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Abstract Floods are the natural hazards that are causing the most deaths worldwide. 

Flood early warning systems are one of the most cost-efficient methods to reduce death 

rates, triggering decisions about evacuation of exposed population. Although previous 

studies have investigated the effect of human behaviours on evacuation processes, 

studies analysing a combination of behaviours, flood onset and warning timing are 

limited. Our objective is to explore how changes on the aforementioned factors can 

affect casualties. This is done within a modelling framework that includes an agent-

based model, a hydraulic model and a traffic model, which is implemented for the case 

study of Orvieto (Italy). The results show that the number of casualties is most 

impacted by people’s behaviour. Besides, we found that a delay of 30 min in releasing 

the warning can boost the number of casualties up to six times. These results may help 

managers to propose effective emergency plans.  

Keywords: flood evacuation, human evacuation behaviour, agent-based modelling, 

flood modelling, socio-hydrology; unsolved problems in hydrology (UPH); UPH # 
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1. Introduction 

Over the past 20 years, flooding accounted for 47% of all weather-related disasters, 

affecting 2.3 billion and killing 157,000 people (CRED and UNDRR 2015). In the future, this 

number is expected to increase, because of global changes such as population growth in 

flood-prone areas, land-use changes and extreme rainfall (Doocy et al. 2013). Traditionally, 

flood risk managers have relied on structural measures that are neither sustainable nor 

flexible in incorporating human and environmental needs. In the last two decades, a gradual 

paradigm shift has taken place, from structural-only measures to a more holistic and adaptive 

flood risk management approach (Abebe et al. 2019). This shift is changing the way to cope 

with floods (Thomas and Knüppe 2016). Besides, it was found that societies that keep high 

the flood-risk awareness stand out in their ability to mitigate flood risk and thus flood losses 

(Scolobig et al. 2017, Mard et al. 2018, Ridolfi et al. 2019). Among the non-structural 

measures, Flood Early Warning Systems (FEWS) have demonstrated to be cost-efficient in 

reducing injuries and deaths (Rogers and Tsirkunov 2010). FEWS can be used by emergency 

services to alert and evacuate urbanized areas within hours of anticipation, in case of an 

imminent flood event (Garcia and Fearnley 2012). Moreover, flood emergency plans 

involving FEWS are useful tools for reducing fatalities, mitigate damage and facilitate a well-

organised evacuation of people at risk to a safe place during a flood event. 

Flood evacuation, however, is a very complex and dynamic process where humans 

interact with their environment leading to additional hazardous conditions (Bernardini et al. 

2017). For this reason, it is crucial to understand how various human behaviours can affect 

evacuation mechanisms (Chen et al. 2006, Uno and Kashiyama 2008). To tackle this issue, 

numerical tools have emerged to simulate these interactions. Among them, agent-based 

models (ABMs) provide a framework to represent and understand the coherence and 
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functionality of complex dynamic systems such as a flood evacuation process at different 

scales and extended times. 

Different studies have been carried out to simulate human evacuation and test flood 

emergency plans using ABM (e.g. Bonabeau 2002, Ren et al. 2009, Mordvintsev et al. 2014, 

Mas et al. 2015, Ismaïl et al. 2018, Liu and Lim 2018, Zheng et al. 2019). In particular, 

Dawson et al. (2011) developed an ABM for effective flood incident management and policy 

analysis. Liu et al. (2010) combined a hydraulic model and a multi-agent evacuation model to 

provide a systematic framework for an adaptive evacuation strategy under life-threatening 

conditions and demonstrated the impact of facility arrangement on evacuation decision-

making. Liu and Lim (2016) proposed an ABM for assessing the optimal shelter location and 

routing strategy for evacuating households during the 2011 Brisbane flood event. Medina et 

al. (2016) used ABM to test large-scale evacuation strategies in coastal areas during extreme 

hydro-meteorological events. Wang et al. (2016) used ABM to investigate how the decision 

time and the choice of different modes of transportation may affect the mortality rate. Du et 

al. (2017) developed a dynamic model to simulate the change in individual awareness when 

exposed to different information sources (e.g. social media) to trigger flood evacuation 

decisions. Similarly, Hitomi et al. (2019) developed an ABM to simulate evacuation 

responses assuming six different scenarios of evacuation time. 

Human behaviour plays a crucial role during an evacuation as it includes a large variety 

of physical, cognitive, motivational and social variables (Hofinger et al. 2014). For example, 

Wang et al. (2016) found that in the case of evacuation due to fire alarm in a subway, the 

most frequent first reaction of those surveyed would be to go and inspect the event. Cheng 

and Zheng (2018) studied the influence of cooperative behaviour in the evacuation efficiency, 

finding that a moderately cooperative behaviour led to a higher evacuation efficiency than a 

type of competitive society.  
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This work is a contribution to address one of the 23 Unsolved Problems in Hydrology 

(UPH) identified by the initiative of the International Association of Hydrological Sciences 

(IAHS, Blöschl et al. 2019), as it aims at investigating the interaction between society and 

flood-related management (Blöschl et al. 2019, UPH #21). Although previous research has 

provided understanding about various evacuation aspects, literature exploring the combined 

influence of different human behaviours and flood warning timing on the evacuation 

processes is needed, but at the moment it is limited.  

We posed the following research questions, drawn from the methodological gaps in the 

current literature: 

1. How does human behaviour affect flood evacuation processes and casualties? 

2. Do time of the day in which the flood warning is issued lead to a different percentage of 

evacuated people?   

3. How does the lead-time impact the number of casualties? 

The objective of this paper is, therefore, to contribute to the understanding the effect of 

behavioural aspects of humans, time of flood occurrence and warning lead time on the 

potential casualties, using an integrated modelling framework to account for both physical 

and social aspects of flood evacuation processes.  

We investigate different assumptions of human behaviour based on disaster psychology 

studies (Vorst 2010) and analyse the physics of the flood hazard through a two-dimensional 

hydrodynamic model. These elements are integrated into an ABM, in which the process of 

evacuation is modelled, using existing traffic models. The framework is tested on various 

scenarios of timing of flood occurrence and lead-times of the flood warning.  
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The paper is structured as follows: first, the case study of Orvieto, a population prone to 

floods in Italy, is described. Then, the methodology is presented, which consists of three 

parts: first, the description of the modelling approaches for each aspect of the problem, 

namely the hydrodynamic model, the traffic model and their integration in the ABM. Second, 

the definition of the evacuation process, including the behavioural components, the triggers 

for evacuation, selection of destinations and the status of the agents at the end of the 

simulations. Third, the definition of the proposed scenarios to study the effect of behaviour, 

starting time of the event and the lead-time of the warning. Then, the results and discussion 

section follows, where the outcomes of each scenario are presented and analysed critically. 

Finally, conclusions and recommendations are provided. 

2. Case study 

Paglia River is the main tributary of the Tiber River, the second-longest Italian River. It 

flows from North-West to South-East through three Italian regions, i.e. Tuscany, Latium and 

Umbria, with a total length of 85 km. The river originates at Amiata Mount, at 1000 m a.s.l. 

and drains a catchment of 1350 km2, which has a mean elevation of 443 m a.s.l. In the 

upstream, the river flow has a torrential regime, with a discharge that varies between 0.3 m3s-

1 in summer and 800 m3s-1 in winter, while in the proximity of the Orvieto town, its average 

discharge equals 11.3 m3s-1. Paglia River receives water from several tributaries, being the 

most important one the Chiana River, which flows into the Paglia River upstream Orvieto 

with a length of 40 km and a catchment size of 420 km2 (see Figure 1). The Paglia River 

floodplain is vulnerable to flooding. The river crosses some important national 

infrastructures, including the highway that connects Naples to Milan, and the high-speed 

railway line that connects Rome to Florence. Moreover, the valley is highly urbanised, having 
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the towns of Orvieto, Orvieto Scalo and Ciconia, and also a large industrial area in the river 

proximity. 

In November 2012, the basin experienced severe storms, with rainfall exceeding a 

return period of 200 years in most locations, generating extreme water levels that exceeded 

the level of the river banks. For the first few hours, the floodwaters exhibited high velocity; 

after that, several flooded areas experienced water stagnation for several days. Orvieto Scalo 

was among the most affected municipalities, with a total monetary value of damages 

estimated in the order of EUR 115 million (i.e., 0.6 percentage points of the regional GDP; 

Menoni et al. 2016). 

In this flood event, the Civil Protection members undertook flood response actions. For 

example, during the flood, people were prevented from reaching their workplaces early in the 

morning by closing the bridge connecting the residential part of the town and the industrial 

zone, when the risk was already high (Molinari et al. 2014).  

In response to such extreme event, a levee system was designed, built and inaugurated 

in May 2017 to protect the settlements of Orvieto Scalo, Ciconia and the surrounding 

industrial areas. The levee system was designed to withstand a 200-year flood event. 

Moreover, the Civil Protection of the Umbria Region built 12 shelters, most of which are 

distributed in the south-west of the study area (see Figure 2(b)). These shelters are nowadays 

critical facilities, being the main destination of each evacuee during a flood evacuation.  

3. Methodology 

This study aims to analyse the population dynamics and exposure during flood 

evacuation. The methodology is presented in three parts: firstly, the description of the 

modelling approaches, namely the hydrodynamic model, the traffic model and their 

integration in the ABM; secondly, the definition of the evacuation process, including the 
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behavioural components, the triggers for evacuation, selection of destinations and the status 

of the agents at the end of the simulations; and finally, the definition of the proposed 

scenarios to study the effect of behaviour, starting time of the event and lead-time of the 

warning. 

In terms of modelling, this study proposes an innovative framework in which physical 

and social models are integrated to simulate the interactions among individuals (called agents 

in ABM), their environment and the hazard through behavioural rules. On the one hand, the 

physical models considered are the flood model describing the dynamic evolution of a flood 

event and the traffic model describing the dynamic evolution of the traffic under different 

levels of congestion. On the other hand, the social model consists of sets of rules 

implemented in an ABM to simulate the movement of individuals, taking into account the 

daily activities that people are likely to perform, as well as, their possible behaviour during 

evacuation according to the disaster psychology theories. In the following subsections, a 

detailed description of each model is provided. 

3.1 Hydrodynamic model 

A two-dimensional (2D) hydrodynamic model built-in the Hydrologic Engineering 

Centre’s River Analysis System (HEC-RAS) software was used to represent the flood wave 

propagation. The hydraulic model covers 63,811m2 of floodplain area and approximately 

24.4 km of river reach. The digital elevation model (DEM) used in the 2D model has a spatial 

resolution of 1 m. To avoid prohibitively high computational costs, a 2D mesh with a higher 

cell size of 10 m and about 367,000 cells was generated. The DEM includes the new 

embankments that protect Orvieto Scalo and Ciconia from floods of 200-year return period. 

No embankment breaching was considered in this study, so we assume that flooding could 

occur only due to overtopping of the levee. 
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Other main inputs to the 2D model are the upstream and internal boundary conditions 

expressed as flow hydrographs from river tributaries. The boundary conditions correspond to 

a 500-year return period flood with a duration of 13 h and 20 min. This duration is critical to 

simulate flooding in case of embankment overtopping (Mazzoleni et al. 2017). The 

hydrographs of 22 tributaries flowing into the floodplain are considered as boundary 

conditions in the model. These hydrographs were estimated using a continuous rainfall-runoff 

model from Brocca et al. (2008, 2009). The precipitation field was generated by coupling the 

Neyman-Scott Rectangular Pulse model (Cowpertwait 1996) with a rank correlation (Iman 

and Conover 1982) to account for the spatial variability of rainfall (Tarpanelli et al. 2012). 

Camici et al. (2011) provide an extensive explanation of the methodology. The downstream 

boundary condition is assumed to be the normal depth. 

Finally, the spatial distribution of Manning’s coefficient was derived from the last 

CORINE Land Cover dataset (2018), resulting in a range of Manning’s roughness values 

between 0.04 and 0.06. 

As we are aiming to couple the 2D hydraulic model with an ABM for flood evacuation 

purposes, it is crucial to provide the spatial representation of the flood at different time steps 

(Michaelis et al. 2020). For this purpose, 80 floodwater depths maps with a mapping output 

interval of 10 min and a 50 m spatial resolution were extracted from the results of the 

hydrodynamic model and prepared to be used in the ABM. 

3.2 Traffic model and route selection 

The evacuation process is highly dependent on traffic condition and road capacity (Zhu 

et al. 2018). Therefore, representing the road network within the ABM framework is crucial 

to determine the total evacuation time, the optimal exit routes and critical points of 

congestion. There are three types of approaches for a traffic model based on the scale and 
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level of detail: continuous approach or macro-scale models (suitable for entire metropolitan 

regions), discrete approach or meso-scale (used for individual roads) and micro-scale models 

(suitable for individual lanes of road segments) (Hardy and Wunderlich 2007). Moreover, 

hybrid approaches combining both meso-scopic and micro-scopic models are emerging. 

In this study, a meso-scopic traffic model based on Banos et al. (2017) is used to ensure 

simplicity and faster analysis. In this model, the velocity of each vehicle is calculated as: 

=  (1)

where  is the free-flow speed in a road with no traffic,  is the current concentration of the 

road, and  is the maximum capacity of the road. This model has three main limitations: (a) 

it is unsuitable for concentrations that exceed the road capacity; (b) it is largely deterministic 

with limitation on sources of randomness; and (c) it does not consider the position of other 

vehicles and thereby resulting in unrealistic situations. To overcome these limitations, the 

speed of a given vehicle is calculated considering only the traffic between that vehicle and 

the node of the road ahead. The road is defined as the part of the network between two nodes. 

In this way,  and 	are calculated only for the road segment between the vehicle and the 

node, and not for the entire road. The concept of randomness is introduced by penalising the 

speed of the vehicle by a random factor proportional to its speed. 

Once the traffic model is implemented, it is important to identify the possible routes that 

agents may follow to move from their original location to their destinations. In this study, the 

shortest route is assessed with the Dijkstra’s algorithm (Dijkstra 1959), in which a weight is 

assigned to each road based on the ratio between the road length and the average velocity of 

the agents on that road. Such weight can represent the cost of travelling between the initial 
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location of an agent and its target. From all the possible routes, the optimal route is the one in 

which the sum of the road weights has the lowest value.  

3.3  Agent-based model 

The software GIS Agent-Based Modelling Architecture (GAMA, Taillandier et al. 

2018) was used to build our ABM because of its capabilities for handling complex 

environments and its comprehensive Java-based domain-specific language: GAML. The 

GAMA framework is based on the concepts of classes, objects, methods and attributes and 

their relations. For example, a class is referred to as a species in GAMA, which is a container 

of the same kind of agents. Each species may represent people, houses, roads or institutions, 

among others. The agents have their attributes (i.e. name, social class, etc.) and perform their 

methods (actions such as working, driving, etc.). Some of these actions may be triggered by 

the interactions among species (e.g. deliver a message, visit a neighbour, etc.), which can be 

defined using behavioural rules. A detailed description of the environment, the definition of 

the agents and evacuation processes are reported in the following sections.  

3.3.1 ABM structure 

The ABM structure is presented through the Unified Modelling Language (UML) class 

diagram as presented in Figure 3. It offers a synthesized view of the classes (species) in the 

ABM and the relationships among them. The species are represented by boxes with their 

name, attributes and behaviours. The symbol before the attribute name indicates its visibility. 

For all the species, each of the attributes has a minus sign (–) indicating that such attributes 

are only accessible by the species to which they belong. The plus symbol (+) indicates that 

the attributes are accessible to all the species and belong to the ‘global’ species. The black 

arrow pointing to a filled diamond represents a composition relationship between the global 

species and all the remaining species. This relation means that the rest of the species cannot 
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exist without the global species. The main type of relation between the species is an 

association, and this is represented by a blue arrow. The name along the arrow indicates the 

method (behaviour) of one species in which the other species takes part. The population 

(species ‘people’) operate a total of 10 operations, followed by the environment (species 

‘global’) that performs three operations, and finally, road network (species ‘roads’) and flood 

(species ‘flood’) that execute two operations each. In this ABM, there is only one dynamic 

species ‘people’ that executes its behaviour and interacts with other agents of the same 

species and the other species. Agents from species ‘roads’ and ‘flood’ are static and interact 

between them. The other remaining species, such as ‘buildings’, ‘shelters’, ‘river’, 

‘temporary shelters’ and ‘flood boundary’, do not perform any method. 

3.3.2 Environment 

The environment defines the spatial elements of the city such as buildings, shelters, 

waterways and road networks and represents the spatial limits of the ABM. These spatial data 

were extracted from OpenStreetMap (OSM). The municipalities of Ciconia, Sferracavallo, 

Orvieto Scalo, Orvieto and Fontanelle di Bardano are part of the environment, covering an 

area of approximately 63 km2 (see Figure 1). The buildings were classified according to their 

use, such as residential, commercial, educational and industrial or workplaces (see Figure 

2(a)). The residential buildings are located only in Ciconia and Orvieto Scalo, while the rest 

of the buildings are distributed among all municipalities.  

A special type of buildings, relevant for this study, are the shelters. The people are 

expected to reach them during an evacuation. Also, a few temporary shelters were created in 

the model assuming that the Civil Protection Department of Umbria would mobilise their 

volunteers to these temporary shelters to divert people away from the flooded area (see 

Figure 2(c)). The temporary shelters were located just outside of the maximum flood extent 
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for a 500-year return period flood and may act as a command centre for communication 

between the Civil Protection and the evacuating population. 

To describe a realistic movement of the agents on the road network, other basic 

information such as the number of lanes and their directionality is required. Although 

information about traffic signals, pedestrian crossings and stops, among others, can also 

affect the travel time of vehicles, we assume that this information is not relevant during a 

flood evacuation. The implementation of bidirectional roads in GAMA was carried out by 

creating parallel roads from the original OSM source (Bhamidipati et al. 2016). In this way, 

an independent road for each direction was generated, ensuring that the interaction between 

agents was limited to the agents on the same road. Roads were considered flooded when 

floodwater depth on the roads was higher than 40 cm. Overlay analysis of the maximum 

flood extent from the hydraulic modelling indicated that a total of 330 roads were flooded. In 

the ABM, a penalty was assigned to these roads to prevent the agents to select them as a path 

to their destination. Error! Reference source not found. presents the roads of the network, 

classified by type and speed limits. 

The flood maps generated with the hydrodynamic model are the inputs to the ABM to 

evaluate the effect of a flood on the traffic and the behaviour of the agents. The hydraulic 

model provides a 50 m x 50 m resolution raster of the flood extent with a time step of 10 min 

for the entire duration of the flood event, i.e. about 13 h. To optimize the simulation time, the 

flood extent map was converted to a vector (shapefile) format and translated into a grid that 

was periodically updated within GAMA.  

To facilitate the understanding of the model, the ABM environment was divided into 

three areas: 1) the area of maximum flood extent (see Figure 2(c)) where the flood takes 

place, and each of the sides out of the Paglia River floodplain (east/left side and west/right 

side), in which no flooding occurs. This division allows the agents to move to a shelter on the 
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same side of the river where they are located instead of taking a dangerous decision and 

trying to cross the river during the flood event.  

3.3.3 Definition of agents 

A total of 1000 agents are considered in the ABM, out of which 668 reside in Ciconia 

and the remaining 332 in Orvieto Scalo. These agents are grouped by considering two socio-

economic characteristics that influence the reasons they move around the city. The sample 

population is based on the 2018 census and it is summarized in Error! Reference source not 

found.. Although the information about the place where each inhabitant lives is not available, 

one of the residential buildings of Orvieto Scalo and Ciconia is randomly assigned to each 

individual as home location.  

Different approaches are available to differentiate and represent the behaviour of an 

agent (Leach 1994, Vorst 2010, Hofinger et al. 2014). We adopted the approach suggested by 

Vorst (2010), who differentiates the agents by ‘objective’ demographic characteristics such as 

age, sex, employment, household size, etc., information that is essential to define their daily 

activities. This is important as a flood event occurring during the daytime may affect 

differently the population than if it occurs overnight. In this study, the daily activities are 

defined by the boolean attributes ‘have children’ and ‘employed’. Therefore, we have four 

types of daily activities based on the four possible combinations of these two attributes. Due 

to the insufficient information available about the daily routines of the population, synthetic 

daily routines are generated (see Figure 4). These activities are incorporated in GAMA, 

together with the information related to the starting time of the first activity, the time spent 

doing each activity and the time of departure from the building to the next activity. All the 

simulations start at 07:00 h and all the synthetic daily activities are assumed to start at 07:30 

h ±15 min. Figure 4 explains the rationale behind the synthetic daily routines. 
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Although information such as travel patterns, distribution of transport means per 

activity and number of trips by transportation type could be found in a few sources (e.g. 

Analysis of National Travel Statistics in Europe by the European Joint Research Centre, 

Ahern et al. 2013), we deliberately did not use this information, as the proportion of 

displacements by car are more significant than by other means.  

3.4  Evacuation process 

 In this section, the behaviours expected during a flood evacuation are defined. For 

each behaviour, different aspects such as the reasons that can trigger people to start 

evacuating, the starting time of the evacuation, the selection of the final destination, and the 

status of the agent at the end of the simulation are described (see also Error! Reference 

source not found.). 

3.4.1 Types of Evacuation behaviours    

Four different types of ‘reactions’ in the presence of a flood warning that announces an 

imminent evacuation are considered (Figure 4). Each agent of the species ‘people’ has one of 

the four ‘reactions’ ensuring that every agent plays a role in the evacuation. This typology of 

reactions is informed by common behaviours observed during the warning phase of an 

evacuation (Leach 1994, Vorst 2010, Hofinger et al. 2014). The main reason for considering 

these theoretical behaviours is the lack of field data. The Civil Protection Department of 

Umbria has no available information about the flood risk perception of Orvieto’s population, 

nor of the population’s reaction during the flood of November 2012. In any case, it is 

important to mention that the construction of the embankments in 2012 may have generated a 

sense of false protection in the population, with a consequent change in flood risk perception, 

which would make the use of this data more uncertain. The four types of behaviours are 

explained as follows: 
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• Straightforward behaviour refers to the behaviour of an individual who evacuates 

immediately after the warning is issued. It can also be called ‘instant or imminent 

evacuation’. 

• Normality bias behaviour is characterised by an apathetic behaviour, with lack of 

initiative and with a denial of the threat, but without being overactive. Agents from this 

group evacuate at some time after the warning is issued. 

• Sympathy behaviour refers to the people who lack initiative and decide to follow or 

imitate the behaviour of other agents. 

• Indifferent refers to people that do not evacuate when they receive the warning and 

therefore, they continue doing their current activity.  

At the start of each simulation, four lists of agents are randomly initialised, having each 

agent one type of behaviour in the same simulation. The randomness guarantees that these 

lists do not always contain the same people across simulations. GAMA allows the possibility 

to simulate with the same value for the random parameters (e.g. by setting the seed). 

Therefore, if the same population needs to be tested under different scenarios, the same seed 

can be used. 

Vorst (2010) indicated that during the impact phase of a disaster, on average 10% are 

dynamic with potential leadership, 75% are apathetic with lack of initiative and 15% of the 

population is overactive, performing non-effective behaviour. Hofinger et al. (2014) 

mentioned similar percentages. Based on these studies, the standard base-scenario of the 

ABM assumes that 10% of the population have the straightforward behaviour to represent the 

10% with potential leadership of Vorst (2010); 60% have normality bias behaviour and 15% 

have sympathy behaviour, both to account for the 75% apathetic with lack of initiative; and, 

finally, 15% is indifferent to represent the non-effective behaviour. 
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We would like to emphasise that the list of behaviours considered in this study is not 

exhaustive and other types of behaviour may be identified and simulated. For example, a fifth 

group may represent ‘leaders’, i.e. individuals that guide other agents. Also, another type of 

behaviour may be ‘panic’ which represent people who are out of emotional control.  

3.4.2 Triggers for evacuation  

 We consider three triggers that make people start the evacuation, namely the reception 

of a flood warning, the visual proximity to a flooded area, and observing others evacuating. 

The first trigger is when the flood warning is issued and each agent assumes one type of 

behaviour. The decision to evacuate or not, therefore, depends on this behaviour. In this 

study, it is assumed that all the agents receive the flood warning simultaneously. The second 

trigger occurs when the agent is at a distance of 100 m or less from the flood boundaries, 

once the flood starts. In this case, the agent always evacuates, independently of its assigned 

behaviour. The third trigger represents persons that start following others when they are 

evacuating, which is only applicable for agents with sympathy behaviour. 

3.4.3 Starting time of evacuation 

ABM is useful to analyse the impact of the time in which the agents start to evacuate. 

Starting times can be simulated by probability distributions such as Rayleigh distribution, 

which represents the general evacuation curve: a low percentage of the population evacuates 

at the beginning, and as the evacuation progresses, the percentage increases (Solís and 

Gazmuri 2017). 

However, in this study, the starting time of evacuation is linked to the type of behaviour 

of each agent. For agents with straightforward behaviour, the evacuation starts immediately 

after the flood warning is disseminated. Agents with normality bias behaviour are divided 
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into two groups: agents located outside the floodplain area, who evacuate randomly within 

the first 45 min after the flood warning is issued, and agents located inside of the floodplain 

area who evacuate within the first 20 min after the flood warning. Agents with sympathy 

behaviour are assigned a probability of 50% to decide to follow another agent who is already 

evacuating, when more than one agent is evacuating ahead, the agent evacuates. The agent 

looks only for agents ahead up to a distance of 200 m on their path. Therefore, agents with 

sympathy behaviour do not have a fixed starting time of evacuation. Finally, the agents with 

indifferent behaviour only evacuate when seeing the flooding at a distance of 100 m; 

therefore, their starting time of evacuation is unknown at the beginning of the simulation. 

3.4.4 Selection of the destination  

 When a flood event happens, the decision of the agent about starting the evacuation 

and selecting a destination depends on its type of behaviour and initial location. Agents with 

straightforward behaviour start to evacuate towards a shelter, immediately after receiving the 

warning. Every agent with this behaviour is assigned a probability of 80% to choose the 

closest shelter to its current location. It is assumed that the agent is familiar with the area and 

knows with a high level of confidence where the closest shelter is. Following the same logic, 

agents only look for shelters on the side of the river where they are currently located when 

evacuation starts, moving away from the flooded area. For example, Agent 1 in Figure 5, can 

decide only to go to a shelter on the right side of the river. If this agent decides to choose the 

closest shelter, it would select either shelter 6 or 8; if not, it selects another shelter among the 

ones remaining on the right side. On the other hand, Agent 2 can only select a shelter among 

those located on the left side of the river, and if it decides to select the closest shelter, then it 

selects either shelter 2 or 5; if not, it selects one of those remaining on the left side (shelter 

numbers 3 and 7, not shown).  
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 Agents with normality bias behaviour delay their evacuation as previously explained. 

Once they decide to evacuate, part of the population with children pick them up from the 

school or from the closest location to the school, with a probability of 50%, before leaving 

together to the shelter. This is supported by the fact that looking for relatives before 

evacuating themselves is considered altruistic behaviour besides being a common behaviour 

in an evacuation (Toledo et al. 2018). Auld et al. (2012) confirm that adults with one or more 

children are more likely to make a prior stop compared to those who have no children. The 

agents only take this decision if the flood warning is issued when the children are at school, 

and it is assumed that the agent spends 15 min there before leaving together to the shelter. 

The rest of the population who decides not to pick up their children –because perhaps the 

school has taken action or because another relative does it, go ahead to a shelter. The 

selection of the shelter is equal to the one explained for straightforward behaviour. It is 

assumed that after the flood warning is issued, the Civil Protection acts on the ground, by 

delimiting the areas to which the population can drive, preventing them from crossing to the 

other side of the river. This is supported by League (2009) whose study shows that the 

presence of emergency officials in hazardous areas during a flood may deter people from 

crossing flooded roads. It is presumed that the agents looking for their children may go to the 

closest point to the river (temporary shelter), and when realising that crossing the river is not 

feasible, they will decide to go to a shelter.   

 Agents with sympathy behaviour continue with their normal activities until they 

decide to follow the agent evacuating close to them to the same shelter to which this agent is 

heading. Finally, agents with indifferent behaviour continue with their daily activities and do 

not change their current destination until they see the flooding (second trigger of evacuation). 

If an agent decides to evacuate, it selects the closest shelter. In this way, coherently, any 
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agent outside the floodplain area may not cross the river trying to reach either its workplace 

or its home on the other side of the river. 

 Agents located in the floodplain area should ensure to get out of the floodplain area. 

The first step is to go to the closest temporary shelter, where they will spend 15 min before 

deciding to move forward to the shelter.  

3.4.5 Status of the agent at the end of the simulation 

An agent could have only one of the following three statuses at the end of the 

simulation: evacuated, not evacuated or drowned. An agent is considered to be evacuated if it 

successfully reaches the shelter. An agent is considered with status ‘not evacuated’ if it 

accomplishes its daily activities without complying with the flood warning. ‘Not evacuated’ 

indicates agents who decide not to evacuate after receiving the flood warning and who is not 

affected by the flooding, being capable of finalizing their daily activities without being 

interrupted by the flood. Finally, an agent is considered to be drowned if it is covered by 1.5 

m of water at any time within the simulation. This situation could happen when the flood is 

faster than the agent trying to reach a safe area.  

3.5  Scenarios  

To address the research objective of this study, scenarios are proposed to account for 

different human behaviours during the flood, timing of the flood warning, and flood onset. 

The scenarios include three variables, namely, (1) percentages of the population with the 

aforementioned behaviours, (2) the time of the day when the flood occurs, and (3) the lead 

time of issuing the warning before a flood starts. To evaluate which of these variables affect 

the evacuation process the most, we developed three scenarios (see Error! Reference source 
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not found.), and several simulations were run to account for the randomness. The following 

parameters incorporate randomness into the model:  

• The initial position of the agents 

• The probability to pick up the children from the school. It is 50% for each agent 

with normality bias behaviour. There is not enough literature on the topic to 

select an empirical percentage, thus, we hypothesized a percentage value. 

Nevertheless, Auld et al. (2012) concluded in their statistical analysis of 

intermediate stops during evacuation that more than 50% of the intermediate 

stops made by adults were for picking up family members.   

• The probability to choose the correct shelter. It is 80% for each agent. This high 

percentage assume that the inhabitants are familiar with the environment where 

they live, thus, they know with high probability where the shelter is. 

• The probability to follow another agent ahead. It is only applicable for agents 

with sympathy behaviour, and it is 50% for the first agent and 100% when more 

than one agent is evacuating ahead. We conjectured these probabilities, but a 

high value ensures that agents can decide to evacuate despite the roads are not 

crowded with other evacuating agents as the sample size is 1000. 

The detailed demographics and empirical data required to calculate the above-

mentioned probabilities was not available. We carefully assumed them, seeking to be as 

realistic as possible. Further research should investigate the effect of these assumptions. 

In all the model runs, the socio-demographic characteristics of the agents were 

maintained (e.g. employment proportion of people with children), as well as, home location. 

Nevertheless, the selection of the building to perform the daily activities by the same agent 

differs between simulations. Effect of the randomness was low due to the small size of model 
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domain about 11 km from east to west and 7 km from north to south with a high 

concentration of buildings in the narrow old town of the municipalities.  

The base scenario considers an event with an onset at 9:00 a.m., for which a flood 

warning is released 1 h before, and a population with the following proportions of behaviour 

profiles: 60% normality bias behaviour, 10% straightforward behaviour, 15% sympathy 

behaviour, and the remainder 15% indifferent behaviour. 

It is worth noting that in Scenario 2 the percentages of the population with 

straightforward, normality bias and sympathy behaviours were analysed, while changes in the 

percentages of the population with indifferent behaviour were not studied.  

4. Results and discussion 

4.1 Scenario 1: Changing the time of flood occurrence 

This scenario aims to assess the effect of the time of flood occurrence (flood onset). As 

in the base scenario, the flood warning is issued 1 h in advance from the flood onset. Three 

sub-scenarios in which the flood occurs are introduced, namely in the morning (sub-scenario 

1.1), in the evening (sub-scenario 1.2), and at night (sub-scenario 1.3). The results for each 

scenario are presented as the cumulative number of people evacuating over time from the 

moment the flood warning is issued until the time where the evacuation is almost complete 

(95% of the population evacuated). The large number of people evacuated (95% or more) is 

because the warning reached all the population, an assumption that seems logical for a small 

municipality. 

Figure 6 shows the cumulative number of people evacuating at a given time for the 

simulations run for the three sub-scenarios of Scenario 1. The highest number of evacuating 

agents is observed to happen in two particular periods: as soon as the flood warning is issued 
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(minute 0), and at flood onset (minute 60). Moreover, it can be observed that a few people 

evacuated within 2 min after the flood warning, due to the short distances (about 300 m) 

between those agents and the shelters.  

In Figure 6, the first period coincides with the people evacuating straightforwardly, and 

the second period with the people who decided not evacuate with the flood warning, but who 

perceived the flood at a distance of 100 m. In the three sub-scenarios, the increments on the 

number of people evacuating at the flood warning and the flood onset are comparable, 

therefore, the people with straightforward behaviour does not seem to have had a significant 

impact on reducing the exposure.  

In sub-scenario 1.1 (flood occurring in the morning), as average, three agents drowned 

and the maximum number of agents in all simulations that move into the shelter after 1:07 h 

is close to 950. Approximately 7% of the people evacuated just in each of the peaks at the 

flood warning and flood onset. 

For the sub-scenario 1.2 (flood occurring in the evening), the daily activities of most of 

the agents had already finished. Although two steep increments of people evacuating after the 

flood warning and after the flood onset can also be observed, some differences can be 

noticed. As the flood occurs in the evening, the agents are already at home and it takes less 

time to them for reaching a shelter (see Figure 7). This leads to the result that the first 

increment of people evacuating after the flood warning in sub-scenario 1.2 is higher than in 

sub-scenario 1.1, 18% at 8:05 a.m. for sub-scenario 1.1 and 25% at 5:05 p.m. for sub-scenario 

1.2. Moreover, this situation could create congestion on some roads between 5:00 p.m. and 

6:00 p.m., as people are most concentrated at these rush hours. Nevertheless, the time of 

evacuating is shorter for more people evacuated in the evening than in the morning, and 

therefore, fewer people are exposed to the flood. This means that a greater number of 

casualties could happen if the flood happens at 9:00 a.m. rather than at 6:00 p.m. Overall, it 
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seems easier to complete an evacuation at 6:00 p.m. than at 9:00 a.m. with a lower number of 

casualties.  

Finally, in sub-scenario 1.3 (flood onset at 11 p.m. and warning at 10 p.m.) the 

evacuation of the entire population finished 1:05 h after the flood warning. The results are 

very similar to sub-scenario 1.2 due to the location of the agents at their homes and not 

spatially distributed as for sub-scenario 1.1. In fact, at 11:00 p.m. the population is at home, 

probably sleeping, and therefore only the homes close to the flood boundaries are affected. 

However, in reality, it is expected that people at night react slower than in the evening and 

also have lower visibility. For example, Menoni et al. (2016), referring to the flood in 

November 2012, stated that: “In the case of Orvieto, the first alert issued ‘not officially’ on 

Saturday night was left almost ignored until the level of the water started to rise early on 

Monday morning”. The casualties associated with sub-scenario 1.3 are caused either by the 

people trying to reach the shelter at the left side of the river or because their home was very 

close to the floodplain area.  

4.2 Scenario 2: Changing the proportion of different evacuation behaviours 

In this scenario, different proportions of the population characterized by diverse 

evacuation behaviours are considered. The three proposed sub-scenarios have a change in the 

proportion of people with normality bias, straightforward and sympathy behaviours. The 

flood characteristics are taken from the base scenario, with flood onset at 9:00 a.m. and flood 

warning issued at 8:00 a.m. 

For sub-scenario 2.1, where there is 30% of the population with normality bias 

behaviour and 40% with straightforward behaviour, the continuous movement of people 

evacuating finishes after 1:05 h from the flood warning issued. After that time, an average of 

50 people evacuated over all the simulations for this sub-scenario. The cumulative number of 
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evacuees at each simulation time step is reported in Figure 8. As it can be seen, the 

percentage that evacuated straightforwardly after the warning was issued generated the first 

sharp increase, while a small percentage of people evacuated after the flood onset (60 min 

later) as shown in the previous scenario. The first increment after the flood warning is four 

times higher than the one of scenario 1.1 (Figure 6). Indeed, less than 5 min after the flood 

warning, nearly the 30% of the population was already safe, against the 7% considered in 

sub-scenario 1.1 (sub-scenario 1.1 has the same flood warning timing and flood onset of sub-

scenarios 2.1, 2.2 and 2.3).  

The slightly pronounced increment at 16 min corresponds to people with 

straightforward behaviour reaching safe areas, who were at far distances from the shelter. The 

total number of people evacuated is similar to sub-scenario 1.1 (approx. 991 agents) as well 

as the average time to complete the evacuation (approx. 8 h) due to the people’s daily 

activities. The greatest difference is appreciated in the first sharp increase, and the reason is 

the difference in the number of people reaching the shelter after the flood warning for both 

sub-scenarios. 

For sub-scenario 2.2, the percentages of population with normality bias behaviour is 

10%, and with straightforward behaviour is 60%. The flood evacuation occurs 1:05h after the 

flood warning, and in the remaining time until complete the evacuation, i.e. 4:25 p.m., only 

46 are evacuated on average. The presented trend is the same as in sub-scenario 2.1, except 

that about 15% more agents evacuated in sub-scenario 2.2 after the flood warning. 

Interestingly, the increase of people with straightforward behaviour and the reduction of 

those with normality bias did not affect the time when the evacuation was completed, nor the 

evacuated number of people (approximately 8 h and 991 agents, respectively). This is 

because, as explained above, people that evacuate on their way home from work have a 
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higher impact in this regard. Figure 9 compares the movement of people after the flood 

warning between sub-scenario 1.1, 2.1 and 2.2. 

In sub-scenario 2.3, the percentages of population with normality bias behaviour and 

sympathy behaviour in the base scenario were swapped to maintain the percentages proposed 

by Vorst (2010). Now, 60% of the population has sympathy behaviour and 15% normality 

bias behaviour. Meanwhile, the percentages of straightforward and indifferent behaviours 

were equal to 10% and 15% respectively. The first peak of people evacuating is similar to the 

one in sub-scenario 2.1, approximately 30%, but lower than for sub-scenario 2.2 (45%). We 

found that the increase of people with sympathy behaviour does not have an impact on the 

number of people evacuating after the flood warning, which remains similar to sub-scenario 

2.1. The reason is that the agents tend to follow the ones evacuating ahead with a high 

probability. Differences are observed when straightforward behaviour increase from 40% 

(sub-scenario 2.1) to 60% (sub-scenario 2.2). Sympathy behaviour flattens the evacuation 

curve increasing the population exposure when looking at the number of people evacuating in 

total, now 6% lower. This is due to two facts: fewer people perform normality bias behaviour 

and fewer people perceived the flood because their location are far from the flooded area. A 

higher exposure increases the number of casualties on average to 7, higher than the 2 of sub-

scenario 2.1 and 1 of sub-scenario 2.2. It is worth mentioning that in the worst case, the 

number of casualties showed an increment up to 15. Sympathy behaviour leads to a higher 

unpredictability in the outcomes than the straightforward behaviour as the agents with this 

behaviour are not aware of the evacuation time as they depend on others. This is observed in 

the higher variability of the evacuation curves for different simulations of sub-scenario 2.3 

comparing with the other two sub-scenarios 2.1 and 2.2 (Figure 8). One possible explanation 

in real life situations is discussed in Becker et al. (2015). In their review of people’s 

voluntary behaviours in and around floodwater, Becker et al. (2015) found that one of the 
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causes for people to enter floodwater is to follow others when driving, people experience a 

social influence to follow others if they had seen cars in front of them crossing the floodwater 

successfully. This is a negative social influence that reduces their flood risk aversion and 

makes them underestimate the danger.  As a result, the number of casualties increases in 

comparison to other behaviours (straightforward, normality bias) as demonstrated in these 

results. 

4.3 Scenario 3: Changing the lead-time of the flood warning 

In Scenario 3, different lead-time values are assumed, while fixing the flood onset at 

09:00 h. In particular, sub-scenario 3.1 considers a warning issued 1.5 h before the flood 

onset, while for sub-scenario 3.2 is 30 min. With this experiment, we wanted to represent the 

conservative case in which a short lead-time value is available to warn a small municipality 

of an approaching flood event so that the population can reach safe areas in only a few 

minutes. 

Results for sub-scenario 3.1 show a similar proportion of people reaching the shelters in 

the first minutes after the warning, as in sub-scenarios 1.2 and 1.3 (see Figure 10). Most of 

the population are at home at the time of the event, and the mean distance to the shelters is 

lower. The total number of people who evacuated at the end of simulation remained similar to 

sub-scenario 1.1 as well as the time. However, a reduction in the number of casualties is 

obtained in this sub-scenario, as a higher lead-time can lead the population to find protection 

in the opposite side of the river. Therefore, an extra 30 min of warning time in floods 

occurring in the morning, when people are starting their activities, reduce the average number 

of casualties from 3 to 0. The additional lead-time does not affect the proportion of people 

who decide not to evacuate until they see the flood (minute 90). 
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Results of sub-scenario 3.2 (see Figure 10), shows that the majority of the population 

evacuate when the flood occurs (minute 30), and not when the warning is issued (minute 0). 

This is due to the short lead-time between flood warning and onset (30 min). In fact, at the 

moment of the warning, only people with straightforward behaviour (10%) evacuated. The 

large number of people evacuating at the flood onset is due to the combination of the 

evacuation of people with normality bias behaviour and people who evacuated because they 

observed the flood. For this reason, more people are exposed to the flood and therefore are at 

risk of death. 

Summary of number of evacuees and number of casualties for all sub-scenarios is 

presented in Table 5. 

5. Conclusions 

This study analysed the flood evacuation mechanisms at a local scale using an 

integrated modelling framework of coupled physical and social models consisting of a 2D 

hydraulic model, a traffic model, and an ABM. In particular, it studies the effect of human 

behaviours, time of flood occurrence and warning lead time on the potential casualties. Four 

different types of human behaviours that are likely to be observed during a flood event and 

that are reported in disaster psychology literature were considered. The methodology was 

applied to the Paglia River (Italy) for a 500-year return period flood event that overtopped the 

levee system recently constructed to protect the urbanized area. Data from the case study and 

the literature review was used to build the modelling framework. Three scenarios 

representing different time of flood warning, behaviour of people, and time of the flood onset 

were introduced and analysed. The application of the methodology to the case study of 

Orvieto provides the following main outcomes: 
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1. Human behaviour, in terms of the timing to react to a flood warning, is the 

factor with the most significant impact on the number of casualties. As 

expected, a small increase in the proportion of people that decides to evacuate 

immediately (straightforward behaviour) after a flood warning has a significant 

impact on the number of people successfully reaching a shelter, with the 

consequent decrease in the number of casualties. Not acting as instructed 

imitating the behaviour of others (sympathy behaviour) increase the number of 

casualties. 

2. The time to complete the evacuation is mostly affected by the time at which the 

flood onset occurs. The percentage of people evacuated is approximately 4% 

higher during the day than during the night. This is because the people complete 

their daily activities in the city, where the floodplain is located, which makes the 

exposure lower at night. Similarly, if a flood happens during the evening, the 

percentage of people who reach the shelters just after the flood warning is about 

2.3 times higher than in the morning. This is also reflected in the lower number 

of causalities in the evening. Therefore, this factor has the highest influence on 

population exposure. 

3. A lead-time of 60 min is enough to ensure the evacuation of the totality of 

people who decide to evacuate. In contrast, a lead-time of 90 min allows 

reducing the number of causalities. As expected, dramatic results in terms of 

casualties are obtained when the warning is delayed by 30 min, as the number of 

people exposed in the flooded area goes up to 22% of the total population, and 

this is reflected in the number of causalities, which is increased up to 6 times. In 

this case, people evacuate because they directly perceive the flood danger and 

not because they receive a flood warning. 
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It is important to state the limitations of this study, which need to be addressed in future 

research. First, different levee failure mechanisms (e.g. piping) should be considered as they 

may occur during normal flow condition and not only during an extreme event as in the case 

of overtopping. Second, flood warning communication was assumed to occur only through 

official channels, whereas in reality, unofficial channels among agents (e.g. telephone, social 

media) could be active. Nevertheless, in the same line, it is also expected –given the small 

size of Orvieto Scalo and Ciconia, that all the agents receive the flood warning. Third, the 

interactions among agents have been simplified, although they can be very complex in 

reality. We limited these interactions to two basic ones, namely agents following other 

agents, and the traffic jams. In this regard, also other means of transport should be 

considered. Finally, this study focused on the population old enough to drive, thus, children 

or elderly people were excluded. 

This study demonstrates that human behaviour during flood evacuation and the proper 

timing of the flood warning are essential factors for reducing fatalities during extreme events. 

The results of our study can contribute to the efforts to mitigate flood risk and can be used by 

water authorities, urban planners and emergency managers to propose more efficient and 

effective evacuation plans, position of the shelters, and better timing selection to issue flood 

warnings. Moreover, our findings can provide some insights into the flood policy of the 

region, such as flood risk awareness programmes. Enhancing and supporting straightforward 

behaviours among the population against sympathy behaviours may save lives. The 

framework presented is flexible, adaptable to new environmental situations, and open to 

continuous improvements, positioning itself as a tool at the hand of civil protection members 

to generate case-specific flood evacuation plans.  
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Table 1. Classification of the roads by type and speed limit. 

Type of road Type of road - Italy No. of roads 
Speed limit 

(km/h) 

Primary Strada Statale - SS 196 60 

Secondary Strada Provinciale - SP 142 60 

Tertiary Strada Provinciale, at least 4m wide 64 60 

Service Unclassified 170 20 

Residential Unclassified 650 30 

Unclassified Unclassified 364 20 
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Table 2. Number of agents used in the ABM, as a representative population for the case 
study. 

Municipality Total Have children w/o children Employed Unemployed 

Ciconia 668 326 342 387 281 

Orvieto Scalo 332 168 164 193 139 
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Table 3. Summary of the evacuation process. FW: flood warning, FO: flood occurrence. 

 

 

Behaviour Reasons to evacuate 
Starting time of 

evacuation 
Selection of destination 

Straightforward FW Immediately 
80% closest shelter 

20% shelter in the same area 

Normality bias FW FO 

In floodplain 
20 min 
after FW 

In floodplain 
1.Temporary shelter (15 min) 
2. 80% closest shelter 
20% shelter in the same area 

Out 
floodplain 

45 min 
after FW 

Out 
floodplain 

Pick up 
children 

School out of 
agent area 

1.Temporary shelter 
(15 min) 
2. 80% closest shelter 
20% shelter in the 
same area 

School in  
agent area 

1.School  
(15 min) 
2. 80% closest shelter 
20% shelter in the 
same area 

Not pick up the 
children 

80% closest shelter 
20% shelter in the same area 

Sympathy 
behaviour 

Agent ahead 
evacuating 

FO N/A Same shelter than the agent ahead 

Indifferent FO N/A Closest shelter 
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Table 4. Summary of the experimental setup. 

Scenario Variable Sub-scenario Behaviours 
Flood 

warning 
Flood 
onset 

1 

Time of the 
day in which 

the flood 
takes place 

1.1 
60% Normality bias 
10% Straightforward 

evacuation 
15% Sympathy 

behaviour 
15% Indifferent 

8 a.m. 9 a.m. 

1.2 5 p.m. 6 p.m. 

1.3 10 p.m. 11 p.m. 

2 

Percentage 
of 

population 
in each 

behaviour 

2.1 

30% Normality bias 
40% Straightforward 

evacuation 
15% Sympathy 

behaviour 
15% Indifferent 

8 a.m. 9 a.m. 2.2 

10% Normality bias 
60% Straightforward 

evacuation 
15% Sympathy 

behaviour 
15% Indifferent 

2.3 

15% Normality bias 
10% Straightforward 

evacuation 
60% Sympathy 

behaviour 
15% Indifferent 

3 

Time in 
which 

warning is 
issued 

before the 
flood onset 

3.1 
60% Normality bias 
10% Straightforward 

evacuation 
15% Sympathy 

behaviour 
15% Indifferent 

7:30 a.m. 

9 a.m. 

3.2 8:30 a.m. 
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Table 5. Summary of the mean number of evacuees for all sub-scenarios after 5 min of the 
flood warning (FW) and flood onset (FO) and mean number of casualties (population: 

1000). 

Scenario 
Sub-

scenario 
Mean number of 

evacuees after FW 
Mean number 
of casualties 

Mean number of 
evacuees after FO 

1 
1.1 184 3 943 
1.2 245 1 959 
1.3 249 1 959 

2 
2.1 450 2 947 
2.2 614 1 965 
2.3 448 7 847 

3 
3.1 263 0 965 
3.2 193 3 864 
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Figure captions 

Figure 1. Paglia River and the catchment location in Italy (top) and detail of the study area 

(bottom). 

Figure 2. (a) Spatial distribution of the buildings, (b) shelters (red circles), (c) temporary 

shelters (black dots) with the maximum flood extent for the 500-year return period event 

represented as blue line, and (d) roads with their classification. 

Figure 3. Unified Modeling Language (UML) class diagram of the ABM. 

Figure 4. Synthetic daily activities of the agents according to their socio-economic 

characteristics. 

Figure 5. Selection of shelter by an agent depending on its location. Large red dots are the 

shelters. 

 

Figure 6. Cumulative number of people evacuated over the total population (1000) versus 

time after the issue of the warning for the three sub-scenarios of Scenario 1 (behaviours 

considered: normality bias 60%, straightforward 10%, sympathy 15% and indifferent 

15%). The flood warning (FW) is issued at 08:00, 17:00 and 22:00 h for the three sub-

scenarios, i.e. 1.1 (left), 1.2 (middle) and 1.3 (right). The flood onset (FO) is 1 h after the 

warning is issued for all three sub-scenarios. 

 

Figure 7. Spatial distribution of agents at 09:00 h (left, sub-scenario 1.1) and at 17:00 h 

(right, sub-scenario 1.2). The small black dots are the agents, and the big red dots are the 

shelters. 

 

ACCEPTED M
ANUSCRIP

T



 

4 
 

Figure 8. Cumulative number of people evacuated over the total population (1000) versus 

time after issue of the warning for the three sub-scenarios of Scenario 2. The FW is at 

08:00 h, and the flood onset is at 09:00 h. For sub-scenario 2.1 (left panel), behaviours 

consist of normality bias (NB) 30%, straightforward (SE) 40%, sympathy (SB) 15% and 

indifferent (I) 15%; for sub-scenario 2.2 (middle panel), behaviours consist of NB 10%, 

SE 60%, SB 15% and I 15%; and for sub-scenario 2.3 (right panel), behaviours consist of 

NB 15%, SE 10%, SB 60% and I 15%.  

 

Figure 9. People trying to reach the shelters at 08:02 h when the percentage of the 

population with straightforward behaviour is 10% (left), 40% (centre), and 60% (right). 

The small black dots are the agents, and the big red dots are the shelters. 

 

Figure 10. Cumulative number of people evacuated over the total population (1000) at a 

given time for the different sub-scenarios of Scenario 3 (behaviours considered: normality 

bias 60%, straightforward 10%, sympathy 15% and indifferent 15%). The FW is issued at 

07:30 h and 08:30 h for sub-scenarios 3.1 (left) and 3.2 (right). The flood onset is at 09:00 

h for both sub-scenarios. 
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Figure 13. Unified Modeling Language (UML) class diagram of the ABM 
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Figure 14. Synthetic daily activities of the agents according to their socio-economic 
characteristics 
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Figure 17. Spatial distribution of agents at 9:00 a.m. (left, sub-scenario 1.1) and at 5:00 
p.m. (right, sub-scenario 1.2). The small black dots are the agents, and the big red dots are 

the shelters 
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Figure 19. People trying to reach the shelters at 8:02 a.m. when the percentage of the 
population with straightforward behaviour is 10% (left), 40% (centre), and 60% (right). 

The small black dots are the agents, and the big red dots are the shelters 
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Overview, design concepts, and details (ODD) protocol for the 

agent- based model 

 

Supplement to: 
Unravelling the influence of human behaviour on reducing casualties 

during flood evacuation 

S. Alonsoet al. 

 

 

1. Overview 
The study “Unravelling the Influence of Human Behaviour on Reducing 

Casualties during Flood Evacuation” presents an explicit Agent-Based Model (ABM) 

developed in the GIS Agent-based Modeling Architecture (GAMA) platform. This 

software has its own comprehensive Java-based domain-specific language called 

GAML and is freely available at https://gama-platform.github.io/. The model is original 

of this paper and has not been previously published. 

This appendix shows the Overview, Design concepts, and Details (ODD) 
protocol presented by Grimm et al. (2006, 2010) as a common framework for ABMs 
and Individual-Based Models (IBMs) description. The ODD protocol is subdivided into 
seven elements in sequence: Purpose, State variables and scales, and Process overview 
and scheduling that are part of the block Overview; Design concepts inside of the block 
Design; and finally, Initialization, Input and Sub-models that are part of the block 
Details. The overview block contains the context and general information; the design 
block consists of the strategic considerations; and finally, the technical details are 
embedded into the details block. 

 

2. Purpose 
The purpose is to explore the effect of people’s behaviours, lead-time of the flood 
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warning and time of the flood onset in the flood evacuation process. The objective is to 
provide the Civil Protection members and emergency planners with a tool to design 
flood emergency plans under a variety of plausible scenarios. Currently, one of the 
greatest concerns in the design of these plans is the accountability of people’s 
behaviour, hazard and environment conditions to ensure a smooth evacuation. In this 
regard, an ABM is a comprehensive modelling framework suitable to assess the role of 
the three above mentioned factors in altering the efficient movement of evacuees 
towards the shelters increasing the number of casualties. 

 

3. State variables and scales 
The model focus on a small region of Umbria (Italy) that covers the municipalities of 
Ciconia, Sferracavallo, Orvieto Scalo, Orvieto, and Fontanelle di Bardano with an 
extent of approximately 63 Km2. This region suffered the last 200-year flood event in 
2012, after which a levee system was built and inaugurated in 2017. This model is made 
of low-level entities characterized by low-level variables. In GAML language entities 
are called agents which collectively form a species. There are eight entities: one entity 
made by the inhabitants of Orvieto Scalo and Ciconia, and seven entities part of the 
environment including the buildings, temporary shelters, shelters, rivers, roads, flood 
boundary and flood event. 
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All inhabitants are part of the species “people” and have assigned two low-level 
variables that define their socio-demographic characteristics: employed and having a 
child. When aggregated, inhabitants create a population of 1000 individuals. 

The model world has a unique agent from species global that triggers the main 
process (i.e. start flood and send warning). This model world contains the buildings, 
temporary shelters, shelters, rivers and roads. The flood boundary and flood are 
intermittent emerging only when the flood event takes place. There are 2171 buildings, 
9 temporary-shelters, 12 temporary shelters and 1586 bidirectional roads. The 
temporary shelters differ from the shelter in its location and purpose. Temporary 
shelters are at the convergence of flooded roads where civil protection members ensure 
that no individual crosses the river. 

Variables and methods of the species have been summarized in a Unified 
Modeling Language class diagram (UML) found in Figure 3 of the manuscript. This 
data has been collected from the Civil Protection Department of the Region of Umbria, 
OpenStreetMaps, the literature and the authors' judgement. 

 

4. Process overview and scheduling 
Individuals are the highly complex entities of the model. According to its socio- 
demographic characteristics, they perform a daily routine that starts approximately at 
7:00 a.m. until approximately nine hours after. They move towards their destination 
using a road network. The GAML function “goto” is used for this purpose. 

During the day or night, a flood event might occur disrupting the inhabitant's 
daily routines. Once the flood warning is issued, each inhabitant reacts with one of these 
four behaviours: normality bias, straightforward, sympathy or indifferent behaviour. 
The straightforward behaviour characterizes individuals who evacuate immediately after 
receiving the warning. The normality bias behaviour corresponds to individuals who 
evacuate some time after the flood warning is issued. Normality bias behaviour has 
imbedded an altruistic behaviour because some inhabitants may decide to pick up their 
children from the school before heading all together to the shelter. Inhabitants with 
sympathy behaviour follow another agent evacuating ahead. Finally, the inhabitants 
with indifferent behaviour not evacuate when received the warning. Once the 
behaviours are assigned, the inhabitant creates a “map” with the distances to the shelters 
on the same side of the river where the agent stands. 

To start the evacuation process, the triggers are: (1) obeying the flood warning 
(for straightforward and normality bias behaviours); observing the flood event (for any 
type of behaviour); and, (3) following another agent evacuating ahead (for sympathy 
behaviour). 

An evacuee moves the shelter using the “goto” GAML function. The evacuees 
with normality bias behaviour who decide to pick up their children move firstly to a 
school or a temporary shelter (if the school is the other side of the river where the 
inhabitant is standing) before heading to the shelter. 

At the end of the simulation, the inhabitant has one of these three statuses: 
evacuated, no evacuated or drowned. When the inhabitant reaches the shelter, its status 
becomes evacuated. If an inhabitant finishes its daily activities without complying with 
the flood warning and without being affected by the flood, its status turns into “no 
evacuated”. Finally, an agent is considered to be drowned if it is covered by 1.5 m of 
water at any time within the simulation. Once the agent has one of these three statuses, 
its interaction in the simulation finishes. 
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This model is time-step dependent with two fixed schedule actions, sending the 
warning and the flood onset. The time step, also called cycle, is 1 minute. All the 
simulations start at 7:00 a.m. and finish 15 hours (900 cycles) after the flood onset. 

 

5. Design concepts 
Objectives: this design concept brings up the objectives of the agents. The initial 
objective of the individuals is to perform their daily routines. When they decide to 
evacuate, their objective change to reach a shelter. They choose with an 80% probability 
the closest shelter, and with a 10% another shelter. 

 

Emergence: refers to the system-level phenomena that truly emerge from individual 
traits and to the phenomena that are merely imposed (Grimm et al. 2006). Bias in 
behaviours (straightforward, normality bias, sympathy and indifferent behaviours) is 
imposed as proportions of agents. The behaviour of individuals is represented by 
theoretical rules described as probabilities, for example, the probability to pick up the 
children (50%) and the probability to choose the correct shelter (80%). Other emergence 
imposed by the model rules come from the hydraulic model that defines flood extent 
and water depths at locations in this extent. 
The emergence arises in the selection of destination that varies between individuals, and 
the interaction between them on their way to that destination. Traffic jams may emerge 
when an important number of individuals with sympathy behaviour follows the agent 
ahead. 

 

Sensing: refers to the internal knowledge and sense capacity of environmental variables 
that the agents have and consider in their decisions. Individuals know their socio- 
demographic characteristics and consequently the daily routines to perform. Moreover, 
individuals sense a flood warning issued by the local authority and sense an 
approaching flood at a distance of 100m. 

 

Interactions: there are two interactions modelled explicitly: the individuals interacting 
with each other when driving; and individuals with sympathy behaviour following 
another individual evacuating ahead. 

 

Stochasticity: the daily routines and behavioural parameters are determined by 
probabilities and randomness. For example, selection of destination and time of 
departure to perform the daily routines is not equal among agents. Agents choose with a 
high probability (80%) the closest shelter assuming that are familiar with their 
environment, and when evacuating, agents may stop to pick up their children from the 
school with a probability of 50 %. The selection of probabilities are our smart guesses 
as Vorst (2010) suggests that happen for most evacuation models with a Human Factor. 

 

Adaptation: appeals to the adaptive attributes of the individuals in response to 
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changes (Grimm et al. 2006). The individuals adapt their driving speeds based on the 
congestion on the roads. At the same time, individuals can recompute their path on the 
road network when they encounter a flooded road. Also, they adapt to the flood warning 
by changing their daily schedule to move to shelters or to pick their children from 
school. These adaptations seek to increase their evacuation success. 

 

Observation: there was no availability of field or empirical data to parameterize some 
variables such as the evacuation behaviours. This data has been gathered from disaster 
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psychology literature. The data analysed from the model is the time in which the 
inhabitants reach the shelter and the time and location where the inhabitants drowned. 
Results are exported in CSV format. 

 

6. Initialization 
This subsection refers to the creation and initialization of the environment and entities at 
the start of the simulation. The spatial elements of the municipalities were uploaded in 
shapefile format and inhabitants’ data in CSV format. As an exception, the flood event 
was uploaded as shape and transformed into a grid (50m x 50m) updated every 10 
minutes (or cycles). 

For visualization and spatial calculations, each entity is assigned with a 
geometry (shape). The initialization of global variables such as the ones defining the 
flood onset or flood warning depends on the scenario, and therefore are not always the 
same. 

 

7. Input 
The dynamics of the model are driven by the flood event. Flood maps were generated 
using a 2D hydrodynamic model built-in the Hydrologic Engineering Centre’s River 
Analysis System (HEC-RAS) software. Hydrographs corresponding to a 500-year flood 
event are the input data for the hydrodynamic model. 

 

8. Submodels 
There are two models and both of them relate to traffic modelling. The first model 
addresses the movement of agents. Agents follow the meso-scale traffic model of 
“Underwood-Forward Random Model” proposed by Banos et al. (2017) (	 	)		=	 	e	 0	 (1) 
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where 		is the free-flow speed in a road with no traffic, 	is the current concentration of the road, and 0	 is the maximum capacity of the road. 
The second model is a geometric correction applied to the road network. The 

road network for this study was downloaded from OSM and it contained only the 
centreline geometry. To apply “Underwood-Forward Random Model”, the network was 
modified to contain two parallel lines, one in each traffic direction, by drawing a parallel 
line to the existing centreline from OSM. A similar method was used in Bhamidipati et al. 
(2016). 
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