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Abstract: Drug repurposing strategy, proposing a therapeutic switching of already approved drugs 

with known medical indications to new therapeutic purposes, has been considered as an efficient 

approach to unveil novel drug candidates with new pharmacological activities, significantly reduc-

ing the cost and shortening the time of de novo drug discovery. Meaningful computational ap-

proaches for drug repurposing exploit the principles of the emerging field of Network Medicine, 

according to which human diseases can be interpreted as local perturbations of the human interac-

tome network, where the molecular determinants of each disease (disease genes) are not randomly 

scattered, but co-localized in highly interconnected subnetworks (disease modules), whose pertur-

bation is linked to the pathophenotype manifestation. By interpreting drug effects as local pertur-

bations of the interactome, for a drug to be on-target effective against a specific disease or to cause 

off-target adverse effects, its targets should be in the nearby of disease-associated genes. Here, we 

used the network-based proximity measure to compute the distance between the drug module and 

the disease module in the human interactome by exploiting five different metrics (minimum, max-

imum, mean, median, mode), with the aim to compare different frameworks for highlighting puta-

tive repurposable drugs to treat complex human diseases, including malignant breast and prostate 

neoplasms, schizophrenia, and liver cirrhosis. Whilst the standard metric (that is the minimum) for 

the network-based proximity remained a valid tool for efficiently screening off-label drugs, we ob-

served that the other implemented metrics specifically predicted further interesting drug candidates 

worthy of investigation for yielding a potentially significant clinical benefit. 
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1. Introduction 

Drug repurposing is a drug development strategy used to identify novel uses for 

drugs approved by the US Food and Drug Administration (FDA) outside the scope of 

their original medical indication [1]. Establishing if an ‘old drug’ can be reused for new 

therapeutic purposes could represent a faster and cheaper alternative to the de novo drug 

discovery process that generally takes 2–3 billion dollars and 12–15 years to be completed 

(from production to approval, passing through the various phases of preclinical and clin-

ical trials)[1]. In the development of meaningful computational approaches for drug re-

purposing, very promising insights comes from the newly emerging field of Network 

Medicine [2,3], which applies tools and concepts from network theory to elucidate the 

relation between perturbations on the molecular level and phenotypic disease manifesta-

tions. According to the Network Medicine paradigm, the efficacious treatment of complex 
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diseases can come up only from the knowledge of the broader network context of the 

molecular determinants of diseases (named disease genes) in the human interactome (i.e., 

the cellular network of all physical molecular interactions) [4]. It is becoming increasingly 

clear that the disease genes have a high propensity to interact with each other and agglom-

erate in locally dense and topologically well-defined regions of the interactome known as 

disease modules, whose perturbations may contribute to the pathobiological phenotype 

[3,5–11]. Following the Network Medicine perspective, even the action of a drug can be 

interpreted as a local perturbation of the interactome, and thus, for a drug to be on-target 

effective against a specific disease or to cause off-target adverse effects, its target proteins 

should be within or in the immediate vicinity of the corresponding disease module. In 

recent years, several network-based approaches marrying this philosophy have been de-

veloped to aid the identification of the specific interactome neighborhood that is per-

turbed in a certain disease [12–16] and/or for the effect of a certain drug, and guide the 

search for therapeutic targets, identify comorbidities, as well as rapidly detect drug repur-

posing candidates [17–24]. In order to quantify the interplay between drug targets and 

disease-specific proteins in the human interactome, in [17], the authors used a network-

based drug-disease proximity measure, which prioritized associations between drugs and 

diseases located in the same network neighborhoods based on the average shortest paths. 

Here, we exploited the network-based drug-disease proximity measure proposed in 

[17] by using four different metrics (i.e., maximum, mean, median, mode) to compute the 

distance between the drug module and the disease module of four diseases of interest (i.e., 

liver cirrhosis, malignant breast neoplasm, schizophrenia, and prostate neoplasm). Then, 

we compared the obtained candidate drugs with respect to those ones obtained by using 

the standard metric (i.e., minimum) [17]. Our outcomes confirmed that the original net-

work-based proximity metric remained a valid tool for screening off-label drugs, but we 

also observed that the additional here-implemented metrics specifically highlighted some 

interesting drug candidates, with clues of potential in silico-efficacy, which were thus 

worthy of further investigation. These results suggested that this network-based approach 

can be generalized to other diseases and drugs, and this is the reason why we published 

the R-code along with this study, freely available at https://github.com/giuliafiscon/Gen-

eralizedProximity.git (accessed on 27 March 2022). 

2. Results 

We evaluated the extent to which a given drug could be repositioned to treat a given 

disease by exploiting the network-based proximity measure relying on the distance be-

tween drug modules and disease modules in the human interactome network. 

In order to topologically quantify this distance, we used four different metrics (i.e., 

maximum, mean, median, mode) and then compared the results with the standard metric 

based on the average shortest paths between drug targets and disease genes. The study 

design is depicted in Figure 1. In particular, the input data of our analysis were the human 

interactome, the list of disease-associated genes, and the drug-targets interactions. In the 

present study, the human interactome was downloaded from Cheng and co-authors [17], 

which is an integrated version of 15 different databases of protein–protein interactions; 

disease-associated genes were downloaded from DisGeNET [25], which is a knowledge-

based platform integrating and standardizing data about disease-associated genes and 

variants from multiple sources; and drug-target associations were obtained from Drug-

Bank [26], which collects a huge amount of drug-related data, recently enabling the dis-

covery and repurposing of a relevant number of existing drugs to treat rare and newly 

identified diseases [1,17]. We assembled target information for a total of 1222 FDA-ap-

proved drugs, and we applied our algorithm to four diseases with the highest number of 

disease-associated genes (i.e., liver cirrhosis, malignant neoplasm of breast, prostate neo-

plasm, and schizophrenia). The complete lists of the analyzed diseases and drugs are pro-

vided in Supplementary Table S1. 
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Figure 1. Workflow of the analysis. Input data are the human interactome network, the disease-

gene associations from DisGeNET and the drug-targets interactions from DrugBank. The proximity 

measure between drug-targets and disease genes is computed by using five different metrics, in-

cluding the standard minimum and the other here-proposed ones (i.e., maximum, mean, median, 

mode). The resulting candidate drugs are then compared among each metric, and metric-specific 

drugs are then discussed. 

Following the Network Medicine principles, for a drug to be effective against a spe-

cific disease, its associated targets (drug module) and the disease-specific associated genes 

(disease module) should be nearby in the human interactome [17]. To quantify the vicinity 

between a given drug module T and a given disease module S, we used the network prox-

imity measure p defined as: 

�(�, �) =
1

‖�‖
� �(

���
�(�,

���

�) ) 

where f function refers to five different metrics, including the standard minimum measure 

[17] and the other here-proposed ones (i.e., maximum, mean, median, mode), which we 

implemented to summarize the distance between drug targets t in the drug module T and 

the disease genes s in the disease module S, and thus to prioritize the predicted off-label 

drug indications for a given disease. For each metric, we complemented the computation 

of the proximity measure with a measure of statistical significance (p-value) by applying 

a degree-preserving randomization procedure (see Section 4). Thus, we considered eligi-

ble candidates’ drugs to be repositioned for a given disease those drugs whose targets 

were nearby in the interactome to the disease-associated genes more than expected by 

chance (p-value ≤ 0.05). 

The results obtained for each disease are summarized in Figure 2a, whereas the com-

plete lists of candidate repurposable drugs predicted by each metric are reported in Sup-

plementary Table S2. 
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Figure 2. Number of off-label predicted drugs according the five different metrics for each ana-

lyzed disease. (a) The table reports, for each disease and each metric, the total number of predicted 

drugs, the number of predicted drugs that already have a known medical indication according to 

TTD database, and their ratio in terms of percentage (appearing in bold). (b) The bar plot shows the 

percentage of predicted drugs with already known medical indications grouped by metric for each 

disease reported in the legend. Only the metric predicting a total number of drugs greater than five 

for a specific disease are plotted. 

Overall, computing the proximity values by using the minimum metric produced the 

largest number of statistically significant predicted drugs for each disease, while no com-

pounds were predicted in a statistically significant way by using the maximum metric 

(Figure 2a). Yet, by retrieving from the Therapeutic Target Database (TTD) [27] the origi-

nal medical indications for each predicted drug, we observed that the mode metric al-

lowed to identify the highest percentage of predicted drugs with an already established 

indication, greater than 60% for all the four analyzed diseases (ranging from 60% for ma-

lignant breast neoplasm to 95% for prostate neoplasm), immediately followed by the min-

imum, median, and mean metrics with a percentage greater than 60% for 3 out of 4 ana-

lyzed diseases (Figure 2b and Supplementary Table S3). 
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2.1. In silico Efficacy: Two Case Studies 

In order to further investigate the repurposable drugs predicted by using each metric 

and pointing out those ones that could counteract the disease effect, we performed a gene 

set enrichment analysis (GSEA) for two case studies (i.e., malignant breast neoplasm and 

prostate neoplasm) detailed in the following sections. 

2.1.1. Malignant Breast Neoplasm 

For studying the effect of eligible drugs on human breast cancer, we exploited: 

(i) The drug-treated human breast adenocarcinoma cell line (i.e., MCF7) is available 

from the Connectivity Map (CMap) database as drug signature; 

(ii) The differentially expressed genes for breast invasive carcinoma dataset are available 

from The Cancer Genome Atlas (TCGA) repository as disease signature (see Materi-

als and Methods). 

We also investigated the subtypes distribution of the cohort of TCGA breast cancer 

patients. In particular, by retrieving the clinical information, we obtained the HER2+/−, 

ER+/−, and PR+/− status for 77 (out of 113) patients, corresponding to the 68% of the total 

number of analyzed breast cancer patients. Among the 77 classified patients, we observed 

81% (62/77) characterized by a less aggressive subtype (i.e., luminal A/B/B-like) and 19% 

(15/77) by a more aggressive subtype (i.e., HER2+ and triple negative) (Table 1). This ob-

servation strongly supports the usage of MCF7 cell line available from CMap, that is a 

poorly aggressive and non-invasive breast cancer cell line. 

Table 1. Classification of breast cancer patients (pz) retrieved from TCGA based on ER, PR, HER 

receptors status. 

Receptor/Classification Luminal A Luminal B-Like Luminal B-Like Luminal B HER2-Enriched Triple Negative 

ER positive positive positive positive negative negative 

PR positive positive negative negative negative negative 

HER2 negative positive positive negative positive negative 

number of pz 38 15 2 7 4 11 
 less aggressive (81%) more aggressive (19%) 

Then, we calculated a GSEA score as an indication of the possible counteraction of each 

drug to the gene expression perturbations caused by the breast cancer pathophenotype. In 

particular, we selected drugs whose signatures were negatively correlated with the breast 

cancer signature, according to the CMap query tool [28–30], as drugs able to have a potential 

treatment effect against genes that are a hallmark of breast cancer phenotype (see Section 4). 

Overall, the GSEA analysis confirmed that the minimum metric specifically predicted 

the highest percentage equal to 22% of the candidate drugs with potential in silico efficacy 

able to counteract the disease effect (i.e., with GSEA score > 0), immediately followed by 

the mode metric with a percentage of GSEA confirmed drugs equal to 18%. (Figure 3, 

Supplementary Table S4—first sheet). 
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Figure 3. In silico efficacy of candidate repurposable drugs for malignant breast neoplasm. (a–c) 

Venn diagrams of the candidate drugs predicted by using mean, median, mode metrics with respect 

to the standard minimum one for malignant breast neoplasm treatment. (d) Bar plot showing the 

percentage of metric-specific candidate drugs that have a GSEA score greater than zero. 

2.1.2. Prostate Neoplasm 

For studying the effect of eligible drugs on human prostate cancer, we used: 

(i) The drug-treated human prostate adenocarcinoma cell line (i.e., PC3) from CMap da-

tabase as drug signature; 

(ii) The differentially expressed genes for prostate adenocarcinoma dataset available 

from TCGA repository as disease signatures (see Section 4). 

Then, we calculated a GSEA score as an indication of the possible counteraction of each 

drug to the gene expression perturbations caused by the prostate cancer pathophenotype. In 

particular, we selected drugs whose signatures were negatively correlated with the prostate 

cancer signature, according to the CMap query tool [28–30], as able to have a potential treat-

ment effect against genes that are a hallmark of prostate cancer phenotype (see Section 4). 

In this case, the GSEA analysis highlighted that the candidate drugs with an in silico 

efficacy able to counteract the disease effect were those ones specifically predicted by the 

median metric with the highest percentage of 41%, followed by those ones specifically 

predicted by the mode and minimum metric with a percentage of 24% and 21%, respec-

tively (Figure 4, Supplementary Table S4—second sheet). 
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Figure 4. In silico efficacy of candidate repurposable drugs for prostate neoplasm. (a–c) Venn 

diagrams of the candidate drugs predicted by using mean, median, mode metrics with respect to 

the standard minimum one for prostate neoplasm treatment. (d) Bar plot showing the percentage of 

metric-specific candidate drugs that have a GSEA score greater than zero. 

3. Discussion 

In this work, we proposed a comparison between different metrics used to compute 

the network-based proximity between the drug module and the disease module in the 

human interactome. In particular, we tested the standard minimum, maximum, mean, 

median, and mode metrics when applied to four diseases (i.e., liver cirrhosis, malignant 

breast neoplasm, schizophrenia, and prostate neoplasm), and we complemented the com-

putation of the proximity value with a measure of statistical significance (p-value), ob-

tained by applying a degree-randomization procedure. For each disease, the predicted 

compounds were those showing a statistically significant proximity value computed with 

each metric (p-value ≤ 0.05). No drugs were found statically significant by using the max-

imum metric. All the statistically significant drugs obtained with the other four metrics 

were then compared among each other in order to search for metric-specific drugs (Figure 

5). From this comparison, our analysis highlighted some potentially interesting drugs spe-

cifically predicted by the other newly introduced metric, deepened in the next subsections. 



Int. J. Mol. Sci. 2022, 23, 3703 8 of 15 
 

 

 

Figure 5. Venn diagram of the predicted repurposable drugs for each disease (a–d) according to the 

different exploited metrics. Metric-specific drugs with an already known relevant medical indica-

tion according to the TTD database and discussed in the text are highlighted in red. 

3.1. Metric-Specific Off-Label Drugs: Mean 

Among the drugs specifically predicted by using mean metric, amrinone emerged as 

a candidate repurposable drug for liver cirrhosis treatment (Figure 5a); whereas arzoxi-

fene, bazedoxifene, ingenol mebutate, methyltestosterone, and conjugated estrogens 

emerged as candidate repurposable drugs for malignant neoplasm of breast (Figure 5b). 

Amrinone is a type 3 pyridine phosphodiesterase inhibitor used for congestive heart 

failure treatment. However, some studies suggested that amrinone may play a significant 

role in the protection of liver against ischemia-reperfusion injury enhanced in cirrhotic pa-

tients, and that may be a pharmacological agent for safe and efficient liver surgery [31,32]. 

Arzoxifene is a selective estrogen receptor modulator (SERM) that antagonizes estro-

gen in mammary and uterine tissue and is investigated for treatment in breast cancer [33]. 

Several preclinical, phase I-II clinical studies showed that arzoxifene could be a promising 

endocrine therapy, demonstrating an ability to inhibit breast cancer cell growth in both in 

vitro and in vivo models, even if there is no evidence with phase III [34]. In addition, a 

network-meta analysis study showed that arzoxifene significantly reduced the risk of 

breast cancer [35]. Bazedoxifene is a SERM as well, which received approval alone or in 

combination with conjugated estrogens for treatment of moderate to severe vasomotor 

symptoms associated with menopause and prevention of postmenopausal osteoporosis. 

Ingenol mebutate is a selective small molecule activator of protein kinase C approved 

for the topical treatment of actinic keratosis, but its application was also revealed as being 

effective for human and murine melanoma in mouse models, murine lung carcinoma, hu-

man prostate cancer, and human cervical carcinoma, and additional in vitro studies demon-

strated that the drug could kill human breast cancer cells and T-leukemia cells [36,37]. 

Methyltestosterone is an anabolic steroid hormone used to treat men with a testos-

terone deficiency, but also used to treat other solid tumors, including breast cancer [38]. 
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The conjugated estrogens are noncrystalline mixtures of purified female sex hor-

mones obtained either by its isolation from the urine of pregnant mares or by synthetic 

generation from vegetal material and are indicated for the treatment of moderate to severe 

vasomotor symptoms due to menopause. In addition, the use of conjugated estrogens for 

a median of 5–9 years in postmenopausal women with hysterectomy was associated with 

a significant reduction in the incidence of invasive breast cancer based on a Women’s 

Health Initiative (WHI) randomized trial, where, with the estrogen use, a significant re-

duction was observed in breast cancer-related mortality and all-cause mortality after 

breast cancer diagnosis [39]. 

3.2. Metric-Specific Off-Label Drugs: Median 

Among the drugs specifically predicted by using median metric, nesiritide was found 

as a candidate repurposable drug for liver cirrhosis (Figure 5a); while moclobemide and 

vinblatine were predicted for prostate neoplasm treatment (Figure 5d) and both were also 

confirmed by the GSEA analysis as they could counteract the gene expression perturba-

tions caused by the prostate adenocarcinoma pathophenotype (Supplementary Table S4). 

Nesiritide is a 32 amino acid recombinant human B-type natriuretic peptide used for 

the intravenous treatment of patients with acutely decompensated congestive heart fail-

ure who have dyspnea at rest or with minimal activity [40,41]. Although there are no clin-

ical trials available, the mutual interaction between the heart and the liver dysfunctions 

has been investigated [42]. 

Moclobemide is a reversible monoamine oxidase inhibitor (MAO-I) selective for iso-

form A used to treat major depressive disorder. Recent reports indicated that high activity 

of MAO isozymes was associated with many neurodegenerative disorders, and showed 

elevated levels in several cancer types, including prostate cancers, and thus antidepres-

sant MAO-Is could show anti-prostate cancer properties [43]. 

Vinblastine is a vinca alkaloid antineoplastic agent, with antitumor activity, targeting 

the microtubules of tumor cells, commonly applied for the treatment of several solid tu-

mors and cancers, including breast cancer, testicular cancer, ovarian cancer, gastric cancer, 

and lung cancer, neuroblastoma, Hodgkin’s and non-Hodgkin’s lymphomas, and osteo-

sarcoma [44–46]. 

3.3. Metric-Specific Off-Label Drugs: Mode 

For what concerns drugs specifically predicted by using mode metric, we pointed 

out procarbazine as candidate repurposable for both malignant neoplasm of breast (Fig-

ure 5b) and prostate (Figure 5d); triamterene for treatment of schizophrenia (Figure 5c); 

and pargyline for prostate neoplasm (Figure 5d). 

Procarbazine is an antineoplastic in the class of alkylating agents, which stop tumor 

growth by cross-linking guanine bases in DNA double-helix strands—directly attacking 

DNA [47]. It is primarily used in combination with mechlorethamine, vincristine, and 

prednisone for the treatment of stage III and stage IV Hodgkin’s disease, but it is also a 

type of chemotherapy drug in clinical trials for the treatment of other forms of cancers, 

including brain and central nervous system tumors [48]. 

Triamterene is a potassium-sparing diuretic that is indicated for the treatment of edema 

associated with congestive heart failure, cirrhosis of the liver, and nephrotic syndrome; also in 

steroid-induced edema, idiopathic edema, and edema due to secondary hyperaldosteronism 

[49]. Triamterene allows the maintenance of potassium balance, and hypokalemia is an iden-

tifiable, clinically important, and often overlooked condition in psychiatric patients [50]. 

Pargyline belongs to the monoamine oxidase inhibitors class with antihypertensive 

properties, thus it is indicated for the treatment of moderate to severe hypertension. How-

ever, it has been shown that in human prostate carcinoma cells, the proliferation of cells 

exposed to pargyline decreased in a dose- and time-dependent manner, the treatment with 

pargyline significantly induced cell cycle arrest at the G1 phase compared to the control 

samples, and also induced an increase in the cell death rate by promoting apoptosis [51]. 
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4. Materials and Methods 

4.1. Human Protein–Protein Interactome 

The human protein–protein interactome was downloaded from Cheng and co-authors 

[17], where the authors merged their own systematic human protein–protein interactome 

and 15 commonly used databases with several types of experimental evidence (e.g., binary 

PPIs from 3-dimensional protein structures; Y2H, and/or literature-derived low-throughput 

experiments; signaling networks from literature-derived low-throughput experiments; ki-

nase-substrate interactions from literature-derived low-throughput and high-throughput 

experiments; literature-curated PPIs identified by affinity purification followed by mass 

spectrometry). This version of the human interactome was composed of 217,160 protein–

protein interactions (edges or links) connecting 15,970 unique proteins (nodes). 

4.2. Disease-Gene Associations 

Disease-associated genes were downloaded from DisGeNET [25], which is one of the 

largest publicly available collections of genes and variants associated with human diseases 

coming from GWAS, animal models, or scientific literature. The updated version of Dis-

GeNET (v7.0) collects 1,134,942 gene-disease associations, between 21,671 genes and 30,170 

diseases, disorders, traits, and clinical or abnormal human phenotypes. Among them, we se-

lected a panel of 4 diseases of interest with their associated genes (Supplementary Table S1). 

4.3. Drug-Target Interactions and Drug Medical Indications 

Drug-target interactions were acquired from DrugBank [26], which is a comprehensive, 

freely accessible, online database containing information on drugs and drug targets. The 

updated version of DrugBank (version 5.1.6, released 22 April 2020) contains 13,563 drug 

entries, including 2627 approved small molecule drugs, 1373 approved biologics (proteins, 

peptides, vaccines, and allergenics), 131 nutraceuticals, and over 6370 experimental drugs. 

For our analysis, we selected a total of 1222 FDA-approved drugs with at least 2 annotated 

targets (Supplementary Table S1). The target Uniprot IDs were mapped to Entrez gene IDs 

by using BioMart—Ensembl tool (https://www.ensembl.org/, accessed on 27 March 2022). 

The known drug medical indications were obtained from Therapeutic Target Data-

base (TTD) [27], whose last version was released on 11 November 2019. 

4.4. The Network-Based Proximity Measure 

In order to investigate the extent to which the disease and drug modules were close 

in the human interactome, we used the standard network-based proximity measure de-

fined in [17] as: 

�(�, �) =
�

‖�‖
∑ ���

���
�(�,��� �)  (1)

Which represents the average of the shortest path length d between drug targets t in 

the drug module T and the nearest disease genes s in the disease module S. We computed 

the proximity measure by also using the other 4 different metrics (i.e., maximum, mean, 

median, and mode) to summarize the distances between drug module and disease mod-

ule, defined as follows (Figure 6): 

����(�, �) =
�
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�(�,��� �)  (2)
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�(�,��� �)  (5)

To evaluate the statistical significance of each observed network proximity value be-

tween the 2 modules T and S, we built a reference distance distribution corresponding to 
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the expected distance between 2 randomly selected groups of proteins with the same size 

and degree distribution of the original sets of disease proteins and drug targets in the 

human interactome. This procedure was repeated 1000 times, and the z statistics, together 

with the corresponding p-value, was computed by using the mean and the standard de-

viation of the reference distance distribution. We expected a p-value ≤ 0.05 for proximal 

drug and disease modules. 

 

Figure 6. Network-based proximity measures. Schematic representation of the proximity measures 

computed between target proteins t of drug module T and disease genes s of disease module S 

according to five different metrics (a–e) described by Equations (1)–(5). 

4.5. Gene Set Enrichment Analysis 

In order to test whether the candidate repurposable drugs for malignant breast and 

prostate neoplasm predicted by applying the different metrics for proximity computation 

could counteract the gene expression perturbations caused by the pathophenotype (i.e., if 

they could up-regulate genes down-regulated by the disease or vice versa), we performed 

a gene set enrichment analysis (GSEA). We first collected from The Cancer Genome Atlas 

(TCGA) [52] RNA-sequencing expression data of (i) breast invasive carcinoma from 113 

patients and (ii) prostate adenocarcinoma from 52 patients, for which the complete sets of 
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tumor and matched-normal profiles were available. RNA sequencing data corresponded 

to normalized expression data from RNASeq Version 2 created using MapSplice to con-

duct the alignment and RSEM to perform the quantification and normalization. For each 

disease, data were processed by applying a logarithmic (log2) transformation of the ex-

pression values, and by conducting a preprocessing analysis via the computation of the 

Inter Quartile Range (IQR) for each gene. IQR is a measure of data variability around the 

median that is equal to the difference between the 75th and 25th percentiles of the data 

distribution. Those genes with an IQR value smaller than the 10th percentile of the IQR 

distribution (corresponding to those genes less scattered around the median) were filtered 

out. Then, we performed a paired t-student test, and we adjusted the obtained p-values 

for multiple hypotheses testing by using the Benjamini–Hochberg procedure [53]. In order 

to select statistically significant differentially expressed genes, we set a threshold of 0.01 

on the adjusted p-values. We used the so-defined lists of differentially expressed genes of 

breast cancer and prostate cancer as disease signatures. 

Then, we queried the Connectivity Map (CMap) database that collects high-through-

put reduced representation gene expression data obtained by using an L1000 assay 

[28,54]. The L1000 profiling was performed in a variety of drug-treated human cell lines 

for which there were well-established culture and treatment protocols. Thus, the CMap 

database of cellular signatures cataloged transcriptional responses of human cells to 

chemical and genetic perturbation. A total of 27,927 perturbagens were profiled in a core 

set of 9 cell lines to produce 476,251 expression signatures. In particular, we selected the 

drugs-treated cells lines available from the CMap database for human breast adenocarci-

noma (i.e., MCF7 cell line) and for human prostate adenocarcinoma (i.e., PC3 cell line) 
and we used them as drug signatures. 

By exploiting the CMap query tool, we evaluated the treatment effects of each drug 

signature (i.e., differentially expressed genes of drugs-treated human cell lines included 

in CMap database) on each disease signature (i.e., differentially expressed genes of breast 

cancer or prostate cancer) [54]. The disease and the drug signatures were ranked by fold-

change, and then CMap computed an enrichment score (ES) that measured if the effect of 

the drug could counteract the effect of the disease (ES < 0), or not (ES > 0) [28,29]. The idea 

behind this was the following: 1 ordered disease signature was compared to 1 ordered 

drug signature to determine whether the highest up-regulated (down-regulated) gene in 

the disease signature was near the bottom (top) of the drug signature. This would mean 

that the drug and disease have complementary expression profiles (ES < 0), and the drug 

might be a possible treatment option for the disease of interest. Details on the computation 

of this score were provided in [28–30]. In particular, a selected repurposing candidate 

drug was considered to have a potential treatment effect against the analyzed disease if 

the drug signature was negatively correlated with the disease signature. We stated that 

drugs and disease were negatively correlated if the corresponding ES was negative, and 

we assigned a score equal to 1 to that drug for that disease signature. 

5. Conclusions 

In this study, we implemented a computational analysis for identifying new uses for 

approved drugs that were outside the scope of the original medical indication. Specifi-

cally, we exploited the well-established network-based drug-disease proximity measure 

proposed in [17] by using four different metrics (i.e., maximum, mean, median, mode), 

instead of the standard minimum to compute the distance between the drug module and 

the disease module in the human interactome. We complemented the computation of the 

proximity value of each metric with a measure of statistical significance (p-value) corre-

sponding to the z-score normalization of the proximity obtained by applying a degree-

preserving randomization procedure. Thus, for each metric, the candidate proposed 

drugs as those ones showing a proximity value with a p-value ≤ 0.05. We then conducted 

a comparison study of the candidate drugs predicted with these here-implemented met-

rics with respect to those ones obtained by using the standard minimum when applied to 
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four diseases of interest (i.e., liver cirrhosis, schizophrenia, malignant breast neoplasm, 

and prostate neoplasm). 

One limitation of this analysis is its computational nature. However, in order to have 

a clue of the potential efficacy of the predicted repurposable molecules of each metric, we 

also complemented the study with an in silico validation by exploiting CMap database, 

which is a comprehensive collection of drug-treated cell lines (drug signature), and TCGA 

repository, which is a collection of gene expression profiles for healthy and sick patients. 

By computing the differentially expressed genes, we evaluated the effect of the disease on 

gene modulation (disease signature). Then, studying the correlation between the drug sig-

nature and disease signature, we evaluated those drugs that could potentially counteract 

the disease effect (i.e., negative correlation between drug signature and disease signature). 

Taken together, our findings confirmed that the original network-based proximity metric 

based on the minimum distance between drug and disease module is the most reliable 

tool for screening off-label drugs, but also some of the here-implemented metrics specifi-

cally highlighted some interesting drug candidates worthy of further investigation. 

Yet, another limitation of this approach is that our procedure does not implement a 

method to estimate false positive values, and thus assigns a score to all compounds avail-

able from DrugBank. 
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