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A B S T R A C T   

This work investigates the possibility of using historical environmental parameter data to predict the typical 
soiling loss profile and the most convenient cleaning schedule for a PV site. The three-year performance of a 1 
MW system in Southern Spain is evaluated using different soiling extraction methods. When the rainfall pattern is 
used to detect natural cleaning events, the best results are obtained if a 1.0 mm/hour threshold is considered. 
However, despite the optimization, setting a fixed threshold is found to lead occasionally to the over- or under- 
detection of cleaning events. Similar trends in the modelling results are found if the thresholds are set using the 
maximum hourly or the cumulative daily rainfall data, but the errors and the optimal values change depending 
on the rainfall dataset. The study also shows that a soiling extraction method based only on precipitation and 
particulate matter, calibrated against one year of PV data, is able to generate a soiling profile with a mean 
absolute error of 0.022 and to recommend a cleaning day within a week of the actual optimal dates. This will 
make it possible to estimate the soiling losses and the optimal cleaning schedule for a PV site even if no power 
data are available.   

1. Introduction 

Soiling consists of the deposition of dust, dirt and particles on the 
surface of photovoltaic (PV) modules. The layer of soiling reduces the 
amount of sunlight that reaches the PV cell and that can be converted 
into electricity (Smestad et al., 2020). It causes significant energy and 
economic losses worldwide, which can be however diminished through 
an appropriate soiling mitigation strategy (Ilse et al., 2019). 

Currently, cleanings are the most common soiling mitigation strat
egy. In order to minimize the economic costs of soiling, the number and 
the timing of the cleanings have to be adjusted to the specific conditions 
of each site, as cleanings are profitable only if their cost is lower than the 
revenues made with the recovered energy (National Renewable Energy 
Laboratory (NREL), 2018). A number of models have been presented in 
literature to optimize the cleaning strategy (i.e. maximize the soiling 
mitigation profits) of a site depending on factors as the measured soiling 
accumulation rate, the cost of cleaning and the electricity price (Besson 
et al., 2017; Jones et al., 2016; Rodrigo et al., 2020; You et al., 2018). 

Key in putting in place an optimal cleaning strategy is understanding 
the soiling seasonality, as the losses can be more or less severe in specific 
periods of the year (Javed et al., 2020; Micheli and Muller, 2017; 

Tanesab et al., 2017). These seasonal soiling trends are the results of the 
variation of the environmental factors affecting the soiling deposition 
and removal rates (Javed et al., 2020). Both these processes are indeed 
caused and influenced by a number of variables, such as rain intensity 
and frequency, airborne particle concentration, wind speed and direc
tion, and relative humidity (Figgis et al., 2019, 2017; Ilse et al., 2018), 
which can vary with the seasons and the years. Several models have 
been proposed in the literature to replicate the soiling loss profile of a 
site through the analysis of the local environmental parameters (Bergin 
et al., 2017; Coello and Boyle, 2019; Javed et al., 2017; Toth et al., 
2020). So far, these have been used to model past energy loss profiles. 
However, ideally, they could be used to investigate the typical season
ality of a site and to identify in advance the most profitable cleaning 
schedule (Micheli et al., 2020a). This information can be of value for PV 
system operators, as it would make it possible to plan the Operations and 
Maintenance (O&M) schedule even when no PV data are available, for 
example during the site selection or the PV installation. 

Previous works have either proposed new models for the analysis of 
soiling based on environmental parameters or investigated the optimal 
cleaning frequency on past soiling time series. This work, instead, at
tempts to merge soiling modelling and cleaning optimization to evaluate 
the seasonality of weather and soiling conditions at a site. This way, the 
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most convenient cleaning strategy of a site can be identified without the 
need of power data. In this light, past soiling time series are generated 
using only historical environmental parameter data and are then 
analyzed to identify the cleaning strategy that would typically generate 
the most profits. 

Differently from previous works, this study is conducted on data 
sourced from a 1 MW PV system in Southern Spain, rather than from 
soiling measurement devices. This represents an opportunity to inves
tigate the viability of this approach in a real case scenario. The site ex
periences markedly seasonal soiling (Micheli et al., 2021a), with most of 
the losses occurring in the long dry summer. While the most soiling 
intense season might be easily identified from the weather pattern, the 
cleaning dates that maximize the soiling mitigation profits are more 
difficult to estimate. A previous study has shown indeed that, for the 
investigated site, a delay of 2 weeks in cleaning from the optimal date 
can reduce the profits by a third, and a month delay might reduce them 
to zero (Micheli et al., 2021a). So, in addition to the weather seasonality, 
it is also important to understand the inter-annual variability and the 
repeatability of the factors affecting soiling. This work aims to address 
these issues, identifying from the analysis of the weather patterns those 
cleaning dates that are more likely to generate the maximum profits over 
the years. This way, ideally, one could evaluate not only the typical 
impact of soiling, but also estimate the revenues achievable through an 
optimized cleaning schedule even before the PV system is operational. 

A recent work conducted the cleaning optimization using historical 
rainfall data and assuming the perfect knowledge of the soiling depo
sition rates (Micheli et al., 2020a). In the present study, also the soiling 
deposition rate values are estimated from environmental parameters (i. 
e. airborne particulate data). In this case, the models are calibrated and 
tested using distinct data series (i.e. a training and a testing set) to 
evaluate the applicability of this model to fielded PV systems. 

The work is structured as follows. The methods used for the calcu
lation of the performance index, the extraction of the soiling losses and 
the estimation of the cleaning mitigation profits are described in 2. All 
the results are presented and discussed in 3. In particular, the soiling 
modelling effort is described in 3.1 and 3.2: the models are calibrated 
using one year of measured soiling data and their estimations are then 
tested against the data from the two following years. The cleaning 
optimization is then performed in 3.3: the optimal cleaning day for the 
site is identified assuming perfect information first, and then using only 
historical environmental parameters’ data. Last, a discussion on the role 

of seasonality and on the potential effects of extraordinary events on 
cleaning optimization is reported in 3.4. 

2. Methods 

2.1. PV performance 

The PV system here investigated is located in Granada, Southern 
Spain. Previous works have made use of data from this plant, to inves
tigate the economic impact of soiling and cleanings (Micheli et al., 
2021a; 2020c). While those publications only focused on 2019 data, the 
present study takes into account the performance of the system since 
mid-February 2017 to December 2019. 

The system has a size of 1 MW and is made of polycrystalline mod
ules oriented south and tilted at 30◦. The DC power data used in this 
work are measured at one of the 100 kW inverters, under the assumption 
of uniform soiling distribution. The inverter is not subject to clipping. A 
weather-corrected performance index is extracted using a methodology 
already employed for the analysis of a utility-scale PV system in Chile 
(Micheli et al., 2021) through the temperature (King et al., 2004), 
spectral (Gueymard, 1993; Kasten and Young, 1989) and angular 
(“ASHRAE standard 93–77,” n.d.; Erbs Klein, S. A. & Beckman, W. A., 
1983) corrections available in the pvlib-python package (Holmgren et al., 
2018). With the exception of the locally measured plane-of-array irra
diance, hourly weather data have been downloaded from MERRA-2 
(Global Modeling and Assimilation Office (GMAO), 2019). Hourly 
data measured at irradiances outside of the 50 to 1300 W/m2 range and 
performance indexes outside of the 0.1 to 1.3 range were discarded, 
along with any hourly data point outside the two standard deviations 
(Theristis et al., 2020). 

Daily performance index values were calculated considering only the 
central hours of the day (solar noon ± 1 h) and hours with a POA irra
diance > 700 W/m2. A normalized and corrected performance index was 
provided to the soiling extraction algorithms described in 2.2 (Fig. 1): 
the time series was normalized to the 95% percentile and the effect of 
degradation were removed using the degradation rate identified by the 
year-on-year decomposition function available on rdtools (Jordan et al., 
2018; NREL, 2018). Any performance index > 1.0 was set to 1.0. In 
addition, any daily value on a day i outside of two standard deviations of 
the mean of the values calculated from the data within i-7 and i + 7 was 
also removed (Micheli et al., 2021b). 

Nomenclature 

C Particulate matter concentration [g/m3] 
CC Cleaning costs [€/kW] 
Cw Specific-cleaning cost [€/kW] 
d Day 
di Number of days between d and the last rainy day 
Ed Soiling-free DC energy yield on a day d [kWh/kW] 
EDC,d Actual DC energy yield on a day d [kWh/kW] 
MAE Mean Absolute Error 
ny Number of years 
p Electricity price [€/kWh] 
PI,d Performance Index on a day d 
R Revenues [€/kW] 
rs Soiling Ratio 
t Conversion factor [s/day] 
Z Data point value 
εinv Inverter’s efficiency 
θ Tilt angle [radians] 
ν Particle deposition velocity [m/s] 
ω Total mass accumulation [g/m2]  
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2.2. Soiling extraction 

Soiling is quantified using the soiling ratio, defined as the ratio of the 
actual power output to the expected power output in conditions of no 
soiling (International Electrotechnical Commission, 2017). The soiling 
ratio (rs) has a value of 1 if the PV modules are clean and its value de
creases as soiling accumulates on their surface. Soiling loss can be 
calculated as 1-rs. 

In this work, the soiling ratio has been extracted from the perfor
mance index using models based on a two-step process: (i) identification 
of cleaning events and (ii) modelling of soiling rate in between clean
ings. Three soiling extraction models have been employed (described in 
2.2.1, 2.2.2, and 2.2.3):  

• A Weather-Unaware model (WUM), based on the NREL’s Stochastics 
Rate & Recovery (Deceglie et al., 2018; National Renewable Energy 
Laboratory, 2018). This approach automatically identifies cleaning 
events from the PV performance profile, without need of environ
mental data (i.e. rainfall), and then fits the performance data in be
tween cleanings. 

• A Precipitation-and-Performance model (PPM), based on the meth
odology proposed by Kimber et al. (Kimber et al., 2006). In this case, 
the cleaning events are determined from the rainfall data, and then 
the performance data in between rain events of intensity above a 
predetermined threshold are fitted.  

• An Environmental-Parameter model (EPM), based on the method 
presented by Coello and Boyle (Coello and Boyle, 2019). The soiling 
profile is generated only using rainfall and particulate matter data, 
without any PV data in input. 

2.2.1. Weather-unaware model 
Cleanings are detected by identifying positive shifts in the perfor

mance index profile that are larger than a fixed threshold. The original 

equation sets a cleaning event when the shift is larger than the upper 
fence of the distribution of the absolute values of the differences be
tween neighbor values (Deceglie et al., 2018). A later work reported the 
identification of false cleanings if the equation was not tuned according 
to the noise of each individual site (Skomedal et al., 2019). In order to 
address this issue, false cleaning events were removed in (Micheli et al., 
2021) if, after fitting, they did not produce a shift in the modelled soiling 
ratio larger than a predetermined value. A similar approach is used in 
this case, with false cleaning events removed if they do not produce any 
positive shift in the modelled soiling ratio. In addition, a cleaning event 
occurring on July 14, 2018 is manually removed. 

Subsequently, any period in between cleaning events of at least 7 
days is fitted using piecewise regression (Micheli et al., 2021b; 2020b). If 
a change point occurs within seven days of a cleaning event, line 
regression is used instead. In both cases, the fitting is forced to restart 
from a soiling ratio of 1, assuming a full recovery after each cleaning. If 
the R2 of the fitted data is lower than 0.1 (Micheli et al., 2017a; 2017b), 
a flat profile is assumed. 

The WUM has been chosen as reference model to evaluate the per
formance of the EPM. This is motivated by the fact that the WUM does 
not require in input any weather data and therefore does not assume 
only rainfalls as natural cleaning agents. On the other hand, though, it 
does not make it possible to model historical soiling profiles if PV power 
data are not available. Therefore, it cannot be used to evaluate the 
seasonality of the site and to recommend a typical cleaning date if long- 
term PV data are not available, which is the aim of this study. 

2.2.2. Precipitation-and-performance model 
Compared to the previous approach, in this case cleanings are 

identified using the rainfall pattern (Kimber et al., 2006). This model 
requires the preliminary identification of a cleaning threshold, which 
defines the minimum amount of rain needed to clean the PV modules 
(Kimber et al., 2006). Various thresholds have been used in the literature 
varying from 1 mm/day (Besson et al., 2017; Caron and Littmann, 2013) 

Fig. 1. Performance index profile for the investigated site. Orange round markers: measured performance index. Black square markers: normalized and corrected 
performance index after the effect of degradation was removed. Red round markers: outliers identified using the two-sigma rule. Grey dotted line: degradation trend. 
Blue vertical line: precipitation pattern, in mm/day (right y-axis). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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to >5 mm/day (Hammond et al., 1997; Toth et al., 2020; You et al., 
2018). In some cases, the threshold was set on the maximum hourly rain 
intensity, rather than on the daily accumulated values (Bergin et al., 
2017; Li et al., 2020; Valerino et al., 2020). While in most cases, the 
threshold was arbitrary set, Toth et al. (Toth et al., 2020) selected its 
value so that it optimized the soiling extraction. The same approach is 
used in this study: the cleaning threshold is set so that it minimizes the 
modeling error (3.1). In addition, compared to previous works, both 
hourly and daily thresholds are evaluated. 

It should be noted that a recent study has proposed a relation be
tween the intensity and the cleaning effect of a rain event (Javed et al., 
2020). Despite that, the present work assumes a fixed and binary 
threshold (clean vs. no clean), in agreement with the original model 
(Kimber et al., 2006). This choice is justified by the soiling profile of the 
investigated site, which, as shown in previous publications (Micheli 
et al., 2021a; 2020c), experiences most of the losses in the dry summer 
and some significant rainfalls at the end of it, which typically wash off 
soiling completely. Because of this long dry and soiling intense period 
and because of the limited losses in the rest of the year, assuming perfect 
cleanings and a fixed cleaning threshold is found to be sufficient for the 
cleaning optimization and forecast purposes of this work. 

Once the cleaning events are identified, the same fitting procedure as 
in WUM is employed to generate the soiling profile. 

2.2.3. Environmental-parameter model 
In this case, the soiling profile is modelled as a function of the cu

mulative sum of the particulate matter since the last rainfall event 
(Coello and Boyle, 2019). The particulate matter measures the concen
tration of suspended particles in a 1 m3 of air. It is commonly expressed 
using the PM10 and the PM2.5, which consider particles of diameter < 10 
µm and < 2.5 µm respectively. The concentration of coarse particles 
only, PM10-2.5, can be calculated as the difference of PM10 and PM2.5. 

The model is based on the method proposed by Coello and Boyle 
(Coello and Boyle, 2019). The soiling ratio on a day d is calculated using 
an equation proposed by (Hegazy, 2001): 

rs(d) = 1 − 0.3437∙erf(0.17∙ω(d)0.8473
) (1)  

where ω is the total mass accumulation, in g/m2, calculated as: 

ω(d) =
∑d− i

di=0
(v10− 2.5⋅C10− 2.5(di) + v2.5⋅C2.5(di))∙t∙cos(θ) (2)  

where di is the number of days elapsed since the last rainy day i, v is the 
particle deposition velocity in m/s, C is the daily average particulate 
matter concentration in g/m3, t is the factor used to calculate the daily 
values and θ is the tilt angle (30◦). 

In their work, Coello and Boyle (Coello and Boyle, 2019) found the 
best modelling results by using referenced static settling velocities for 
v10-2.5 and v2.5. Therefore, even in this work, constant values have been 
considered throughout the years. Differently, though, these have been 
determined by fitting the model to the measured soiling data, similarly 
to the approach used in (Toth et al., 2020). 

The aim of this work is a first attempt to develop a tool for future 
cleaning optimization, rather than for the estimation of current or past 
measured soiling losses. So, the aforementioned model has been selected 
for its simplicity, as it makes use of rain, PM10 and PM2.5 data only, and 
because it was validated against the largest number of sites. Despite that, 
other models have been presented in literature (Bergin et al., 2017; 
Coello and Boyle, 2019; Guo et al., 2015; Javed et al., 2017; Toth et al., 
2020; You et al., 2018) and could be applied for the same purpose. These 
should be investigated in future. 

2.2.4. Removal of artificial cleaning 
An artificial cleaning was performed by the O&M team on August 5, 

2019. In order to analyze the costs and benefits of different cleaning 

schedules, it is necessary to estimate the full extent of the soiling losses 
occurring at the site in conditions of no soiling mitigation. This means 
that the effect of the artificial cleaning has to be removed. Differently 
from the previous studies (Micheli et al., 2021a; 2020c), in this case, the 
correction is applied to the performance data, rather than to the 
extracted soiling loss profiles. This choice is motivated by the fact that, 
in this work, different soiling extraction approaches are tested. This way, 
their outputs can be directly compared without the need of additional 
processing which could have biased the comparison. 

The correction, described in 3.1, is performed by reducing the per
formance index by a fixed offset for all the days following the cleaning 
event and until the first day with rain of intensity above the threshold. 
The offset is set equal to the positive shift in soiling ratio caused by the 
cleaning. The correction requires, first, to identify the correct cleaning 
threshold (3.1). 

2.3. Cleaning optimization method 

The cleaning optimization is conducted in few steps. First, the his
torical soiling profiles are estimated using rainfall and particulate matter 
data from 1980 to 2016. Second, the optimal cleaning day is calculated: 
this is the cleaning date that minimizes the average soiling loss (i.e. 
maximizes the average soiling ratio) if one cleaning was performed 
every year on this same date. Third, the profits obtained in 2017, 2018 
and 2019 for cleaning on the optimal date are calculated. These are 
compared with the profits obtained by using the WUM-generated soiling 
profile (considered as reference and optimal case scenario). 

The cleaning profits are calculated from the difference of revenues 
(R) and cleaning costs (CC), as in (Besson et al., 2017). The revenues are 
calculated as: 

R = p∙εinv∙
∑D

d=1
Ed∙(rs,1(d) − rs,0(d)) (3)  

where p is the electricity price, εinv is the inverter’s efficiency, Ed is the 
DC soiling-free energy yield on the day d in conditions of no soiling and 
rd,1 and rd,0 are soiling ratio values on day d if one cleaning per year and 
if no cleaning is performed respectively. The optimal cleaning day is the 
one that returns the maximum value of 

∑D
d=1(rs,1(d) − rs,0(d)).

Fixed values are considered for the electricity price and the inverter’s 
efficiency, equal to 0.06 €/kWh and 95% respectively. The soiling-free 
energy yield is calculated as: 

Ed =
EDC,d

PId
(4)  

where EDC,d is the measured DC energy yield and PId is the performance 
index found on the day d. Any missing soiling free daily energy yield 
value is estimated through the linear interpolation function in the 
NumPy package for Python 3.7.0 (Harris et al., 2020a). 

The cleaning costs have been calculated as: 

CC = ny∙CCw (5)  

where ny is the number of years considered in the calculation and CCw is 
the specific-cleaning cost. This last value has been set equal to 0.62 
€/kW, as reported in previous works for the same site (Micheli et al., 
2021a; 2020c). A single yearly cleaning scenario is considered in this 
work, as it was previously found in (Micheli et al., 2021a) to be the most 
profitable soiling mitigation strategy for the site. 

It has to be acknowledged that the methodology proposed in this 
work, partially built on previous models, makes use of some assumptions 
that should be addressed in future works. The AC energy is calculated 
from the DC energy data, assuming a constant 95% inverter efficiency. 
Similarly, the electricity price and cleaning costs are fixed: their varia
tion can affect the costs and benefits of the soiling mitigation strategies. 
In addition, as done previously (Micheli et al., 2020a), the identification 
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of the optimal cleaning day is based on the soiling profile only, and does 
not consider the variability of the irradiance. As mentioned, the work is 
conducted under the assumption of soiling uniformly distributed over 
the PV plant. Last, natural cleanings in this work are always modelled to 
restore the soiling ratio to 1, as previously done by several authors 
(Coello and Boyle, 2019; Kimber et al., 2006; Toth et al., 2020). How
ever, some studies have suggested that the cleaning effectiveness of 
rainfalls might change depending on the rain intensity (Javed et al., 
2020; Li et al., 2020; You et al., 2018). 

2.4. Precipitation and particulate matter data 

Hourly rainfall data downloaded from two datasets have been used: 
OpenWeather (openweathermap.org) and MERRA-2 (Global Modeling 
and Assimilation Office (GMAO), n.d.). The daily values are obtained as 
sum of the hourly values. 

The data reported by the two sources have been compared (Fig. 2). It 
is found that the two datasets show some significant differences in the 
rainfall patterns. MERRA-2 tends to have a larger number of rainy days 
(lower plot of Fig. 2), especially if no minimum threshold is set. A co
efficient of determination of 0.69 is found between the total daily in
tensities reported for the two sites, when data from the same days are 
compared. This lowers to 0.38 if the hourly values are considered 
instead. This result suggests that calibration will have to be conducted 
on each site to identify the correct cleaning threshold, as even the data 
source might affect its value. For this reason, in the next section (3.1), 
the soiling extraction models are calibrated against the data from both 
OpenWeather and MERRA-2. Additional studies should be conducted in 
future on this, adding also local rainfall measurements and other 
datasets. 

The PM10 and PM2.5 concentrations have been calculated from 
aerosol concentration parameters, downloaded from MERRA-2 (Global 
Modeling and Assimilation Office (GMAO), 2020), using the equations 
in (Provençal et al., 2017), proposed for a previous version of the 
dataset. It is acknowledged that finer procedures are available for the 
calculation of the particulate matter, and should be tested in the future 
(NASA, n.d.). The daily PM10 and PM2.5 concentrations have been 
calculated as average of the hourly values. 

2.5. Fitting functions and errors 

The soiling extraction is performed using the the curve_fit function of 
the SciPy library for Python 3.7.0 (Jones et al., 2001). The piecewise 
regression function in the NumPy library (Harris et al., 2020a) is 
employed with the same initial guesses and parameters’ boundaries as in 
(Micheli et al., 2021b). 

The fitting of the EPM model is performed by using the LMFIT 
package (Newville et al., 2014). This is chosen because it allows setting 
non-constant boundaries: v10− 2.5≥ v2.5 ≥ 0. These boundaries make it 
possible to model deposition velocities for coarse particles larger than 
for finer particles. The initial values are set equal to the observed 
deposition velocities reported in (Coello and Boyle, 2019): 0.4 cm/s and 
0.09 cm/s for v10− 2.5 and v2.5 respectively. 

The Mean Absolute Error (MAE) is used to assess the quality of the 
modeled soiling profiles and is calculated as: 

MAE =
∑

d

⃒
⃒Zmod,d − Zmeas,d

⃒
⃒ (6)  

where Zmod,d is the modelled value of the Zmeas,d measured data point on 
each day d. The MAE has the same units as the investigated parameter 
and its value grows with the magnitude of the error. A MAE of 0 is found 
if the modelled data have the same values of the measured data. 

3. Results 

In order to replicate a real case scenario, the available data are 
divided into a training dataset (based on 2017 data) and a test dataset 
(based on 2018 and 2019 data). The training dataset is used to calibrate 
the models, while the test dataset is used to validate their performance. 

First, the PPM is employed to identify the correct rainfall threshold 
and, subsequently, to remove from the performance index the effects of 
the artificial cleaning (3.1). Then, the soiling profile is extracted through 
the EPM, by using the previously found cleaning threshold, and 
compared with the WUM estimation for the 2018 and 2019 data (3.2). 
The results of cleaning optimization are presented in 3.3. Last, the 
findings, the potentials and the limits of the presented study are dis
cussed in 3.4. 

Fig. 2. Comparison of MERRA-2 and OpenWeather rainfall data considering the 2017 to 2019 period. Daily values are shown on the left, hourly values are shown on 
the right. 
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3.1. Cleaning threshold & O&M cleaning correction 

The cleaning threshold corresponds to the minimum rain intensity 
needed to clean the PV modules (Kimber et al., 2006). In order to find its 
correct value, several soiling profiles are extracted using the PPM, each 

considering a different threshold. The process is repeated, with an 
approach similar to that in (Toth et al., 2020), varying iteratively the 
minimum cleaning threshold in between 0.0 and 5.0 mm/hour, at 0.5 
mm/hour steps, and in between 0.0 and 5.0 mm/day, at 0.5 mm/day 
steps. Then, the MAE is calculated for each modelled profile compared to 

Fig. 3. Mean Absolut Error between measured and PPM modelled soiling ratio for different cleaning thresholds, considering only 207 data. The rainfall data from 
OpenWeather (upper plot) and MERRA-2 (lower plot) have been considered. 

Fig. 4. WUM and RPM modelled soiling ratio profiles vs. measured performance index. Vertical bars represent the maximum hourly precipitation per day (right 
y-axis). 
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the measured performance index, considering only the 2017 data. The 
analysis is repeated for both the MERRA-2 and the OpenWeather data. 

The results in Fig. 3 show that, as expected, the modelling error 
changes with the cleaning threshold. In addition, different results are 
returned for the two rainfall datasets. The error for MERRA-2 is 
maximum if no threshold is considered, consequence of the high number 
of days with low rainfall values shown in Fig. 2. Interestingly, the overall 
daily and hourly thresholds follow similar trends. For MERRA-2, the 
minimum errors are found for thresholds of 0.5 mm/day and 0.5 mm/ 
hour. For OpenWeather, the minimum errors are found for thresholds ≤
1.0 mm/day and ≤ 1.0 mm/hour. The fact that the hourly and daily 
values are the same in OpenWeather is probably due to the weather 
pattern of the site. Indeed, 62% of the rain events of intensity ≥1 mm/ 
day registers also a maximum hourly precitation ≥ 1 mm/hour. This 
percentage raises to 85% if a maximum hourly threshold >0.5 mm/hour 
is considered. 

Overall, the minimum error is found for OpenWeather for a threshold 
of 1.0 mm/hour. These are therefore the dataset and the cleaning 
threshold used in the rest of the work. The identification of this mini
mum cleaning threshold makes it possible to correct the effects of the 
artificial cleaning performed at the site by the O&M team on August 5, 
2019. The first rain event of intensity > 1.0 mm/hour occurs on 
September 4, 2019: if the O&M cleaning had not been performed, the 
dry summer soiling dry period would have prorogated until this date. 
The performance index data is therefore corrected accordingly, 
extending the soiling deposition previously interrupted on August 5, 
2019, until September 4, 2019. 

3.2. Soiling extraction 

Once the cleaning threshold is defined, soiling is then extracted with 
the EPM, providing in input both the rainfall and the particulate matter 
time series. The fitting returns significance only for the PM10-2.5 coeffi
cient (v10-2.5 = 1.20 cm/s), setting instead v2.5 = 0.0 cm/s. This is 
probably due to the fact that the PM10-2.5 and PM2.5 series are found not 
to be independent of each other in this case. Indeed, if the daily values 
are correlated, the R2 is 0.985. This depends on the methodology 
employed to process the particulate matter data (Provençal et al., 2017). 
In addition, it is not expected to be necessarily true for different sites, 
and might change also depending on the source of particulate matter 
data. 

The so-calibrated model is then employed to replicate the full PV 
performance time series, going from 2017 to 2019. The results are re
ported in Fig. 4 and are compared with those obtained using the WUM. 
The models return average soiling ratios of 0.958 and 0.962 for the 2017 
to 2019 period, slightly higher than the value of the normalized per
formance index (0.952). EPM overestimates the minimum average 
soiling ratio by almost 5 %abs: 0.828 vs 0.783. In line with these results, 
the minimum modelling error is found for WUM, whereas the EPM re
turn an error 20+% higher. 

If the EPM model is recalibrated using all the available data (2017 to 
2019), no significant improvement can be found. In this case, v10-2.5 
would be set to 1.23 cm/s, with v2.5 still at 0.0 cm/s (Fig. 4). 

It should be noted that the EPM models the 2018 summer cleaning 
with a 3-week delay compared to the WUM. This is due to the fact that 
the effects of a 0.5 mm/hour event occurred in correspondence to the 
WUM cleaning is not detected by EPM because it is lower than the 
threshold. This result confirms that a fixed threshold might not be cor
rect in some occasions, even if contributing to good long term soiling 
loss estimates. Indeed, two events of larger intensities in summer 2019, 
i.e. 0.9 mm/hour (30 June) and 0.7 mm/hour (31 July), did not had any 
cleaning effect on the modules and are correctly discarded thanks to the 
threshold. Previous studies (Gostein et al., 2015), indeed, have reported 
that rainfalls of the same intensities can clean the modules in a season, 
but have no effect in others. This finding suggests that additional studies 
should be conducted on cleaning effectiveness of rainfalls and on the 

cleaning thresholds. 
The 0.022 MAE represents the minimum error achievable using the 

selected EPM method, for the investigated soiling time series. Part of the 
uncertainty, as also proved by the WUM error, is due to the quality of the 
PV performance data, which can be expected to be noisier than the 
measurements of soiling stations and detectors. Despite that, the results 
suggest that a model only based on particulate matter and rainfall pro
vides a good estimation of the soiling trends at the investigated site, as 
the three long dry summers are correctly identified. However, in future, 
the addition of other environmental parameters, such as wind speed and 
humidity (Figgis et al., 2017), along with more flexible cleaning iden
tification and modelling procedures, could improve the quality of the 
modeling. 

In this work, the model required at least one year of PV data to be 
calibrated. In reality, if the deposition velocities could be estimated from 
environmental data or from referenced values (Coello and Boyle, 2019), 
no calibration would be needed. This means that it would be possible to 
estimate the soiling losses even before the installation of the PV system, 
under the assumption of a known cleaning threshold. 

3.3. Cleaning optimization 

In this section, the EPM is used for cleaning optimization purposes 
and compared with the results obtained by the WUM. Two cases are 
simulated. First, perfect information are assumed: the optimization is 
conducted by feeding the EPM with the actual environmental data for 
the 2017 to 2019 period. Second, the optimization is conducted using 
only the historical time series of particulate matter and rainfall. 

The results of the cleaning optimization conducted using the 
2017–2019 data are shown in Table 1. The estimations of the WUM are 
used as baseline to evaluate the EPM’s results. For all the available years, 
the EPM identifies dates that are within three days of those recom
mended by the reference method (WUM). It should be noted that the 
different cleaning dates returned by the two methods for the summer 
2018 do not affect significantly the cleaning optimization in this case. 
This is due to the fact that, according to the WUM, soiling starts accu
mulating at a significant rate about 2 weeks after the date in which the 
EPM summer dry period starts. In this case, this difference balances the 
previously reported EPM cleaning detection delay. 

No significant difference can be found in terms of the “actual” profits 
returned by the two models. These are calculated by applying to the 
WUM profile the cleaning dates found by each method. Slightly differ
ences are found instead between the expected and the actual profits: this 
means that using the EPM can lead to cleaning profit estimations 
different from the “actual” values. It should be noted that, even if the 
cleaning day is correct, a wrong estimation of the cleaning profits can 
potentially affect the cleaning decision, as it might call as profitable an 
actually non-profitable cleaning and vice versa. 

In addition, the EPM allows generating soiling profiles for all the 
years in which rainfall and particulate matter data are available. This 
makes it possible to evaluate the seasonality of soiling at the site even if 
no PV data are available and anyway over time periods longer than those 
in which PV data are typically available. The cleaning optimization can 
therefore be performed “in advance” by identifying which day mini
mizes the average modelled historical soiling loss series if the system is 
cleaned every year on that same date. For the given site, the optimal 
cleaning date corresponds to the 22nd of July. This is about a week from 
the WUM recommended cleaning dates for 2017, 2018 and 2019. This 
approach would have returned soiling mitigation profits (1.7 €/kW) 
about 5% smaller than those found for perfect information over the three 
year period and shown in Table 1. Ideally, if short-term forecasts were 
available, these could be used in conjunction with the measured real 
time data to adjust the prediction maximizing the soiling mitigation 
profits. This possibility should be investigated in future. 
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3.4. Discussion 

The results of the cleaning optimization suggest that, for the given 
site, it is possible to identify in advance the typical cleaning day. This is a 
useful information, as it allows planning the cleaning schedule of the site 
in advance, at a minimum expense in terms of profits. The advanced 
cleaning optimization is made possible by the marked seasonality of the 
investigated site. Indeed, a prolonged dry season occurred in most of 
years since 1980. The dry periods in August and September are on 
average twice as long as compared to the rest of the year (left plot of 
Fig. 5). In addition, also the peak in particulate matter concentrations is 
generally reached in between July and September (right plot of Fig. 5). 
The combination of infrequent rainfall and high-suspended particle 
concentrations cause the high soiling losses that are typically experi
enced in summer at the site and their yearly repeatability makes the 
advanced cleaning optimization possible. 

So, the methodology proposed in this work can be expected to 
identify successfully in advance the optimal cleaning strategy if 
employed for sites with a similarly clear seasonality. However, it should 
be noted that, for 7 of the 40 yearly soiling profiles generated using the 
environmental data in between 1980 and 2019, the optimal cleaning 
day is detected in a season other than summer. Indeed, exceptional 
natural or man-driven events can vary the soiling deposition rates: the 
region in which the site is located is, for example, exposed to episodic 

Saharan dust intrusions that can take place also in the winter months 
and cause significant losses (Conceição et al., 2018). In addition, un
expected dry spells or unusually rainy summer days or seasons can make 
the actual soiling losses and optimal cleaning dates deviate from the 
expectations. This means that advance-cleaning optimization should be 
combined with an accurate and continuous activity of soiling moni
toring and analysis, as exceptional conditions can lead occasionally to 
significantly different yearly soiling profiles. 

Future works should be conducted in more locations to further 
validate and tune the proposed methodology. Both soiling station and 
PV performance data should be analyzed, to understand and correct the 
effect of the signal noise on the cleaning optimization. In addition, as 
mentioned in 2, several assumptions had to be made in this work and 
should be addressed in future. 

4. Conclusions 

This work presents the results of the optimal cleaning schedule 
prediction for a 1 MW PV site in Southern Spain. The optimization is 
conducted by modelling soiling loss profiles using historical weather 
data only, analyzing the seasonality and the inter-annual variability of 
the factors affecting soiling. 

Soiling modelling is conducted considering rainfall data originated 
from two distinct sources and considering different time intervals and 

Table 1 
Energy and economic analysis of the soiling profile extracted by using the EPM and WUM methods. The EPM “Actual” profits are calculated applying to the WUM 
soiling profile the EPM recommended cleaning day. Since it is used as reference, the WUM expected profit coincides with the actual profits. In all cases, perfect 
knowledge on the soiling-free energy output is assumed.   

Weather-Unaware Model Environmental-Parameter Model 

Year Estimated Soiling 
Losses [€/kW] 

Recommended 
Cleaning Day 

“Actual” Profit 
[€/kW] 

Estimated Soiling 
Losses [€/kW] 

Recommended 
Cleaning Day 

Expected Profit 
[€/kW] 

“Actual” Profit 
[€/kW] 

2017  2.2 17-Jul  0.4  2.7 17-Jul  0.3  0.4 
2018  1.7 16-Jul  0.3  1.7 19-Jul  0.5  0.3 
2019  3.5 16-Jul  1.1  3.7 13-Jul  1.2  1.1  

Fig. 5. Left plot: monthly average number of days since the last rainfall. Right plot: daily average particulate matter concentrations and standard deviation. The 
values are calculated from data from 1980 to 2019. 
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minimum cleaning threshold values. It is found that the modelling error 
changes depending on both the cleaning threshold and the rainfall 
dataset. No significant differences are found, instead, between the 
modelling errors calculated for thresholds expressed as maximum 
hourly intensity or total daily intensity. Overall, the best results for the 
investigated sites are found for a cleaning threshold of 1 mm/hour. As it 
is shown in the paper, however, despite the optimization, a constant 
threshold might lead to the over- or under-detection of some cleaning 
events. Future studies should consider the possibility of a variable 
threshold, and of a rain intensity-dependent cleaning effectiveness. 

A referenced weather-data-only based soiling extraction method is 
used to generate soiling profiles for the site using only rainfall and 
particulate matter data. This is calibrated using one year of PV perfor
mance data and returns a minimum mean absolute error of 0.022 for the 
investigated three-year period. No significant improvement is found if, 
instead, the model is calibrated using the full tree years of data. 

When provided with perfect information, this model is able to 
identify most profitable cleaning dates within three days of those 
identified using the reference soiling extraction method. In addition, 
based on historical weather data only, the model predicts that the 
cleaning should be conducted every year on July 22nd to maximize the 
soiling mitigation profits. This date would have led, for the three years 
under investigation, to soiling mitigation profits only 5% lower than 
those calculated using perfect information. 

This case study demonstrates the possibility of using historical 
weather data to predict the optimal cleaning schedule, at least for PV 
sites with a marked seasonality. Despite that, it is recommended to use 
this method in combination with monitoring systems and, if available, 
forecasts to address any exceptional event that can cause an unexpected 
variation in the soiling deposition rate or in the natural cleaning 
frequency. 

Assumptions and limitations of the study are described in the paper, 
along with future research opportunities. The study, indeed, should be 
repeated for a larger number of sites, under a variety of soiling condi
tions. In addition, future cleaning optimization studies should take into 
account also the variability of electricity prices and cleaning costs, as 
these can affect the optimal cleaning frequency, fixed to one per year in 
the present work. 
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