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1. Introduction, results

Let Fq be a finite field having q elements, let θ be an indeterminate over Fq, A = Fq[θ]
and K = Fq(θ). In all the following, we denote by v∞ the θ−1-adic valuation normalized
by setting v∞(θ) = −1. Let K∞ be the completion of K for v∞, and let us consider the
completion C∞ of an algebraic closure of K∞ for the unique extension of this valuation,
in which we embed an algebraic closure Kalg of K. Carlitz’s exponential function is the
surjective, Fq-linear, rigid analytic entire function

expC : C∞ → C∞

defined by

expC(z) =
∑

n≥0

zq
n

dn
,

where

d0 = 1, dn =
(
θq

n

− θ
)(
θq

n

− θq
)
· · ·

(
θq

n

− θq
n−1)

, n > 0.

The kernel of this function, surjective, is equal to π̃A, where the period π̃, unique up
to multiplication by an element of F×

q , can be computed by using the following product
expansion

π̃ := θ(−θ) 1
q−1

∞∏

i=1

(
1 − θ1−qi

)−1 ∈ (−θ) 1
q−1K∞, (1)

once a (q − 1)-th root of −θ is chosen.

Anderson–Thakur function. This function, introduced in [2, Proof of Lemma 2.5.4,
p. 177], is defined by the infinite product

ω(t) = (−θ) 1
q−1

∏

i≥0

(
1 − t

θqi

)−1
, (2)

with the same choice of the (q − 1)-th root as in (1), converges for t ∈ C∞ such that
|t| ≤ 1 (where | · | is an absolute value associated to v∞) and can be extended to a
non-zero rigid analytic function over

C∞ \
{
θq

k ; k ≥ 0
}

with simple poles at θq
k , k ≥ 0.
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Let t be a variable in C∞ and let us consider the Fq-algebra homomorphism

χt : A → Fq[t]

defined by formal replacement of θ by t. In other words, χt may be viewed as the unique
Fq-algebra homomorphism from A to the ring of rigid analytic functions C∞ → C∞
such that χt(θ) = t. More generally, we shall consider s independent variables and the
Fq-algebra homomorphisms

χti : A → Fq[t1, . . . , ts], i = 1, . . . , s

defined respectively by χti(θ) = ti. To simplify our notations, we will write χξ(a) for the
evaluation at t = ξ of the polynomial function χt(a) at a given element ξ ∈ C∞. Let α

be a positive integer and let β1, . . . ,βs be non-negative integers. The following formal
series was introduced in [13]:

L
(
χβ1
t1 · · ·χβs

ts ,α
)

=
∑

d≥0

∑

a∈A+(d)
χt1(a)β1 · · ·χts(a)βsa−α ∈ K∞[[t1, . . . , ts]]. (3)

Here and in all the following, A+(d) denotes the set of monic polynomials of A of degree d.
It is easy to see that this series is well defined. As claimed in [13, Remark 7], this series
converges for all (t1, . . . , ts) ∈ Cs

∞ to a rigid analytic entire function of s variables
t1, . . . , ts; see Proposition 6.

The residue of ω(t) at t = θ is −π̃:

π̃ = − lim
t→θ

(t− θ)ω(t).

In [13, Theorem 1], it is proved that

L(χt, 1) = π̃

(θ − t)ω(t) .

Taking into account the functional equation

ω(t)q =
(
tq − θ

)
ω
(
tq
)

apparent in (2), this implies that, for m ≥ 0 integer,

Vqm,1(t) := π̃−qmω(t)L
(
χt, q

m
)

= 1
(θqm − t)(θqm−1 − t) · · · (θ − t) .

This result provided an awaited connection between the function ω of Anderson and
Thakur and the “even” values of the Goss zeta function (or Carlitz zeta values)

ζ(n) = BCnπ̃n

Π(n) , n > 0, n ≡ 0 (mod q − 1)
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where BCn and Π(n) denote respectively the n-th Bernoulli–Carlitz fraction and Car-
litz’s factorial of n, see Goss’ book [11, Section 9.1]. Indeed, evaluating at t = θ, we
get

L
(
χθ, q

m
)

= ζ
(
qm − 1

)
, m ≥ 1.

More generally, it is proved in [13, Theorem 2] that, if α ≡ 1 (mod q − 1) and α ≥ 1,
then

µα = π̃−αL(χt,α)ω(t)

is a rational function in Fq(θ, t). In [13], it is suggested that this result could be a source
of information in the study of the arithmetic properties of the Bernoulli–Carlitz fractions.
However, the methods of loc. cit. (based on deformations of vectorial modular forms and
Galois descent) are only partially explicit.

More recently, Perkins [14] investigated the properties of certain special polynomials
associated to variants of the functions L(χβ

t ,α) with α ≤ 0 which turn out to be poly-
nomial. He notably studied the growth of their degrees. Moreover, by using Wagner’s
interpolation theory for the map χt, Perkins [15] obtained explicit formulas for the series

L(χt1 · · ·χts ,α), α > 0, 0 ≤ s ≤ q, α ≡ s (mod q − 1).

We quote here a particular case of Perkins’ formulas for the functions L(χt,α) with
α ≡ 1 (mod q − 1)

L(χt,α) =
µ∑

j=0
d−1
j (t− θ)

(
t− θq

)
· · ·

(
t− θq

j−1)
ζ
(
α− qj

)
L
(
χt, q

j
)
, (4)

where µ is the biggest integer such that qµ ≤ α. It seems difficult to overcome the
threshold s ≤ q giving at once expressions for L(χt1 · · ·χts ,α) with the effectiveness of
Perkins’ results.

In the next theorem, we extend the previous results beyond the mentioned threshold,
providing at once new quantitative information. Let n be a non-negative integer, let us
consider the expansion n =

∑r
i=0 niqi in base q, where ni ∈ {0, · · · , q − 1}. We denote

by ℓq(n) the sum of the digits ni of this expansion: ℓq(n) =
∑r

i=0 ni. We have:

Theorem 1. Let α, s be positive integers, such that α ≡ s (mod q − 1). Let δ be the
smallest non-negative integer such that, simultaneously, qδ−α ≥ 0 and s+ℓq(qδ−α) ≥ 2.
The formal series:

Vα,s(t1, . . . , ts) = π̃−αL(χt1 · · ·χts ,α)ω(t1) · · ·ω(ts)
s∏

i=1

δ−1∏

j=0

(
1 − ti

θqj

)

∈ K∞[[t1, . . . , ts]] (5)
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is in fact a symmetric polynomial of K[t1, . . . , ts] of total degree δ(α, s) such that

δ(α, s) ≤ s

(
s + ℓq(qδ − α)

q − 1

)
− s.

This statement holds if α = qm and s ≥ 2 (so that δ = m) assuming that empty
products are equal to one by convention. In this case, since s ≡ α (mod q − 1), we
have s + ℓq(qδ − α) ≡ 0 (mod q − 1) so that in fact, s ≥ max{2, q − 1}. The reader
may have noticed that the choice α = qm and s = 1 is not allowed in Theorem 1.
However, as mentioned above, the computation of Vqm,1 is completely settled in [13].
This discrimination of the case α = qm, s = 1 should not be surprising neither; similarly,
the Goss zeta function associated to A has value 1 at zero, but vanishes at all negative
integers divisible by q − 1.

In Section 3, we will be more specifically concerned with Bernoulli–Carlitz numbers.
A careful investigation of the polynomials V1,s and an application of the digit princi-
ple ([8]) to the function ω will allow us to show that, for s ≥ 2 congruent to one modulo
q − 1,

Bs = Π(s)−1V1,s(θ, . . . , θ)

is a polynomial of Fq[θ] (Proposition 24).1 We don’t know whether Bs vanishes or not
for general s. In all the following, a prime is by definition a monic irreducible polyno-
mial in A. We shall then show the next theorem, which highlights the interest of these
polynomials in θ.

Theorem 2. Let s ≥ 2, s ≡ 1 (mod q − 1). Let us consider the expansion s =
∑r

i=0 siq
i

of s in base q. Let d be an integer such that qd > s and let p be a prime of degree d.
Then:

Bs ≡
(−1)sBC qd−s

∏r
i=0 l

siq
i

d−i−1
Π(qd − s) (mod p).

In this result, ld denotes the polynomial (−1)d
∏d

i=1(θq
i − θ); we observe that the

latter polynomial is invertible modulo p just as Π(qd − s). The non-vanishing of Bs for
fixed s signifies the existence of an explicit constant c > 0, depending on s and q, such
that for all d ≥ c,

BC qd−s ̸≡ 0 (mod p), for all p such that deg p = d. (6)

However, the non-vanishing of Bs is also equivalent to the fact that the function

1 Note that B1 is not well defined.
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L(χt1 · · ·χts , 1)
s∏

i=1
(ti − θ)−1,

entire of s variables as we will see, is a unit when identified to an element of C∞[[t1 − θ,

. . . , ts − θ]]; we presently do not know how to prove this property for all s. Therefore,
the property (6) is linked with the following conjecture of nature analogue of classical
results on the simplicity of the zeroes of Goss zeta functions and L-series, which should
be, we believe, true.

Conjecture 3. Let s ≥ 2 be congruent to one modulo q − 1. Then, locally at t1 = · · · =
ts = θ, the set of the zeroes of the function L(χt1 · · ·χts , 1) is equal to the set of zeroes
of the polynomial

∏
i(ti − θ).

Numerical computations on Bernoulli–Carlitz fractions made by Taelman provide
some evidence to support this hypothesis. The conjecture follows from Perkins results
[15] in the case s ≤ q and α = s. The conjecture is also verified if ℓq(s) = q and α = 1,
thanks to Corollary 26.

2. Functional identities for L-series

Let d, s be non-negative integers. We begin with the study of the vanishing of the
sums

Sd,s = Sd,s(t1, . . . , ts) =
∑

a∈A+(d)
χt1(a) · · ·χts(a) ∈ Fq[t1, . . . , ts],

which are symmetric polynomials in t1, . . . , ts of total degree ≤ ds, with the standard
conventions on empty products. We recall that, for n ≥ 0,

∑

a∈Fq

an

equals −1 if n ≡ 0 (mod q − 1) and n ≥ 1, and equals 0 otherwise. We owe the next
lemma to D. Simon [7]. We give the proof here for the sake of completeness.

Lemma 4 (Simon’s Lemma). We have Sd,s ̸= 0 if and only if d(q − 1) ≤ s.

Proof. Since

Sd,s =
∑

a0∈Fq

· · ·
∑

ad−1∈Fq

s∏

i=1

(
a0 + a1ti + · · · + ad−1t

d−1
i + tdi

)
,

the coefficient cv1,...,vs of tv1
1 · · · tvss with vi ≤ ds (i = 1, . . . , s) is given by the sum:
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∑

a0∈Fq

· · ·
∑

ad−1∈Fq

av1 · · · avs .

The last sum can be rewritten as:

cv1,...,vs =
( ∑

a0∈Fq

aµ0
0

)
· · ·

( ∑

ad−1∈Fq

a
µd−1
d−1

)
, (7)

where µi is the cardinality of the set of the indices j such that vj = i, from which one
notices that

d−1∑

i=0
µi ≤ s

(notice also that s−
∑

i µi is the cardinality of the set of indices j such that vj = d). For
any choice of µ0, . . . , µd−1 such that

∑
i µi ≤ s, there exists (v1, . . . , vs) such that (7)

holds.
If s < d(q− 1), for all (v1, . . . , vs) as above, there exists i such that, in (7), µi < q− 1

so that Sd,s = 0. On the other hand, if s ≥ d(q − 1), it is certainly possible to find
(v1, . . . , vs) such that, in (7), µ0 = · · · = µd−1 = q − 1 so that the sum does not vanish
in this case. ✷

As an immediate corollary of Lemma 4, we see that the series

Fs = Fs(t1, . . . , ts) =
∑

d≥0
Sd,s =

∑

d≥0

∑

a∈A+(d)
χt1(a) · · ·χts(a)

defines a symmetric polynomial of Fq[t1, . . . , ts] of total degree at most s2

q−1 . In the
next lemma, we provide a necessary and sufficient condition for the vanishing of the
polynomial Fs.

Lemma 5. If s ≥ 1, then, Fs = 0 if and only if s ≡ 0 (mod q − 1).

Proof. We will use several times the following elementary observation: let G ∈
C∞[t1, . . . , ts] and let S1, . . . , Ss ⊂ Falg

q (Falg
q denotes the algebraic closure of Fq, embed-

ded in C∞) be infinite sets such that G vanishes on S1 × · · ·× Ss. Then G = 0.
Let us assume first that s ≡ 0 (mod q − 1). The hypothesis on s implies that

∑

a∈A,degθ(a)=d

χt1(a) · · ·χts(a) = −Sd,s.

We denote by A (≤ d) the set of polynomials of A of degree ≤ d and we write

Gd,s =
∑

a∈A(≤d)
χt1(a) · · ·χts(a).
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We then have:

G s
q−1 ,s

= −Fs.

Let us choose now distinct primes p1, . . . , ps of respective degrees d1, . . . , ds ≥ s/(q − 1)
and f = p1 · · · ps. For all i = 1, . . . , s, we choose a root ζi ∈ Falg

q of pi. Let us then consider
the Dirichlet character of the first kind χ = χζ1 · · ·χζs . We have:

Fs(ζ1, . . . , ζs) = −G s
q−1 ,s

(ζ1, . . . , ζs)

= −
∑

a∈A (≤s/(q−1))
χ(a)

= −
∑

a∈A (≤d1+···+ds)
χ(a)

= −
∑

a∈(A/fA)×
χ(a)

= 0,

by [16, Proposition 15.3]. By the observation at the beginning of the proof, this implies
the vanishing of Fs. On the other hand, if s ̸≡ 0 (mod q − 1), then Fs(θ, . . . , θ) = ζ(−s)
the s-th Goss’ zeta value which is non zero, see [10, Remark 8.13.8 1]. ✷

2.1. Analyticity

The functions L(χt1 · · ·χts ,α) are in fact rigid analytic entire functions of s variables.
This property, mentioned in [13], can be deduced from the more general Proposition 6
that we give here for convenience of the reader.

Let a be a monic polynomial of A. We set:

⟨a⟩ = a

θdegθ(a) ∈ 1 + θ−1Fq

[
θ−1].

Let y ∈ Zp, where p is the prime dividing q. Since ⟨a⟩ is a 1-unit of K∞, we can consider
its exponentiation by y:

⟨a⟩y =
∑

j≥0

(
y

j

)(
⟨a⟩ − 1

)j ∈ Fq

[[
θ−1]].

Here, the binomial
(y
j

)
is defined, for j a positive integer, by extending Lucas formula.

Writing the p-adic expansion
∑

i≥0 yip
i of y (yi ∈ {0, . . . , p−1}) and the p-adic expansion∑r

i=0 jip
i of j (ji ∈ {0, . . . , p− 1}), we are explicitly setting:

(
y

j

)
=

r∏

i=0

(
yi
ji

)
.
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Note that, for a ∈ A+, we have a continuous function: Zp → K∞, y ,→ ⟨a⟩y. We also
recall, from [11, Chapter 8], the topological group S∞ = C×

∞×Zp. For (x, y) ∈ S∞ and d,
s non-negative integers, we define the sum

Sd,s(x, y) = Sd,s(x, y)(t1, . . . , ts) = x−d
∑

a∈A+(d)
χt1(a) · · ·χts(a)⟨a⟩y ∈ x−dK∞[t1, . . . , ts],

which is, for all x, y, a symmetric polynomial of total degree ≤ ds.
Let us further define, more generally, for variables t1, . . . , ts ∈ C∞ and (x, y) ∈ S∞,

the series:

L(χt1 . . .χts ;x, y) =
∑

d≥0
Sd,s(x, y)(t1, . . . , ts).

For fixed choices of (x, y) ∈ S∞, it is easy to show that

L(χt1 . . .χts ;x, y) ∈ C∞[[t1, . . . , ts]],

and with a little additional work, one also verifies that this series defines an element of
the standard Tate C∞-algebra Tt1,...,ts in the variables t1, . . . , ts. Of course, if (x, y) =
(θα,−α) with α > 0 integer, we find

L
(
χt1 . . .χts ; θα,−α

)
= L(χt1 . . .χts ,α).

The next proposition holds, and improves results of Goss; see [12, Theorems 1, 2].

Proposition 6. The series L(χt1 , . . . ,χts ;x, y) converges for all (t1, . . . , ts) ∈ Cs
∞ and for

all (x, y) ∈ S∞, to an entire function on Cs
∞ × S∞ in the sense of Goss [11, Defini-

tion 8.5.1].

The proof of this result is a simple consequence of the lemma below. The norm ∥ · ∥
used in the lemma is the supremum norm of Tt1,...,ts .

Lemma 7. Let (x, y) be in S∞ and let us consider an integer d > (s − 1)/(q − 1), with
s > 0. Then:

∥∥Sd,s(x, y)
∥∥ ≤ |x|−dq−q

[d− s
q−1 ]−1

,

where for x ∈ R, [x] denotes the integer part of x.

Proof. Let us write the p-adic expansion y =
∑

n≥0 cnp
n, with cn ∈ {0, . . . , p − 1} for

all n. Collecting blocks of e consecutive terms (where q = pe), this yields a “q-adic”
expansion, from which we can extract partial sums:
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yn =
en−1∑

k=0
ckp

k =
n∑

i=0
uiq

i ∈ Z≥0,

where

ui =
e(i+1)−1∑

j=ei

cjp
j−ei ∈ {0, . . . , q − 1}.

In particular, for n ≥ 0, we observe that ℓq(yn) ≤ (n + 1)(q − 1). Since

Sd,s(x, yn) = 1
xdθdyn

∑

a∈A+(d)
χt1(a) · · ·χts(a)ayn

= 1
xdθdyn

Sd,r

(
t1, . . . , ts, θ, . . . , θ︸ ︷︷ ︸

u0 times

, θq, . . . , θq︸ ︷︷ ︸
u1 times

, . . . , θq
n

, . . . , θq
n

︸ ︷︷ ︸
un times

)

with r = s + ℓq(yn), if d(q − 1) > s + ℓq(yn), we have by Simon’s Lemma 4:

Sd,s(x, yn) = 0.

This condition is ensured if d(q − 1) > s + (n + 1)(q − 1).
Now, we claim that

∥∥Sd,s(x, y) − Sd,s(x, yn)
∥∥ ≤ |x|−dq−qn+1

.

Indeed,

Sd,s(x, y) − Sd,s(x, yn) = x−d
∑

a∈A+(d)
χt1(a) · · ·χts(a)

∑

j≥0

((
y

j

)
−
(
yn
j

))(
⟨a⟩ − 1

)j
,

and
(y
j

)
=

(yn

j

)
for j = 0, . . . , qn+1 − 1 by Lucas’ formula and the definition of the

binomial, so that
∣∣∣∣
∑

j≥0

((
y

j

)
−
(
yn
j

))(
⟨a⟩ − 1

)j
∣∣∣∣ ≤ q−qn+1

.

The lemma follows by choosing n + 2 = [d− s
q−1 ]. ✷

In particular, we have the following corollary to Proposition 6 which generalizes [12,
Theorem 1], the deduction of which, easy, is left to the reader.

Corollary 8. For any choice of an integer α > 0 and non-negative integers M1, . . . ,Ms,
the function
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L
(
χM1
t1 · · ·χMs

ts ,α
)

=
∑

d≥0

∑

a∈A+(d)
χt1(a)M1 · · ·χts(a)Msa−α

defines a rigid analytic entire function Cs
∞ → C∞.

2.2. Computation of polynomials with coefficients in K∞

Lemma 9. For all d ≥ 0, we have:

Sd(−α) =
∑

a∈A+(d)
a−α ̸= 0.

Proof. This follows from [11, proof of Lemma 8.24.13]. ✷

We introduce, for d, s, α non-negative integers, the sum:

Sd,s(−α) =
∑

a∈A+(d)
χt1(s) · · ·χts(a)a−α ∈ K[t1, . . . , ts],

representing a symmetric polynomial of K[t1, . . . , ts] of exact total degree ds by Lemma 9.
We have, with the notations of Section 2.1:

Sd,s(−α) = Sd,s

(
θα,−α

)
.

From the above results, we deduce the following proposition.

Proposition 10. Let α be a fixed positive integer. Let l ≥ 0 be an integer such that
ql − α ≥ 0 and ℓq(ql − α) + s ≥ 2. If ℓq(ql − α) + s ≤ d(q − 1), then:

Sd,s(−α) ≡ 0
(

mod
s∏

j=1

(
tj − θq

l)
)
.

Furthermore, let us assume that s ≡ α (mod q − 1). With l as above, let k be an integer
such that k(q − 1) ≥ ℓq(ql − α) + s. Then:

k∑

d=0
Sd,s(−α) ≡ 0

(
mod

s∏

j=1

(
tj − θq

l)
)
.

Proof. Let us write m = ℓq(ql − α). We have s− 1 + m < d(q − 1) so that, by Simon’s
Lemma 4, Sd,s−1+m = 0. Now, let us write the q-ary expansion ql−α = n0 +n1q+ · · ·+
nrqr with ni ∈ {0, . . . , q − 1} and let us observe that, since ql − α ≥ 0,

Federico Pellarin
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Sd,s(−α)
(
t1, . . . , ts−1, θ

ql
)

=
∑

a∈A+(d)
χt1(a) · · ·χts−1(a)aq

l−α

=
∑

a∈A+(d)
χt1(a) · · ·χts−1(a)χθ(a)n0χθq (a)n1 · · ·χθqr (a)nr

= Sd,s−1+m

(
t1, . . . , ts−1, θ, . . . , θ︸ ︷︷ ︸

n0 times

, θq, . . . , θq︸ ︷︷ ︸
n1 times

, . . . , θq
r

, . . . , θq
r

︸ ︷︷ ︸
nr times

)

= 0.

Therefore ts − θq
l divides Sd,s(−α). The first part of the proposition follows from the

fact that this polynomial is symmetric. For the second part, we notice by the first part,
that the condition on k is sufficient for the sum Sd,s(−α)(t1, . . . , ts) to be congruent to
zero modulo

∏s
i=1(ti − θq

l) for all d ≥ k. It remains to apply Lemma 5 to conclude the
proof. ✷

Proposition 11. Let s,α ≥ 1, s ≡ α (mod q − 1). Let δ be the smallest non-negative
integer such that qδ ≥ α and s + ℓq(qδ − α) ≥ 2. Then, the function of Theorem 1

Vα,s(t1, . . . , ts) = L(χt1 · · ·χts ,α)ω(t1) · · ·ω(ts)π̃−α

(
s∏

i=1

δ−1∏

j=0

(
1 − ti

θqj

))

is in fact a symmetric polynomial of K∞[t1, . . . , ts]. Moreover, its total degree δ(α, s) is
not bigger than s( s+ℓq(qδ−α)

q−1 ) − s.

Proof. Let δ be the smallest non-negative integer such that qδ − α ≥ 0 and
s + ℓq(qδ − α) ≥ 2. We fix an integer k such that

k(q − 1) ≥ s + ℓq
(
qδ − α

)
. (8)

We also set:

N(k) = δ + k − s + ℓq(qδ − α)
q − 1 .

Obviously, N(k) ≥ δ. Let l be an integer such that

δ ≤ l ≤ N(k).

We claim that we also have

k(q − 1) ≥ s + ℓq
(
ql − α

)
.

Indeed, let us write the q-ary expansion α = α0 +α1q+ · · ·+αmqm with αm ̸= 0. Then,
δ = m if α = qm and s ≥ 2 and δ = m + 1 otherwise. If l is now an integer l ≥ δ, we
have
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ql − α = ql − qδ + qδ − α

= qδ(q − 1)
(

l−δ−1∑

i=0
qi
)

+ qδ − α,

where the sum over i is zero if l = δ, and

ℓq
(
ql − α

)
= (q − 1)(l − δ) + ℓq

(
qδ − α

)

because there is no carry over in the above sum. Now, the claim follows from (8).
By Proposition 10 we have, with k as above, that the following expression

Wk,s,α :=
(

s∏

i=1

N(k)∏

j=δ

(
1 − ti

θqj

)−1) k∑

d=0
Sd,s(−α)

is in fact a symmetric polynomial in K[t1, . . . , ts]. By Lemma 9, Sd,s(−α) ∈ K[t1, . . . , ts]
is a symmetric polynomial of total degree ds; indeed, the coefficient of td1 · · · tds is exactly
Sd(−α). Hence, the total degree of

∑k
d=0 Sd,s(−α) is exactly ks. The total degree of the

product

s∏

i=1

N(k)∏

j=δ

(
1 − ti

θqj

)

is equal to s(1 + N(k) − δ) so that, by the definition of N(k):

deg(Wk,s,α) = sk − s− sN(k) + sδ

= sk − sk − sδ + sδ − s + s

(
s + ℓq(qδ − α)

q − 1

)

= s

(
s + ℓq(qδ − α)

q − 1

)
− s,

independent on k. We now let k tend to infinity. The proposition follows directly from
the definition (2) of ω as an infinite product, the fact that, in (2), π̃θ−1/(q−1) ∈ K∞, and
the definition of L(χt1 · · ·χts ,α). ✷

2.3. Preliminaries on Gauss–Thakur sums

We review quickly the theory of Gauss–Thakur sums, introduced by Thakur in [17].
Let p be an irreducible monic polynomial of A of degree d, let ∆p be the Galois

group of the p-cyclotomic function field extension Kp = K(λp) of K, where λp is a
non zero p-torsion element of Kalg (the algebraic closure of K in C∞). Gauss–Thakur
sums can be associated to the elements of the dual character group ∆̂p via the Artin
symbol (see [11, Sections 7.5.5 and 9.8]). If χ is in ∆̂p, we denote by g(χ) the associated
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Gauss–Thakur sum. In particular, we have the element ϑp ∈ ∆̂p obtained by reduction
of the Teichmüller character [11, Definition 8.11.2], uniquely determined by a choice of
a root ζ of p, and the Gauss–Thakur sums g(ϑqj

p ) associated to its qj-th powers, with
j = 0, . . . , d − 1, which can be considered as the building blocks of the Gauss–Thakur
sums g(χ) for general χ ∈ ∆̂p.

Definition 12. With p, d, ϑp as above, the basic Gauss–Thakur sum g(ϑqj

p ) associated to
this data is the element of Kalg defined by:

g
(
ϑqj

p

)
=

∑

δ∈∆p

ϑp
(
δ−1)qjδ(λp) ∈ Fp[λp].

The same sum is denoted by gj in [11,17]. The basic Gauss–Thakur sums are used to
define general Gauss–Thakur sums associated to arbitrary elements of ∆̂p. For instance,
if χ = χ0 is the trivial character, then g(χ) = 1.

The group ∆̂p being isomorphic to ∆p, it is cyclic; it is in fact generated by ϑp. Let
χ be an element of ∆̂p. There exists a unique integer i with 0 < i < qd, such that
χ = ϑi

p. Let us expand i in base q, that is, let us write i = i0 + i1q + · · ·+ id−1qd−1 with
ij ∈ {0, . . . , d− 1}. Then, χ =

∏d−1
j=0(ϑqj

p )ij .

Definition 13. The general Gauss–Thakur sum g(χ) associated to χ ∈ ∆̂p as above, is
defined by:

g(χ) =
d−1∏

j=0
g
(
ϑqj

p

)ij .

More generally, let us now consider a non-constant monic polynomial a ∈ A. We
denote by ∆̂a the dual character group Hom(∆a, (Falg

q )×), where ∆a is the Galois group
of the extension Ka of K generated by the a-torsion of the Carlitz module.

If χ is in ∆̂a, we set: Fq(χ) = Fq(χ(δ); δ ∈ ∆a) ⊂ Falg
q . We also write

Fa = Fq(χ;χ ∈ ∆̂a)

and we recall that Gal(Ka(Fa)/K(Fa)) ≃ ∆a. We observe that ∆̂a is isomorphic to ∆a

if and only if a is squarefree. If a = p1 · · · pn with p1, . . . , pn distinct primes, then

∆̂a ≃
n∏

i=1
∆̂pi .

Let us then assume that a is non-constant and square-free. We want to extend the
definition of the Gauss–Thakur sums to characters in ∆̂a. For χ ∈ ∆̂a, χ ̸= χ0, there
exist r distinct primes p1, · · · , pr and characters χ1, . . . ,χr with χj ∈ ∆̂pj for all j, with

χ = χ1 · · ·χr.



B. Anglès, F. Pellarin / Journal of Number Theory 142 (2014) 223–251 237

Definition 14. The Gauss–Thakur sum associated to χ is the product:

g(χ) = g(χ1) · · · g(χr).

The polynomial fχ = p1 · · · pr is called the conductor of χ; it is a divisor of a. The degree
of fχ will be denoted by dχ. If a itself is a prime p of degree d, then Fχ = p and dχ = d.

The following result collects the basic properties of the sums g(χ) that we need, and
can be easily deduced from Thakur’s results in [17, Theorems I and II].

Proposition 15. Let a ∈ A be monic, square-free of degree d. The following properties
hold.

1. For all δ ∈ ∆a, we have δ(g(χ)) = χ(δ)g(χ).
2. If χ ̸= χ0, then g(χ)g(χ−1) = (−1)dχ fχ.

By the normal basis theorem, Ka is a free K[∆a]-module of rank one. Gauss–Thakur’s
sums allow to determine explicitly generators of this module:

Lemma 16. Let us write ηa =
∑

χ∈∆̂a
g(χ) ∈ Ka. Then:

Ka = K[∆a]ηa,

and

Aa = A[∆a]ηa,

where Aa is the integral closure of A in Ka.
Moreover, let χ be in ∆̂a. Then, the following identity holds:

Ka(Fa)g(χ) =
{
x ∈ Ka(Fa) such that for all δ ∈ ∆a, δ(x) = χ(δ)x

}
. (9)

Proof. Let us expand a in product p1 · · · pn of distinct primes pi. To show that Aa =
A[∆a]ηa (this yields the identity Ka = K[∆a]ηa) one sees that

Aa ≃ Ap1 ⊗A · · ·⊗A Apn ,

because the discriminants of the extensions Api/A are pairwise relatively prime and
the fields Kpi are pairwise linearly disjoint (see [9, Property (2.13)]). One then uses [3,
Théorème 2.5] to conclude with the second identity.

We now prove the identity (9). We recall that if we set, for χ ∈ ∆̂a,

eχ = 1
|∆a|

∑

δ∈∆a

χ(δ)δ−1 ∈ Fq(χ)[∆a]
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(well defined because p, the rational prime dividing q, does not divide |∆a|), then the
following identities hold:

• eχeψ = δχ,ψeχ (where δχ,ψ denotes Kronecker’s symbol),
• for all δ ∈ ∆a, δeχ = χ(δ)eχ,
•

∑
χ∈∆̂a

= 1.

This yields eχηa = g(χ). Now, by Ka(Fa) = Ka(Fa)ηa, we get eχKa(Fa) = Ka(Fa)g(χ).
The second part of the lemma then follows by observing that if M is an Fa[∆a]-module,
then

eχM =
{
m ∈ M such that for all δ ∈ ∆a, δm = χ(δ)m

}
. ✷

2.4. An intermediate result on special values of Goss L-functions

Let χ be a Dirichlet character of the first kind, that is a character

χ : (A/aA)× →
(
Falg
q

)×
,

where a is a non-constant squarefree monic element of A which we identify, by abuse
of notation, to a character of ∆̂a still denoted by χ, of conductor f = fχ, and degree
d = degθ f .

Let s(χ) be the type of χ, that is, the unique integer s(χ) ∈ {0, · · · , q − 2} such that:

χ(ζ) = ζs(χ) for all ζ ∈ F×
q .

We now consider the special value of Goss’ abelian L-function [11, Section 8]:

L(α,χ) =
∑

a∈A+

χ(a)a−α, α ≥ 1.

The following result is inspired by the proofs of [1, Proposition 8, VII] and [4, Proposi-
tion 8.2]:

Proposition 17. Let α ≥ 1, α ≡ s(χ) (mod q − 1). Then there exists an element Bα,χ−1

in Fq(χ)(θ) such that:

L(α,χ)g(χ)
π̃α

= Bα,χ−1

Π(α) ,

where Π(α) is the Carlitz factorial of α (see [11, Chapter 9, Section 1]).

Proof. The proposition is known to be true for the trivial character (see [11, Section 9.2]);
in this case, we notice that:
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Bα,χ−1
0

= BCα, α ≥ 1, α ≡ 0 (mod q − 1),

where we recall that BCα is the α-th Bernoulli–Carlitz number (see [11, Definition 9.2.1]).
We now assume that χ ̸= χ0. Since:

expC(z) = z
∏

a∈A\{0}

(
1 − z

π̃a

)
.

We have:

1
expC(z) =

∑

a∈A

1
z − π̃a

.

Let b ∈ A be relatively prime with f and let σb ∈ Gal(Kf/K) be the element such that
σb(λf) = φb(λf). We have:

1
expC(z) − σb(λf)

= −
∑

n≥0

fn+1

π̃n+1

(∑

a∈A

1
(b + af)n+1

)
zn.

Therefore, we obtain:

∑

b∈(A/fA)×

χ(b)
expC(z) − σb(λf)

= −
∑

n≥0

fn+1

π̃n+1

( ∑

a∈A\{0}

χ(a)
an+1

)
zn.

If n + 1 ̸≡ s(χ) (mod q − 1), we get:

∑

a∈A\{0}

χ(a)
an+1 = 0,

and if n + 1 ≡ s(χ) (mod q − 1), we have:

∑

a∈A\{0}

χ(a)
an+1 = −L(n + 1,χ).

Thus:
∑

b∈(A/fA)×

χ(b)
expC(z) − σb(λf)

=
∑

i≥1, i≡s(χ) (mod (q−1))

fiL(i,χ)
π̃i

zi−1. (10)

But note that by the second part of Lemma 16:

∑

b∈(A/fA)×

χ(b)
expC(z) − σb(λf)

∈ g
(
χ−1)Fq(χ)(θ)[[z]].

Since by Proposition 15,
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g(χ)g
(
χ−1) = (−1)df,

where d = degθ fχ, we get the result by comparison of the coefficients of the series
expansion of both sides of (10). ✷

Remark 18. In the above proof of Proposition 17, if we set α = 1 and we assume
s(χ) ≡ 1 (mod q − 1), we have, by comparison of the constant terms in the series
expansions in powers of z in (10):

π̃−1fL(1,χ) = −
∑

b∈(A/fA)×

χ(b)
σb(λf)

∈ g
(
χ−1)Fq(χ)(θ).

Assuming that f is not a prime, by [16, Proposition 12.6], λf is a unit in the integral
closure Af of A in Kf. Therefore,

∑

b∈(A/fA)×

χ(b)
σb(λf)

∈ g
(
χ−1)Fq(χ)[θ]

and we deduce that

π̃−1L(1,χ)g(χ) ∈ Fq(χ)[θ].

This remark will be crucial in the proof of Corollary 21.

2.5. Proof of Theorem 1

In [5, Theorem 3] (see also [6]), we noticed that the function ω can be viewed as a
universal Gauss–Thakur sum. We review this result, which will be used a little later.

Theorem 19. Let p be a prime element of A of degree d and ζ a root of p as above. We
have:

g
(
ϑqj

p

)
= p′(ζ)−qj

ω
(
ζq

j)
, j = 0, . . . , d− 1.

In this theorem, p′ denotes the derivative of p with respect to θ.
The next lemma provides a rationality criterion for a polynomial a priori with coeffi-

cients in K∞, again based on evaluation at roots of unity.

Lemma 20. Let F (t1, . . . , ts) ∈ K∞[t1, . . . , ts] such that for all ζ1, . . . , ζs ∈ Falg
q , pairwise

not conjugate over Fq,

F (ζ1, . . . , ζs) ∈ K(ζ1, . . . , ζs).

Then F (t1, . . . , ts) ∈ K[t1, . . . , ts].
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Proof. We begin by pointing out that if elements a1, . . . , as ∈ K∞ are K⊗Fq Falg
q -linearly

dependent, then they also are K-linearly dependent. The proof proceeds by induction
on s ≥ 1. For s = 1, this is obvious. Now, let

s∑

i=1
λsas = 0 (11)

be a non-trivial relation of linear dependence with the λi ∈ K ⊗ Falg
q \ {0}. We may

assume that λs = 1 and that there exists i ∈ {1, . . . , s − 1} such that λi /∈ K. Then,
there exists

σ ∈ Gal
(
K∞ ⊗ Falg

q /K∞
)
≃ Gal

(
K ⊗ Falg

q /K
)
≃ Gal

(
Falg
q /Fq

)

such that σ(λi) ̸= λi. Applying σ on both left- and right-hand sides of (11) and sub-
tracting, yields a non-trivial relation involving at most s − 1 elements of K∞ on which
we can apply the induction hypothesis.

We can now complete the proof of the lemma. Let F be a polynomial in K∞[t1, . . . , ts]
not in K[t1, . . . , ts]. It is easy to show that there exist a1, . . . , am ∈ K∞, linearly inde-
pendent over K, such that

F = a1P1 + · · · + amPm,

where P1, . . . , Pm are non-zero polynomials of K[t1, . . . , ts]. Let us suppose by contra-
diction that there exists F ∈ K∞[t1, . . . , ts] \ K[t1, . . . , ts] satisfying the hypotheses of
the lemma. By the observation at the beginning of the proof of Lemma 5, there exists a
choice of such roots of unity ζ1, . . . , ζs and i ∈ {1, . . . ,m} such that Pi(ζ1, . . . , ζm) ̸= 0.
This means that a1, . . . , am are K ⊗ Falg

q -linearly dependent, thus K-linearly dependent
by the previous observations; a contradiction. ✷

Proof of Theorem 1. In view of Lemma 20, we want to show that the polynomial

Vα,s = π̃−αL(χt1 · · ·χts ,α)ω(t1) · · ·ω(ts)
(

s∏

i=1

δ−1∏

j=0

(
1 − ti

θqj

))
∈ K∞[t1, · · · , ts]

of Proposition 11 takes values in K(ζ1, . . . , ζs) for all ζ1, . . . , ζs ∈ Falg
q pairwise non

conjugate over Fq. Let (ζ1, . . . , ζs) be one of such s-tuples of roots of unity and, for
i = 1, . . . , s, let pi ∈ A be the minimal polynomial of ζi, so that p1, . . . , ps are pairwise
relatively prime. We choose the characters ϑpi so that ϑpi(σθ) = ζi for all i. We construct
the Dirichlet character of the first kind χ defined, for a ∈ A, by

χ(a) = χζ1(a) · · ·χζs(a).

By Proposition 17, we have



242 B. Anglès, F. Pellarin / Journal of Number Theory 142 (2014) 223–251

L(α,χ)g(χ)
π̃α

= (−1)dχ
Bα,χ−1

fα−1
χ

∈ Fq(χ)(θ).

Since

L(α,χ) = L(χζ1 · · ·χζs ,α),

we get:

Vα,s(ζ1, . . . , ζs) = L(α,χ)ω(ζ1) · · ·ω(ζs)π̃−α

= L(α,χ)g(χ)
π̃α

ω(ζ1) · · ·ω(ζs)
g(χ)

= (−1)dχ
Bα,χ−1

fα−1
χ

χζ1

(
p′1
)
· · ·χζs

(
p′s
)

∈ K(ζ1, . . . , ζs),

where in the next to last step, we have used Theorem 19. The proof of Theorem 1 now
follows from Lemma 20. ✷

3. Congruences for Bernoulli–Carlitz numbers

In this section, we shall prove Theorem 2. This is possible because in Theorem 1, more
can be said when α = 1. In this case, one sees that the integer δ of Theorem 1 is equal
to zero and s ≥ q, so that, with the notations of that result,

V1,s = π̃−1L(χt1 · · ·χts , 1)ω(t1) · · ·ω(ts).

In the next subsection we will show that the above is a polynomial of A[t1, . . . , ts].

3.1. Functional identities with α = 1

We begin with the following corollary of Theorem 1. The main result of this subsection
is Proposition 24.

Corollary 21. Let s ≥ 2 be such that s ≡ 1 (mod q − 1). Then the symmetric polynomial
V1,s ∈ K[t1, . . . , ts] of Theorem 1 is in fact a polynomial of A[t1, . . . , ts] of total degree
≤ s2/(q − 1) − s in the variables t1, . . . , ts.

Proof. Let p1, . . . , ps be distinct primes in A, let us write a = p1 · · · ps and let us consider
the Dirichlet character of the first kind χ associated to ϑp1 · · ·ϑps that we also loosely
identify with the corresponding element of ∆̂a. Since a is not a prime power, Remark 18
implies that

π̃−1L(1,χ)g(χ) ∈ Fq(χ)[θ]. (12)
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Now, specializing at ti = ζi the root of pi associated to the choice of characters ϑpi for
all i = 1, . . . , s, we obtain

V1,s(ζ1, . . . , ζs) = π̃−1L(1,χ)g(χ) ∈ Fq(ζ1, . . . , ζs)[θ],

and the result follows from an idea similar to that of Lemma 20, the bound on the degree
agreeing with that of Theorem 1. ✷

3.1.1. Digit principle for the function ω and the L-series
We denote by Tt the standard Tate C∞-algebra in the variable t. Let ϕ : Tt → Tt be

the C∞-linear map defined by

ϕ

(∑

n≥0
cnt

n

)
=

∑

n≥0
cnt

qn, cn ∈ C∞.

We also set, for N a non-negative integer with its expansion in base q, N = N0 +N1q +
· · · + Nrqr, Ni ∈ {0, . . . , q − 1}:

ωN (X) =
r∏

i=0
ϕi
(
ω(X)

)Ni .

We then have the next lemma.

Lemma 22. Let p be a prime of A of degree d and let N be an integer such that 1 ≤ N ≤
qd − 1. The following identity holds:

ωN (ζ) = ϑp(σp′)Ng
(
ϑN
p

)
,

where ζ is the root of p that determines the character ϑp.

Proof. This is a direct application of Theorem 19. Indeed,

ωN (ζ) =
d−1∏

i=0
ω
(
ζq

i)Ni =
d−1∏

i=0
ϑp(σp′)qiNig

(
ϑqi

p

)Ni . ✷

Let X, Y be two indeterminates over K. We introduce a family of polynomials (Gd)d≥0
in Fq[X,Y ] as follows. We set G0(X,Y ) = 1 and

Gd(X,Y ) =
d−1∏

i=0

(
X − Y qi

)
, d ≥ 1.

This sequence is closely related to the sequence of polynomials Gn(y) of [2, Section 3.6]:
indeed, the latter can be rewritten in terms of the former:

Gd(y) = Gd

(
T qd , yq

)
, d ≥ 1,



244 B. Anglès, F. Pellarin / Journal of Number Theory 142 (2014) 223–251

in both notations of loc. cit. and ours.2 The polynomial Gd is monic of degree d in the
variable X, and (−1)dGd is monic in the variable Y of degree (qd − 1)/(q − 1). We now
define, for N = N0 + N1q + · · · + Nrqr a non-negative integer expanded in base q, the
polynomial

HN (t) =
r∏

i=0
Gi

(
tq

i

, θ
)Ni =

r∏

i=0

i−1∏

j=0

(
tq

i

− θq
j)Ni .

We also define the quantities associated to N and q:

µq(N) =
r∑

i=0
Niiq

i,

µ∗
q(N) = N

q − 1 − ℓq(N)
q − 1 ,

ℓ′q(N) =
r∑

i=0
Nii.

Lemma 23. Let N be a non-negative integer. The following properties hold.

1. The polynomial HN (t), as a polynomial of the indeterminate t, is monic of degree
µq(N).

2. As a polynomial of the indeterminate θ, HN (t) has degree µ∗
q(N) and the leading

coefficient is (−1)ℓ′q(N).
3. We have HN (θ) = Π(N) and v∞(HN (θ)) = −µq(N), where v∞ is the ∞-adic valu-

ation of C∞.
4. We also have, for all ζ ∈ Falg

q , v∞(HN (ζ)) = −µ∗
q(N).

Proof. Easy and left to the reader. ✷

2 As an aside remark, we also notice that we recover in this way the coefficients of the formal series in
K[[τ ]] associated to Carlitz’s exponential and logarithm

e =
∑

i≥0
d−1
i τ i, l =

∑

i≥0
l−1
i τ i,

because di = Gi(θqi

, θ) and li = Gi(θ, θq). Moreover, if p is a prime of A of degree d, we observe that

p =
d∏

i=1
(θ − ζi) =

d−1∏

j=0

(
θ − ϑp(σθqj )

)
= Gd

(
θ,ϑp(σθ)

)
.
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We observe that:

ϕdω(t) = 1
Gd(tqd , θ)

ω(t)qd = ωqdN (t), d ≥ 0

so that, with N as above,

ωN (t) = ω(t)N∏r
i=0 Gi(tqi , θ)Ni

= ω(t)N
HN (t) . (13)

The following proposition was inspired by a discussion with D. Goss.

Proposition 24. Let s ≥ 2 be an integer. Let M1, . . . ,Ms be positive integers such that
M1 + · · · + Ms ≡ 1 (mod q − 1). Then:

W (t1, . . . , ts) = π̃−1L
(
χM1
t1 · · ·χMs

ts , 1
)
ωM1(t1) · · ·ωMs(ts) ∈ A[t1, . . . , ts].

For all i, the degree in ti of W satisfies

degti(W ) ≤ Mi

(∑
j Mj

q − 1 − 1
)
− µq(Mi)

Proof. We shall write

H =
s∏

i=1
HMi(ti).

We know from Lemma 23 that degti(H) = µq(Mi). Let us consider the function

V = π̃−1L
(
χM1
t1 · · ·χMs

ts , 1
)
ωM1(t1) · · ·ωMs(ts),

so that by (13),

V = WH.

Corollary 21 implies that:

V ∈ Fq[θ, t1, . . . , ts]

and we are done if we can prove that H divides V in Fq[θ, t1, . . . , ts].
Let p1, . . . , ps be distinct primes of A such that |pi| − 1 > Mi, and let ζ1, . . . , ζs

be respective roots of these polynomials chosen in compatibility with the characters
ϑp1 , . . . ,ϑps . Let us also write

χ = ϑM1
p1 · · ·ϑMs

ps
.
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By Lemma 22,

ωM1(ζ1) · · ·ωMs(ζs) = ϑp1(σp′
1)

M1 · · ·ϑps(σp′
s
)Msg(χ).

Therefore,

W (ζ1, . . . , ζs) = π̃−1L(1,χ)g(χ)ϑp1(σp′
1)

M1 · · ·ϑps(σp′
s
)Ms .

By (12), π̃−1L(1,χ)g(χ) ∈ Fq(χ)[θ], while
∏s

i=1 ϑpi(σp′
i
)Mi ∈ Fq(χ) so that

W (ζ1, . . . , ζs) ∈ Fq(χ)[θ] = Fq(ζ1, . . . , ζs)[θ].

Now, H is a polynomial in θ with leading coefficient in F×
q (see Lemma 23). Dividing

V by H as polynomials in θ we find

V = HQ + R,

where Q, R are polynomials in Fq[θ, t1, . . . , ts], and degθR < degθH =
∑

i µ
∗
q(Mi) (the

last inequality by Lemma 23). But for ζ1, . . . , ζs as above, we must have Q(θ, ζ1, . . . , ζs) =
W (ζ1, . . . , ζs) and

R(ζ1, . . . , ζs) = 0.

This implies R = 0 and thus W = Q ∈ Fq[θ, t1, . . . , ts]. ✷

3.1.2. The polynomials Ws

By Proposition 24, the function

Ws(t) = π̃−1L
(
χs
t , 1

)
ωs(t) = L(χs

t , 1)ω(t)s
π̃Hs(t)

is a polynomial of Fq[t, θ]. Furthermore, we have:

Proposition 25. Assuming that s ≥ 2 is an integer congruent to 1 modulo q − 1 and is
not a power of q, the following properties hold.

1. The degree in t of Ws does not exceed s(s− 1)/(q − 1) − s− µq(s).
2. The degree in θ of Ws is equal to (ℓq(s) − q)/(q − 1).

By the remarks in the introduction, we know how to handle the case of s = qi; we
then have

Wqi(t) = 1
θ − tqi

.
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Proof of Proposition 25. The bound for the degree in t is a simple consequence of Propo-
sition 24 and Lemma 23. To show the property of the degree in θ, we first notice that,
by Lemma 23, for all ζ ∈ Falg

q ,

v∞
(
Ws(ζ)

)
= −ℓq(s) − q

q − 1 . (14)

The computation of Ws(ζ) is even explicit if ζ ∈ Fq. Indeed, with the appropriate choice
of a (q−1)-th root of (ζ− θ), the fact that χζ = χs

ζ , [5, Lemma 12] and [13, Theorem 1],

Ws(ζ) =
L(χs

ζ , 1)ω(ζ)s

π̃Hs(ζ)

= L(χζ , 1)ω(ζ)s
π̃Hs(ζ)

= L(χζ , 1)ω(ζ)s

π̃(ζ − θ)
s−ℓq(s)

q−1

= (ζ − θ)− 1
q−1 (θ − ζ)−1(ζ − θ) s

q−1 (ζ − θ)
ℓq(s)−s

q−1

and

Ws(ζ) = −(ζ − θ)
ℓq(s)−q

q−1 . (15)

Let us write:

Ws(t) =
g∑

i=0
ait

i, ai ∈ A.

By (15), we have

a0 = Ws(0) = −(−θ)
ℓq(s)−q

q−1 (16)

and for all ζ ∈ Falg
q we have, by (14),

∣∣Ws(ζ)
∣∣ = |a0|.

This means that for i = 1, . . . , g, |ai| < |a0|, and the identity on the degree in θ follows
as well. ✷

Corollary 26. If ℓq(s) = q, then Ws = −1.
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Proof. It follows from (16) and the fact that |ai| < |a0| for i = 1, . . . , g. ✷

By Corollary 21, the function

V1,s(t1, . . . , ts) = π̃−1L(χt1 · · ·χts , 1)ω(t1) · · ·ω(ts)

is, for s ≡ 1 (mod q − 1) and s ≥ 2, a polynomial of A[t1, . . . , ts]. Since

ω(t) = π̃

θ − t
+ o(1),

where o(1) represents a function locally analytic at t = θ, the function L(χt1 · · ·χts , 1)
vanishes on the set

D =
s⋃

i=1
Di,

where

Di =
{
(t1, . . . , ti−1, θ, ti+1, . . . , ts) ∈ C∞

}
.

In other words, in C∞[[t1 − θ, . . . , ts − θ]], we have

L(χt1 · · ·χts , 1) =
∑

i1,...,is≥1
ci1,...,is(t1 − θ)i1 · · · (ts − θ)is , ci1,...,is ∈ C∞, (17)

where on both sides, we have entire analytic functions (see Corollary 8). This can also
be seen, alternatively, by considering the function Fs−1 of Lemma 5, which vanishes, and
observing that

L(χt1 · · ·χts , 1)|ti=θ = Fs−1(t1, . . . , ti−1, ti+1, . . . , ts).

Let us focus on the coefficient c1,...,1 in the expansion (17). We then have

c1,...,1 =
(

d

dt1
· · · d

dts
L(χt1 · · ·χts , 1)

)∣∣∣∣
t1=···=ts=θ

so that

V1,s(θ, . . . , θ) = (−1)sπ̃s−1
∑

d≥0

∑

a∈A+(d)

a′s

a
= (−1)sπ̃s−1c1,...,1 ∈ Fq[θ]

(by Corollary 8, the series on the right-hand side is convergent). Now, by Proposition 24,
Π(s) divides the polynomial V1,s(θ, . . . , θ) in A. We then set, as in the introduction:

Bs = V1,s(θ, . . . , θ)
Π(s) = Gs(θ) ∈ A.
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3.2. Proof of Theorem 2

Let τ be the unique Fq[t]-linear automorphism of Tt which extends the automorphism
of C∞ defined, for c ∈ C∞, by c ,→ cq. If B is a polynomial of A[t] and if p is a prime of
degree d > 0, then

τdB ≡ B (mod p).

The reason for this is that p divides the polynomial θqd − θ. In particular,
(
τdB

)
(θ) ≡ B(θ) (mod p). (18)

Recalling the C∞-linear operator ϕ of Section 3.1.1, we have

τϕ = ϕτ = ρ,

where ρ is the operator defined by ρ(x(t)) = x(t)q for all x ∈ C∞((t)). In particular, if
s =

∑r
i=0 siq

i is expanded in base q and if d ≥ r ≥ i, from

τdϕi = τd−iτ iϕi = τd−iρi

we deduce

(
τdωs

)
(t) =

r∏

i=0

((
τd−iω

)
(t)

)siqi ,

so that

(
τdωs

)
(t) = ω(t)s

r∏

i=0
Gd−i(t, θ)siq

i

. (19)

We can finish the proof of Theorem 2. By (18),

Bs ≡
(
τdWs

)
(θ) (mod p).

We shall now compute (τdWs)(θ). If d > r, then for i = 0, . . . , r we can write

Gd−i(t, θ)siq
i = (t− θ)siqi

d−i−1∏

j=1

(
t− θq

j)siqi ,

and
r∏

i=0
Gd−i(t, θ)siq

i = (t− θ)sF (t),
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where F (t) is a polynomial such that

F (θ) =
r∏

i=0
lsiq

i

d−i−1.

Since
(
τdWs

)
(t) = π̃−qdL

(
χs
t , q

d
)
(t− θ)sω(t)sF (t)

and limt→θ(t− θ)ω(t) = −π̃, we get

lim
t→θ

(
τdWs

)
(t) = (−1)sπ̃−qdζ

(
qd − s

)
π̃s

r∏

i=0
lsiq

i

d−i−1

= (−1)s BC qd−s

Π(qd − s)

r∏

i=0
lsiq

i

d−i−1.

Our Theorem 2 follows at once.
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