D1.
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3. Proof of Theorem 1.1

The proof of Theorem 1.1 involves two pieces. We first show in Section 3.1 that
split primes do not appear in the denominators of HD(γ;X) and HD(Ψ;X). Then
in Section 3.2 we bound the size of prime divisors.

3.1. Split primes. The aim of this section is to prove the following:

Theorem 3.1. Let D be a negative discriminant not −4. If p splits in Q(
√
D), we

have that HD(γ;x) and HD(Ψ;x) are p-integral.

Proof. We prove the result for γ. By (1.6) and Theorem 2.2, it applies to Ψ as well.
When D = −3, the result reduces to a calculation. Thus we may assume D < −3.
We begin with Masser’s result, given in Lemma 2.1. As each βμ,ν is an algebraic
integer, it suffices in both the special and the non-special case to show that split
primes cannot divide β0,1 = β. By the expression for β as a product of differences
of j-values (2.5), it suffices to show that if p is a split prime and p is a prime above p

in Q(
√
D) that j(αQ) �≡ j(αQ′) (mod p) for αQ not SL2(Z)-equivalent to αQ′ . This

is exactly the situation of Lemma 3.2 of [6], which is also stated in Theorem 13.21
of [4], and is essentially a result of Deuring lifting theory. �

3.2. Large primes. In order to finish the proof of Theorem 1.1, it suffices to show
the following:

Theorem 3.2. Let D be a negative discriminant not −4, and p a prime such that
p > −D. Then HD(γ;x) and HD(Ψ;x) are p-integral.

Proof. We prove the result for Ψ. By (1.6) and Theorem 2.2, it applies to γ as
well. As above, the case when D = −3 is a calculation. We may therefore assume
D < −3. By (1.6), it suffices to consider primes dividing the denominators of
singular moduli for Ψ(z) and j(z) · (j(z) − 1728). Suppose � > −D is a rational
prime. By Theorem 2.2, the factor j(z)(j(z) − 1728) is not divisible by �, as it is
well-known that

(3.1) j(i) = 1728 and j(e2πi/3) = 0.

Thus, it suffices to show that � does not divide the denominator of Ψ(τ ). For this,
we use Masser’s formula for Ψ(αQ) given in Lemma 2.2. We will first consider the
term A(2C + Bτ ) which appears in the denominator of (2.6). A short calculation
shows that (2C + Bτ ) has norm −DC

A . Every integral, binary quadratic form is
SL2(Z)-equivalent to a unique form with “smallest” coefficients, which we refer
to as the reduced form. We recall that an integral, binary quadratic form Q =
[A,B,C] = AX2+BXY +CY 2 of negative discriminant is reduced if |B| ≤ A ≤ C
and if B ≥ 0 whenever A = |B| or A = C. Masser’s formula requires A,B,C > 0.
If B > 0, we may use this form, and the inequalities quickly give us the bounds

(3.2) B ≤ A ≤
√

−D

3
and C ≤ −D

3
,

which implies that the norm of A(2C +Bτ ) is bounded by D2

3 .

If the reduced form has B < 0, we may transform the reduced form Q by
(

0 1
−1 0

)
,

which changes the sign of B and swaps A and C. If B = 0, we have that−D = 4AC,
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and so we have the improved bounds

(3.3) A <

√
−D

2
and C ≤ −D

4
,

which are easily shown to be sufficient after a short calculation.
Now g2 and g3 correspond to our model of the elliptic curve determined by τ ,

and they may be varied by scaling the model. Hence, using that

(3.4) j(τ )Δ = 123 · g32 and (j(τ )− 1728) ·Δ = g23 ,

we see that for an appropriate choice of Δ, we may take g2 and g3 to be algebraic
integers divisible only by primes dividing 12j(τ )(j(τ ) − 1728). By Theorem 2.2
above, this gives the desired bound for the size of the primes.

It remains only to control the denominators from the term S. Having chosen
g2 and g3 as above, we have by Lemma 4 of [1] that the numbers (AC)2℘(τ ) are
algebraic integers. However, we have already bounded the primes dividing AC.
This concludes the proof. �
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