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Abstract—It is a common approach to assume a constant
performance drop during the photovoltaic (PV) lifetime. However,
operational data demonstrated that PV degradation rate (RD) may
exhibit nonlinear behavior. Neglecting nonlinearities may increase
financial risks. This study presents and compares three
approaches, based on open-source libraries, which are able to
detect and calculate nonlinear RD. Two of these approaches
include trend extraction and change-point detection methods,
which are frequently used statistical tools. Initially, the processed
monthly PV performance ratio (PR) time-series are decomposed
in order to extract the trend and change-point analysis techniques
are applied to detect changes in the slopes. Once the number of
change-points is optimized by each model, the ordinary least
squares (OLS) method is applied on the different segments to
compute the corresponding rates. The third methodology is a
regression analysis method based on simultaneous segmentation
and slope extraction. Since the "rear RD value is an unknown
parameter, this investigation was based on synthetic datasets with
emulated two-step degradation rates. As such, the performance of
the three approaches was compared exhibiting mean absolute
errors ranging from 0 to 0.46%/year whereas the change-point
position detection differed from 0 to 10 months.

Keywords—change-point analysis, modeling, nonlinear
degradation, photovoltaics (PIO.

I. INTRODUCTION

Precise knowledge of photovoltaic (PV) degradation rate
(RD) is important for projecting lifetime energy yield. Simplistic
assumptions may cause detrimental effects increasing PV
fmancial uncertainties and hence, investment risk [2]. Such
assumptions may include: a) the usage of single RD values from
literature, b) values reported from different climatic conditions,
c) values reported for a specific technology yet different module
quality, d) assumption of constant performance loss over time,
and so on.

On the other hand, relatively simple statistical analysis can
be performed on PV performance time-series, in order to extract
the degradation rate of a particular system. However, it is known
that PV performance fluctuates due to a number of seasonally
related factors such as temperature [3], spectrum [4], soiling [5],
etc. Therefore, although the statistical tools are available and
relatively easy to use, it is inherently challenging to extract
reproducible PV degradation rates [6].
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Fig. 1. Theoretical comparison of different degradation rates and the impact
on LCOE (assuming discount rate 4%, operation &maintenance of 2%,
installation costs of 3 $/W, annual irradiation of 1700 kWh/kWp). This figure
was recreated from Stein et al. [1].
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The way PV time-series data are handled and processed,
adds to the complexity and uncertainty [7]. For example, if
temperature correction is applied and the reported temperature
coefficients are biased, a seasonality due to changing
temperature ranges will be introduced. Furthermore, spatial and
temporal variability in the actual temperature of the array could
lead to seasonality in the performance metric, especially if the
wind direction varies seasonally and affects spatial patterns in
the array temperature. Moreover, in respect to data quality,
integrity and processing, the RD calculation can also be
influenced by other factors such as missing data [8], sensor drift
[9], filtering criteria [10], aggregation [11], etc.

The most commonly used assumption to statistically extract
the RD lies on the hypothesis of a linear performance drop over
time. Operational data demonstrated that this is unrealistic in
some cases [12] mainly due to the initial and wear-out
degradation that may occur [13]. For example, Light and
elevated Temperature Induced Degradation (LeTID) [14] and
Light Induced Degradation (LID) [15] may occur initially in the
PV module lifetime and then cease once an equilibrium has been
reached, directly affecting the degradation rate.

The path traveled to a certain performance loss has a
significant economic impact on the levelized cost of energy
(LCOE), as theoretically shown in Fig 1. Another theoretical
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study conducted by Jordan et al. [13, 16] demonstrated LCOE
differences of —1.1 0/kWh, making the RD the third most
important factor influencing the LCOE [13]. Recently, a new
methodology that takes into account nonlinear PV behavior was
introduced by detecting change-points from the trends of
decomposed PV time-series [12]. The methodology was also
applied on real PV performance data verifying that some
systems may exhibit nonlinear performance loss.

Expanding on this line of work, this study examines three
methodologies based on open-source Python and R packages,
which can be applied to PV time-series and are able to detect
and calculate nonlinear RD. Initially, the processed monthly PV
performance ratio (PR) time-series are decomposed in order to
extract the trend and change-point analysis techniques are
applied to detect changes in the slopes. Once the number of
change-points is optimized by each model, the ordinary least
squares (OLS) method is applied to the different segments to
compute the corresponding rates. Since the "rear RD value is an
unknown parameter, this investigation was based on synthetic
datasets with emulated two-step degradation rates.

II. METHODOLOGY

In statistics, a change-point (or switch-point, or break-point)
refers to a change in time-series properties (e.g., mean, variance,
correlation, etc.) [17]. Such changes can be either continuous or
discontinuous and in the case of nonlinear degradation, the
change is considered as continuous since the two segments have
the same RD value at the change-point [18].

Trend extraction and change-point detection methods are
frequently used statistical tools and several open-source
algorithms are available in Python and R. Three of them were
selected in this study based on the hypothesis that they can be
applied on PV performance data. This hypothesis is mainly due
to their ability to extract the trend prior to applying any change-
point analysis instead of applying the change-point model on
raw and highly fluctuating data. Highly variable/fluctuating
time-series may result in too many change-points due to
overfitting rate changes.

A. Generation of synthetic datasets

Five different scenarios of synthetic datasets were generated
(see Table I) in order to examine the selected open-source
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TABLE I. FIVE DIFFERENT SCENARIOS OF SYNTHETIC PV
PERFORMANCE DATASETS CONSIDERED IN THE COMPARATIVE ANALYSIS

Scenario
Change-point
date/position

RD,1(%/year) RD,2(%/year)

a Jan-17 (24) -5 -1

b Jan-19 (48) -0.5 -3.5

c Jan-21 (72) -1 -0.5

d Jan-23 (96) -1 -2.5

e Jan-25 (120) -3 -1

packages. Their performance and effectiveness were evaluated
based on the ability to detect the number and position(s) of
change-points and also the precision errors in estimating the
degradation rate values. Besides knowing the "rear degradation
rate values and change-point positions, synthetic data also have
the advantage of being independent of sensor drift, temperature
uncertainty, soiling, maintenance issues etc., that may affect the
accuracy and/or uncertainty of the calculations.

Similar to the procedure described by Theristis et al. [12], in
order to generate synthetic MI performance datasets with
annually varying meteorological conditions, 15 typical
meteorological year (TMY) datasets from different locations in
New Mexico (NM), USA were collected. These were used as
consecutive inputs to a PV performance model of a
monocrystalline silicon module using the Sandia RV Array
Performance Model (SAPM) [19] from pvlib-python [20]. The
PV performance time-series were then sliced into different
segments where the different degradation rates were applied,
and corresponding change-point locations were positioned to
represent a two-step nonlinear performance loss. Temperature
correction, normalization and monthly aggregation was then
performed in order to create a dataset of temperature-corrected
performance ratio (PRTC) time-series.

B. Description of selected open-source libraries

Facebook Prophet Algorithm (FBP) [21]: FBP is an open-
source library, available in Python and R, used to forecast time-
series based on an additive decomposition model, which
combines trend, seasonality and holidays; holidays are neglected
in this study. A piecewise linear model is applied by default for
the trend whereas the seasonal model is similar to the
exponential smoothing in the Holt-Winters technique.
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Fig. 2. Change-point detection on monthly PR time-series with different nonlinear degradation rate combinations and change-point positions. The PR time-series
were extracted from synthetic datasets, which were simulated using the SAPM on pvlib-python using 15 TMY datasets from around NM, USA. From left to right,
the plots were generated using results from FBP (Scenario e), SegmR (Scenario d) and RBeast (Scenario b). The red dashed vertical lines indicate the positions
(locations) of the detected change-points.
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Fig. 3. Boxplot of performance comparison for the three different models in
respect to the absolute error in locating the change-point position.

Once the trend is extracted for the PR time-series, change-
point analysis is performed to identify the number and location
of change-points by capturing statistical changes in the slopes of
pre-defined segments of the time-series. Once the nonlinear
trend is "sliced", the methodology treats each segment in a linear
manner. This is achieved by applying the ordinary least squares
(OLS) method [22] in order to compute the different degradation
rates for each segment, accordingly.

In order to setup FBP to provide meaningful results for PV
behavior, the flexibility of the extracted trend, number of
potential change-points, and range had to be adjusted according
to the process and settings reported by Theristis et al. [12]. An
example of a FBP application is demonstrated in Fig. 2 (left) for
Scenario e of Table I.

Segmented or Piecewise Regression (SegmR) [18]: In
segmented regression, the data are fit with more than just one
line, separated by the change-point(s). In this work, the
degradation curve is divided into two continuous segments and
each segment is fitted in a way that the sum of the squared error
of the complete time-series is minimized (see Fig. 2, middle for
Scenario d of Table I). The two segments are forced to join at
the change-point.

Compared to other change-point algorithms, this approach
allows to simultaneously identify both change-points and
corresponding slopes (i.e., degradation rates). One of the
drawbacks in the formulation used in this study is that SegmR is
able to identify only the pre-determined number of change-
points (i.e. one change-point in this case). Also, because of the
noise in the data, the algorithm would return a change-point even
in conditions of a linear degradation. Future work will work on
introducing filters able to address this issue.

The model is developed in Python 3.7.0. Seasonal
adjustment is first performed on the data by using the
seasonal_decompose function in statsmodels to extract the trend
component of the time-series. The segment regression equations
are defined through the piecewise function in the NumPy library.
The curve fitting is performed with the curvejit function in the
SciPy library [23], which employs a Trust Region Reflective
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Fig. 4. Boxplot of performance comparison for the three different models in
respect to the absolute error in estimating the degradation rates in different
segments.

algorithm. The initial guesses were set to: xo=N/2, ao=0, ai=0
and b=1, where N is the total number of months in the time-
series. In addition, these bounds were chosen 0 xo N and
0 b 1. It should be noted that the returned change-point
date, in some of the cases, can be affected by the initial guesses.

RBeast [24]: Bayesian estimation of abrupt change,
seasonality and trend (BEAST) applies the Bayesian ensemble
time-series decomposition algorithm. By utilizing the ensemble
modelling technique, the results of the multiple fitted models are
determined and incorporated into the final averaged Bayesian
model. According to the authors [24], this makes the BEAST a
universal and robust algorithm for change-point and complex
nonlinear trend analysis. More specifically, the "BEAST"
enables the determination of abrupt changes (i.e. change-points),
cyclic variations (e.g. seasonality) and nonlinear trends in time-
series observations by decomposing the time-series data into
three components: abrupt changes, trends and cyclic/seasonal
variations. The algorithm also quantifies the likelihood
(probability) of the detected changes. The BEAST algorithm is
applicable to time-series data of all kinds and it was developed
as a MATLAB library and an R package called "RBeast".

In this work, the period of the cyclic/seasonal component of
the time-series and the minimum separation time between the
neighboring season change-points were set to 12. The maximum
number of trend changepoints allowed was 1. Furthermore, the
minimum and maximum polynomial order to fit the trend were
set to 0 and 1 respectively. Finally, the maximum harmonic
order for fitting the seasonal component was set to 5. A
demostration of the output generated by RBeast is illustrated in
Fig. 2 (right) for Scenario b of Table I.

III. RESULTS AND DISCUSSION

The application of the three different methodologies on the
synthetic monthly PR7c time-series revealed different slopes,
mutually verifying the presence of a nonlinear, two-step
behavior.

With respect to locating the change-point positions, the
absolute error varied from 0 to 10 Months with the FBP
outperforming the other models by demonstrating a median
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Fig. 5. Comparison of the RMSE and MAE metrics in estimating nonlinear
degradation rates using FBP, SegmR and RBeast.
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absolute error of 1 Month compared to 3 Months of SegmR and
RBeast (see Fig. 3). Furthermore, the Mean Absolute Error
(MAE) was 0.8, 2.4, 3.6 Months for FBP, SegmR and RBeast,
respectively.

The most critical part of the performance comparison in this
study is the prediction error in quantifying the degradation rates
at each segment. Fig. 4 illustrates the performance comparison
in the form of a boxplot where, initially, the FBP and SegmR
methods seem to outperform RBeast. Specifically, a median
absolute error of 0.05%/year was found for FBP and SegmR
whereas RBeast exhibited 0.075%/year. The modeling
performance was further compared using the MAE and root
mean square (RMSE) metrics (see Fig. 5). With respect to MAE,
0.08%/year, 0.07%/year, 0.12%/year were demonstrated for
FBP, SegmR and RBeast, respectively, which highlights a better
performance of SegmR, in this case. Furthermore, the RMSE
values followed the same trends as in the case of MAE, with
SegmR exhibiting 0.10%/year whereas FBP and RBeast resulted
in 0.11%/year and 0.17%/year, respectively.

Overall, all methods demonstrated relatively low prediction
errors, even when the change-point detection error was
relatively high. From a preliminary interpretation standpoint,
SegmR is clearly the winner, if accuracy on degradation rate
prediction is the priority assuming a two-step behavior. On the
other hand, change-point analysis models are also useful for
detecting abrupt changes in PV performance time-series, which
may not necessarily be due to a change in degradation rate. Such
models can be applied for detecting failures, maintenance
events, or any other trend-based performance losses such as
soiling [25], especially when cleaning events are not recorded or
soiling profiles are unknown. Therefore, depending on the
application, the optimum change-point detection model may
differ.

IV. CONCLUSIONS

A comparative analysis was performed to investigate
different open-source methodologies for detecting and
quantifying nonlinear PV degradation rate. Two of the
methodologies (i.e., FBP and RBeast) consisted of

decomposition models coupled to change-point analysis
techniques whereas the third one (SegmR) performed
simultaneous segmentation and extraction of slopes in the
different segments enabling the calculation of the corresponding
degradation rates.

Although all methods demonstrated good performance
(highest MAE and RMSE of 0.12%/year and 0.17%/year), the
results indicate two main conclusions. First, FBP exhibited the
lowest prediction errors in locating the positions of change-
points. Second, SegmR was the most accurate in computing the
corresponding degradation rates. This indicates that different
change-point detection models may be more appropriate
depending on the particular case, although this needs further
investigation by applying the models to failure detection,
soiling, etc.

Future work will expand on this study by investigating
additional change-point techniques and a longer list of scenarios
including three-step or greater degradation rate behavior to
incorporate the wear-out phase. Furthermore, synthetic data
generated for other PV module technologies will also be used to
demonstrate further the robustness of these methods.
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