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Along this chapter we discuss about one of the main issues in black phosphorus
research: its environmental instability. We will discuss the works were the role of
the environmental exposure has been studied and the reported works describing
strategies to effectively encapsulate black phosphorus to preserve its pristine
properties.

Introduction

In 2013, Yuanbo Zhang and co-workers demonstrated that graphene was not the only elemental
two-dimensional material that could be isolated by exfoliation of a bulk layered crystal (1).
Atomically thin layers, and even one-atom thick layers, of phosphorus can be isolated by mechanical
and chemical exfoliation of bulk black phosphorus, a stable layered allotrope of phosphorus, crystals.
Bridgman grew black phosphorus single crystals for the first time in 1914. He was investigating
phase transformations of white phosphorus under high pressure and discover the black phosphorus
allotrope by serendipity. In his original manuscript Bridgman said: “…Black phosphorus was
discovered during an attempt to force ordinary white phosphorus to change into red phosphorus by the
application of high hydrostatic pressure…” (2).

Regarding the optical and electronic properties of black phosphorus, in bulk it is a
semiconductor with a direct bandgap of 0.35 eV and charge carrier mobilities in the order of 10000
cm2/V·s (3). Thin flakes of black phosphorus have been recently used in field-effect transistors
(FETs) showing mobility values up to 1000 cm2/V·s (4–6) at room temperature and up to ~4000
cm2/V·s at low temperatures (7–9). Moreover, due to its small and direct bandgap black phosphorus
has a bright perspective for broadband photodetection where transition metal dichalcogenides are
limited because of their large bandgap (10–16).

Unlike other 2D materials isolated to date, however, black phosphorus is rather environmentally
instable. Therefore, the attainment of either stable thin layers or effective passivation methods is
required to produce reliable BP-based optoelectronic devices (17–19). In the following we will
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discuss about this issue and about the strategies developed to overcome this environmental
instability.

Origin of the Instability under Ambient Conditions

Most of the two-dimensional materials isolated prior to 2014 (graphene, h-BN, MoS2, etc…)
are rather stable at atmospheric conditions which facilitated the fabrication of devices based on these
materials. Black phosphorus, however, shows a relatively large reactivity (20, 21). This reactivity
is originated by its particular puckered honeycomb crystal structure. In black phosphorus, the
phosphorus atoms have 5 valence shell electrons available for bonding with a valence shell
configuration 3s23p3. Therefore, each phosphorus atom bonds to three neighboring phosphorus
atoms through sp3 hybridized orbitals, making the phosphorus atoms to form a puckered honeycomb
lattice (orthorhombic, with space group Cmca) and each phosphorus atom also has a lone pair (a pair
of valence electrons that are not shared with another neighbouring atom), which makes phosphorus
very reactive to air. In fact, exfoliated flakes of black phosphorus are highly hygroscopic and tend
to uptake moisture from air (22). Several initial studies report on quick water accumulation at the
surface of exfoliated flakes (23–29). Figure 1 shows some examples from the literature of atomic force
microscopy images of exfoliated black phosphorus flakes left in ambient conditions that progressively
accumulates water with time (22, 26, 27).

Figure 1. a)-c) Selected AFM scans of three BP flakes in air taken at different times after exfoliation. a)
Adapted with permission from (22). Copyright 2015 IOP Publishing Ltd. b) Adapted with permission

from (26) under a Creative Commons License (http://creativecommons.org/licenses/by/4.0/). c)
Gamage, S.; Li, Z.; Yakovlev, V. S.; Lewis, C.; Wang, H.; Cronin, S. B.; Abate, Y. Nanoscopy of Black
Phosphorus Degradation. Adv. Mater. Interfaces 2016, 3 (12), 1600121. Copyright Wiley-VCH Verlag

GmbH & Co. KGaA. Reproduced with permission.

Apart from the topographical changes induced by the moisture uptake of the black phosphorus
flakes exposed to air, the environmental exposure also induces degradation of the optical, electrical
and mechanical properties of black phosphorus. In fact, Favron et al. measured the evolution of
the Raman intensity upon exposure to different atmospheres showing a clear degradation of black
phosphorus in air (Figure 2a) (28).
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Figure 2. a) Integrated intensity of the Ag2 Raman mode as a function of time under different exposure
conditions: air, vacuum, O2/H2O mixture and 300 nm thick parylene layer-capped flake in air. The faster

decay rate observed in air (5.5 min-1) compared to under the O2/H2O mixture exposure (36 min-1) is due

to the photon flux (1.7 × 104 W cm-2 and 1.8 × 103 W cm-2, respectively). Reproduced with permission
from (28). Copyright 2015 Springer Nature. b) Transfer characteristics (IVg) of a BP FET device at

selected times over the first hour of exposure (curves are offset by 100 nA for clarity). Adapted with
permission from (22). Copyright 2015 IOP Publishing Ltd. c) Local sheet resistance maps of a 24 nm thick

flake capped by ~3 nm Al2O3 layer. Adapted with permission from (26) under a Creative Commons
License (http://creativecommons.org/licenses/by/4.0/). d) F(δ) curves for a 5.3 nm thick BP drumhead

in high vacuum and after 3, 7, 11 and 26 h of exposure to ambient conditions. Adapted with permission
from (30) under a Creative Commons License (http://creativecommons.org/licenses/by/3.0/).

The electronic properties of black phosphorus are also strongly modified by the environmental
exposure as illustrated by Island et al. and Wood et al. through direct electrical transport
measurements as a function of the exposure in air (22, 25) (see Figure 2b). Interestingly, from
these transport measurements one can conclude that there are two different regimes: one at short-
timescale where the modifications are mainly due to physisorption of O2 and N2 species and another
one at longer timescales were the water absorption starts. In the short-timescale (less than 1 hour)
there is an instant shift of the threshold voltage to the left (shown in Figure S6 (e) from the
supplementary information file in ref. (22)) and an overall decrease in conductance and these
changes are reversible by putting the device in vacuum. A vacuum to air zero bias resistance cycling
experiment showed that during the first cycles up to the 7th, the initial value was recover (figure
S4, from the supplementary information file in ref. (22)). At long-timescale the conductance of the
devices steadily decreases until the device breakdown. Complementary to the macroscopic electrical
transport measurements microscopic measurements with microwave impedance microscopy are a
non-destructive, good asset to probe the effect of the environmental exposure on black phosphorus
(26, 29). As an example to illustrate the importance to study locally the mechanism of interaction
between the BP surface and its degradation agents, figure 2c shows an example of a black phosphorus
flake capped with a thin layer of Al2O3 that cannot effectively encapsulate completely the black
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phosphorus flake (26). From the microwave impedance microscopy images one can conclude that
the degradation process occurs first at the edges of the flake and then it is extended towards the
center of the flake. This study allowed the authors to optimize the stability in air of the BP by
capping it with a double layer of Al2O3/hydrophobic fluoropolymer film, instead of a single Al2O3
layer. Moreno-Moreno et al. demonstrated that exposing thin flakes of black phosphorus to air also
degrades its mechanical properties: after 24 h or exposure to ambient the Young’s modulus of thin
black phosphorus flakes decreases by a factor of two (see Figure 2d) (30).

Regarding the physical and chemical mechanisms behind this environmental degradation of
black phosphorus, Favron et al. and Zhou et al. have deduced that the degradation most likely occurs
as a result of photo-induced oxidation from oxygen absorbed in accumulated water at the surface of
exfoliated flakes exposed to ambient conditions. (28, 31, 32). Recently, Kim et al. have studied by
scanning Kelvin probe microscopy (SKPM) the degradation process of black phosphorus in dark.
They have observed that the degradation rate is layer-dependent, since the electronic structure of a
2D material changes with its thickness (33). Zhang et al. have combined experimental results and
first-principle calculations to study the reaction kinetics of black phosphorus with oxygen contained
in the water. They have concluded that the main products are the PO23-, PO33- and PO43- species.
They also showed the possibility to store BP in deoxygenated water under ambient light without
degradation for at least 15 days (34). The exact role of water in the oxidation mechanism of the
black phosphorus is not fully understood yet. As a consequence, further experimental results and
theoretical models are being developed. A recent work has proposed that OH- ions are responsible
for the degradation of BP, through experimental observation and density functional theory
calculations (DFT). They showed that the degradation of BP has therefore a dependence with the
pH, with linear increasing degradation rate from pH 4 to 10 (35). Finally, Luo et al. studied the
kinetics of black phosphorus oxidation under 5% O2/Ar, 2.3% H2O/Ar and 5% O2/2.3% H2O/
Ar mixture. The highest rate of oxidation was found in the mixture of oxygen and water. The authors
concluded that water continued to interact chemically with the oxidized BP surface promoting the
oxygen dissociation further (36). The stepwise reactivity of H2O with a phosphorene surface once it
was oxidized was also studied theoretically (37).

Passivation Methods: Encapsulation and Functionalization

These works focused on the air-induced degradation of black phosphorus have motivated works
to find effective methods to encapsulate black phosphorus at the early stages of isolation/fabrication
to increase its longevity (25, 26, 38). Several encapsulation techniques have been reported to date
including polymer dielectrics (10, 39), atomic layer deposited (ALD) oxides (25, 26, 40–42), hybrid
metal organic chemical vapor deposition (MOCVD)/ALD coating of BN/Al2O3 (43), electron-
beam evaporated metallic thin films oxidized under ambient air (44), van der Waals heterostructures
using boron nitride, MoS2 and graphene flakes (7–9, 38, 45–48), and chemical functionalization
(49–52). In two different works, a thin native oxide layer on top of the black phosphorus surface has
been formed by oxygen plasma (53) or thermal annealing etching (54). In both works, the presence
of the oxide proved to stop the degradation of BP. Tian et al have produced a thin native Pox layer
around 2 nm thick on the bottom side of black phosphorus films of typically 20 nm thick. This
bottom oxide layer was formed under exposure in air for 30 min during the mechanical exfoliation
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and metallic contacts deposition. The authors used the charge transfer induced at the bottom Pox/BP
interface to simulate synaptic behavior along the 45° angle spaced electrodes of a field-effect
transistor, exploiting the in-plane anisotropy of the material. After fabrication and electrical
measurements at vacuum, from room to high temperature, the devices were stored in a N2 box
under dark and the authors checked that the bottom oxide layer was not modified for a few months
(55). Another work demonstrated the use of ozone generated by ultraviolet light under atmospheric
pressure, to form phosphorus oxide on top of thick black phosphorus films. This oxide is etched away
by rinsing with deionized water, leaving a thinner BP surface, which presents a retarded degradation
effect in air. They found an etching rate of 12 ± 2 nm/h and could achieve a single-layer phosphorene
film under this process (56).

Figure 3. a) Hole mobility for encapsulated and unencapsulated BP FETs versus ambient exposure time.
Reproduced with permission from (25). Copyright 2014 American Chemical Society. b) Sheet resistance

maps of a 16 nm-thick flake capped by 25 nm Al2O3. Adapted with permission from (26) under a Creative
Commons License (http://creativecommons.org/licenses/by/4.0/). c) (Left) Schematic of the

BN–BP–BN heterostructure device fabrication process. (Right) Optical image of the BN–BP–BN
heterostructure after O2-plasma etching (the etched area is enclosed within the white line) and of the

BN–BP–BN Hall-bar device. Adapted with permission from (47) under a Creative Commons License
(http://creativecommons.org/licenses/by/4.0/).

Figure 3a-b shows the results of encapsulating black phosphorus using a thick AlOx capping layer
(deposited through atomic layer deposition) (25, 26). While uncapped field-effect transistors break
down in a few days, field-effect transistors with encapsulation show performances (e.g. mobility
and conductance) that do not change over several days (25). Microwave impedance microscopy
measurement technique confirms that black phosphorus devices encapsulated with a thick AlOx layer
shows little to no degradation (26).
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Figure 4. a) Time dependence of the normalized PL intensity of the monolayer phosphorene samples treated
by different methods: exfoliated 1L phosphorene (red), 1L phosphorene with PxOy (~11 nm) capping layer
produced by O2 plasma etching (green) and 1L phosphorene with dual passivation layers of PxOy and 5 nm

of ALD Al2O3 (black). All PL was measured in ambient condition under the same laser excitation. Inset:
zoom in plot for the exfoliated 1L phosphorene sample. Adapted with permission from (53) under a

Creative Commons License (http://creativecommons.org/licenses/by/4.0/). b) Optical images of flakes
covered by a thin PxOy layer and a Al2O3 + PxOy double layer after fabrication and respectively, after 3

days and 30 days. The images show the higher passivation effect of the double capping layer. Adapted with
permission from (53) under a Creative Commons License (http://creativecommons.org/licenses/by/4.0/).

c) HRTEM image of the hybrid structure, where the C60 molecules can be seen passivating the edges of the
BP layer. Inset: low magnification TEM image (top). STEM image (middle) and EDX elemental mapping
(bottom) of the C60-BP hybrid structure to show the successful presence of the fullerenes along the borders.
Adapted with permission from (60) under a Creative Commons License (http://creativecommons.org/

licenses/by/4.0/).

Sandwiching black phosphorus flakes between boron nitride flakes (bottom and top
encapsulation, see Figure 3c) is a more advanced route toward passivation which has proven to be a
method to obtain exquisite electronic properties for graphene and MoS2 devices. This enhancement
of the device performance is due to the atomically flat, dangling-bond-free and defect free surface
of hexagonal boron nitride (47, 57, 58). Thanks to this improved performance in these fully
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encapsulated devices it has been possible to observe interesting physical phenomena not observable
in low-mobility electronic devices such as the Shubnikov-de Haas oscillations and the integer
quantum Hall effect (7–9, 46, 47). Figure 4a) shows the passivation effects of a PxOy layer formed
by an oxygen plasma to thin down the initial exfoliated thick phosphorene layer (orange curve). This
oxide layer was found to have a dual passivation role: its presence itself slowed down the degradation
rate under ambient exposure. Then, for a dual passivation process depositing further a Al2O3 layer
by ALD to increase the lifetime of the device, the oxide served as a protection layer to prevent the
reaction of the phosphorene with the ALD precursors (pink curve) The optical images reinforce the
longer time stability of double capped flakes compared to one that was also covered by the oxide layer
(53).

Figure 5. a) Preparation process to obtain few-layer phosphorene enriched aqueous dispersions. The
workflow is represented by the test tubes, going the order of the different steps from left to right.

Deoxygenated water with 2% (wt/vol) SDS was prepared by ultrahigh-purity Ar purging. The exfoliation
of the BP crystal was performed in a sealed container using tip ultrasonication. Then, this solution was

centrifuged to remove unexfoliated BP crystals. The remaining FL-BP dispersion was ultracentrifuged to
precipitate large flakes. The supernatant was finally redispersed in deoxygenated water. Reproduced with

permission from (67). Copyright 2016 National Academy of Sciences. b) Relative absorbance as a function
of time, measured at 465 nm for: the standard few-layer BP dispersion exfoliated in CHP, in NMP, in IPA

and the BP exfoliated in CHP in a glovebox (CHP GB). Adapted with permission from (66) under a
Creative Commons License (http://creativecommons.org/licenses/by/4.0/).

Another strategy pursued to improve the stability of the black phosphorus under ambient
conditions and consequently, its performance as device is the functionalization of its surface with
different elements and molecules. The adsorption of Ag+ ions on the black phosphorus surface via
cation-π interactions constitutes an example of such approach. To produce such metal ion modified
surface, a mechanically exfoliated BP flake transferred to a 300 nm SiO2/Si substrate was immersed

in a N-methyl-2-pyrrolidine (NMP) solution with silver nitrate (1x10-6 M). They observed an
improvement on the hole mobility from 796 to 1593 cm2/V s and the ON/OFF ratio from 5.9x104

to 2.5x106 after 1 h immersion, compared to the original device before passivation (59). In another
work, the edges of BP nanosheets were functionalized by covalent bonding with C60 molecules (see
Figure 4c). The fullerenes were chosen due to its high hydrophobicity. These C60 functionalized
black phosphorus films showed higher stability against oxidation and good photocurrent
characteristics (60). The functionalization of a black phosphorus surface with antioxidant molecules
following processes such as fluorination (61) or treatment in imidazolium-based ionic liquids (62)
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were pursued. A sulfur doped thin layer BP field effect transistor showed around 77% of the mobility
and an ION/IOFF ratio of 103 still after 21 days under ambient exposure (63). Aluminum doped black
phosphorus flakes were used to produce FETs that presented an n-doping effect and unnoticeable
degradation after 10 days under ambient conditions (64). Finally, density functional theory
calculations were performed to estimate the ratio of BP doping with scandium atoms at which the
flake was protected from the oxygen and water molecules, but also retained the semiconductor
behavior (65).

An alternative approach to address the environmental instability issue consists on using liquid
phase exfoliation to obtain suspensions of black phosphorus nanosheets. It has been demonstrated
that liquid phase exfoliation can produce large quantities of high-quality few-layer black phosphorus
nanosheets. These black phosphorus nanosheets are surprisingly stable in suspension (even when
deoxygenated water is used as solvent for the liquid phase exfoliation), probably due to the solvation
shell protecting the nanosheets from reacting with oxygen (Figure 5) (66–71).

In summary, in this chapter we have discussed the issue of the environmental instability in black
phosphorus and the works devoted to develop strategies to effectively encapsulate black phosphorus
to preserve its pristine properties.
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	Phosphorus Cluster Cations
	Figure 2. CID mass spectra of selected ions obtained at relatively low collisional energies: (a) , (b) , (c) , (d) , (e) (f) (g) and (h) . Reproduced with permission from 19. Copyright 2015 John Wiley & Sons.
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	Plasmonic Enhanced BP Based Photodetectors
	Figure 5. Illustration of BP based photodetector with plasmonics from of bowtie antenna and bowtie apertures. Bowtie antennas were utilized to enahance responsivity while bowtie apertures were designed to increase polarization sensistivity. (Reproduced with permission from reference 25. Copyright 2018 American Chemical Society.)

	Avalanche BP Photodetectors
	BP Based Photodetectors for Polarization Resolving
	Figure 6. (a) Structure of a BP/MoS2/BP/Au photodetector for polarization resolving. (b) Polarization-resolved spectral photoresponse of the two diodes. (Reprinted by permission from Springer Nature: Springer Nature, Nature Photonics 26, Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature, J. Bullock et al., Copyright (2018).)

	Waveguide-Integrated BP Based Photodetectors
	Overview of Waveguide-Integrated Photodetectors
	Waveguide-Integrated Photodetectors in the Near-Infrared
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