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Abstract 
This study presents an investigation on the correlations between annualized soiling losses and 

environmental parameters at 41 locations in the United States, with the aim of analyzing the 

possibility of predicting soiling losses at a site even when soiling data are not available. The results 

of this work, that considers the largest pool of soiling data points systematically investigated so 

far, confirm that a single-variable regression based on particulate matter concentration returns the 

best correlations with soiling, with adjusted coefficients of determination up to 70%, 

corresponding to RMSE as low as 0.9%. Among the various particulate matter datasets 

investigated, a gridded dataset made available from the EPA is for the first time found to return 

correlations similar to those obtained by interpolating particulate matter monitoring station data. 

The impacts of the different interpolation techniques used to process the particulate matter 

concentrations are also discussed in detail, because they can make strongly vary the correlation 

with soiling. The coefficients of determination of the correlation between soiling and particulate 

matter are indeed found to range between 70% and even less than 20% depending on the 

interpolation method and the monitoring stations considered. Spatial interpolation methods based 

on inverse distance weighting are found to return better correlations than a nearest neighbor or a 

simple average approach, especially when large distances are considered. Similarly, the effects of 

different rain thresholds used to calculate the length of the dry periods are examined. An enhanced 

two-variable regression is found to achieve higher-quality correlations, with adjusted R2 of 90% 

(RMSE=0.55%), also suggesting that high and low soiling locations might be differentiated 

depending on fixed particulate matter or rainfall thresholds. 
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1. Introduction
Soiling is an issue causing losses to photovoltaic (PV) systems installed worldwide and is due to 

the accumulation of dust, dirt, particles, or other contaminants on the surface of the modules. 

Soiling affects the cost competitiveness of PV by reducing the energy output, increasing the 

operations and maintenance (O&M) costs, and introducing an uncertainty on the energy yield that 

leads to higher financial rates.  
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Presently, limited information is available on soiling that occurs at a PV site. Generally, soiling 

stations are deployed to collect data before installing new PV systems to estimate future losses or 

to directly calculate soiling accumulated on an operating PV system. As alternative, models have 

already been presented in the literature that directly extract soiling losses from PV performance 

data [1–3]. Despite that, it is still a challenging issue to estimate soiling at a site where soiling or 

PV performance data are not available. Indeed, if soiling at a site could be predicted by analyzing 

other widely available parameters, then the information available on soiling would dramatically 

increase and PV installers and operators would be able to improve their system design and O&M 

schedule to reduce the impact of soiling, thus limiting the costs and increasing the revenues. 

Predicting soiling using a single variable is a useful approach for a simple estimation of soiling; 

however, soiling is the result of multiple conditions [4–6]. In the recent years, several studies have 

investigated the relations between soiling losses and environmental parameters. The analysis of 

data recorded by twenty soiling stations installed in the United States has shown that the average 

concentrations of particulate matter and the average length of the dry period at each sites were the 

best parameters to predict the average soiling occurring over the long-data collection periods [7]. 

Recently, a study conducted on performance and environmental data collected in Doha, Qatar, has 

shown how the prediction of daily soiling losses relies on complex correlations among multiple 

variables [8]. The two studies do not contradict each other: it has already been discussed in 

literature how the prediction of short-term soiling losses can be more difficult than the prediction 

of annualized losses because the variability of the environmental parameters is more relevant for 

short-term analysis [4,9]. Moreover, the scopes of the two works are different, as the modelling in 

[8] was performed to predict the daily soiling losses at a single site, whereas the analysis in [7]

was conducted to rank the yearly soiling losses at twenty sites through the analysis of a number of

variables in order to understand if the differences in soiling losses among sites could be predicted

through various environmental parameters.

The aim of the present paper is to extend the analysis presented in [7] by using data from a larger 

number of soiling stations through both single- and multi-variable regressions. This analysis 

contributes to the effort being made to reduce the uncertainty in predicting soiling, to provide the 

community with alternative methods to estimate annualized soiling losses even when soiling data 

are not available. Being able to estimate the average impact of soiling on the annual energy yield 

at a site before a PV system is built would lead to a better cost evaluation and site selection, and 

to the optimization of the system design to limit the accumulation of soiling. Compared to the 

previous work [7], the number of variables investigated has been increased as well, to 1) include 

new parameters that have been reported to impact the transmissivity of glasses, and 2) analyze 

how different resolutions, sources, or interpolation techniques can vary the outputs of the analysis. 

2. Methodology

Soiling extraction methods 

Data from 41 soiling stations installed in the USA have been used in this work. The soiling stations 

are composed by two PV devices (cells, modules, or both) mounted outdoor in the same conditions 

of tilt, azimuth, and height. One of the PV devices is regularly cleaned (control device), whereas 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



the second one is left to naturally soil (soiled device). The amount of soiling is then determined by 

comparing the performance of the two devices.  

The soiling station data have been analyzed using the method described in [7]. Soiling has been 

quantified using the soiling ratio (rs,i), which is a metric expressing the ratio, in percentage, 

between the short-circuit current of the soiled device and the short-circuit current of the control 

device. The hourly data have been filtered to consider only the time periods between 12 pm and 2 

pm and conditions of irradiance > 500 W/m2, and then averaged into daily mean values. Each site’s 

soiling ratio has been obtained as a simple average of the daily values recorded during the data 

collection period. 

Compared to the previous work [7], the number of soiling stations investigated has been doubled, 

making the present study the soiling investigation with the largest number of data points presented 

so far. Fourteen of the 41 stations are installed in California, five on oceanic islands (either Hawaii 

or the Virgin Islands), two on the East coast, and the remaining in the Southwest. Except for three 

stations mounted on the rooftop of commercial buildings, the stations are ground-mounted. Only 

one station is installed in a densely populated urban area. Twenty-six stations have a fixed tilt and 

face south, and more than half of them are mounted at 20 degrees, whereas only four stations have 

a tilt higher than 25 degrees. The 15 tracked stations use a single-tracking system that rotates 

around the North-South axis. More information on the soiling stations used on this study can be 

found in [10]. 

 Pollution 

2.2.1. EPA monitoring stations 

So far, PM10 and PM2.5, indexes that describe the concentration of particulate matter less than, 

respectively, 10 microns and 2.5 microns in 1 m3 of air, have been found to be the parameters that 

best correlate with soiling in the USA [7,11]; for this reason, they have also been included in this 

analysis. Moreover, mean values of NO2 and SO2 have been considered, as well, because these 

have been reported to have statistical significance in forming the haze of soda-lime glasses [12]. 

Annual PM10, PM2.5, NO2, and SO2 concentrations have been sourced from the U.S. Environment 

Protection Agency (EPA) database [13]. For each location, the mean concentrations of each 

pollutant have been obtained as mean of the yearly values calculated by using the following 

standard air-quality interpolation techniques [14]: 

• Nearest neighbor (NN): The pollutant concentration at a soiling station site is obtained as

the arithmetic average of the annual values recorded by the closest EPA monitoring station

over the data collection period.

• Spatial averaging (SA): The pollutant concentration at a soiling station site is calculated as

the arithmetic average of the mean values recorded by the EPA monitoring stations located

within a set distance of the site over the data collection period.

• Inverse distance weighting (ID): The pollutant concentration at a soiling station site is

obtained as the weighted average of the annual values recorded by the EPA monitoring

stations located within a set distance of the soiling site over the data collection period. The

inverse of the distance between each EPA monitoring station and the soiling site has been

used as a weight to give more influence to the closest monitoring stations. In a slightly
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different approach, called inverse square distance weighting (ID2), the inverse of the 

square of the distance between each station and the site is used as a weight. 

• Declustered distance estimation (DDE): The pollutant concentration at a soiling station site 

is calculated as the weighted average of the annual values recorded by the EPA monitoring 

stations located within a set distance of the soiling site over the data collection period. The 

inverse of the distance between each EPA monitoring station and the soiling site as well as 

a parameter describing the distances among the EPA monitoring stations have been used 

as a weight to give more influence to the closest monitoring stations and to reduce the 

impact of spatially clustered monitoring stations. 

Set distances of 30, 50, 100, and 250 km have been considered. Compared to the previous study, 

the 250-km radius, already used in previous air-quality studies [14], has been included here to 

make sure that all sites had at least one mean pollutant concentration value, because, in some cases, 

the closest monitoring station could more than 100 km away. Similarly to [7], an “Average 

pollutant concentration of best available monitoring stations” (BA) has been considered by taking 

into account the 1) arithmetic mean at 30 km, 2) arithmetic mean at 50 km if no station is available 

within 30 km of the site, or 3) mean recorded at the closest station if no station is available within 

50 km of the site. 

2.2.2. Gridded PM2.5 datasets (FAQSD) 

PM2.5 data have been extracted from gridded datasets, as well. The advantage of this type of 

datasets is the immediate availability of a mean concentration for most of the locations in this 

study, without the need for the user to derive the PM2.5 value through any spatial interpolation 

process. We have used data from these two datasets: 

• Fused Air Quality Surface Using Downscaling (FAQSD) [15]: 12-km gridded dataset 

developed by the U.S. EPA using a Bayesian space-time downscaler model. 24-hour PM2.5 

average values are available for the contiguous United States from 2002 to 2013. The 2013 

average PM2.5 concentration has been considered for each site. 

• Dalhousie model [16]: Satellite-derived gridded dataset in 0.1°x0.1° (longitude x latitude) 

resolution developed by the Atmospheric Composition Analysis Group of the Dalhousie 

University. Annual mean PM2.5 is available for any location worldwide from 1988 to 2016. 

Two values have been produced for each location: first, by considering the average of the 

data available across each site’s data collection period, and second, by considering only the 

data for the last year available on each dataset. 

The PM2.5 concentrations for each site have been set equal to the mean of the annual values of the 

gridded dataset cell whose center is closest to the site.  

2.2.3. National Emission Inventory 

Among the variables describing pollution, the previous work [7] found that the number of PM 

sources located within a set distance of a location could be used to predict soiling, achieving R2 

higher than 50% in some cases. In the present study, we have used data from the new 2014 National 

Emission Inventory (NEI) database [17], made available in late 2016. The NEI reports, along with 
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the sources, the type and amount (in tons) of emissions estimated over a three-year period. Sources 

are classified as [18]: 

• Point sources: These are mainly located at a fixed stationary location and include, for

example, airports, industrial facilities, and electric power plants. Exact latitude and

longitude are reported for each source.

• Nonpoint sources: These are small sources (such as residential heating or commercial

combustion) grouped and reported as county total.

• On-road sources: These are the modeled emissions due to on-road vehicles and are reported

as county total.

• Non-road sources: These include off-road mobile devices, such as construction equipment

or locomotives, grouped by county.

• “Events”: These include wildfires and prescribe burns, grouped by county.

For the point sources, it has been possible to determine the exact number of sources and tons 

emitted within a certain distance of the soiling site. Distances of 10, 30, 50, 100, and 250 km have 

been considered. On the other hand, for the other types of sources, the total number of sources and 

emissions of the county where a soiling site was located have been considered. Only sources of 

primary PM10 or PM2.5 particles (inclusive of filterable and condensable components) have been 

considered. 

Rainfall and other meteorological data 

Daily rainfall data have been downloaded from Oregon State University’s PRISM database, using 

the so-called interpolated data (i.e., values from surrounding grid-cell centers are factored in using 

inverse-distance squared weighting) [19]. The same parameters of [7] have been considered to 

describe the rainfall patterns, but different rainfall thresholds (i.e., amount of daily rain required 

to clean the PV system) have been considered: 0, 0.3, 1, and 5 mm. The mean value for a parameter 

at each site has been obtained as the mean of the yearly averages. PRISM has data for the 

continental USA only; therefore, the analysis of correlations between rainfall and soiling excludes 

the five stations installed in Hawaii and the U.S. Virgin Islands.  

A number of non-categorical variables among those investigated in the previous work [7] have 

been considered and are listed in Table I (meteorological parameters) and Table II (site and soil 

characteristics). Relative humidity and wind speed have been downloaded from the National Solar 

Radiation Database (NSRDB) [20,21]. These data were available at 30-minute intervals between 

1998 and 2016: annual values of each variable have been calculated for the years each soiling 

station has been operating and then averaged into a single value per site. The distances from 

highways, dirt roads and seashores were calculated at NREL, whereas soil characteristics were 

extracted from the U.S. Department of Agriculture’s Soil Survey. 

Statistical analysis and metrics 

The soiling ratio registered at the 41 sites during the data collection periods have been compared 

with each set of variables. For each variable, a single value per site has been extracted. All the 

variables listed in the previous subsections have been consistently analyzed in order to identify 

any linear correlation with the soiling ratio. The quality of the correlations has been determinied 
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by considering three different metrics and only those parameters with a number of observations 

equal to or higher than 50% of the sites available—to remove any bias due to an extremely low 

number of observations. The adjusted coefficient of determination (adjR2) describes the 

goodness of the linear fit between the soiling ratios and the various environmental parameters. 

Compared to the standard R2, the adjusted R2 is preferred to compare parameters if these have a 

different number of observations. Moreover, it accounts for the number of considered variables: 

whereas the R2 increases with the addition of new terms, the adjusted R2 only increases if the new 

variable enhances the model more than expected by chance. 

The root-mean-square error (RMSE) describes the differences between the measured soiling 

ratios and the values predicted using the linear model, and it is expressed in the same unit as the 

soiling ratio [%]. In addition, a normalized root-mean-square error (RMSEn), calculated as 

𝑅𝑀𝑆𝐸 (rs,i_max − rs,i_min)⁄ , where rs,i_max and rs,i_min are the maximum and the minimum soiling 

ratios respectively for the investigated stations, has been calculated. This second index helps to 

understand the weight of the errors in the range of soiling ratios experienced by the sites 

investigated in this paper. Indeed, the soiling ratio can ideally range between 100% (no soiling) 

and 0% (no energy generation because of soiling); but the soiling stations considered in this work 

only experience average soiling ratios ranging between 100% and 93.6%. RMSEn expresses how 

large the discrepancies are between modeled and actual soiling within this reduced soiling ratio 

range; it more fairly indicates how the intensity of the errors can affect a correct estimation of 

soiling within regions where the minimum soiling ratio is limited to 93.6%. 

3. Results and discussion 

 Single-variable correlation 

Figure 1 shows the adjusted R2 obtained for the correlations between the mean soiling ratios 

registered at the 41 soiling stations and the parameters considered in this study. Only parameters 

achieving an adjusted R2 higher than 20% and a p-value lower than 0.05 have been reported. For 

better readability, variables describing the same parameter and sourced from the same database 

have been grouped and are shown as black bars ranging from the highest to the lowest significant 

adjusted R2. The results are compared with those of the stations used in the previous study [7], 

which have been similarly grouped as well and are shown as grey hatched bars. The parameters 

that have a significant correlation could be used for predicting soiling at a site and, for this reason, 

the RMSE between the predicted and actual soiling losses are shown in Figure 2.  

Eleven groups of variables, describing either the particulate matter or the length of the dry period, 

are found to have a significant correlation with soiling. The maximum adjusted R2 is found to be 

as high as 70%: it corresponds to an absolute RMSE as low as 0.9%, which, if limited to the soiling 

ratio range experienced in the investigated sites, translates to a normalized RMSE of 14%. In 

accordance with the previous literature, PM concentrations are found to be the best parameters to 

predict soiling, with the EPA-sourced PM2.5 performing slightly better than PM10. For the first 

time, a gridded dataset (FAQSD) is found to perform similarly to the data interpolated by the EPA 

monitoring stations. Despite being an interesting result, it is not completely surprising because the 

FAQSD dataset was developed based on the values recorded by the monitoring stations. On the 
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other hand, the satellite-based PM2.5 dataset (reported in Figure 1 and Figure 2 as “PM2.5 

(Dalhousie)”) has an R2 limited to a maximum of 31.6%. The estimation of PM2.5 in satellite-based 

models relies on its correlation with Aerosol Optical Depth [16]; the results obtained in this 

analysis might be related to the fact that the correlations between Aerosol Optical Depth and PM2.5 

have been found to be lower in the Central and Western United States (where most of the stations 

analyzed here are located) compared to the Eastern United States, because of the nonuniform 

aerosol vertical distribution and the negative impact of a cloud sampling approach [23]. Indeed, 

when correlated, the annual mean concentrations for 2015 extracted from FAQSD and those 

extracted from the satellite-based dataset have an adjusted R2 of 42%. This does not necessarily 

prevent satellite-based PM2.5 from being used to predict soiling in some regions of the United 

States or in other countries, and it does not exclude that future models will show better correlations 

with ground-based measurements—and, therefore, with soiling—in the Southwest United States. 

Figure 1 and Figure 2 show that the PM concentration extracted from EPA datasets are the data 

that can achieve the highest correlations with soiling, but also show that their adjusted R2 can be 

30% or, in the PM10 case, even lower. These large ranges are due to several factors: the radius 

considered for the spatial interpolations and the method used to interpolate the data can lead to 

different results that can vary, even depending on the size of the particulate. Table III breaks down 

the adjusted R2 of the correlations between soiling and PM concentrations obtained by varying the 

interpolation method and the distance. The best results are obtained for the shortest distances (≤ 

50 km), at which the correlations are found to not be sensitive to the methodology used, to the 

particle size or to the radius chosen (all adjR2 are within 70% and 67%). On the other hand, the 

correlations are found to be lower when the radius increase to or above 100 km. In these cases, 

PM10 is found to have significantly lower correlations than PM2.5 (with maximum adjR2 of 45% 

and 66% and minimum adjR2 of 7% and 30%, respectively). This is probably due to the shorter 

distances that larger particles included in the PM10 can travel compared to finer particles, because 

of their dimensions and weight [24]. Moreover, at high distances, the simple spatial averaging 

technique is found to return the worst results, compared to ID, ID2, and DDE, with this last being 

the best-performing method. This is not surprising because, if an extended area is considered, 

closer monitoring stations are more likely to have similar conditions to those of the soiling stations 

than monitoring stations further away. Therefore, methods that give higher weight to closer 

stations return the best results if large radii are returned. For the same reasons, the Nearest 

Neighbor is not found to return a high correlation for PM10: closest stations can be as far as 200 

km from a soiling station, with 10 sites having the closest PM10 monitoring stations farther than 

50 km. If those sites are removed, the adjR2 for the NN would increase from 47% to 62%. 

Similarly, if those sites are removed from the PM10 BA set, the adjR2 would increase to 68%. 

The data extracted from the NEI are found to have correlations similar to those reported in [7]. 

Figure 3 shows the adjR2 achieved by the different significant parameters. Adjusted R2 as high as 

46% and 45% are found when the number of point sources available, respectively, at 30 km and 

50 km are compared to soiling: the correlations are found to decrease if other radii are considered. 

The amount of particulate matter emitted by fires is found to have a correlation with soiling, as 

well. The other types of sources return lower values (R2 ≤ 28%) when their number is compared 

to soiling; this may be because on-road and non-road sources are grouped at a county-level, 
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whereas point sources can be analyzed using latitude and longitude coordinates. No significant 

difference was found between PM10 or PM2.5 data in this dataset.  

Other than the pollution data, the parameters describing the length of the dry periods are the only 

significant variables with an adjusted R2 > 20%. The maximum value is achieved for the maximum 

dry period (adjR2 = 56%), and the average length of the dry period is found to drop from 57% to 

40%, compared to the previous study [7]. The difference between the parameters is determined by 

one site that shows long average dry periods, limited maximum dry period, and low soiling. If that 

one point is removed, the two parameters will have similar maximum adjR2: the maximum adjR2 

would increase from 41% to 57% for the average length of the dry period and from 56% to 58% 

for the maximum length of the dry period. More data points will be needed to better understand 

the relations between average and maximum dry periods and their impact on soiling.  

A third parameter, obtained as result of the average of the length of 5 longest dry periods of the 

year, is found to be significant as well, but its adjR2 does not reach more than 30%. The 

introduction of a minimum rain threshold (minimum amount of rain to consider a day as rainy) is 

not found to significantly impact the correlations even if Table IV shows that the best correlations 

are obtained if no or low thresholds (≤ 1 mm) are considered, whereas the 5 mm threshold is found 

to have a negative influence on the correlations.  

Overall, single variable linear regressions show the ability to achieve R2 as high as 70%. This 

result is lower than it was found before [7]: this is probably due to the larger number of stations 

analyzed, which has probably increased the impact of other parameters on the correlations. 

Although, no significant correlations (adjR2 > 20% and p-value < 0.05) have been found for the 

non-pollution and non-rainfall parameters investigated in this work, listed in Table I and Table II. 

Similarly, no significant correlation was found between soiling ratios and the concentration of SO2 

or NO2. The results shown in this work are purely statistical, so it should not be assumed that non-

significant parameters have necessarily no physical impact on soiling. Indeed, soiling is known to 

depend also on parameters such as the relative humidity, the wind speed, and the tilt angle [8,25–

27], that have shown no statistical significance in this work. This might be due to a number of 

reasons. First, secondary parameters such as system’s geometry are not the main cause of soiling 

and cleaning but might increase or mitigate the accumulation of soiling on the PV module, and 

therefore might not show significance because of the low number of observations considered in 

this study (41 sites). Second, the linear regression might return high errors for parameters that have 

non-linear correlations with soiling. As discussed in [7], for example, the chloride deposition rate 

decreases exponentially with the distance from the sea, with most of the deposition taking place 

within 500m of the coastline. Similarly, the concentration of pollutants reaches background levels 

at 0.5km to 1km of the roadways. Therefore, the impact of these parameters should be studied, in 

future, with different statistical techniques. Third, different set of variables than those considered 

here might better describe the impact of some factors, such as the relative humidity and the dew 

cycles, on soiling. Indeed, as shown in Table III and Table IV, the way data are handled can 

strongly vary their ability to predict soiling. Fourth, some parameters might have higher impact on 

the daily or seasonal trends of soiling, while having only limited effect on its annual average value, 

as already pointed out in [4,8]. 
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 Two-variable regression 

The maximum adjusted R2 can be increased if two variable regressions are performed. Figure 4 

shows the adjusted coefficients of determination of all the significant two-variable correlations of 

pollution and rainfall parameters. Several combinations of parameters describing the length of the 

dry period and the particulate matter at short distances have been found to return an adjusted R2 

higher than the maximum found for a single-variable regression (70%) with p-values lower than 

0.05 for both variables. Overall, most of the combinations of maximum dry periods and PM2.5 or 

PM10 within 30 km returns adjusted R2 between 78% and 82%. These same two-variable 

regressions return RMSE values between 0.76% (RMSEn = 11.9%) and 0.91% (RMSEn = 14.3%), 

which are lower than, or at least similar to, the minimum RMSE obtained by the best single-

variable regression. 

The best results are obtained when the PM10 concentration for a monitoring station within 50 km 

is combined with the maximum length of the dry period with a 1-mm threshold (Figure 5). Figure 

5 suggests that stations installed in sites where PM10 concentration is lower than a certain limit 

might be less affected by soiling, with minimum values of soiling ratio of 97.8%. This seems to 

be confirmed if a two-variable regression is performed using rainfall parameters and a binary 

variable describing the PM concentration. The binary variable is set to have a value of 0 at sites 

with a PM concentration lower than a certain threshold and a value of 1 otherwise. The analysis 

shows that the adjusted R2 can be increased up to 84.2%, with a RMSE of 0.63%, if the binary-

variable threshold is set between 33 and 35 μg/m3. This result seems to confirm that soiling stations 

located at sites with an average PM10 concentration lower than 33 μg/m3 may only be limitedly 

affected by soiling (soiling ratio ≥ 97.8%). A larger number of datapoints is be needed to confirm 

and generalize this conclusion. 

A similar binary variable was used in the previous paper [7] to describe the length of the dry period, 

and it led to an enhancement in the two-variable regression analysis, with an adjusted R2 of 90% 

for the 20 sites investigated. The same analysis has then been repeated in this work, combining the 

PM parameters and a binary variable describing the most significant rainfall parameters. Similar 

to the approach used before, the binary variable was set to 0 if the rainfall parameters had a value 

lower than a certain threshold and to 1 otherwise. The results of this investigation showed that the 

adjusted R2 could be increased again to values higher than 90%. The highest correlations have 

been obtained for binary-variable thresholds between 17 and 24 days for the average length of the 

dry period and between 62 and 104 days for the maximum length of the dry period. These ranges 

vary depending on the selected rainfall intensity as well as on the parameter used to describe the 

particulate matter. The best results are obtained if PM10 (50 km) and maximum length of the dry 

period (1 mm) are considered, with an adjusted R2 of 90.3% and a RMSE of 0.55%. 

4. Conclusions 
This study systematically analyzed the largest number of soiling data points among the studies on 

this topic, investigating the correlations between soiling registered at 41 soiling stations installed 

in the USA and several parameters. Particulate matter (PM) and rainfall statistics have been found 

to have the best correlations with annualized soiling if a single-variable linear regression is 

performed. In particular, an R2 as high as 70% and a RMSE as low as 0.9% were achieved by 
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considering the PM concentrations. Despite that, the results have shown how the size of the 

particulate matter, the distances between the soiling station and the EPA monitoring stations, and 

the spatial-interpolation methodology can impact the quality of the correlations, with adjR2 values 

that can reach lower than 30% in some cases. Overall, PM10 and PM2.5 have been found to have 

similar performance for data extracted from EPA monitoring stations within 50 km. PM2.5 tends 

to perform consistently even at greater distances, whereas the PM10 is found to significantly drop 

in these cases. Among the various air-quality methodologies employed to interpolate the EPA 

monitoring stations data, the best results are obtained for inverse-square distance weighting and 

declustered distance estimation. This is because at greater distances, these methods give more 

weight to the data collected at monitoring stations located nearby the soiling station—and these 

stations are more likely to record PM conditions similar to those experienced by the soiling 

stations. 

The EPA dataset FAQSD returned data similar to those obtained by interpolating EPA monitoring 

station data. This is the first time that a gridded dataset has been found to perform as well as 

monitoring station data. On the other hand, the satellite-based concentrations still showed lower 

correlations to soiling, probably because of the nonuniform aerosol vertical distribution occurring 

in the West and Central United States, where most of the soiling stations investigated here are 

installed. It is important to note that these results do not necessarily exclude that satellite-based 

data can show better correlations to soiling in other regions or if extracted from models not 

included in this analysis. 

Among the rainfall data, maximum and average length of the dry periods showed more 

significance than rain intensity, in accordance with previous literature. The maximum length of 

the dry period achieved adjusted R2 as high as 56%, the highest for a rainfall parameter. An 

analysis of the minimum rainfall threshold has been presented and shows that the best results are 

obtained for thresholds of 1 mm or less. 

Overall, single-variable regressions run using significant parameters returned RMSE values 

ranging between 1.4% and 0.9%, which means that, considering the minimum soiling ratio of 

93.4% in the investigated dataset, this approach can be used to estimate soiling with a normalized 

root-mean-square error lower than 22%. These results have been improved by considering two-

variable regressions. By combining the average PM concentration and the rainfall parameters, the 

adjusted R2 increased to 82% (with an RSME as low as 0.76%). 

A visual analysis of the two-variable correlations seems to suggest that soiling stations located at 

sites with PM10 concentration lower than 33 μg/m3 experienced soiling ratios higher than 97.8%. 

This was confirmed through a statistical regression that returned that using a rainfall parameter 

and a binary variable to describe the concentration of particulate matter can increase the adjusted 

R2 to 84% (RMSE = 0.63%). The best overall results are obtained if a similar approach is taken: a 

regression that considers the particulate matter and a binary variable describing the maximum 

length of the dry period showed an R2 of 90%, with an RMSE of 0.55%. 

The results of this paper confirm that environmental parameters such as rainfall and particulate 

matter can be used to estimate soiling registered by stations installed in the USA and gives 
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recommendations on how to correctly process these data to get the best estimations. Further studies 

are still required to improve this analysis—for example, to understand the different impact of the 

average length of the dry period and the maximum length of the dry period on soiling. Moreover, 

a larger number of data points is still needed to perform more accurate multi-variable regressions, 

because parameters other than rainfall and pollution may vary the soiling experienced by a station, 

even if they do not appear as significant in this analysis.  

Acknowledgments 
This work was authored by Alliance for Sustainable Energy, LLC, the manager and operator of 

the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under 

Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy’s 

Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies 

Office (SETO) Agreement Number 30311. The views expressed in the article do not necessarily 

represent the views of the DOE or the U.S. Government. The U.S. Government retains and the 

publisher, by accepting the article for publication, acknowledges that the U.S. Government retains 

a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form 

of this work, or allow others to do so, for U.S. Government purposes. 

References 
1. Kimber A, Mitchell L, Nogradi S, Wenger H. The Effect of Soiling on Large Grid-Connected 

Photovoltaic Systems in California and the Southwest Region of the United States. 

Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference 

on, 2006. 

2. Deceglie MG, Micheli L, Muller M. Quantifying Soiling Loss Directly from PV Yield. IEEE 

Journal of Photovoltaics 2018. DOI: 10.1109/JPHOTOV.2017.2784682. 

3. National Renewable Energy Laboratory. PV_soiling: code for extracting soiling loss from PV 

plant data. https://github.com/NREL/pv_soiling [accessed April 29, 2018]. 

4. Micheli L, Ruth D, Muller M. Seasonal Trends of Soiling on Photovoltaic Systems. 2017 

IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, D.C.: IEEE; 2017. 

5. Micheli L, Ruth D, Deceglie MG, Muller M. Time Series Analysis of Photovoltaic Soiling 

Station Data: Version 1.0, August 2017. Golden, CO: 2017. 

6. Boyle L, Flinchpaugh H, Hannigan M. Ambient airborne particle concentration and soiling of 

PV cover plates. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) 2014: 3171–

3173. DOI: 10.1109/PVSC.2014.6925609. 

7. Micheli L, Muller M. An investigation of the key parameters for predicting PV soiling losses. 

Progress in Photovoltaics: Research and Applications 2017; 25(4): 291–307. DOI: 

10.1002/pip.2860. 

8. Javed W, Guo B, Figgis B. Modeling of photovoltaic soiling loss as a function of 

environmental variables. Solar Energy 2017; 157(August): 397–407. DOI: 

10.1016/j.solener.2017.08.046. 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



9. Boyle L, Flinchpaugh H, Hannigan M. Assessment of PM dry deposition on solar energy 

harvesting systems: Measurement–model comparison. Aerosol Science and Technology 2016; 

50(4): 380–391. DOI: 10.1080/02786826.2016.1153797. 

10. National Renewable Energy Laboratory. Photovoltaic modules soiling map 2018. 

https://www.nrel.gov/pv/soiling.html [accessed May 18, 2018]. 

11. Micheli L, Muller M, Kurtz S. Determining the effects of environment and atmospheric 

parameters on PV field performance. 2016 IEEE 43rd Photovoltaic Specialist Conference 

(PVSC), vol. 2016-Novem, Portland, OR: IEEE; 2016. DOI: 10.1109/PVSC.2016.7749919. 

12. Lombardo T, Ionescu A, Chabas A, Lefèvre RA, Ausset P, Candau Y. Dose-response function 

for the soiling of silica-soda-lime glass due to dry deposition. Science of the Total 

Environment 2010; 408(4): 976–984. DOI: 10.1016/j.scitotenv.2009.10.040. 

13. US Environmental Protection Agency. Air Quality System Data Mart [internet database]. 

https://www.epa.gov/airdata [accessed May 15, 2018]. 

14. Wong DW, Yuan L, Perlin SA. Comparison of spatial interpolation methods for the estimation 

of air quality data. Journal of Exposure Analysis and Environmental Epidemiology 2004; 

14(5): 404–415. DOI: 10.1038/sj.jea.7500338. 

15. US Environmental Protection Agency. Fused Air Quality Surface Using Downscaling 

(FAQSD) 2016. https://www.epa.gov/hesc/rsig-related-downloadable-data-files#faqsd 

[accessed November 21, 2017]. 

16. Van Donkelaar A, Martin R V., Brauer M, Hsu NC, Kahn RA, Levy RC, et al. Global 

Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with 

Information from Satellites, Models, and Monitors. Environmental Science and Technology 

2016; 50(7): 3762–3772. DOI: 10.1021/acs.est.5b05833. 

17. US Environmental Protection Agency. 2011 National Emissions Inventory (NEI) Data 2011. 

https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data 

[accessed November 21, 2016]. 

18. U.S. Environmental Protection Agency. 2014 National Emissions Inventory (NEI) 

Documentation 2016. https://www.epa.gov/air-emissions-inventories/2014-national-

emissions-inventory-nei-documentation [accessed February 16, 2018]. 

19. PRISM Climate Group - Oregon State University. PRISM Gridded Climate Data. 

http://prism.oregonstate.edu [accessed June 3, 2017]. 

20. National Renewable Energy Laboratory. National Solar Radiation Data Base (NSRDB). 

https://nsrdb.nrel.gov/ [accessed May 18, 2018]. 

21. Sengupta M, Habte A, Gotseff P, Weekley A, Lopez A, Molling C, et al. A Physics-Based 

GOES Satellite Product for Use in NREL’s National Solar Radiation Database. Golden, CO: 

2014. 

22. Soil Survey Staff, Natural Resources Conservation Service USD of A. Web Soil Survey. 

http://websoilsurvey.nrcs.usda.gov/ [accessed May 18, 2018]. 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



23. Li J, Carlson BE, Lacis AA. How well do satellite AOD observations represent the spatial and 

temporal variability of PM2.5 concentration for the United States? Atmospheric Environment 

2015; 102: 260–273. DOI: 10.1016/j.atmosenv.2014.12.010. 

24. US Environmental Protection Agency. Report on the Environment: Particulate Matter 

Emissions 2011. https://cfpub.epa.gov/roe/indicator_pdf.cfm?i=19 [accessed November 21, 

2016]. 

25. Goossens D, Offer ZY, Zangvil  a. Wind tunnel experiments and field investigations of eolian 

dust deposition on photovoltaic solar collectors. Solar Energy 1993; 50(1): 75–84. DOI: 

10.1016/0038-092X(93)90009-D. 

26. Ilse KK, Rabanal J, Schonleber L, Khan MZ, Naumann V, Hagendorf C, et al. Comparing 

Indoor and Outdoor Soiling Experiments for Different Glass Coatings and Microstructural 

Analysis of Particle Caking Processes. IEEE Journal of Photovoltaics 2017; 8(1): 203–209. 

DOI: 10.1109/JPHOTOV.2017.2775439. 

27. Cano J, John JJ, Tatapudi S, Tamizhmani G. Effect of tilt angle on soiling of photovoltaic 

modules. 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 2014: 3174–3176. 

DOI: 10.1109/PVSC.2014.6925610. 

 

  

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



Table I. Non-rainfall meteorological variables considered in this study. The raw 30-minute interval data are extracted from NSRDB 

[20,21]. 

Environmental 

parameter 
Variables Description 

R
el

at
iv

e 
H

u
m

id
it

y
 (

R
H

) 

Average RH [%] Simple average of the 30-minute RH values. 

Days with dew [%] 

Percentage of days in which the dew conditions 

(RH≥95% and wind speed ≤ 3.2 m/s and ambient 

temperature>0°) simultaneously occur for at least 30 

minutes. 

High humidity days 

(95%) [%] 

Percentage of days with maximum 30-minute RH of 

95% or more. 

High humidity days 

(99%) [%] 

Percentage of days with maximum 30-minute RH of 

99% or more. 

High humidity days 

(100%) [%] 

Percentage of days with maximum 30-minute RH of 

100%. 

W
in

d
 S

p
ee

d
 

Average Wind 

Speed [m/s] 
Simple average of the 30-minute wind speed values. 

Maximum Wind 

Gust [m/s] 
Maximum of the 30-minute wind speed values 

Days with peak 

winds above 5 m/s 

[%] 

Percentage of days with a maximum 30-minute wind 

speed value of at least 5 m/s. 

Days with peak 

winds above 10 m/s 

[%] 

Percentage of days with a maximum 30-minute wind 

speed value of at least 10 m/s. 

Days with peak 

winds above 

average [%] 

Percentage of days with a maximum 30-minute wind 

speed value greater than the average wind speed. 

Days with peak 

winds above twice 

the average [%] 

Percentage of days with a maximum 30-minute wind 

speed value greater than twice the average wind 

speed. 

Mean wind direction 

[°] 

Weighted average direction of the wind, with the 

speed as weight (0° if no wind and 360° if wind 

blowing from north). 

Angle of incident at 

noon [°] 

Absolute value of the angle difference between the 

mean wind direction derived (by the data onsite) and 

the azimuth angle of the cells at noon (if 0°, mean 

wind direction is blowing from south). 
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Table II. Variables describing the site and soil characteristics. 

Variable Description 

Distance from highway [km] Distance between the site and the closest highway 

Distance from dirt road [km] Distance between the site and the closest dirt road 

Distance from ocean [km] Distance from the closest seashore 

Wind erosion index [tons] Amount of soil yearly removed per acre due to wind erosion 

Percentage of clay in the soil 

[%] 

Mineral particles less than 0.002mm in equivalent diameter 

as a weight percentage of the less than 2.0-mm fraction 

Soil pH Relative acidity or alkalinity of the soil surface layer 
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Table III. Coefficients of determination, in %, between the soiling ratio of each site and the particulate matter concentrations (in 

μg/m3), obtained by interpolating the EPA monitoring data using different techniques and different radii. The interpolation 

methodologies are described in Section 2.2.1. 

Distance   30 km 50 km 100 km 250 km 

Interpolation 

method 
BA NN SA ID ID2 DDE SA ID ID2 DDE SA ID ID2 DDE SA ID ID2 DDE 

P
M

1
0
 adjR2 52 47 68 68 67 67 67 69 69 68 22 39 45 45 7 18 34 38 

No of 

sites 
41 25 31 38 41 

P
M

2
.5
 adjR2 63 66 70 70 70 70 65 66 66 67 44 60 60 66 30 49 60 63 

No of 

sites 
41 25 30 36 41 
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Table IV. Coefficients of determination, in %, between the soiling ratio of each site and the parameters describing the length of the 

dry periods, expressed in number of days, and calculated using different minimum rain thresholds (in mm). 

Minimum rain 

threshold 

Average length of 

the dry period 

Maximum length of 

the dry period  

Average length of the 5 

longest dry periods 

0 mm 40  56 27 

0.3 mm 41 51 29 

1 mm 39 49 29 

5 mm 34 32 27 
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Figure 1. Ranges of adjusted coefficients of determination (adjR2) for significant correlations (p-value < 0.05 and adjR2>20%) 

between soiling measured at soiling stations and a number of variables. The variables are grouped depending on the type of 

parameters they described, and the database used to source them. The results obtained with 41 soiling stations are shown in black 

and compared with the results (grey hatched bars) obtained for the 19 soiling stations investigated in the previous work [7]. 
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Figure 2. The root-mean-square errors and normalized root-mean-square errors obtained by comparing the actual soiling ratios 

with those predicted by using the significant linear correlations. 

  

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



     

Figure 3. Adjusted coefficients of determination for National Emission Inventory (NEI)-related parameters. The parameters have 

been calculated using the methods described in Section 2.2.3. 
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Figure 4. Coefficients of determination (in %), from two-variable regression, obtained by considering a particulate matter and a 

rainfall parameter among those found to be significant in a single-variable regression. Shown are only correlations with adjusted 

R2 higher than that found for a single-variable regression and a p-value lower than 0.5 for both parameters. The particulate matter 

concentrations were calculated in μg/m3, the dry period and maximum dry period length are expressed in number of days, 

considering minimum rain thresholds of 0, 0.3 and 1 mm. 
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Figure 5. Soiling ratios of the 41 sites plotted against the PM10 concentration registered at the monitoring stations within 50 km of 

the sites, expressed in μg/m3. Markers are colored according to the length of the longest dry period, reported in number of days.The 

PM10 data are interpolated using the declustered distance estimation (DDE) technique. 
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