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Abstract—The identification and prediction of the daily soiling 

profiles of a photovoltaic site is essential to plan the optimal 
cleaning schedule. In this work we analyze and propose various 
methods to extract and generate photovoltaic soiling profiles, in 
order to improve the analysis and the forecast of the losses. New 
soiling rate extraction methods are proposed to reflect the seasonal 
variability of the soiling rates and, for this reason, are found to 
identify the most convenient cleaning day with the highest 
accuracy for the investigated sites. Also, we present an approach 
that could be used to predict future soiling losses through the 
implementation of stochastic weather generation algorithms 
whose ability to identify in advance the best cleaning schedule is 
also successfully tested. The methods presented in this work can 
optimize the operation and maintenance schedule and could make 
it possible, in the future, to predict soiling losses through analysis 
based only on environmental parameters, such as rainfall and 
particulate matter, without the need of long-term soiling data. 
 

Index Terms— Field performance, optimization, photovoltaic 
(PV) systems, prediction methods, soiling, solar energy, stochastic 
processes, time series analysis 
 

I. INTRODUCTION 
OILING, i.e. the natural deposition of dust, particles and 
dirt on the surface of PV modules, is an issue causing non-

negligible losses on PV systems worldwide. Soiling generally 
accumulates during the dry periods between rainfall events, due 
to the deposition of suspended particles and dust, and can be 
washed away by rain precipitation [1].  

The most common approach to mitigate its effect is by 
cleaning the PV modules. The cleaning interval generally varies 
depending on the severity of soiling and the size of the PV 
systems. Cleanings need to be performed at the most convenient 
time, in order to maximize the energy yield and the economic 
benefit of the cleaning while limiting the costs [2]. Moreover, 
the cleaning schedule of large PV systems needs to be planned 
in advance, as it might involve large operation and maintenance 
(O&M) teams and might take time to be performed. For these 
reasons, it is important to constantly monitor and predict, with 
the best accuracy, not only the average annual soiling loss, but 
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also the seasonal (if not daily) soiling profiles.  
An accurate O&M schedule requires an adequate monitoring 

of the soiling losses and a careful analysis of the historical data. 
Currently, soiling is mostly monitored by using soiling 
detectors, such as soiling stations made of two PV devices, one 
of which is regularly cleaned, while the other is left to soil. 
Alternatively, the soiling loss profile can be extracted directly 
from PV performance data. This latest approach is based on the 
idea that any PV system can be converted into a soiling detector, 
without the need of any external hardware. Two soiling 
extraction methods are currently available in literature [3], [4]. 
The two methods are profoundly different, and, despite their 
value, do not currently provide enough information on the 
seasonality of soiling, which can be used determine the most 
convenient cleaning day. 

An effort is being made by the community to correlate soiling 
and environmental parameters, because these correlations 
would make it possible to estimate soiling losses even at sites 
where no soiling data are available [5]. Particulate matter and 
length of the dry periods have been identified as the parameters 
that most affect soiling [6]–[8]. Attempts have already been 
made to correlate the particulate matter concentration and the 
soiling deposition rate during dry periods [9], [10], whereas it 
is known that rainfall typically has a cleaning effect on the PV 
modules [11]. Recently, Coello and Boyle developed and 
validated a model to predict the soiling deposition rate and the 
loss in PV from particulate matter concentration values [12]. 
This means that if one could estimate the soiling rates through 
the particulate matter, and predict future precipitation patterns 
through historical data, it would be also possible to predict 
present and future soiling loss profiles without the need of 
soiling data or detectors. 

The first goal of this work is to present an improved method 
to analyze soiling station data and to extract soiling loss profiles 
from PV performance data. This new method makes use of a 
referenced and robust soiling rate extraction algorithm, and 
takes into account, for the first time, the seasonal variability of 
the soiling deposition rate. It can be immediately applied to 
extract a soiling loss profile for any site where soiling or PV 
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performance data are available and to determine the most 
convenient day for cleaning. 

In addition, we also present a model that can be used to 
predict future soiling loss profiles, based on weather generation 
algorithms. By taking into account the soiling rates and the 
generated precipitation profiles, the proposed method could 
predict in advance the week in which the best cleaning day 
should occur for a given site, providing the O&M teams with a 
tool to improve the soiling mitigation while limiting the costs. 

II. METHODOLOGY 

A. Soiling analysis 
In this work, soiling is quantified through the soiling ratio and 

the soiling rate. The soiling ratio is a metric defined in the IEC 
61724-1 standard [13] as the ratio of the power output of a PV 
system in outdoor conditions and the power output expected if 
the PV system was clean. The soiling ratio has a value of 100% 
in clean conditions and decreases while soiling accumulates on 
the surface of the modules. The soiling rate instead describes 
the daily derate in soiling ratio and is expressed as a reduction 
in soiling ratio per day, in units of %/day. In this work, the 
soiling rate has been calculated according to the method 
proposed by Deceglie et al. [14], by fitting the slope of the daily 
soiling ratio profile using the Theil-Sen estimator for each dry 
period of at least 14 days. Compared to a least-square 
regression, the Theil-Sen method is more robust to outliers [14]. 
Soiling rates are conventionally reported as negative values. In 
some cases where soiling deposition is near zero, the noise in 
the measurement signal can be bigger than the daily variation 
in soiling ratio, and the fit of data might indicate a slightly 
positive soiling rate (an improvement in performance or self-
cleaning). As these slightly positive rates are more likely due to 
measurement noise, in this work, soiling rates greater than 
0%/day have been considered equal to 0%/day. Also, soiling 
rates that returned R2 correlations lower than 10% with the 
observed data were discarded [15]. 

Two soiling extraction models have been presented in the 
literature for determining soiling losses from PV performance 
data, without the need of a soiling station. The first model, 
known as Fixed Rate Precipitation (FRP) [4], was presented in 
2006 in Ref. [3] to extract a daily soiling profile from PV 
performance data, assuming a fixed soiling rate occurring 
between rain events. It assumes a soiling ratio of 100% during 
rainy days and for a fixed number of days after each rainfall, 
known as “grace period”. Only rainfall events with 
accumulations above a certain threshold were considered: for 
the Californian sites investigated in the original study [3], rain 
thresholds between 0.2 and 0.4 mm/day were considered. At the 
end of each grace period, the soiling ratio decreases by a factor 
equal to the soiling rate, which is calculated by fitting the slope 
of the soiling ratio during the longest dry period in each time 
series. 

Recently, a second method, named Stochastic Rate and 
Recovery (SRR), which allows to determine the annual soiling 
loss with higher accuracy, but does not provide a daily soiling 
profile, was presented [4]. The SRR method identifies the dry 

periods by looking for positive shifts in the soiling ratio and 
calculates the soiling rate by using the method proposed in Ref. 
[14]. 

The FRP is the only method currently available in literature 
that extracts a daily soiling profile from PV performance data. 
As mentioned, this method is implemented by assuming a 
soiling ratio of 100% on each rainy day, and by reducing the 
soiling ratio by a factor equal to the soiling rate for each dry day 
after a rainfall. On the other hand, the SRR stochastically 
generates a large number of soiling profiles and returns the 
median and confidence intervals for the soiling ratio and soiling 
rate. 

The prediction of future soiling trends would require access 
to multi-decade datasets of historical soiling data to account for 
seasonal and inter-annual fluctuations. Such datasets are not 
currently available for soiling, and therefore the prediction of 
soiling should rely on widely available and longer datasets of 
other parameters, such as rainfall and particulate matter. If the 
relationships between soiling, rainfall and particulate matter 
were more completely verified, it would be possible to generate 
future soiling profiles studying the seasonal and inter-annual 
characteristics of those environmental parameters. For this 
reason, in the first part of this work, the FRP model, which 
makes use of soiling rates and rainfall patterns to identify a 
soiling profile, is improved by proposing alternative methods to 
extract and analyze the soiling rates to more accurately describe 
the seasonal behavior of soiling deposition. The hope behind 
this effort is that, in the future, it would be also possible to 
estimate soiling rates based on particulate matter or other 
parameters, eliminating the need of soiling measurements, and 
making it possible to derive soiling time series only from 
environmental parameters. For the same reasons, in the second 
part of the work, the improved FRP method and rainfall 
generation algorithms are integrated to produce soiling loss 
profiles that could be used to estimate in advance the most 
soiling intensive periods for any site.  

B. Soiling data 
The present paper analyzes the soiling data measured by 

soiling stations at 9 locations in California and Arizona, listed 
in Table I. A brief description of each site and the measured 
soiling loss profiles can be seen in Ref. [15], from where the 
data were sourced. The daily soiling ratio values were obtained 
as the ratios of the hourly average short-circuit currents of a 
soiled PV device to those of a device regularly cleaned and were 
processed by the procedures and the filters described in Ref. [6], 
[7], [14]. Sites with more than 14 consecutive missing days 
were discarded. The work presented hereafter is based on the 
analysis of soiling station data but the methods and the results 
could be applied to soiling profiles extracted from PV systems 
as well. 

C. Precipitation data 
The daily precipitation data used in this work have been 

downloaded from the PRISM’s AN81d database [16]. This 
database, downloaded in May 2019, offers the total daily 
accumulated rainfall, in mm/day, for each day since January 1st, 
1981, obtained by interpolating the measurements of a range of 
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monitoring stations. The data have a resolution of 4 km, and an 
inverse-distance squared weighting is used to average the 
values from the surrounding grid cell centers. 

In our previous work [17], we did not find a value of rain 
threshold that could be valid for all the sites. For this reason, no 
rain threshold has been applied in this work, but a visual 
analysis has been conducted to remove those rainfall events that 
did not have an impact on the soiling ratio (see Table I). Also 
some rain events were added to Site 10 to account for potential 
manual cleaning events occurred at the site [15]. No “grace 
period” has been considered. 

 
TABLE I 

SITES USED IN THIS INVESTIGATION.  
SAME NAMING USED IN REF. [15] WAS ADOPTED. 

Site County 
Data 

Collection 
Period 

Modified Rainfall Events 
(R: removed, A: added) 

Site 3 Imperial, CA 2014-12-30 to 
2015-12-01* R: 25/04/2015, 08/09/2015 

Site 4 Fresno, CA 2015-05-18 to 
2016-06-30 

R: 09/07/2015, 06/08/2015, 
01/10/2015 

Site 5B Los Angeles, 
CA 

2014-07-01 to 
2016-01-01 No events removed 

Site 6 Yuma, AZ 2015-01-01* 
to 2016-06-30 R: 31/01/2016 

Site 7 San Luis 
Obispo, CA 

2015-05-31 to 
2016-07-31 No events removed 

Site 8 Pima, AZ 2013-06-02 to 
2016-01-01 No events removed 

Site 10 Kern, CA 2013-02-01 to 
2014-06-01 

A: 2013-08-27, 2013-09-15 
R: 2013-10-28 

Site 12 Riverside, CA 2014-09-01 to 
2015-08-12 No events removed 

Site 16 Kern, CA 2013-12-01 to 
2014-12-20 R: 25/04/2014, 22/05/2014 

*These dates have been modified to remove large amounts of missing data. 

III. SOILING RATE EXTRACTION 

A. Annualized Soiling Rates 
Existing rate extraction methods provide a single soiling rate, 

or at most a confidence interval, for a given site. However, 
previous studies have shown the temporal variability of soiling: 
both the soiling ratio and the soiling rate can vary depending on 
the seasons or the months [18]–[20]. For example, as it can be 
seen in the top chart of Fig. 1, Site 5B has has a high soiling 
seasonality, with a long period with minimal soiling between 
December and August in contrast with the lowest soiling ratios 
recorded (and highest soiling accumulation) between 
September and November. The circular markers in the bottom 
chart of Fig.  1 show the soiling rates for the various dry periods 
plotted per the months in which they started (calculated per Ref 
[14]). The maximum soiling rate is about 8 times larger than the 
minimum rate. In comparison to this variation in the soiling 
rates, Fig. 1 also includes horizontal lines for several annualized 
representations of the soiling rates for site 5B. The soiling rate 
that occurred during the longest dry period, used in the FRP 
method [4] is labelled as “longest” while the median of all the 
soiling rates calculated in the SRR method [14] is labelled as 
“median”. The FRP and SRR respectively over- or under-
represent the actual soiling rate distribution seen across the 
months.  

It would be expected that the soiling rates occurred during 
longer dry periods have a higher impact on the soiling ratio. For 
this reason, along with a simple average of all the dry periods 
(labelled as “mean” in Fig.  1), we also calculated a weighted 
average (labelled as “weighted mean” in Fig.  1), obtained by 
using the lengths of each soiling rate as weights. While the 
“mean” and “weighted mean” fall between the FRP and the 
SRR, these are still simple annualized metrics that provide no 
indication of seasonal variation in the soiling rate. 

   
Fig.  1. Top chart: soiling ratio profile for Site 5B. Soiling rates occurred during 
each of the dry periods of at least 14 days found for Site 5B and calculated 
according to Ref. [14] are highlighted, with the “median” and “longest” soiling 
rates colored differently. Vertical blue lines mark rain events. Bottom chart: 
circular markers showing the value of all the soiling rates, distributed according 
to the month(s) in which each dry period started. The marker size is proportional 
to the length of the dry period, with longer dry periods corresponding to larger 
markers. The horizontal bars show the annualized soiling rate values for the 
same site. Methodologies: Longest: soiling rate of the longest dry period; 
Median: median of all the soiling rates; Mean: simple average of all the soiling 
rates, Weighted mean: weighted average of all the soiling rates, weighted 
according to the length of each dry period.  

B. Monthly Mean Soiling Rates  
For the reasons mentioned in the previous subsection, we 

consider a new metric, that, instead of a single annualized value 
for the whole year, returns monthly values. It is therefore named 
monthly mean soiling rate (Rs,m), with the value for a month m 
calculated as: 

∑
∑ ⋅

=
iday

idayis
ms n

nR
R

,

,,
,

)(  (1) 

where Rs,i is the soiling rate for each ith-dry period occurring 
in the month m during the whole data collection, and nday,i 
expresses the number of days it lasted. If a dry period occurred 
over two or more months, the slope of the soiling rate has been 
used in the calculation of multiple mean monthly soiling rates, 
weighted each time according to the number of days it lasted in 
that specific month. Compared to the standard arithmetical 
mean, a weighted average gives higher influence to longer dry 
periods, which have higher impact on the soiling loss, and does 
not necessarily assume the longest dry period to be 
representative for the rest of the year.  

Some months might not have any valid soiling rate. In these 
cases, the monthly mean soiling rate has been obtained by 
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averaging those of the closest previous and following months. 
This decision was the result of a test conducted on the available 
monthly mean rates. The value of a known monthly mean rate 
was replaced with 0%/day rate and with a rate obtained from 
the average of the monthly mean rates of the months 
immediately before and after. After repeating this procedure 
one rate at a time for all the available rates of all the sites, a 
smaller error was found for the second approach, which was 
therefore adopted in this work to fill all the missing monthly 
mean soiling rates. 

  
Fig.  2. Left y-axis: bars showing the Root Mean Square Errors (RMSE) for the 
various soiling rate extraction methods at the various sites, where the error is 
the difference between the soiling rate values returned by each method and the 
soiling rate for each dry period of at least 14 days. Right y-axis: markers 
providing the median soiling rate for each site, calculated as for [14]. Only one 
soiling rate per month is available at Site 12. Monthly Mean: calculated as for 
eq. (1); other methods described in caption of Fig.  1. 

As a method of comparing the annualized soiling rate metrics 
against monthly mean values we calculated the root mean 
square error (RMSE) for each metric or model, where the error 
was calculated as the soiling rate metric (or model) minus the 
soiling rate for an individual dry period (calculated per Ref. 
[14]). In the case of the monthly mean metric, the model value 
was changed to match the month in which the dry period 
occurred. Fig.  2 shows the results of this RMSE comparison 
for all sites, where “longest” returns the highest root mean 
square error (RMSE), meaning that the soiling rate of an 
individual long dry period is not necessarily representative for 
a whole soiling year, while the “median” just slightly 
underperforms the simple and the weighted mean. As expected, 
the “monthly mean” soiling rate can reduce the deviation, 
expressed by the RMSE. The “monthly mean” RMSE is found 
to be the lowest for all the sites, with exception of Site 8, one of 
the sites where all the methods return relatively low error. In the 
other sites, the “monthly mean” reduces the error by an average 
of 47%, with minimum and maximum reductions of 14% (Site 
14) and 89% (Site 4), respectively. 

The soiling rates extracted with the various methods can be 
used to create soiling ratio profiles through the FRP method [3]: 
Fig.  3 compares the RMSE obtained when the daily soiling 
ratios calculated by applying the various soiling rate extraction 
methods are compared with the measured daily soiling ratios. 

As shown, the “monthly mean” method returns the lowest 
errors for most of the sites, followed by the “weighted” and the 
simple “mean” approaches, suggesting a better ability to extract 
accurate soiling profiles. In addition, the “monthly mean” and 
the “weighted mean” return the highest correlations and the 
lowest errors when the averages of the daily soiling ratios are 
calculated and compared to the averages of the measured daily 
ratios (Table II). These results are probably due to the ability of 
these methods to give more influence to the longer dry periods, 
while not over estimating rates by just using the longest dry 
period. For this reason, a “monthly mean” or at least a 
“weighted mean” approach seems to be preferable when a 
single soiling rate profile is extracted from PV performance 
data. 

  
Fig.  3. Root Mean Square Errors (RMSE) when the measured daily soiling 
ratio are compared to the daily soiling ratios calculated by using the 
precipitation data and the soiling rates returned by the various soiling rate 
extraction methods investigated in this study and described in the captions of 
Fig.  1 and Fig.  2. 

TABLE II 
CORRELATIONS BETWEEN THE AVERAGE MEASURED SOILING RATIOS AND 

AVERAGE SOILING RATIO MODELLED THROUGH THE VARIOUS SOILING RATE 
EXTRACTION METHODS.  

 Longest Median Mean Weighted 
Mean 

Monthly 
Mean 

R2 [%] 77.5 83.7 91.8 92.4 91.0 
RMSE [%] 0.597 0.739 0.527 0.426 0.460 

The R2 and the RMSE have been calculated by comparing the average of the 
daily measured soiling ratios and the average of the daily soiling ratios 
calculated by using the FRP approach and different soiling rate extraction 
methods. 

C. Cleanings: dates and impacts 
The most common strategy to mitigate the impact of soiling 

on the PV energy yield is cleaning. Cleaning a PV module in a 
utility scale system in the U.S. can cost between 0.2 and 0.5 
$/module [21]. This means that the one-time cleaning of a 10 
MW system made of 365 W-rated modules would cost more 
than $5k. For this reason, when scheduling a cleaning it is 
important to determine whether the gain due to the cleaning is 
economically higher than the cost of cleaning. The impact of a 
cleaning does not only depend on the current soiling ratio, but 
also on the number of days expected until the following rainfall 
and on the expected soiling rate. In general, the more the days 
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until the following rainfall, the more impactful a cleaning will 
be, but a steeper or a flatter soiling rate can respectively increase 
or decrease its impact. 

The aim of this section is to calculate the most convenient 
cleaning day (MCCD), just by looking for the day in which a 
cleaning would have the highest impact on the energy yield. In 
this light, an algorithm has been developed that consistently 
calculates the energy gained if a single annual cleaning was 
performed on any of the days in the datasets. Only a single 
cleaning scenario is considered and no economic analysis has 
been conducted at this stage. The cleaning is assumed to 
produce a positive shift of the soiling ratio that propagates from 
the day it is performed, when the ratio is raised to 100%, until 
the following rainy day. For this analysis, only the first 365 days 
of each dataset have been considered. Also, those sites with an 
average soiling ratio higher than 99% have been excluded, 
because, in conditions of low soiling, the measurement noise or 
uncertainty can have a significant impact on the identification 
of the most convenient cleaning day [22]. 

The results of the analysis are reported in Table III and show 
that all the soiling rate models return the same median number 
of days of difference between the actual MCCD (calculated 
from the measured soiling ratio profile) and the modelled 
MCCD (calculated from the modelled daily soiling ratio 
profiles) for the investigated sites. Despite that, the mean 
number of days is 25 for all the methods but the monthly mean 
(MM), which has a mean value of only 3 days. The difference 
between the MM and the other methods relies on the fact that, 
for all the other methods, the best cleaning date necessarily 
occurs on the longest dry period, because the soiling rate is 
constant. Taking into account a variable soiling rate, instead, 
the MM method is able to return a best guess, considering the 
length of the dry period and a variable monthly soiling rate. This 
occurs for example in Site 12, that experiences the longest dry 
period in the fall of 2014 while the most soiling-intense period 
is between spring and summer 2015 (see Fig.  4). 

 

 
 

Cleaning on a day that is not the actual MCCD can reduce 
the impact and therefore the economic benefit of the cleaning. 

In this light, the energy that would be gained if the cleaning was 
performed on each modelled MCCD, by taking into account the 
measured soiling ratio data, are also reported in Table III. It was 
found that the MM method selected days that on average 
granted a higher loss recovery than the other methods, and only 
about 10% lower than the energy recovered on the actual 
MCCD. It also gave one of the best estimations of the energy 
that would be gained, with a RMSE of 0.08%. These are 
important factors because a cleaning becomes convenient only 
when the economic gain is larger than its cost. In this light, the 
energy gain can be converted into an economic revenue and 
therefore be compared to the cost of performing the cleaning. 
The MM method, returning the smallest errors when compared 
to the actual data, seems to be therefore a more reliable method 
not only for the selection of the MCCD but, also, for an accurate 
cost-benefit analysis.  

 
These results are based on the analysis of one year of data 

from the five sites within the dataset with soiling ratios lower 
than 99%. Therefore, the findings should be confirmed, in 
future, through the analysis of longer-term soiling data from a 
larger number of sites. 

IV. WEATHER GENERATION  
In real case scenarios, the operating and maintenance plan 

has to be scheduled in advance to avoid cleaning modules 
during low-soiling and/or high-precipitation periods. This 
means that a prediction of future soiling based on historical data 
is required. No models have been presented in literature to 
generate future soiling ratio profiles that can be used to design 
in advance the most convenient cleaning schedule. For this 
reason, a model is here presented to make it possible to foresee 
future soiling losses if soiling rates and precipitation are 
available. The method currently does not attempt to predict 
future soiling rates, but rather employs the measured soiling 
rate values and generates daily precipitation patterns that are 
used to estimate the most convenient cleaning day for a site. 

TABLE III 
DIFFERENCE BETWEEN MEASURED AND MODELLED MOST CONVENIENT 
CLEANING DAYS. ALSO, THE AMOUNT OF ENERGY RECOVERED IF THE 

CLEANING WAS PERFORMED ON THE MODELLED MCCD IS SHOWN.  

Method Longest Median Mean Weighted 
Mean 

Monthly 
Mean 

Median 
difference in 
days [days] 

2 2 2 2 2 

Mean 
difference in 
days [days] 

25 25 25 25 3 

Average 
recovered 
losses [%] 

0.52 0.52 0.52 0.52 0.57 

RMSE 
modelled vs. 
actual energy 
recovery [%]* 

0.06 0.15 0.16 0.11 0.08 

* “RMSE modelled vs. actual energy recovery” is calculated by comparing 
the modelled energy gains to the actual energy gains. 

  
Fig.  4. Comparing measured daily soiling ratios, and those modelled through 
the longest and the MM methods for Site 12. The vertical blue lines mark the 
rainy days. In (A), the longest dry period; in (B), the most soiling-intensive 
period, due to the higher soiling rate. 
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A. Methods 
In this work, rainfall patterns have been generated through 

the use of weather generation algorithms, stochastic models 
based on observed meteorological records. In particular, we 
compared a first-order Markov chain model and a Spell-Length 
model, both described in Ref. [23] and fed with the 30-year 
historical daily precipitation data downloaded from PRISM 
[16]. 

The first order Markov model, originally proposed in Ref. 
[24], determines the probability of rainfall on any day 
depending on whether the previous day was wet or dry. In this 
approach, the probabilities of any day of a month m of being 
wet given a previous dry day or given a previous wet day 
(p01(m) and p11(m), respectively) are first calculated from the 
historical data. In this work, different probabilities have been 
calculated for each calendar month to account for the 
seasonality of rainfall. When the daily rainfall pattern is 
generated, any i-th day of a month m is assumed to be wet or 
dry depending on whether the previous day is wet or dry and 
based on the value of a randomly generated number u (whose 
value ranges between 0 and 1), according to the following 
conditions: 

• i-th day wet if:  
o day i-1 dry and u ≤ p01(m).  
o day i-1 wet and u ≤ p11(m).  

• i-th day dry otherwise.  
In the Spell-Length model, also known as “alternative 

renewal process”, first, the distributions of the lengths of dry 
and wet periods (“spells”) in the historical time series are 
modelled for each month. Then the daily rainfall profile is 
generated by alternating dry and wet spells. When a spell 
terminates, the model generates a spell of opposite type (dry or 
wet) compared to the previous spell. The length of each spell is 
determined according to the previously modelled distributions. 

In both models, for each month, a histogram describing the 
precipitation intensity distribution is created, with 1-mm/day 
bin size, and modelled through an exponential function. This 
function was chosen because it is one of the most common 
fitting functions in weather generation as it allows modeling the 
distribution with a single parameter, even if it is known to 
underpredict extreme events [26]. The intensity of each rainfall 
generated by the models is then determined by sampling a value 
depending on the rainfall distribution histograms. Negatively-
skewed histograms are exponentially modelled by inverting the 
x-axis. Also, for both the models, the weather profile generation 
is started on January 1st, assuming the day before to be the last 
day of a spell of the same type (wet or dry) as that most often 
occurred on December 31st for the years in the historical dataset.  

In our previous works [7], [8], we highlighted how, among 
the precipitation parameters, those describing the maximum 
length of the dry periods, the average length of the dry periods 
and the average length of the five longest dry periods are those 
that best correlate to the soiling losses. These, along with the 
annual accumulated precipitation and the seasonality index [25] 
have been modelled by using the two weather generation 
algorithms. The results of 500 iterations for two representative 

sites are shown in Fig.  5. What immediately stands out is the 
ability of the Spell-Length model to generate precipitation 
patterns that more closely match the actual profile in terms of 
maximum length of the dry period and average length of the 
five longest dry periods. When the median values obtained after 
500 iterations are compared with the values occurring at each 
of the nine sites during the data collection (Table IV), the Spell-
Length model is found to return the smallest RMSE for all the 
parameters, proving a better ability to model the rainfall pattern 
for the investigated locations and suggesting that it might be the 
preferable model for soiling profile generation purposes at these 
sites. It is worth mentioning that these errors could be lowered 
in future by using different fitting functions [27], [28] or climate 
datasets specifically designed to achieve high temporal 
consistency. 

TABLE IV 
RMSE OBTAINED BY COMPARING THE RAINFALL PARAMETERS MODELLED 

THROUGH THE WEATHER GENERATION ALGORITHMS AND THE ACTUAL 
VALUES DURING THE DATA COLLECTION PERIOD OF EACH SITE.  

Method 
Annual 

Precipitation 
[mm/year] 

Dry 
Period 
[days] 

Max 
Dry 

Period 
[days] 

Max 5 
Dry 

Periods 
[days] 

Seasonality 
Index 

Markov
-Chain 97.7 5.5 72.2 12.6 0.30 

Spell-
Length 62.8 4.1 27.2 4.0 0.11 

B. Soiling Profile Generation 
The weather generation algorithms can generate daily rainfall 

patterns that can be integrated with the soiling rates to produce 
potential profiles of soiling. These profiles can then be used to 
characterize soiling at a location, and potentially to identify 
well in advance the most likely cleaning day. Due to the 
stochastic nature of these algorithms, it is not possible to 
determine a single soiling profile in this case, but rather a 
number of potential profiles, which can be used to identify the 
most recurring characteristics of soiling at a site. 

For each of the 500 iterations, a soiling profile was built 
through the interaction of the generated rainfall pattern and the 
previously extracted soiling rates. The average soiling ratio and 
the week to which the MCCD day would belong were 
determined for each profile. At the end of 500 iterations, the 
median soiling ratio and the mean of the modelled MCCD 
weeks were compared with those measured from the soiling 
data collected at the site and are shown in Table V and Table 
VI, respectively.  

C. Discussion 
From Table V it can be seen that the monthly mean and the 

weighted mean approaches have the best ability to predict the 
average soiling ratio with the most consistent results 
independently of the weather generation algorithm. This seems 
to confirm the idea that soiling rates occurring in the longest dry 
periods should be given a larger influence when soiling 
extraction and generation are performed.  

In Table VI it can be seen that the monthly mean is, on 
average, the method returning the closest MCCD to the actual 
date. As mentioned before, this is probably driven by the fact 
that the longer dry periods are not necessarily the most soiled. 
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For this reason, an approach like the monthly mean could be 
more robust when the data are analyzed, especially for O&M 
planning. In order to achieve a more generalized conclusion, 
this research should be repeated, as the limited number of sites 
did not allow for a complete cross-validation. 

 
TABLE V 

RMSE, IN [%], BETWEEN THE MODELLED AND THE MEASURED AVERAGE 
SOILING RATIOS. 

Method Longest Median Mean Weighted 
Mean 

Monthly 
Mean 

Markov-Chain 1.05 1.03 0.81 0.88 0.91 
Spell-Length 1.23 0.97 1.08 0.92 0.86 

 
TABLE VI 

AVERAGE NUMBER OF WEEKS BETWEEN PREDICTED MCCD AND THE 
ACTUAL MCCD. 

Method Longest Median Mean Weighted 
Mean 

Monthly 
Mean 

Markov-
Chain 5.8 5.8 5.8 5.8 5.2 

Spell-
Length 6.6 6.6 6.6 6.6 5.6 

 
In general, the two weather generation algorithms return 

similar results when used to predict the most convenient 
cleaning day (MCCD), with an average of 5 to 7-week error 
between modelled and actual MCCD for the five investigated 
sites. From the median point of view, all the methods return a 
median difference of 4 weeks, with the exception of a 3-week 
median when the MM method is integrated with the Markov 
chain algorithm.  

All the methods returned a high error for Site 3, with 
differences in MCCD estimation greater than 13 weeks. This is 
due to the fact that, in the measured soiling dataset, only rains 
of intensity higher than a certain threshold seem to have a 
cleaning impact on the soiling ratio, as also shown in Fig.  6, 
while no rainfall threshold has been considered in this work. If 
the analysis is repeated by taking into account a 1 mm/day rain 
threshold for Site 3, it is found that the error in the prediction of 
MCCD could be lowered to 2 weeks using the MM method 
(Fig.  7) and to 5 weeks when the other methods are used with 
the Spell-Length algorithm. This would lower the mean of the 
average number of weeks shown in Table VI from 5.6 to 3 
weeks for the Spell-Length algorithm. On the other hand, the 
number of weeks would remain essentially unchanged for the 
Markov-Chain approach. The Spell-Length algorithm was also 
found to perform better than the Markov-Chain in estimating 
the characteristics of the dry periods (Table IV), which are 
known to be impactful parameters for soiling.  

The goal of the present paper was to test the applicability of 
weather generation algorithms for soiling study purposes. The 
results suggest that they could be a potentially reliable tool for 
the prediction of future soiling losses and for the in-advance 
design of an optimized cleaning schedule. A better handling of 
some issues described in the Methodology section, as the 
occurrence of manual cleanings or the lack of effect of some 
rainfalls on the data can enhance the prediction and should be 
further investigated. In particular, the identification of 
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Fig.  5. Weather characteristics for Sites 4, 5B, 12 and 16 returned at each 
iteration of the Markov-Chain (“Markov”) and the Spell-Length (“Spell-L”) 
weather generation models. The darker markers represent the median values 
of each parameter. The horizontal blue lines show the actual value measured 
at the sites during the data collection period.  
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minimum rain thresholds might improve the application of 
weather forecasting techniques for soiling prediction purposes, 
as shown for Site 3. Also, alternative weather generation 
algorithms and fitting functions might lead to different results 
and should be investigated in future. 

 
Fig.  6. Comparing rainfalls above 1 mm/day and lower for Site 3. 

 
Fig.  7. Distribution of the weeks to which the MCCD belong when the weather 
generation algorithms and the MM method are applied to Site 3, with a 
minimum rain threshold of 1 mm/day, for 150 iterations. The week of the 
MCCD day obtained from the measured data is given in blue. Weeks are 
numbered according to the ISO week date system.  

In addition, multiple O&M scenarios, such as more than one 
cleaning per year, should be considered in future works, along 
with the introduction of an economic analysis. The 
investigation should be also repeated for multi-year soiling 
datasets to validate the reliability of the presented methods over 
longer time periods. Moreover, it is important to mention that 
the applicability of a given weather model might change for 
climates different than those considered in this study and that 
alternative weather generation methods, such as those based on 
Markov chains of higher order [23], are available in literature 
and should be investigated in future studies.  

V. CONCLUSION 
This paper investigates methods to characterize soiling rates 

from PV performance and soiling station data. We first discuss 
about the previously presented annualized soiling rate 
extraction models, highlighting how using a median value or 
the longest soiling rate might not give a fair representation of 
the seasonality of a PV site. In this light, an average soiling rate, 
weighted according to the length of each dry period, or the 
monthly mean soiling rates can better represent soiling 
seasonality and allow for generating more representative soiling 
profiles for a given site. In particular, we showed how using a 
single annualized soiling rate can lead to the detection of a non-
optimal day for cleaning, which can negatively affect the 
soiling mitigation activities. Taking into account monthly mean 
rates, instead, returned better estimations of the optimal 
cleaning day and of the energy gains. 

O&M teams are generally required to schedule maintenance, 
and cleanings, in advance. In this light, the ability of weather 
generation algorithms to produce rainfall patterns that could be 
used for soiling prediction has been studied for the first time. 
Between the two methods investigated in this work, the Spell-
Length was found to be able to better predict the maximum and 
the average length of the dry periods, which are key parameters 
for PV soiling. Through the employment of weather generation 
algorithms, it was possible to create soiling loss profiles that 
could predict the average soiling at a site with errors <1.3%. 
Also, for most of the sites it was possible to predict the best 
cleaning date within 3 weeks of the actual one. We also show 
how, the introduction of rainfall threshold detection could 
improve the results for at least one site, and would make the 
application of weather algorithm more robust.  

This study aims to provide the community with improved 
methods for analysis of the soiling losses and to contribute 
toward the development of tools for their prediction. 
Nonetheless, the investigation should be enhanced in future, 
considering a larger number of sites, longer data collection 
periods, and more complex weather generation algorithms.  
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