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Abstract 
One hundred and two environmental and meteorological parameters have been 
investigated and compared with the performance of twenty soiling stations installed in 
the USA, in order to determine their ability to predict the soiling losses occurring on PV 
systems. The results of this investigation showed that the annual average of the daily 
mean particulate matter values recorded by monitoring stations deployed near the PV 
systems are the best soiling predictors, with coefficients of determination (R2) as high as 
0.82. The precipitation pattern was also found to be relevant: among the different 
meteorological parameters, the average length of dry periods had the best correlation 
with the soiling ratio. A preliminary investigation of two-variable regressions was 
attempted, and resulted in an adjusted R2 of 0.90 when a combination of PM2.5 and a 
binary classification for the average length of the dry period was introduced.  
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Introduction 
It is well known that PV performance is impacted by the accumulation of dust on the 
surface of PV panels, commonly referred to as “PV soiling losses”. PV soiling losses 
have been studied at various locations around the world; results are typically site-
specific and related to mounting angle and other factors. Reported annual losses for the 
United States have ranged from 0 to 6% [1–4], while annual losses are not readily 
available for some of the dustiest regions of the world, like the Middle East, India or 
China. In these locations, peak losses have been reported ranging between 20 and 
70% [5–10], but these values do not directly translate to annual losses, which are 
typically much lower. Annual PV soiling losses are generally the result of considering 
the soiling rate (typically the increase in loss per day) for a site in combination with 
rainfall patterns or other cleaning events. Kimber et al. [1] proposed one method for 
combining site soiling rates with rainfall patterns to derive time-series soiling losses and 
annual soiling losses. 
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Ideally, if the soiling rate data and rainfall data were available for a new PV site, the 
data could be used to predict soiling derates for the site that could be directly 
incorporated into existing PV performance models. Rainfall data are typically available 
for most locations around the world, but soiling rate data are only sparsely available 
based on examples from the literature. IIT Bombay has attempted to gather all such 
rates available in the literature, and has compiled them on a world map [11]. Although 
this map is a great resource, the soiling loss rates were each measured in a unique 
way, and therefore cannot be used to directly calculate PV energy losses. It is desirable 
to move beyond site-specific soiling loss studies and to have a model or other technique 
to determine expected soiling losses at a given location without taking new 
measurements at that location. If a model is developed that can predict variation in PV 
soiling based on site characteristics and system architecture soiling can be included in 
site cost evaluation and selection. Engineers can better design the system to minimize 
soiling and operation and maintenance plans can be improved based on expected 
soiling losses and system economics. Financiers can also provide lower interest rates 
as soiling derates become data driven rather than generalized. 

In this paper, the performance of PV soiling stations at 20 diverse sites in the USA are 
compared with existing meteorological data, pollution indexes, and land characteristics 
made available from national databases. The purpose is to determine if the differences 
in soiling losses at each site can be predicted using meteorological and other data. The 
present work extends the analysis reported in [12], by increasing the number of soiling 
stations considered, and by presenting a more in-depth analysis of each meteorological 
parameter. Moreover, compared to the previous publication, more accurate particulate 
matter data are considered, and a detailed analysis of the land characteristics is 
introduced. 

Data collection 

Soiling stations 
Data from 20 soiling stations installed in the USA have been investigated in this work. 
The stations have been operating in different time periods, ranging from 7 to 40 months, 
between 2013 and 2016: the data collection period of each station and the 
characteristics of their different installation locations are listed in Table 1. The stations 
have different structures and geometries, but they are all at the minimum composed of 
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two reference cells (or modules) and a pyranometer. Each device on these stations is 
regularly cleaned, with the exception of one of the two cells. The two devices are here 
referred to as “cleaned cell” and “soiled cell,” regardless of whether the soiling station 
makes use of reference cells or full modules. The short circuit current output of each cell 
is recorded along with different weather conditions, depending on the soiling station. 
Five stations have a single axis tracker, and the remaining ones are mounted at a fixed 
tilt, facing south.  

The soiling stations investigated in this work are located in eight different states of the 
USA, four of which have a coastline, including the Hawaiian island of Oahu. Several 
climate zones are represented in this study: each location has been characterized by a 
number of meteorological and environmental parameters. Each parameter has been 
identified as having potential impact on PV soiling losses. This identification is based 
either on the PV soiling analyses presented in the literature, or on a brainstorming effort 
by experts in the PV soiling community (The International PV Quality Assurance Task 
Force [PVQAT] Task Group 12) [13]. It is outside the scope of this work to provide a 
complete literature review of all of these parameters; an abbreviated list that warranted 
more discussion is included here, whereas the complete list, inclusive of description, 
ranges, and sources, is reported in the Appendix. Non-numeric parameters have been 
converted into both binary and numerical classifications to make them statistically 
analyzable. These new classifications have been based on the potential impact on 
soiling: higher binary and numerical values have been assigned to those categories that 
have potential for increased PV soiling. 

Soiling metrics 
The soiling losses at the 20 sites have been quantified using the short-circuit currents 
from both clean and dirty PV devices. Short-circuit current has been often used in 
literature and is still considered a good electrical parameter to estimate power loss in 
case of uniform soiling [50], which is the scope of the present investigation. All the PV 
performance and weather data have been converted into and analyzed as daily values. 
The quality of each dataset has been independently checked, and data recorded by the 
soiling stations have all been processed in the same way. Each daily average current 
(Isc(i)) considered in this work has been calculated as: 

 (1) 
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𝐼𝑠𝑐(𝑖) =
∑ 𝐼𝑠𝑐ℎ(ℎ) ∙ 1000 𝑊/𝑚2

𝑃𝑂𝐴(ℎ)
𝑘
ℎ=𝑗

𝑛
 

 

where Isch(h) is the mean hourly short-circuit current measured per each cell or module, 
POA is the mean hourly plane of array irradiance, h is the hour, j and k are the hours 
when the first and last current measurements are taken, and n is the number of hours 
used for the daily average. Where not available, the POA has been calculated using the 
hourly values of global horizontal irradiance and angle of incidence, by estimating the 
direct, the ground-reflected diffuse and the sky-diffuse components of global horizontal 
irradiance [47–49].  

The same filtering criteria applied in the previous work [12] have been used in the 
present study. Data have been collected as 1-minute data and averaged into hourly 
values. Only data recorded between 11:00 AM and 1:00 PM and under clear sky 
conditions (irradiance ≥ 500 W/m2) have been then considered for the calculation of the 
daily values, in order to remove data influenced by shading (which occurred in some 
stations). Although the soiling ratios registered during the central hours of the days are 
expected to be 1% higher than the daily averaged values [18], all sites are filtered in the 
same way, and therefore this bias should not impact the relative comparison between 
the sites investigated in this study. Moreover, those hours in which the normalized short 
circuit current of the cleaned cell was found to be lower than the 80% of its expected 
value have been removed.  

The daily soiling ratio (daily SRatio) measures the ratio between the normalized short-
circuit currents of soiled and cleaned PV cells for each ith-day, as follows: 

𝐷𝑎𝑖𝑙𝑦 𝑆𝑅𝑎𝑡𝑖𝑜(𝑖) =
𝐼𝑠𝑐𝑠𝑜𝑖𝑙𝑒𝑑(𝑖)
𝐼𝑠𝑐𝑐𝑙𝑒𝑎𝑛𝑒𝑑(𝑖)

 (2) 

 

where Iscsoiled and Isccleaned are the irradiance-corrected average daily short-circuit 
currents of the dirty and clean cells, respectively. The daily SRatio is always expected to 
be less than or equal to 1. The closer the daily SRatio is to 1, the lower the soiling 
losses registered at the site. 
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In order to compare the site soiling losses with the parameters listed in the Appendix, 
the average of the daily soiling ratios recorded at each site during the data collection 
period (SRatio) has been calculated as follows: 

𝑆𝑅𝑎𝑡𝑖𝑜(𝑠𝑖𝑡𝑒) =
∑ 𝑑𝑎𝑖𝑙𝑦 𝑆𝑅𝑎𝑡𝑖𝑜(𝑖)𝑛𝑑𝑎𝑦𝑠
𝑖=1

𝑛𝑑𝑎𝑦𝑠
 

(3) 

 

where ndays is the number of days the soiling station has been operating. Note that the 
SRatio(site) is indicative of annual soiling losses at a given site, but it should not be 
interpreted as an annual energy loss, as equation (3) does not weight the daily SRatio 
by the irradiation available each day. 

A second soiling parameter that has been included in the investigation is the soiling 
rate, which describes the rate at which the daily soiling ratio varies during non-rainy 
periods at each site. It has been determined using the method proposed by Deceglie et 
al. [51], and is the median of the slopes of the daily soiling ratio profile for any dry period 
longer than 14 days. The slopes have been calculated using the Theil-Sen method.  

Meteorological parameters 
There are no definitive conclusions in the literature as to which measures of 
precipitation have the highest correlation with PV soiling losses. For the six sites 
investigated in the previous work [12], it was found that the average number of days 
between rain events had the best correlation with the soiling losses. As this was a 
preliminary investigation, it was considered valuable to continue to take into account a 
range of metrics for capturing the precipitation statistics of a site. Therefore the 
precipitation profile of each site has been described through a larger number of 
parameters (listed in the Appendix). Hourly rainfall has been measured directly at most 
of the 20 soiling stations, but the precipitation statistics are derived from PRISM 
datasets [20–22] to treat each site consistently, and also to avoid using rain data from a 
small number of sites that posed quality control issues. Moreover, by comparing the 
soiling ratio behavior and the rainfall pattern at some sites, it was found that no cleaning 
effect was recorded on the soiled cell after several rain events of 0.3 mm or less. For 
this reason, a second set of precipitation parameters has been calculated: daily 
accumulated precipitation less than or equal to 0.3 mm is not considered a rain event in 
this set. 
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Wind speed, ambient temperature and relative humidity statistics have been determined 
directly from onsite measurements, with the exception of a few sites that did not include 
relative humidity data. Where not available, the relative humidity data were determined 
from the National Solar Radiation Database (NSRDB) [23–25]. The same database has 
been used to source a second set of wind data. The mean wind direction has been 
calculated using the methodology reported in Ref. [26]. In order to be able to analyze 
the impact of wind direction, along with the standard wind direction convention (0° to 
360°, where 0° represents calm wind and 360° wind blowing from north), a variable 
consisting of the absolute value of the difference between the mean wind direction and 
the azimuth orientation of the soiling stations at noon (south) has been introduced. This 
variable is equal to 0° if the mean wind direction is south, to 90° if either west or east, 
and to 180° if north. 

Pollution 
The US Environmental Protection Agency (EPA) defines particulate matter (PM) as a 
mixture of solid particles and liquid droplets suspended in air [27]. PM10 and PM2.5  
represent respectively the concentrations, in 1 m3 of air, of airborne particulate matter 
less than 10 microns and less than 2.5 microns in diameter. Therefore, PM2.5 is a subset 
of PM10. These smaller particles can typically remain airborne for longer times and 
travel for longer distances than the larger particles included in the PM10 because of their 
lower weight [28]. The effects of particulate matter on the performance of PV have 
already been described in literature [29–31]. A linear correlation between PM10 and the 
soiling accumulation rate (in grams of particulate accumulated on 1.0 m2 of PV cover 
plate per day) was first presented in Ref. [32], where two sites in Colorado were 
investigated. In the previous communication [12], it was found that, among the 
investigated parameters, PM10 and PM2.5 had better correlations with soiling losses than 
any other parameter. For this work, the particulate matter concentrations of each 
location have been directly sourced from the US EPA databases [33], taking into 
account only the time period when each PV system was operating, and then processed 
according to the methodology presented in Ref. [34]. 

The US EPA database reports the annual average of the daily mean values of PM10 and 
PM2.5, registered for each monitoring station deployed in the United States from 1990 
through 2015 [33]. For this reason, PM data for soiling stations active in 2016 have not 
been included. Only data from monitoring stations located within a determined distance 
from the investigated soiling stations have been used for this analysis: distances of 10 
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km, 30 km, 50 km, and 100 km have been considered. Data influenced by unusual or 
natural non-controllable events, marked as “Exceptional events” by the EPA, have been 
included, because these events are also expected to impact the soiling of PV. The 
particulate matter data have been processed using the procedures described in [34], 
where different statistical methods for mapping particulate matter data are described. In 
the present work, three methods are considered: 

● Mean with no weighting (Arithm. Mean): data are obtained as arithmetic mean 
of all monitoring stations located within a set distance from the PV soiling station. 

● Distance-weighted mean (DW Mean): monitoring stations closest to the soiling 
station are weighted more heavily than those at greater distances from the soiling 
station. 

● Declustered-configuration mean (Decl. Mean): data are obtained by taking 
into account the distance between the monitoring and the PV soiling stations, as 
well as the average distances among the monitoring sites. 

 
Declustering is a method that is mathematically designed to mitigate bias that occurs 
when multiple stations are located in close proximity to each other, and other stations 
are separated by greater distances (within the larger area under consideration). Indeed, 
in the case where a PV site is on the edge of an urban area, it is likely that there will be 
a larger number of stations clustered in the urban area and a smaller number near the 
site. The simple mean and the distance-weighted mean will give equal weight to all 
those stations that are clustered together. The declustering method will instead reduce 
the weight of spatially-clustered sites (based on distance between the clustered 
stations), so that together they have approximately the weight of one station at the given 
distance from the PV site.  

Beyond considering different distances and weighting methods for PM stations, 
alternate indicators of airborne pollutants were examined, such as the 2014 satellite-
derived PM2.5 levels [35,36], the total number of PM2.5 and PM10 emission sources 
located within a set distance of each site, and the estimated total amount of PM emitted 
by those sources [37]. A complete description of all parameters considered is reported 
in Appendix. 

Land cover 
The characteristics of the soil surface of each site have been determined by using the 
land survey made available from the United States Department of Agriculture (USDA) 
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[38]. The USDA classifies the land cover in different categories: the ground cover at 
each of the 20 sites, shown in Table 2, has been obtained by using the exact 
coordinates of each soiling station, and then confirmed through a visual inspection of 
the satellite imagery of the area surrounding the soiling station. Categories have then 
been grouped into both numerical and binary classes. 

Wildfire Hazard Potential 
Wildfire emissions have an impact on air quality, and regions that are prone to wildfires 
are also often more arid; both have a potential relationship with soiling on PV panels. 
According to the EPA [39], between 2002 and 2014, wildfires were responsible for more 
than 16% and 5% of the total PM2.5 and PM10 emissions in the US, respectively.  

The wildfire hazard potential of each site has been identified through a map developed 
by the US Forest Service [40]. The fire regime is described by two categories: severity 
and frequency of wildfires. The sites considered in this work can be grouped in four 
levels of risk, summarized in Table 3, which have been converted into four numeric 
categories (0 to 3, increasing with wildfire risk and severity), and into two binary 
categories (0 for non-frequency and 1 for frequent). The site in Hawaii has been 
included in the “35 to 100+ years; Mixed Severity” regime. 

Presence of roadways 
It is known that the level of pollutants is enhanced in the proximity of roadways [41]. 
Even if dependent on other factors, such as the traffic volume, the weather conditions or 
the season, pollutant concentrations have been found to decrease with the distance 
from the road, until they decay to surrounding background levels. Analyzing the results 
of 41 previous studies, Karner et al. [42] found that most pollutants reached background 
levels at about 0.5 km of the roadway, whereas the PM2.5 did not reach the background 
level until beyond 1 km. The EPA assumes a decay to background levels within 180 m 
downwind from the roadways, and reports higher transport distances when low-speed 
winds are present [43]. 

Two types of roads have been considered in the present study: highways and unpaved 
roads. The distances in km between the site and each of these two categories of road 
have been used for the present study. 

This article is protected by copyright. All rights reserved.



Distance from the ocean 
The distance of each site from the seashore has been considered as well. Indeed, it is 
known that the chloride deposition rate on an inland surface decreases with increasing 
the distance from the sea. Different works [44–46] proposed an inverse exponential 
relationship between the distance from the sea and the mass deposition flux of sea-salt 
aerosols. Meira and his colleagues [46] collected experimental data on the Brazilian 
coast and compared the results with previous works. They reported that most of the 
reduction in chloride deposition takes place in the first 500 m from the coastline, even if 
the spatial deposition profile is strongly influenced by different factors, such as the wind 
speed and the deposition velocity [47,48]. 

A second major source of chloride aerosols is road salt, used to deice roads in different 
states (called the sea belt states) [49]. Indeed, depending on the wind conditions, road 
salt spray has been found as far as 150 m from the roadway [50]. In this case, a binary 
classification has been considered, to distinguish if road salt is used for the de-icing in 
the state (1) or not (0). 

Results 
102 independent variables were considered for predicting the variation in both the 
SRatio and SRate at the 20 sites (see the Appendix for a complete list and definitions of 
each). The impact of each parameter on the soiling losses was determined by 
calculating the coefficient of determination (R2). Of the 102 variables considered, only 
the measurements of PM10 and PM2.5 levels, the number of nearby PM2.5 and PM10 
sources, and the variables used to represent information about rainfall statistics showed 
R2 near or above 0.5. As discussed previously, many different metrics were considered 
to quantify both PM level and rainfall statistics, because there was no clear indication in 
the literature of the best way to quantify these parameters for predicting soiling losses. 
The proposed approach was to let the R2 determine which metric was best.  

In the case of the PM10 and PM2.5 metrics, this evaluation did not prove so simple. As 
proposed, PM2.5 and PM10 measurements were calculated using monitoring stations 
within 10, 30, 50, and 100 km of the soiling site, and considered a “mean with no 
weighting”, a “distance-weighted mean”, and a “declustered-configuration mean” (as 
described in the “Pollution” section). The results of this step showed that none of the 20 
sites had PM10 stations within 10 km, and only four sites had PM2.5 stations within 10 
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km. At 30 km, there were 11 soiling stations that allowed for PM10 and PM2.5 
calculations. Considering this, a reduced comparison was completed to compare the 
different metrics using only the 11 sites at 30, 50, and 100 km. The results of this 
comparison are given in Table 4. 

Both 30 km and 50 km distances show a reasonable correlation between the various 
PM10 and PM2.5 calculations and the soiling losses, but the correlations drop 
significantly in some cases for the 100 km distance. In order to test PM correlations for 
all 20 sites, a combination of highest-correlating measurements from the 11 sites 
(underlined in Table 4) and the next best alternative were combined to create the “best 
available monitoring stations”. For PM2.5, the arithmetic mean at 30 km performed best, 
so these values were retained and the values for four additional sites were calculated 
using the 50 km arithmetic mean, and the values for the final five sites were taken from 
a single monitoring station measurement that was closest to the PV site. In the case of 
PM10, the arithmetic mean at 50 km performed best, so these values were retained, as 
well as four additional sites available for the 100 km arithmetic mean. The values for the 
final five sites were calculated using a single PM10 monitoring station measurement that 
was closest to the PV site. These measurements together are considered the “average 
PM of best available monitoring stations” and allow the comparison of all 20 sites while 
considering particulate matter, alternate indicators of airborne pollution, rainfall, land 
characteristics and other site parameters. “Best available” should not be interpreted as 
“most accurate” or “true” for the site; rather, these are estimates for PM at the site 
considering the proximity of available PM measurement stations. 

For all 20 sites, Fig. 1 shows the parameters whose correlations with the Soiling Ratio 
and/or Soiling Rate have the highest R2 values. In order to discard the parameters with 
no statistical significance, any regression where at least one variable had p-value 
greater than 0.05 has not been shown. 
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Fig. 1 - Parameters with the highest coefficient of determination when related to soiling ratios and soiling rates 

Among all the investigated parameters, only direct measurements of airborne 
particulates, the number of PM10 and PM2.5 pollution sources, and some metrics 
associated with precipitation showed significant correlations with the soiling ratio and 
the soiling rate. Both the PM10 and the PM2.5 derived from the best available monitoring 
station combinations show an R2 of 0.82 when related to the SRatio. The R2 drops to 
about 0.5 for both the average length of the dry period and the maximum length of the 
dry period. All other predictive variables tested (see the Appendix) showed no 
significant correlation with either the soiling ratio or soiling rate for the 20 sites under 
test, with the only exception of the wind angle of incidence at noon, calculated using the 
NSRDB data [23–25]. 

The above results are for single-variable regressions, but significance of both 
particulates and rainfall in predicting soiling ratios and soiling rates suggests 
considering a two-variable regression. Table 5 therefore provides the “adjusted R2” 

(adjR2, which accounts for the bias in adding an additional variable) for running a two-
variable multilinear regression with all combinations of the variables that had 
significance in the single-variable regression. Twenty observations of the independent 
variable (which corresponds to the number of sites that were investigated) is the 
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statistical minimum for running a two-variable regression, and therefore these results 
should be considered preliminary, with the expectation that the results could change 
with the addition of more sites or observations. Only two combinations have been found 
able to predict the SRatio with accuracies higher than that found for a single-variable 
regression. No combination was able to enhance the maximum R2 registered for the 
single-variable SRate regressions. 

Combinations of the “average PM10 of best available monitoring stations” with the 
“average PM2.5 of best available monitoring stations” (adjR2 = 0.88) or the “average 
PM10 of closest monitoring stations” (adjR2 = 0.87) are those able to return an adjusted 
R2 higher than the maximum R2 of 0.82 for a single-variable approach. Interpretation of 
the R2 for multiple linear regression results typically assumes that there are no strong 
cross-correlations between the independent variables. In the case of each of these two 
variable combinations, this assumption is violated, and therefore it is not clear that any 
improvement is made with a two-variable approach. 

From the results shown in Table 5, it can be seen that a basic two-variable regression 
did not exceed an adjusted coefficient of determination of 0.73, below the maximum 
obtained so far with a single-variable regression (0.82). Moreover, a combination 
between pollution and rainfall parameters would be limited to R2 values up to 0.68. In an 
additional attempt to validate the hypothesis that both particulate levels and rainfall data 
should have significance, the data were examined for clustering patterns associated 
with rainfall parameters. Plots were created of the soiling ratio against measurements of 
PM, and then color coding against the different metrics of rainfall. Fig. 2 shows a plot of 
the soiling ratio versus PM2.5, which is then color coded for the length of dry periods. 
This plot shows that the sites with the longest average dry periods are also some of the 
sites with the lowest soiling ratios (most impacted by soiling). With this in mind, a binary 
variable was created that grouped sites based on the average length of the dry period. 
Sites with an average length of dry period less than 20 days were identified with a 0, 
and sites with an average dry period length greater than or equal to 20 days were 
identified with a 1. Two additional two-variable regressions were run pairing this binary 
variable with PM2.5 or PM10 from the best available monitoring stations. The run with 
PM2.5 showed that both variables were significant, and the adjusted R2 was 0.90. Again, 
this should be considered a preliminary result, but it confirms that both a PM metric and 
a rainfall metric are significant as predictors of soiling loss ratio. 
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Fig. 2 - Soiling Ratio of each station plotted against the PM2.5 obtained by the best available monitoring stations. 

Discussion 
An R2 of 0.82 was achieved when using either “average PM10 of best available 
monitoring stations” or “average PM2.5 of best available monitoring stations” to predict 
the site soiling ratio, as shown in Fig. 1. The correlation between particulate matter and 
the soiling rate can be explained, because particulate matter is generally measured 
through a gravimetric method, and airborne particles can be expected to deposit onto 
the PV cells and modules similarly to how they are collected by the monitoring stations. 
We believe that the R2 of 0.82 for the 20 sites could be increased if more accurate data 
were available for PM values within 30 to 50 km of the test site. In other words, both 
PM2.5 and PM10 measurements show potential to be highly predictive of the site soiling 
ratio, but available measurements of PM10 and PM2.5 are limited for some of the sites. In 
some cases, the closest monitoring stations are located 80 or more km away from the 
soiling stations investigated in this study, and the readings of these stations can be 
expected to be less representative than closer stations.  
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The results show no clear conclusion as to whether PM10 or PM2.5 is a better predictor 
of the soiling ratio. The PM2.5 values from the closest monitoring station show a higher 
correlation with the soiling rate than the PM10 values from the closest monitoring station, 
but because not all sites had stations within the same proximity, caution should be 
taken in interpreting this. The smaller PM2.5 particulates are indeed able to travel further 
distances before settling from the air, which suggests that for distant stations, PM2.5 
could be a better choice. On the other hand, Ref. [34] discusses PM transport being 
blocked by boundaries where there are changes in elevation. For example, if there is a 
PM source in a valley, the PM does not easily leave the valley. Therefore, only taking 
distance into account neglects the elevation factor, where stations within short distances 
of each other can have very different PM levels. Efforts to establish an a-priori method 
for estimating PV site PM levels (from nearby PM stations) were limited by the fact that 
only four PV sites had PM2.5 measurements within 10 km, eleven had PM2.5 and PM10 
stations within 30 km and in some cases the nearest station was 80 km away. Although 
an a-priori method was not determined, PM2.5 and PM10 station data ranging from 10 to 
80 km was able to predict 82% of the variation in the average SRatio for the 20 sites in 
this study. This could be considered a surprising result for several reasons. First, PM 
values can vary by large amounts over distances of 80 km. Although this is true, this 
study does not use the distant PM stations to determine absolute PM levels at the PV 
site but rather to provide a long term relative comparison between the 20 PV sites. In 
other words PM stations as far 80 km away are able to help distinguish if that one PV 
site is dirtier than another on long term basis. Second, Ref. [5] showed poor correlation 
between adjacent measurements of the daily PM10 and the daily soiling rate and Ref. 
[51] showed that on-site PM10 measurements were only able to predict 9% of the 
variation of the mass loading rate on PV glass. Both of these studies were examining 
variation in PM10 and PV soiling metrics over a very short time period. In these same 
studies it was indicated that these metrics are highly variable and depend on many 
factors such as wind speed, PM size distributions, relative humidity and a number of 
other local factors. The results of the present study use instead average PM values over 
longer periods. The high correlations achieved between nearby PM values and the site 
soiling ratio suggest that long term average PM measurements can be used to predict 
the variation in soiling losses between locations. 

It is important to highlight that the satellite-based PM2.5 did not show any significant 
correlation with soiling losses (p-value was found to be higher than 0.10). This might be 
due to the different time scales between satellite-derived PM2.5 (based on the 2013 and 
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2014 data for this analysis) and the data collection times for the soiling stations (ranging 
between 2013 and 2016). Moreover, the numerous monitoring stations installed in the 
USA and used in this study could have provided more accurate values than the 0.1° × 
0.1° grid available on the satellite map. Lastly, the methodology used to draw this 
satellite-based dataset is different from the gravimetric one generally employed in the 
monitoring stations. The satellite-based dataset is built by using aerosol optical depth 
data available and validated using nearby ground stations [35]. This means that this 
dataset directly estimates the concentration of suspended particulate and this, even if 
expected to be related to the deposition rate, might differ from the amount of particles 
deposited on a surface. Despite that, the utility of satellite-based data should be still 
investigated, both because of the potential for improvement of satellite-based models 
and the lack of particulate matter data available in many regions of the world. 

It is interesting to note that the number of PM sources reported in the 2011 National 
Emission Inventory (NEI) has been found to be a useful metric for the prediction of the 
soiling losses. In particular, the number of PM sources within 30 km resulted in a 
coefficient of determination on the order of 0.5 for both the soiling ratio and the soiling 
rate. On the other hand, the total amount of PM emitted by these sources did not show 
any significance when related to the soiling ratio or the soiling rate. This might be due to 
the different times at which the NEI was released and at which the soiling stations have 
been operating, and to the fact that the amount of emitted particulates is based on 
estimations.  

It is not surprising that, among the precipitation characteristics, the time between 
consecutive rainfalls (the average length of the dry period) has shown the strongest 
correlation with the soiling ratio. Assuming the same soiling rate, longer times between 
consecutive rainfalls should lead to a greater reduction in soiling ratio than for shorter 
time periods. Although daily rainfall of less than 0.3 mm appeared to have no cleaning 
effect of the reference cells, modifying the PRISM dataset to exclude these rain events 
resulted in a lower correlation than the unfiltered PRISM dataset. It is also important to 
highlight the different impacts between the length of the dry periods and the percentage 
of rainy days. Soiling losses are expected to take place in the dry days between 
consecutive rainfalls. The number of rainy days alone does not differentiate between 
consecutive and non-consecutive rainy days and, for this reason, does not appear to be 
a reliable soiling predictor. 
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The average length of the dry period takes into account the precipitation profile of the 
whole year and may be the best metric for predicting annual soiling ratios, but the 
maximum length between consecutive rainfalls gives an idea of the seasonal trend. 
During these longest non-rainy time periods, the SRatio is expected to reach its 
minimum, and these are times when planned cleaning events may be most important. 
For the determination of annual or long-term losses, therefore, the average length of the 
dry period should be considered, whereas the maximum dry period might become the 
dominant factor in seasonal analysis and cleaning schedules. 

Several interesting points of discussion can be noted from Fig. 2. First, only five of the 
twenty sites under study had average soiling ratios less than 0.98. This indicates that 
this study would benefit by increasing the number of sites at some of the dirtiest 
locations, but it also points out that a wide range of geographic locations still cluster with 
soiling ratios between 0.98 and 1.00. As both PM measurements and the average 
length between rainfalls showed a correlation with the average soiling ratios, it may be 
that with data from enough sites, a set of boundary conditions could be established to 
distinguish between low soiling sites (SRatio > 0.98) and more problematic sites. For 
example, if the annual PM2.5 is below X μg/m3 or the annual average length of the dry 
period is less than Y days, then the annual SRatio will be 0.98 or greater. It should also 
be noted that this work does not include some of the most extreme soiling locations 
such as the Middle East, India, and China. It is possible that in these extreme climates 
those correlations between long term average PM values and the long term soiling ratio 
will not hold true. 

The results in this work should not be considered exhaustive. Soiling loss data from 20 
soiling sites have provided valuable statistical results, but the analysis was limited to 
just a two-variable regression. In some cases, the limited number of sites did not allow 
an accurate discussion. For example, it is worth nothing that the variable describing the 
angle of incidence between the cell’s orientation and the mean wind direction, derived 
from the NSRDB, showed correlations both with the SRatio and the SRate, with R2 in 
the order of 0.22. In particular, the soiling metrics have been found to decrease when 
the angle increases. Despite that, because of the low value of the coefficient of 
correlation, it has not been possible to conduct an in-depth analysis of this result. 
Moreover, some parameters, such as the height at which modules are installed, the tilt 
angle, or the tracking system, have been previously proven to have an impact on soiling 
losses when varied at the same site, and therefore are still expected to have an impact 
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on soiling at sites with otherwise similar conditions. In the present investigation, only 
ground-mounted soiling stations have been considered, predominantly installed at one 
or two meters from the soil surface. Twenty-five percent of the soiling stations had a 
single-axis tracker, whereas the others had cells oriented at a fixed tilt angle. Of the 
fixed stations, eleven were at 20° or 25°, two were at 45°, one was at 35°, and one was 
at 10°. In order to get reliable statistics on tilt, large enough clusters are needed to 
distinguish each group. The sites analyzed in this study did not meet this requirement 
for tilt angle, height and other secondary variables. In order to extend the current 
investigation, data from a larger number of sites should be analyzed. This would 
enhance the ability to distinguish the level of impact of parameters that are secondary to 
PM levels and rainfall statistics. 

Conclusions 
The present work reports the results of a systematic analysis of 20 soiling stations 
installed in the USA. The main scope of the investigation has been the identification of 
those local parameters that can best predict the soiling losses at any site. For this 
reason, a correlation analysis has been run between more than one hundred 
parameters describing the weather profile, pollution, and the land characteristic of each 
site, and the ratio between the short-circuit currents of a soiled cell and a regularly-
cleaned cell. The data collection process has been explained, and the description of all 
the parameters has been reported in an Appendix. 

The results of the investigation, which quantify the strength of correlations between 
soiling and environmental factors (summarized in Fig. 1), showed that only metrics of 
particulate matter and some parameters describing the precipitation pattern had 
significant correlations with the soiling metrics. In particular, the annual average of the 
daily mean values of PM10 and PM2.5 have been found to be the best parameters to 
predict the soiling losses at the investigated sites, both having a R2 of 0.82. 
Considering, instead, the number of particulate matter emission sources located within 
a 30 to 50 km radius of the soiling site lowers the R2 to a value between 0.45 and 0.55. 
Among the precipitation metrics, the average number of days between consecutive 
rainfalls showed the highest correlation with the soiling ratio. Investigations were 
completed to determine optimal distances and statistical techniques for determining the 
best metrics for PM10 and PM2.5 for a PV site, but limitations in available stations 
prevented a clear conclusion. The correlation results that were achieved were primarily 

This article is protected by copyright. All rights reserved.



for PM10 and PM2.5 stations within 50 km of the PV site, and therefore PM 
measurements within 50 km of a site can be said to provide meaningful data towards 
predicting PV soiling losses.  

The number of soiling stations analyzed here (20) was considered the minimum 
acceptable for a preliminary investigation of a two-variable multilinear regression for the 
prediction of PV soiling losses. Among all the possible permutations, only two of them, 
obtained by the combination of two pollution parameters, have been able to enhance 
the correlation with the SRatio compared to the best single-variable regression 
available. None of the initial two-variable regressions conducted which included both a 
pollution and a rainfall parameter showed an R2 higher than 0.68 and a combination of 
PM10 and mean wind direction resulted in a R2 of 0.73. By introducing instead a binary 
description of the average length of the dry period, a two-variable regression with the 
PM2.5 resulted in an adjusted R2 as high as 0.90. The analysis of a larger number of 
soiling stations, also installed in various countries and with high expected soiling losses, 
would allow extending the present study to investigate the effect of secondary 
parameters that are known to impact soiling losses.  
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Table 1 - Description of location, land cover and characteristic weather for each soiling site. The land cover has been 
determined by using the USDA soil survey [38] and then checked by visually inspecting the area surrounding the 
soiling station using satellite imagery. The characteristic weather has been identified by using the Köppen-Geiger 
climate classification [52]. 

Site 

Data collection 
period 

[mm/yy - 
mm/yy] 

County Land Cover Characteristic weather 

A 09/14 - 05/16 San Miguel, 
NM Shrub/Scrub Arid cold steppe 

B 06/14 -12/15  Luna, NM Shrub/Scrub Cold arid desert 
C 12/14 -12/15 Imperial, CA Cultivated Crops Hot arid desert 
D 05/15 - 06/16 Madera, CA Cultivated Crops Arid cold steppe 

E 02/13 - 12/15 Kern, CA Shrub/Scrub Warm temperate with dry 
summer 

F 07/14 - 12/15 Kern, CA Shrub/Scrub Warm temperate with dry 
summer 

G 01/14 - 06/16 Yuma, AZ Shrub/Scrub Hot arid desert 

H 06/15 - 07/16 San Luis 
Obispo, CA Shrub/Scrub Warm temperate with dry 

summer 
I 01/13 - 12/15 Pima, AZ Shrub/Scrub Arid hot steppe 

J 05/15 - 12/15 Honolulu, HI Hay/Pasture Equatorial savannah with dry 
summer 

K 02/13 - 06/14 Kern, CA Cultivated Crops Arid cold steppe 
L 02/13 - 11/14 Kern, CA Cultivated Crops Arid cold steppe 

M 09/14 - 08/15 Riverside, CA Developed, Open 
Space 

Warm temperate with hot dry 
summer 

N 07/14 - 08/15 Pueblo, CO Shrub/Scrub Arid cold steppe 
O 12/14 - 12/15 Winkler, TX Shrub/Scrub Arid cold steppe 

P 04/14 - 04/15 Iron, UT Shrub/Scrub Warm temperate with dry 
summer 

Q 12/13 - 01/15 Kern, CA Shrub/Scrub Warm temperate with dry 
summer 

R 12/13 - 02/15 Polk, FL Shrub/Scrub Warm temperate, fully humid, 
with hot summer 

S 05/13 - 05/16 Arapahoe, CO Cultivated Crops Arid cold steppe 

T 12/14 - 09/16 Maricopa, AZ Developed, Medium 
Intensity Hot arid desert 
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Table 2 - Soil cover categories of the investigated sites and related numerical and binary classifications. The 
description of each category has been sourced from [53]. 

Classification Description Numerical 
class 

Binary 
class 

Developed, Medium 
Intensity 

Areas with a mixture of constructed 
materials and vegetation. Impervious 
surfaces account for 50% to 79% of the 
total cover. 

1 0 

Developed, open space 

Areas with a mixture of some constructed 
materials, but mostly vegetation in the form 
of lawn grasses. Impervious surfaces 
account for less than 20% of total cover. 

1 0 

Grassland/Herbaceous 

Areas dominated by gramanoid or 
herbaceous vegetation, generally greater 
than 80% of total vegetation. Not subject to 
intensive management (i.e. tilling). 

2 1 

Hay/Pasture 

Areas of grasses, legumes, or grass-
legume mixtures planted for livestock 
grazing or the production of seed or hay 
crops, typically on a perennial cycle. 

2 1 

Shrub/Scrub  
Areas dominated by shrubs; less than 5 
meters tall with shrub canopy typically 
greater than 20% of total vegetation. 

3 1 

Cultivated Crops 

Areas used for the production of annual 
crops, such as corn, soybeans, vegetables, 
tobacco, and cotton, and also perennial 
woody crops such as orchards and 
vineyards. 

3 1 
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Table 3 - The fire regime categories, their definitions and the numerical and binary classifications introduced for this 
study. The description of each fire regime category is reported by [25]. 

Fire regime Description Numeric 
category 

Binary 
category 

35-100+ years;  
Mixed Severity 

Non-frequent mixed-severity fires replacing up 
to 75% of the dominant overstock vegetation. 0 0 

35-100+ years;  
Stand 

Replacement 

Non-frequent fires lethal to the most ground 
vegetation. 1 0 

0-35 years;  
Low Severity 

Frequent low-severity fires replacing less than 
25% of the dominant overstock vegetation. 2 1 

0-35 years;  
Stand 

Replacement 

Frequent high-severity fires replacing more 
than 75% of the dominant overstock 
vegetation. 

3 1 
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Table 4 - Comparison of metrics for reporting PM10 and PM2.5 levels at the 11 sites with at least one monitoring 
station within 30 km. The best coefficients of determination are underlined. The averaging methods have been 
described in the “Pollution” section. 

Distance 30 km 50 km 100 km 

Averaging 
method 

Decl. 
Mean 

DW 
Mean 

Arithm. 
Mean 

Decl. 
Mean 

DW 
Mean 

Arithm. 
Mean 

Decl. 
Mean 

DW 
Mean 

Arithm. 
Mean 

R2 SRatio 
PM10 

0.76 0.79 0.81 0.77 0.79 0.84 0.02 0.70 0.39 

R2 SRatio 
PM2.5 

0.82 0.84 0.84 0.81 0.81 0.80 0.74 0.81 0.57 
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Table 5 - Adjusted R2 for two-variable linear regressions using all the possible combinations among the parameters 
shown in Fig. 1. Cells colored in grey indicate that the independent variable is the SRate, whereas non-colored cells 
indicate that the independent variable is the SRatio. Empty cells mean that at least one of the variables had a p-value 
higher than 0.05. 
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Average PM10of 
best available 

monitoring 
stations 

 0.88 0.87               

Average PM2.5 
of best available 

monitoring 
stations 

                 

Average PM2.5 
of closest 

monitoring 
stations 

                 

Average PM10of 
closest 

monitoring 
stations 

                0.73 

Number of 
PM10sources 
within 10 km           0.59  0.54  0.40 0.38  

Number of 
PM2.5 sources 
within 10 km           0.59  0.54  0.40 0.38  

Number of 
PM10sources 
within 30 km           0.69 0.61 0.68 0.60 0.62 0.62  

Number of 
PM2.5 sources 
within 30 km           0.69 0.61 0.68 0.60 0.62 0.62  

Number of 
PM10sources 
within 50 km 

0.61          0.64  0.60 0.52 0.51 0.51  

Number of 
PM2.5 sources 
within 50 km 

0.61          0.64  0.60 0.52 0.51 0.51  

Average length 
of the dry 

period         0.59 0.59        

Max length of 
the dry period       0.67 0.67 0.67 0.67        

Average length 
of the dry 

period (only rain 
> 0.3 mm) 

                 

Max length of 
the dry period 
(only rain > 0.3 

mm) 
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Number of rainy 
days per year           0.47 0.70      

Number of rainy 
days per year 

(only rain > 0.3 
mm) 

          0.48 0.70      

Mean wind 
direction 

(AOI at noon) 
                 

Appendix 
Complete list of parameters considered in the present investigation. 

Parameter Description Range Source 
Site characteristics 

Altitude [m] Vertical distance between the site's ground 
and the average sea level 

-40 to 
1820   

Distance from highway 
[km] 

Distance between the site and the closest 
highway 

 0.75 to 
15.44  

Distance from dirt road 
[km] 

Distance between the site and the closest 
dirt road 

0.04 to 
9.38  

Distance from ocean [km] Distance between the site and the closest 
seashore 5 to 1222  

Salt belt state 
Binary classification attributed to the soiling 
stations depending on the state's legislation 
on the use of de-icing road salt. 

0 (if salt is 
not used) 
to 1 

 

Fire regime (Binary) Binary classification attributed to the soiling 
stations depending on the wildfire risk. 

0 (if low 
risk and 
frequency) 
to 1 

[40] 

Fire regime (Numerical) 
Numerical classification attributed to the 
soiling stations depending on the wildfire 
risk. 

0 (if low 
risk and 
frequency) 
to 3 

[40] 

Land cover (Numerical) 
Numerical classification attributed to the 
soiling stations depending on the land 
cover. 

1 (if low 
impact 
from land 
cover is 
expected) 
to 3  

[38] 
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Land cover (Binary) Binary classification attributed to the soiling 
stations depending on the land cover. 

0 (if low 
impact 
from land 
cover is 
expected) 
to 1  

[38] 

Wind erosion index [tons] Amount of soil yearly removed per acre due 
to wind erosion 48 to 220 [38] 

Wind erosion group Classes of susceptibility of ground surface 
layer to wind erosion 

1 (if high) 
to 6 [38] 

Percentage of clay in the 
soil [%] 

Mineral particles less than 0.002mm in 
equivalent diameter as a weight percentage 
of the less than 2.0mm fraction 

1.5 to 42.5 [38] 

Soil pH Relative acidity or alkalinity of the soil 
surface layer. 5.6 to 8.2 [38] 

Soiling station characteristics 

Time period [days] Number of days between the start and the 
end of the data acquisition 

214 to 
1096  

Height [m] Vertical distance between the center of the 
module and the ground 0.7 to 2  

Tilt [deg] 
Tilt angle of the modules on the soiling 
stations. For tracked system, a tilt of 45 
degrees has been considered. 

10 to 45  

Tilt (Numerical) 
Numerical classification attributed to the 
soiling stations depending on the modules 
tilt angle. 

0 (if 
tracked) to 
5 (if above 
40°) 

 

Tracking 
Numerical classification attributed to the 
soiling stations depending on the presence 
or not of a tracking system. 

1 (if 
tracked) to 
2 (if fixed) 

 

Particulate matter 

Distance to nearest PM10 
station [km] 

Distance between the soiling station and the 
closest PM10 monitoring station operating 
during the investigated period. 

4.5 to 86 [33] 

PM10 recorded by the 
nearest PM10 monitoring 
station [μg/m3] 

Average of the annual PM10 values 
recorded each year by the closest 
monitoring stations. 

10 to 60 [33] 

Distance to nearest PM2.5 
station [km] 

Distance between the soiling station and the 
closest PM2.5 monitoring station operating 
during the investigated period. 

4.8 to 147 [33] 

PM2.5 recorded by the 
nearest PM2.5 monitoring 
station [μg/m3] 

Average of the annual PM2.5 values 
recorded each year by the closest 
monitoring stations. 

4.4 to 22 [33] 
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Number of PM10 sources 
within a set distance 

Number of PM10 sources located within a 
set distance from the soiling station, as 
listed in the 2011 National Emissions 
Inventory. Repeated for distances of 10 km, 
30 km, 50 km and 100 km. 

0 to 67 [10 
km] 
1 to 548 
[30 km] 
2 to 751 
[50 km] 
29 to 1736 
[100 km] 

[37] 

PM10 produced by sources 
within a set distance [tons] 

Amount of PM10 emitted by all the sources 
located within a set radius from the soiling 
stations, as listed in the 2011 National 
Emissions Inventory. Repeated for 
distances of 10 km, 30 km, 50 km and 100 
km. 

0 to 591 
[10 km] 
1 to 548 
[30 km] 
0 to 4456 
[50 km] 
24 to 6944 
[100 km] 

[37] 

Number of PM2.5 sources 
within a set distance 

Number of PM2.5 sources located within a 
set distance from the soiling station, as 
listed in the 2011 National Emissions 
Inventory. Repeated for distances of 10 km, 
30 km, 50 km and 100 km. 

0 to 67 [10 
km] 
1 to 548 
[30 km] 
2 to 751 
[50 km] 
29 to 1736 
[100 km] 

[37] 

PM2.5 produced by 
sources within a set 
distance [tons] 

Amount of PM2.5 emitted by all the sources 
located within a set radius from the soiling 
stations, as listed in the 2011 National 
Emissions Inventory. Repeated for 
distances of 10 km, 30 km, 50 km and 100 
km. 

0 to 279 
[10 km] 
0 to 2016 
[30 km] 
2 to 2673 
[50 km] 
22 to 4385 
[100 km] 

[37] 

Arithmetic mean of 
thePM10 recorded by 
monitoring stations 
located within a set 
distance [μg/m3] 

PM10 calculated as arithmetic mean of the 
annual average of the daily records of the 
stations located within a set distance from 
the PV soiling station. Repeated for 
distances of 10 km, 30 km, 50 km and 100 
km. 

14.0 to 
25.9 [10 
km] 
14.1 to 
56.3 [30 
km] 
16.0 to 
56.3 [50 
km] 
12.9 to 
44.4 [100 
km] 

[33] 
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Distance weighted mean 
of the PM10 recorded by 
monitoring stations 
located within a set 
distance [μg/m3] 

PM10 calculated as mean of the annual 
average of the daily records of the stations 
located within a set distance, weighted 
considering each station’s distance from the 
PV soiling station. Repeated for distances 
of 10 km, 30 km, 50 km and 100 km. 

14.0 to 
25.9 [10 
km] 
14.0 to 
56.3 [30 
km] 
14.3 to 
56.3 [50 
km] 
12.9 to 
53.4 [100 
km] 

[33] 

Declustered configuration 
mean of the PM10 
recorded by monitoring 
stations located within a 
set distance [μg/m3] 

PM10 calculated as mean of the annual 
average of the daily records of the stations 
located within a set distance, considering 
the distance from the PV soiling station as 
well as the average distances among the 
monitoring stations. Repeated for distances 
of 10 km, 30 km, 50 km and 100 km. 

14.0 to 
25.9 [10 
km] 
14.0 to 
56.3 [30 
km] 
14.1 to 
56.4 [50 
km] 
12.9 to 
47.5 [100 
km] 

[33] 

Number of PM10 stations 
within a set distance 

Number of PM10 monitoring stations 
installed within a set radius from the PV 
soiling station. Repeated for distances of 10 
km, 30 km, 50 km and 100 km. 

0 to 1 [10 
km] 
0 to 9 [30 
km] 
0 to 19 [50 
km] 
1 to 28 
[100 km] 

[33] 

Arithmetic mean of the 
PM2.5 recorded by 
monitoring stations 
located within a set 
distance [μg/m3] 

PM2.5 calculated as arithmetic mean of the 
annual average of the daily records of the 
stations located within a set distance from 
the PV soiling station. Repeated for 
distances of 10 km, 30 km, 50 km and 100 
km. 

5.2 to 6.5 
[10 km] 
4.5 to 20.4 
[30 km] 
4.5 to 19.7 
[50 km] 
4.5 to 13.1 
[100 km] 

[33] 
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Distance weighted mean 
of the PM2.5 recorded by 
monitoring stations 
located within a set 
distance [μg/m3] 

PM2.5 calculated as mean of the annual 
average of the daily records of the stations 
located within a set distance, weighted 
considering each station’s distance from the 
PV soiling station. Repeated for distances 
of 10 km, 30 km, 50 km and 100 km. 

5.2 to 6.5 
[10 km] 
5.0 to 20.7 
[30 km] 
5.0 to 19.8 
[50 km] 
4.5 to 19.4 
[100 km] 

[33] 

Declustered configuration 
mean of the PM2.5 
recorded by monitoring 
stations located within a 
set distance [μg/m3] 

PM2.5 calculated as mean of the annual 
average of the daily records of the stations 
located within a set distance, considering 
the distance from the PV soiling station as 
well as the average distances among the 
monitoring stations. Repeated for distances 
of 10 km, 30 km, 50 km and 100 km. 

5.2 to 6.5 
[10 km] 
5.0 to 21.8 
[30 km] 
5.0 to 21.6 
[50 km] 
4.5 to 21.5 
[100 km] 

[33] 

Number of PM2.5 stations 
within a set distance 

Number of PM2.5 monitoring stations 
installed within a set radius from the PV 
soiling station. Repeated for distances of 10 
km, 30 km, 50 km and 100 km. 

0 to 1 [10 
km] 
0 to 5 [30 
km] 
0 to 12 [50 
km] 
0 to 12 
[100 km] 

[33] 

Average PM10 of best 
available monitoring 
stations [μg/m3] 

Combination of the arithmetical average of 
the PM10 recorded by stations within 50 km 
and the PM10 recorded by the nearest PM10 
monitoring station for those sites with no 
PM10 monitoring stations within 50 km. 

13.4 to 
56.3 [33] 

Average PM2.5 of best 
available monitoring 
stations [μg/m3] 

Combination of the arithmetical average of 
the PM2.5 recorded by stations within 30 km 
and the PM2.5 recorded by the nearest PM2.5 
monitoring station for those sites with no 
PM2.5 monitoring stations within 30 km. 

4.5 to 20.4 [33] 

Satellite-derived PM2.5 
[μg/m3] 

Global satellite-derived PM2.5 averaged over 
2001–2006 6.5 to 13 [35,36] 

Precipitation 
Daily accumulated 
precipitation [mm] 

Amount of rain accumulated during the 
investigated period per day 0.1 to 4.1 [20–22] 

Daily accumulated 
precipitation for rain > 0.3 
mm [mm] 

Amount of rain accumulated during the 
investigated period per day considering rain 
higher than 0.3 mm only 

0.1 to 4.1 [20–22] 

Rainy days [%] Number of days with a rain event 5.5 to 60.9 [20–22] 
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Rainy days for rain > 0.3 
mm [%] 

Number of days with a rain event 
considering rain higher than 0.3 mm only 4.2 to 50.7 [20–22] 

Precipitation intensity 
[mm] 

Average amount of rain accumulated on 
each rainy day 2.1 to 9.8 [20–22] 

Precipitation intensity for 
rain > 0.3 mm [mm] 

Average amount of rain accumulated on 
each rainy day considering rain higher than 
0.3 mm only 

2.5 to 11.1 [20–22] 

Length of dry period [days] Average number of non-rainy days between 
two rain events  2 to 27 [20–22] 

Length of dry period for 
rain > 0.3 mm [days] 

Average number of non-rainy days between 
two rain events considering rain higher than 
0.3 mm only 

2 to 29.1 [20–22] 

Maximum length dry 
period [days] 

Maximum number of consecutive days with 
no rain recorded 8 to 155 [20–22] 

Maximum length dry 
period for rain > 0.3 mm 
[days] 

Maximum number of consecutive days with 
no rain recorded considering rain higher 
than 0.3 mm only 

10 to 161 [20–22] 

Days with more than 12.5 
mm [days] 

Average number of days with an 
accumulated precipitation of at least 12.5 
mm 

1.5 to 27.4 [20–22] 

Days with more than 25 
mm [days] 

Average number of days with an 
accumulated precipitation of at least 25 mm 0 to 3.7 [20–22] 

Days with more than 50 
mm [days] 

Average number of days with an 
accumulated precipitation of at least 50 mm 0 to 1.4 [20–22] 

Rain on the wettest day 
[mm] 

Maximum amount of rain accumulated in 
one day considering rain higher than 0.3 
mm only 

11 to 125 [20–22] 

Rain on the five wettest 
days [mm] 

Rain accumulated in the five days with the 
highest precipitation intensity 31 to 385 [20–22] 

Other meteorological parameters 

Number of days with dew 
cycles [%] 

Percentage of days on which these 
conditions occur for at least one hour: RH ≥ 
95% and wind speed ≤ 3.2 m/s and ambient 
temperature > 0°.  

0 to 93  

Number of days with dew 
cycles (RH ≥ 99%) [%] 

Percentage of days on which the relative 
humidity is equal or higher than 99% for at 
least one hour 

0 to 90  

Average RH [%] Average relative humidity during the 
investigated period. 

55.0 to 
99.5  

Average wind speed [m/s] Average wind speed recorded on the site 
during the investigated period. 0.4 to 4.9  

Average peak gust [m/s] Average of the hourly peak gusts recorded 
on the site during the investigated period. 1.0 to 5.7  
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Onsite mean wind 
direction (0 to 360°) [°] 

Mean wind direction recorded on the site 
during the investigated period (0° is no wind 
and 360° is wind blowing from north). 

25 to 325  

Onsite angle of incident at 
noon [°] 

Absolute value of the angle difference 
between the mean wind direction derived 
(by the data onsite) and the azimuth angle 
of the cells at noon (if 0°, mean wind 
direction is blowing from south). 

17 to 154  

Days with peak above 
5m/s [%] 

Number of days with a maximum hourly 
peak gusts above 5 m/s. 3.4 to 67.2  

Days with peak above 
10m/s [%] 

Number of days with a maximum hourly 
peak gusts above 10 m/s. 0 to 24.8  

Days with peak gust 
above average [%] 

Number of days with a maximum hourly 
peak gusts above the average peak gusts. 

15.8 to 
55.7  

Peak gust above 
2*average 

Number of days with a maximum hourly 
peak gusts twice above the average peak 
gusts. 

1.3 to 43.5  

NSRDB Average wind 
speed [m/s] 

Average wind speed recorded on the 
NSRDB database during the investigated 
period. 

1.7 to 3.9 [23–
25] 

NSRDB mean wind 
direction (0 to 360°) [°] 

Mean wind direction recorded on the 
NSRDB database during the investigated 
period (0° is no wind and 360° is wind 
blowing from north). 

55 to 331 [23–
25] 

NSRDB angle of incident 
at noon [°] 

Absolute value of the angle difference 
between the mean wind direction derived by 
the NSRDB database and the azimuth 
angle of the cells at noon (if 0°, mean wind 
is blowing from south). 

7 to 151 [23–
25] 
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