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Abstract  —  In this study, we present a new soiling map 
developed at NREL, showing data from 83 sites in the United 
States. Soiling has been measured through soiling stations or 
extracted by photovoltaic system performance data using 
referenced techniques. The data on the map have been used to 
conduct the first regional analysis of soiling distribution in the 
United States. We found that most of soiling occurs in the 
southwestern United States, with Southern California counties 
experiencing the greatest losses because of the high particulate 
matter concentrations and the long dry periods. Moreover, we 
employed five spatial-interpolation techniques to investigate the 
possibility of estimating soiling at a site using data from nearby 
sites. We found coefficients of determination of up to 78% 
between estimated and measured soiling ratios, meaning that, by 
using selective sampling, soiling losses can be predicted using the 
data on the map with a root-mean-square error of as low as 1.1%.  

Index Terms  —  photovoltaic systems, soiling, map, spatial 
interpolation. 

I. INTRODUCTION

The accumulation of dust, dirt, and particles on the surface 

of photovoltaic (PV) modules is a complex issue, known as 

soiling, that affects PV systems worldwide [1]. Soiling causes 

a reduction in the intensity of sunlight reaching the 

semiconductive material and therefore decreases the energy 

converted by the modules. Soiling causes drops in the annual 

energy yield of up to 7% in the United States, and power 

losses even higher than 50% have been reported worldwide 

[2]–[6]. 

For the last few years, the National Renewable Energy 

Laboratory (NREL) has been working to provide the solar 

community with tools and information to properly address this 

issue. In 2017, we presented a work on the key parameters for 

predicting soiling losses [7]: we found that particulate matter 

concentrations (expressed as PM10 and PM2.5) and rainfall 

parameters describing the average and maximum length of the 

dry periods were the best predictors of soiling occurring at 20 

sites in the United States. We also developed a Stochastic Rate 

and Recovery methodology to extract soiling losses directly 

from PV performance data [8]. This new model, based on the 

identification of soiling intervals between cleaning events and 

on a Monte Carlo simulation of the soiling profile, allows one 

to monitor soiling accumulated on PV systems without the 

need of soiling stations, thus dramatically increasing the 

amount of data already available on soiling and potentially 

limiting the costs associated with soiling detection. 

In the present work, we introduce a new tool with the 

potential to help investors and operations and maintenance 

(O&M) teams better estimate soiling losses and, therefore, to 

improve the performance of their systems and increase their 

revenues, even if soiling or PV data are not available on site. 

Indeed, NREL has published an interactive soiling map 

(screenshot shown in Fig. 1), where soiling data from 83 

locations in the United States have been collected [9]. In a 

previous world soiling map [10], data were shown as reported 

in literature, each calculated in a unique manner. The data in 

the new map are instead obtained with a systematic approach 

through consistent referenced methodologies. 

The data shown in the map have been used to conduct a 

first-of-a-kind regional analysis of soiling in the United States 

to understand which regions are more susceptible to soiling 

losses. Moreover, we also investigated the usefulness of this 

map as a tool for estimating losses at new PV sites to 

understand if soiling at a site can be predicted by using data 

from nearby locations. In this effort, we employed five spatial 

interpolation techniques to estimate soiling losses at a site and 

compared them with actual soiling measurements. 

Fig. 1. Screenshot of the soiling map published in October 2017 on 

www.nrel.gov/pv/soiling.html [9]. Triangular markers (▲) are 

soiling stations; squared markers (■) are PV installations. The 

markers are color-coded according to the severity of soiling. 

II. DATA AND METHODOLOGY

A. Soiling: Quantification and Detection

Soiling is commonly quantified using two metrics: soiling

ratio and soiling rate. The soiling ratio expresses the ratio 

between the output of the PV device and the same output in 

clean conditions. It has a value of 1 in clean conditions and 

decreases as soiling accumulates on the PV device’s surface. If 
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soiling ratio is zero, no energy is produced by the PV device 

because soiling is blocking all the light from reaching the cell. 

The soiling rate measures daily rates of change in soiling ratio 

during dry periods [11]. It has a value of 0% per day if the 

soiling ratio does not change, and it assumes negative values 

when soiling accumulates on the surface of the PV device, thus 

lowering the soiling ratio. 

The soiling data on the map have been sourced from both 

soiling station and PV system data, using the referenced 

methods listed in Table I. Soiling stations are used for a direct 

measurement of soiling at a site. They can have various 

geometries, but those used in this work are composed of two 

PV devices (reference cells or modules), with one device 

regularly cleaned (control device), while the second is left to 

naturally soil (soiled device). The soiling ratio for soiling 

stations can be quantified by dividing the electrical output of 

the soiled device to the same output of the control device. The 

methodology presented in [7], [12] has been followed: (i) only 

the central hours of the day have been considered so as to 

remove any bias due to the potential angular misalignment of 

the two reference devices and angle-dependent light scattering 

from soiling particles [13], [14], (ii) only data recorded for a 

minimum irradiance of 500 W/m2 have been employed to filter 

out cloudy days that might increase the noise in the calculation 

of the soiling ratio, and (iii) only those hours in which the 

normalized short-circuit current of the cleaned cell was found 

to be higher than the 80% of its expected value have been 

considered in order to exclude periods in which the clean cell 

was malfunctioning or excessively soiled. These last two 

conditions were found to effectively reduce the noise of the 

soiling ratio calculation for the soiling stations installed in the 

USA; but they should be retuned if data from different climate 

conditions are considered. 

Soiling occurring on PV systems has been determined by 

using the Stochastic Rate and Recovery method [8]. A 

performance metric is calculated as the ratio between the 

maximum power-point output and the plane-of-array 

irradiance; it is then used to determine the mean soiling ratio 

and median soiling rate through a Monte Carlo computation. 

Note that different electrical outputs are available for the 

two types of sources. The soiling stations shown on the map 

monitor the short-circuit current of the two devices, whereas 

maximum-power-point power or current values are available 

for PV systems. Short-circuit current is known to be less 

affected by nonuniform soiling than the maximum-power-point 

data [15]; therefore, the soiling stations data reported on the 

map are expected to be less impacted by nonuniform soiling 

than PV systems. 

B. Environmental Data 

In our previous works, we showed that particulate matter 

concentrations and the length of dry periods were the best 

predictors of soiling measured at soiling stations in the United 

States [7], [12]. In the present analysis, particulate matter data 

have been sourced from the database of the U.S. 

Environmental Protection Agency (EPA) [16]. The mean 

annual concentrations recorded by the EPA monitoring 

stations closest to each soiling site have been averaged to get a 

mean value for each of the regions considered in this work 

(Table II). Generally, PM10 concentrations are recorded daily 

or every 6th day, whereas PM2.5 concentrations are measured 

daily: in this work, we only accepted data recorded from 

monitoring stations that took at least 75% of the measurements 

scheduled in a year [17]. 

Site-specific daily precipitation data were downloaded from 

the University of Oregon’s PRISM database [18]. The length 
of the dry periods of every region is obtained as the arithmetic 
mean of the length of the dry periods of each site. Rainfall data 
in PRISM are available for the continental U.S. only. 

C. Spatial Interpolation Methods 

We investigated the ability of spatial regression techniques 

to predict soiling losses at a site given soiling data collected in 

nearby locations by using the following procedure:  

1. Extract from the soiling map only sites within a certain 

region.  

TABLE I 
METHODOLOGIES EMPLOYED TO DETERMINE THE SOILING LOSSES REPORTED ON THE SOILING MAP. 

Type Electrical 
Output Conditions Soiling Ratio Soiling Rate 

Mean Value Uncertainty Mean Value Soiling Rate Range 

So
ilin

g 
St

at
io

n 

Sh
or

t-c
irc

ui
t 

cu
rre

nt
 

Only data between 11 a.m. and 1 
p.m., for irradiance ≥ 500 W/m2 and 

for which the normalized short-
circuit current of the cleaned cell 
was at least 80% of its expected 
value were considered [7], [12] 

Insolation-weighted 
mean of daily ratios 

of short-circuit 
current of dirty cell to 
short-circuit current 

of control cell [7] 

Difference between 
calculated and 

modeled soiling ratio 
[24] 

Median of 
slopes 

calculated 
using Theil-

Sen estimator 
on each dry 

period longer 
than 14 days 

[11] 
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Clear-sky day (any day in which 
NSRDB’s “Cloud Type” variable 

[25] has a value of 0) 

Median of insolation-
weighted soiling 

ratio range obtained 
by using the 

Stochastic Rate and 
Recovery method [8] 

95% confidence 
interval of range of 

soiling ratios obtained 
by using the 

Stochastic Rate and 
Recovery method [8] 
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2. Divide the selected sites randomly between a training 

(TrD) dataset and a test (TeD) dataset with the same 

number of data points. 

3. Use the TrD soiling ratios to estimate the TeD’s soiling 

ratios through the different spatial-interpolation 

techniques listed below. 

4. Calculate R2, root-mean-square error (RMSE), and 

normalized RMSE (RMSEn) between the TeD soiling 

ratios measured at each site and those estimated by 

interpolation. RMSEn is calculated as the ratio of RMSE 

to the difference between the maximum and minimum 

soiling ratios among the sites selected in Step 1. To avoid 

any bias due to extremely low dataset population, 

calculate the three metrics only if soiling ratios can be 

estimated for at least four sites of the TeD. 

5. Repeat points 2, 3, and 4 above 1000 times. 

6. Calculate the average R2, RMSE, and RMSEn from the 

outputs of the 1000 iterations. Ignore the results if R2, 

RMSE, and RMSEn cannot be calculated for at least 50% 

of the iterations. 

This approach is defined as “Random Sampling,” because 

all the sites within a region are used in the analysis. In a 

different approach, named “Selective Sampling,” only sites 

with certain features are used. This method, which adds a 

further site-selection step between Point 1 and Point 2 in the 

procedure, is of interest because, even if located nearby, 

soiling sites might be affected by dissimilar soiling because of 

different geometries or conditions. In this case, the RMSEn is 

calculated as the ratio of RMSE to the difference between the 

maximum and minimum soiling ratios among the sites 

remaining after the selective sampling. 

We considered five spatial-interpolation methods, 

commonly used in air-quality studies [19]: 

• Nearest neighbor (NN): each TeD site is assigned the 

soiling loss of the closest TrD site. 

• Spatial averaging (SA): each TeD site is assigned a soiling 

ratio equal to the arithmetical mean of those of the TrD 

sites located within a set distance.  

• Inverse distance weighting (ID): the soiling ratio of a TeD 

site is obtained as the mean of those of the TrD sites 

located within a set distance, and by using the inverse of 

the distance between the TeD and each TrD sites as a 

weighting factor.  

• Inverse square distance weighting (ID2): the soiling ratio 

of a TeD site is obtained as the mean of those of the TrD 

sites located within a set distance, and by using the inverse 

of the squared distance between the TeD and each TrD 

sites as a weighting factor. 

• Declustered distance estimation (DDE): the soiling ratio of 

a TeD site is obtained as the mean of those of the TrD sites 

located within a set distance, and by using as a weighting 

factor a parameter calculated considering both the inverse 

of the distance between the TeD and each TrD site, as well 

as the spatial distribution of the TrD sites, to avoid 

overweighting clustered data points [20]. 

Distances of 50 km and 250 km were considered in this 

study. Surface soiling maps of California, obtained by plotting 

the soiling ratio distribution with a resolution of 0.05°×0.05° 

using the different techniques, are shown in Fig. 2.  

Map 

 

NN 

 
SA 

 

ID 

 
ID2 

 

DDE 

 

 
Fig. 2. Soiling surface maps of California obtained by using the 

different spatial interpolation techniques considered in this 

study. Squared makers (■) represent PV systems, triangular 

markers (▲) represent soiling stations. For SA, ID, ID2, and 

DDE, we considered a radius of 250 km. The pixel size is 

0.05°×0.05°, which corresponds to vertical dimensions of 5.5 

km and horizontal dimensions ranging between 4.2 km (at 

northern latitudes) and 5.3 km (at southern latitudes). 
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III. SOILING MAP AND REGIONAL ANALYSIS 

A. Soiling Map 

The current version of the soiling map, published in October 

2017, contains 83 data points, measured from 41 soiling 

stations and 42 PV systems [9]. It will be updated as new 

locations are shared with NREL. The following information is 

currently reported for each site (see Table I for references): 

• Years of operation, 

• County where the site is located, 

• Soiling Ratio: insolation-weighted mean of the daily 

soiling ratios, 

• Uncertainty on the calculation of the soiling ratio, 

• Soiling Rate: median of the daily rates of change in 

soiling ratio during dry periods, and 

• Soiling Rate range: the 97.5th and the 2.5th percentiles of 

the soiling rate distribution. 

The soiling ratios shown in the map are obtained as 

insolation-weighted averages of the daily mean values. This 

approach was chosen because insolation-weighted values 

reflect the impact of soiling on the energy yield, which, we 

believe, is the main interest of those who will use the map. The 

distribution of soiling experienced in multi-inverter systems 

will be addressed in future versions of the map: in the current 

version, only the value of one inverter is presented, even for 

sites in which multiple inverters are installed. No information 

is available on the cleaning schedule of the PV systems. 

B. Soiling Regions 

All the locations shown on the map were divided into six 

regions (Table II). Four of them mirror the aerosol regions 

described by the EPA [21], and the last two regions group 

together the data points collected either in Hawaii or in the 

U.S. Virgin Islands. New regions can be added, existing ones 

can be amended, and the state lists can be updated as new data 

points become available. 

The results of the analysis are shown in Fig. 3. The 

Southwestern (SW) states are those with the most soiling, with 

Southern California (SC) having the highest soiling losses (i.e., 

minimum soiling ratios). This is not surprising because this 

region has the highest PM10 and PM2.5 concentrations (32 

µg/m3 and 11 µg/m3, respectively) as well as the longest dry 

periods. However, the particulate matter does not follow the 

same trend as soiling in other regions. A clearer correlation is 

obtained instead if we consider the average or maximum 

length of the dry periods. The average length is three and five 

times higher in the SW and SC, respectively, than the average 

values on the East coast. Similarly, the maximum length in the 

western regions is four and seven times higher, respectively, 

than the average values on the East coast. 

IV. SPATIAL INTERPOLATION 

A. Random Sampling 

Soiling occurring at a site might experience strong inter-

annual variations [22], and the impact of soiling on different 

inverters of the same system has yet to be quantified. For these 

reasons, the analysis presented in this section does not include 

PV system data, which are recorded over long and different 

periods of time (ranging between 2001 and 2016) and do not 

consider potential nonuniformities occurring among inverters 

at the same sites. This investigation considers only the soiling 

station data available on the soiling map, which have all been 

recorded between 2013 and 2016 using short-circuit current 

measurements. An analysis, inclusive of PV system data, will 

be presented in future works and will include new sites as they 

become available. In addition, we considered only the two 

regions with most data points: Southern California, and 

 
Fig. 3. Average soiling ratios (boxplot, left y-axis), particulate matter 
concentrations, and dry-period lengths (right y-axis) for the six U.S. 
soiling regions considered in this study. Each boxplot shows 
minimum, first quartile, median (bold continuous line), mean (grey 
broken line), third quartile, and maximum soiling ratios. PM10 (green 
square markers) and PM2.5 (red round markers) are obtained as the 
mean of the values recorded by the EPA monitoring station closest to 
each site in the region. Dry-period data (light blue bars) and 
maximum dry-period data (dark blue bars) are from PRISM [18]; rain 
data for Hawaii and U.S. Virgin Islands are not available. 

 

 

TABLE II 
SOILING REGIONS. 

Region States Sites 
Hawaii (HI) Hawaii 5 
Northeast (NE) Connecticut, New Jersey 3 
Southeast (SE) Florida, Georgia, Maryland, 

North Carolina 
4 

Southern 
California (SC) 

California (selected counties) * 25 

Southwest (SW) Arizona, California,** Colorado, 
Nevada, New Mexico, Texas 

44 

Virgin Islands (VI) U.S. Virgin Islands 2 
* Counties: Imperial, Kern, Los Angeles, Orange, Riverside, San 
Bernardino, San Diego, San Luis Obispo, Santa Barbara, Ventura. 
** Only counties not included in the SC region. 
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Southwest (inclusive of Southern California counties). 

A random sampling spatial interpolation is first attempted. 

The mean R2, obtained as the arithmetic averages of R2 

calculated for each of the 1000 iterations, are shown in Table 
III. The results show the existence of a correlation between the 

interpolated and measured data, with R2 achieving maximum 

values higher than 70%. These correspond to RMSE in the 

range of 1.3% to 2.3% and to a minimum normalized RMSE 

of 21.2%. The best results are obtained if a spatial-

interpolation technique is employed, instead of considering the 

soiling of the nearest site only, independently of its distance. 

Moreover, a smaller radius is found to return better results in 

the Southwest region: the closer the sites considered for spatial 

interpolation, the higher the correlations. Unfortunately, no 

valid results can be shown for Southern California for a 

distance of 50 km because most of the iterations did not meet 

the requirement set on Point 4 of the procedure detailed in 

Section II.C. 

To further understand the impact of the distance between a 

soiling data point and the site of interest, the NN analysis is 

repeated considering as valid only TrD locations within a set 

distance of the TeD site. In the Southwest, the results show 

that considering NN only if the data point is within 50 km of 

the site instead independently of its distance raises the R2 from 

42% to 63%. No significant difference is found if we consider 

a maximum distance of 250 km, confirming that only shorter 

distances should be considered to increase the quality of the 

estimation. 

B. Selective Sampling 

Soiling is known to depend on the characteristics of the site 

and can vary with the geometry of the system. A random 

sampling approach does not consider these factors, because it 

only accounts for the distance between a site and the available 

data points. In this light, selective sampling has the potential to 

increase the results of spatial interpolation because it will 

remove data points with the features different than those of the 

site of interest. The features we considered in this study for the 

site selection are the following: 

1) Tracking configuration: fixed tilt or single-axis tracked. 

2) Mounting type: roof- or ground-mounted. 

3) Land cover: developed or non-developed. The 

categories have been selected by using the USDA soil 

survey [23]. In the presence of a mixture of constructed 

materials and vegetation, we considered any site where 

impervious surfaces accounted for less than 20% of the 

total cover as “Non-Developed.”  

The results are shown in Fig. 4: we considered only the 

parameters that returned dataset counting at least the half of 

TABLE III 
MEAN R2, IN %, OBTAINED FOR DIFFERENT SPATIAL 

INTERPOLATION METHODS IN THE VARIOUS REGIONS AFTER 
1000 ITERATIONS. R2 ARE NOT REPORTED IF SOILING RATIOS 
OF FOUR OR MORE SITES OF THE TEST DATASET COULD NOT 

BE CALCULATED IN AT LEAST 50% OF THE ITERATIONS. 

M
et

ho
d NN SA ID ID2 DDE 

50 
km 

250 
km 

50 
km 

250 
km 

50 
km 

250 
km 

50 
km 

250 
km 

SC 37  27  44  46  46 
SW 42 74 41 74 47 73 48 74 49 

 

 
Fig. 4. Comparing the results of random sampling (“All Stations”) with the results of selective sampling in two regions. Only data respecting the 
requirement of Step 6 of the procedure are shown. Each spatial interpolation method is reported using a single color: data obtained for radii of 
50 km are reported in lighter shades as they are not available for all the selections and the regions.  
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the initial site number for each region. The best results are still 

obtained for shorter distances (lighter colors); but more data 

points are needed to confirm this trend because results valid 

according to Step 6 of the procedure described in Section II.C 

are obtained for only two categories in the Southwest. Overall, 

maximum R2 values between 78% and 76% (RMSE between 

1.4% and 1.6%) are achieved if ground-mounted stations are 

considered. 

For larger distances, the site selection shows the ability to 

improve the R2 of the correlations by up to 25%. The greatest 

enhancements are obtained if stations located in “Non-

Developed” sites or fixed stations are considered. Fixed 

soiling stations return the most consistent improvements, 

probably because most of the fixed stations have similar tilt 

angles, ranging between 20° and 25°. Table IV shows how the 

minimum RMSE and RMSEn values can be lowered in all the 

regions if we consider a selective approach. 

The results of this first investigation confirm that the map 

can be a useful tool for predicting soiling losses at sites where 

no soiling data are available. However, more data points are 

required to draw more generalized conclusions and to analyze 

a larger number of selective parameters. 

IV. CONCLUSIONS 

In this work, we presented a new soiling map that can help 

the community address the soiling of photovoltaic modules. 

The map collects soiling data from 83 sites, either soiling 

stations or PV systems, analyzed using referenced techniques; 

it will be updated with new locations as they become available.  

The data on the map have been used to conduct the first 

regional analysis of soiling across the United States. The 

western states, which experience the longest dry periods, are 

those affected by the highest soiling losses, with the sites 

located in southern California having the maximum losses. 

The soiling map can be used to estimate losses at a site 

given soiling data from nearby locations. As proof, we 

employed spatial-interpolation techniques to estimate soiling 

losses in the most soiled regions of the United States. We 

found coefficients of determination as high as 74% when 

soiling data at randomly sampled locations are replaced with 

those measured at the closest-available locations. This means 

that the average soiling ratio at a site can be estimated with 

RMSE as low as 1.4%. In particular, the best results were 

obtained if only locations within 50 km of the investigated 

sites were considered: the addition of new data will make it 

possible to estimate with better accuracy soiling that occurs at 

sites where no data are available.  

The outcomes of the analysis suggest that the coefficients of 

determination can be enhanced up to 78% and the RMSE 

lowered to 1.1% if selective sampling is performed to only 

consider data points with features like those of the investigated 

sites. Selective sampling requires a larger dataset and more 

information on the geometry of the systems, and the conditions 

of the sites. The analysis will be repeated when new data 

become available, including, in addition, data from PV 

systems and additional selective parameters. 
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