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Abstract. We prove existence and boundedness of classical solutions for a
family of viscous conservation laws in one space dimension for arbitrarily
large time. The result relies on H. Amann’s criterion for global existence
of solutions and on suitable uniform-in-time estimates for the solution. We
also apply Jüngel’s boundedness-by-entropy principle in order to obtain
global existence for systems with possibly degenerate diffusion terms. This
work is motivated by the study of a physical model for the space-time
evolution of the strain and velocity of an anharmonic spring of finite
length.
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1. Introduction and motivation

In this paper we study global existence and uniqueness of solutions for a fam-
ily of parabolic systems of PDEs in one space dimension. Although the litera-
ture concerning parabolic problems is very rich, results for nonlinear systems
subject to non-homogeneous boundary conditions of different type (Dirichlet,
Neumann or mixed) are not always available, even if the spatial domain is just
an interval of the real line. Moreover, many of the classical results for parabolic
systems are formulated on a fixed time interval [0, T ] (as in [9]), whereas we are
interested in obtaining estimates for the solutions that are valid for arbitrarily
large time. The study of global properties becomes trickier when the system
includes cross-diffusion and possibly degenerate terms, as they affect the reg-
ularizing effects of diffusion terms. We choose to restrict our attention to the
case d = 1 in order to make the exposition clearer and to give neat statements.
Indeed, working in one dimension offers several advantages in terms of regu-
larity results and Sobolev embeddings. In some cases it is possible to extend
many of the results we present to d > 1 (see e.g. [2,3]), however, in general, one
can not guarantee existence of global, classical solutions of strongly coupled
systems (see, for example, [13,16]). The system we consider is complemented
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by mixed, time-dependent boundary conditions which are imposed at the ex-
treme points of the domain. Hyperbolic and parabolic systems of conservation
laws with mixed and time-dependent boundary conditions arise naturally when
studying the thermodynamics of some microscopic systems (see for example
[14,15]). Our choice of boundary conditions was motivated by the case of an
anharmonic chain of particles connected by nonlinear springs, where one end
of the chain is fixed (homogeneous Dirichlet) and at the other end is applied
a constant force (non-homogeneous Dirichlet). By means of such boundary
conditions and a suitable choice of the external force, it is possible define
thermodynamic transformations and deduce the first and second law of Ther-
modynamics (macroscopic laws) as consequences of the microscopic dynamics.
We refer to [6,11,12,14] for further details concerning these physical models.
A prototypical model for our study is given by the following viscous p-system
obtained as hydrodynamic limit (under hyperbolic space-time scaling) for the
isothermal dynamics of an anharmonic chain subject to an external varying
tension:

Example 1. As described in [10], a suitable choice of the microscopic model
leads to the following viscous p-system{

∂tr = ∂xp + δ1∂xxτ(r)
∂tp = ∂xτ(r) + δ2∂xxp

, (t, x) ∈ (0,∞) × (0, 1), (1.1)

with boundary conditions

p(t, 0) = 0, τ(r(t, 1)) = a(t), ∂xp(t, 1) = ∂xr(t, 0) = 0. (1.2)

Here r and p represent infinitesimal strain and velocity of each point of a
anharmonic spring of finite length, τ is the internal tension, and a represents
the boundary tension.

A second example of system we can study is the following:

Example 2. Consider the 4 × 4 system of PDEs given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tEy = −∂xBz + δ1∂xxEy

∂tEz = ∂xBy + δ2∂xxEz

∂tBy = ∂xEz + δ3∂xxBy

∂tBz = −∂xEy + δ4∂xxBz

, (1.3)

with boundary conditions

E(t, 0) = 0, B(t, 1) = b(t), ∂xE(t, 1) = 0, ∂xB(t, 0) = 0. (1.4)

Here E = (Ey, Ez) and B = (By, Bz) can be interpreted as the y and z
components of an electric and magnetic field in the vacuum. When δi = 0,
system (1.3) reduces to the y and z components of the Maxwell equations

∂tE = curlB, ∂tB = − curlE, (1.5)

in the case where E and B propagate along the x-axis (that is, when they do
not depend on y and z). The Dirichlet boundary conditions fix the values of
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the electric field at x = 0 and of the magnetic field at x = 1. The Neumann
conditions are no-flux conditions.

2. Set up and main results

Consider the interval I = (�−, �+) ⊂ R, where �− < �+, and let ξk denote the
kth component of a generic vector ξ ∈ R

N . We denote by QT the parabolic
cylinder [0, T ) × I. For k = 1 . . . N , we consider the system of PDEs

∂tu
k = ∂x

N∑
l=1

(
MklF l(u) + Akl∂xF l(u)

)
, (2.1)

where the unknown u is a vector function of the independent variables time
t and space x, namely u : [0, T ] × Ī → R

N , F : RN → R
N is a vector field

of class C1. The matrices A = {Akl} and M = {Mkl}, for k, l = 1, . . . N , will
be defined precisely later on. It is sometimes convenient to write Eq. (2.1) in
matrix form, in particular

∂tu = ∂x (MF (u) + A∂xF (u)) . (2.2)

We shall also denote by · the scalar product of RN .
Equation (2.1) is complemented by the following boundary conditions:

F 1(u(t, �+)) = a(t), (∂xF 1)(u(t, �−)) = 0,

(∂xF 2)(u(t, �+)) = 0, F 2(u(t, �−)) = 0,

F k(u(t, �+)) = 0, F k(u(t, �−)) = 0, for k > 2, (2.3)

and by the initial condition

uk(0, x) = uk
0(x). (2.4)

Remark 1. It is possible to replace (2.3) with other boundary conditions such
as homogeneous Dirichlet or assigned periodic conditions and our results still
hold with different constants.

We consider the following set of assumptions:
[H1] We assume that A and M are N × N symmetric matrices. We suppose

that A = A(x) is (at least) of class C1 with respect to x ∈ Ī and that
there exists a constant μ > 0 such that, for any ξ ∈ R

N , x ∈ Ī, it holds

μ|ξ|2 ≤ A(x)ξ · ξ ≤ 1
μ

|ξ|2.

We also impose the following compatibility conditions (for k = 1 . . . N):

A1k(l−) = 0, k �= 1, (2.5)

A2k(l+) = 0, k �= 2. (2.6)

We further assume that M = M(t) is (at least) of class Cα, for some
α ∈ (0, 1/2), bounded with respect to t ∈ [0,∞) and we require that

Mkk = 0, ∀k = 1, . . . , N.
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[H2] The function a : [0,∞) → R satisfies the following conditions:

‖a‖L∞(0,∞) ≤ a0,

(∫ ∞

0

|a′(t)|pdt

) 1
p

≤ a1,

for any p ∈ [1, 2] and suitable constants ai > 0, i = 0, 1.
[H3] The initial condition u0 : Ī → R

N is (at least) of class C2 and it is
compatible with the boundary conditions (2.3).

[H4] There exists a convex function H : RN → R+ of class C2 and a constant
λ > 0 such that

DH(u) = F (u) and Hess(H)(u)ξ · ξ ≥ λ|ξ|2, ∀u, ξ ∈ R
N .

Furthermore, F : RN → R
N is monotone of class C1 and there exists a

constant Λ ≥ λ such that, for any ξ1, ξ2 ∈ R
N ,

λ|ξ1 − ξ2|2 ≤ (F (ξ1) − F (ξ2)) · (ξ1 − ξ2) ≤ Λ|ξ1 − ξ2|2. (2.7)

We also assume that F (0) = 0.

Remark 2. (Initial datum in L2) If the initial datum is not smooth but, for
example, it only belongs to L2(I), the initial time has to be excluded but our
results still hold in a subset of the form (t0, T ), for t0 arbitrarily close to 0.

Remark 3. Model (1.1) is obtained as a special case of system (2.1) setting

u =
(

r
p

)
, F (u) =

(
τ(r)
p

)
, M =

(
0 1
1 0

)
, A =

(
δ1 0
0 δ2

)
.

Similarly, model (1.3) is obtained from system (2.1) for F (u) = u setting

u =

⎛
⎜⎜⎝

Ey

Ez

By

Bz

⎞
⎟⎟⎠ , M =

⎛
⎜⎜⎝

0 0 0 − 1
0 0 1 0
0 1 0 0

− 1 0 0 0

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

δ1 0 0 0
0 δ2 0 0
0 0 δ3 0
0 0 0 δ4

⎞
⎟⎟⎠ .

Our main result is the following:

Theorem 2.1. Under the hypotheses [H1]–[H4], problem (2.1)–(2.4) admits a
bounded, global, classical solution in C1([0,∞);C0(Ī)) ∩ C0([0,∞);C2(Ī)).
Furthermore, there exists a constant C > 0 independent of time such that∫

I

(|u(T, x)|2 + μ|∂xF (u(T, x))|2)dx

+
∫

QT

(
μ|∂xF (u)|2 + |∂tu|2 + |∂x(A∂xF (u))|2) dxdt ≤ C. (2.8)

In Sect. 4 we will briefly discuss a way to extend global existence results
to a family of possibly degenerate systems (under suitable assumptions); this
technique was established in [7] (see also [8]).

Theorem 2.1, will be proved in Sect. 3 and we will use the following two
fundamental “building blocks”:
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Theorem 2.2. (Existence of classical solutions for short times, [1]) Let hypothe-
ses [H1]–[H4] hold, then there exists a time t1 ∈ (0, T ) such that, given a
sufficiently smooth initial datum u0 that is compatible with the boundary con-
ditions, problem (2.1)–(2.4) has a unique solution u in the interval [0, t1] which
satisfies

u ∈ C1+α([0, t1];L2(I)) ∩ Cα([0, t1];H2(I)),

where α ∈ (0, 1
2 ) depends on the regularity of u0 and M . Furthermore, we have

∂tu, ∂xxu ∈ Cα1([0, t1];C0(Ī)),

for each α1 ∈ (0, α).

The following theorem, combined with uniform-in-time estimates, allows
to show global existence of classical solutions for a relatively wide class of
cross-diffusion systems (see, for example, [2,3] and references therein).

Theorem 2.3. (Criterion for global existence, [4]) Let hypotheses [H1]–[H4]
hold and consider a solution u of problem (2.1)–(2.4). Let J(u0) denote the
maximal time interval of definition of u. If there exists an exponent ε ∈ (0, 1)
(not depending on time) such that

u ∈ Cε(J(u0) ∩ [0, T ];C0(Ī)),

Then u is a global solution, i.e. J(u0) = [0,∞).

Remark 4. (Notation) Notice that, comparing Theorem 2.3 with the original
statement in [4], we have that G = R

N . Additionally, in our case the function
f introduced in [4] is “affine in the gradient” in the sense specified therein.
Finally, we do not use the notation BUCε to denote the space of “bounded,
uniformly ε-Hölder continuous functions”.

3. Estimates for the general system

In the present section we are going to derive the crucial estimates for solutions
of system (2.1).

Proposition 3.1. Let hypotheses [H1]–[H4] hold. There exists a constant C0 > 0
independent of A such that for any T > 0, any solution u of (2.1)–(2.4)
satisfies ∫

I

|u(T, x)|2dx + μ

∫ T

0

∫
I

|∂xF (u)|2dxdt ≤ C0. (3.1)

Proof. Thanks to Theorem 2.2, we know that classical solutions exist on a
(possibly short) time interval [0, t1], and therefore the maximal time interval
of existence of u, denoted by J(u0), is well defined.

Let t ∈ [0, T ] ⊆ J(u0); we test (2.2) against F (u) and integrate over I:∫
I

F (u) · ∂tudx =
∫

I

{F (u) · M∂xF (u) + F (u) · ∂x(A∂xF (u))} dx. (3.2)
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Recall that, by assumption [H4], F has a primitive, namely F (u) = DH(u),
where H is a convex and non-negative scalar function. Therefore, we can write∫

I

F (u) · ∂tudx =
∫

I

∂tH(u)dx.

Moreover, since M is symmetric and independent of x, we have

F (u) · M∂xF (u) =
1
2
∂x(F (u) · MF (u)).

Thus, after an integration by parts, (3.2) becomes∫
I

(∂tH(u) + F (u) · A∂xF (u))dx

=
(

1
2
F (u) · MF (u) + F (u) · A∂xF (u)

)∣∣∣∣
∂I

. (3.3)

We evaluate the boundary term in (3.3). Since we have homogeneous Dirichlet
boundary conditions F k(u(t, �−)) = F k(u(t, �+)) = 0, for k > 2, we obtain(

1
2
F (u) · MF (u) + F (u) · A∂xF (u)

)∣∣∣∣
∂I

=

⎛
⎝1

2

N∑
l,k=1

MklF k(u)F l(u) +
N∑

l,k=1

AlkF k(u)∂xF l(u)

⎞
⎠∣∣∣∣

∂I

=

(
M12F 1(u)F 2(u) +

N∑
l=1

(Al1F 1(u)∂xF l(u) + Al2F 2(u)∂xF l(u))

)∣∣∣∣
∂I

.

Moreover, since ∂xF 1(u(t, �−)) = F 2(u(t, �−)) = ∂xF 2(u(t, �+)) = 0 and
F 1(u(t, �+)) = a(t), we have(

M12F 1(u)F 2(u) +
N∑

l=1

(Al1F 1(u)∂xF l(u) + Al2F 2(u)∂xF l(u))

)∣∣∣∣
∂I

= a(t)

⎛
⎝M12F 2(u(t, �+)) +

∑
l �=2

Al1(�+)∂xF l(u(t, �+))

⎞
⎠

+
∑
l �=2

Al2(�+)F 2(u(t, �+))∂xF l(u(t, �+))

−
∑
l �=1

Al1(�−)F 1(u(t, �−))∂xF l(u(t, �−)).

Finally, since Al2(�+) = 0 for l �= 2 and Al1(�−) = 0 for l �= 1, we obtain(
1
2
F (u) · MF (u) + F (u) · A∂xF (u)

)∣∣∣∣
∂I

= a(t)

⎛
⎝M12F 2(u(t, �+)) +

∑
l �=2

Al1(�+)∂xF l(u(t, �+))

⎞
⎠ . (3.4)
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We deduce the value of the last bracket in (3.4) by integrating Eq. (2.1) for
k = 1 with respect to x ∈ I:

M12F 2(u(t, �+)) +
∑
l �=2

Al1(�+)∂xF l(u(t, �+)) = ∂t

∫
I

u1dx. (3.5)

Given the boundary terms above, integrating (3.3) in time, we obtain∫
I

H(u(T, x))dx +
∫ T

0

∫
I

∂xF (u) · A∂xF (u)dxdt

=
∫

I

H(u0)dx +
∫ T

0

a(t)∂t

∫
I

u1dxdt

=
∫

I

H(u0)dx +
(

a(t)
∫

I

u1dx

)∣∣∣∣
t=T

t=0

−
∫ T

0

a′(t)
∫

I

u1dxdt.

(3.6)

Let us estimate the last two terms in (3.6), in particular we have

a(T )
∫

I

u1(T, x)dx ≤ �+ − �−
λ

a(T )2 +
λ

4

∫
I

(u1(T, x))2dx (3.7)

and, using Young’s inequality,

−
∫ T

0

a′(t)
∫

I

u1dxdt ≤ �+ − �−
4

∫ T

0

|a′(t)|dt +
∫ T

0

|a′(t)|
∫

I

(u1)2dxdt.

(3.8)

We recall that, by assumption [H1], it holds ∂xF (u) · A∂xF (u) ≥ μ|∂xF (u)|2
and, additionally, by assumption [H4], we have H(u) ≥ λ

2 |u|2. Therefore, com-
bining inequalities (3.6)–(3.8), we obtain the following estimate:

λ

4

∫
I

|u(T, x)|2dx +
∫ T

0

∫
I

μ|∂xF (u)|2dxdt

≤ C(T ) +
∫ T

0

|a′(t)|
∫

I

(u1)2dxdt, (3.9)

where, using assumption [H2], we have

C(T ) =
∫

I

H(u0)dx + (�+ − �−)

(
1
λ

a(T )2 +
1
4

∫ T

0

|a′(t))|dt

)

≤
∫

I

H(u0)dx + (�+ − �−)
(

1
λ

a2
0 +

1
4
a1

)
.

Finally, thanks to (3.9), we apply Grönwall’s inequality and obtain

λ

4

∫
I

|u(T, x)|2dx + μ

∫ T

0

∫
I

|∂xF (u)|2dxdt

≤ C(T ) exp

(∫ T

0

|a′(t)|dt

)

≤
(∫

I

H(u0)dx + (�+ − �−)
(

1
λ

a2
0 +

1
4
a1

))
exp(a1). (3.10)
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Thus each term is bounded by a constant independent of T . �

In the next Proposition we will obtain stronger estimates involving first
derivatives in time and second derivatives in space.

Proposition 3.2. Let hypotheses [H1]–[H4] hold and consider a solution u of
(2.1)–(2.4). Assume that Hess(H) ≥ λ Id, where λ > 1

4σ > 1
2 , for some σ ∈

(0, 1
2 ). Then there exists a constant C1 > 0 independent of T (but depending

on A,M, u0, C0, a, σ, μ, λ) such that∫
QT

(|∂tu|2 + |∂x(A∂xF (u))|2) dxdt +
∫

I

|∂xF (u)|2∣∣t=T

t=0
dx ≤ C1. (3.11)

Additionally, u ∈ L2(0, T ;H2(I)) ∩ H1(0, T ;L2(I)) uniformly for all T > 0.

Remark 5. Notice that the condition λ > 1
2 can be removed by re-scaling the

time variable in Eq. (2.1).

Proof. Given T ∈ J(u0), we test the general system

∂tu = ∂x (MF (u) + A∂xF (u)) (3.12)

(with A = A(x) and M = M(t)) against ∂tF (u)−Ξ, where Ξ = ∂x(A∂xF (u));
namely we obtain ∫

QT

[∂tu − Ξ] · [∂tF (u) − Ξ] dxdt

=
∫

QT

∂x(MF (u)) · [∂tF (u) − Ξ] dxdt. (3.13)

Let us denote the left-hand side and right-hand side of (3.13) by L and R
respectively. We are going to estimate the following term from below:

L =
∫

QT

[
Hess(H)∂tu · ∂tu + |Ξ|2 − (∂tu + ∂tF (u)) · Ξ

]
dxdt,

in particular, we estimate the two “mixed terms” separately. For the first one
we have

−
∫

QT

∂tu · Ξdxdt ≥ −
∫

QT

[
σλ|∂tu|2 +

1
4σλ

|Ξ|2
]

dxdt,

whereas for the second one we have

−
∫

QT

∂tF (u) · Ξdxdt = −
∫

QT

∂tF (u) · ∂x(A∂xF (u))dxdt

=
∫

QT

1
2
∂t (∂xF (u) · A∂xF (u)) dxdt

−
∫ T

0

(∂tF (u) · A∂xF (u))
∣∣∣∣
∂I

dt.
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We evaluate the boundary term above, indeed, using Eq. (3.4), we have

∂tF (u) · A∂xF (u)
∣∣∣∣
∂I

=
N∑

k,l=1

(
∂tF

k(u)Akl∂xF l(u)
)∣∣∣∣

∂I

= ∂tF
1(u(t, �+))

∑
l �=2

A1l(�+)∂xF l(u(t, �+))

= a′(t)
[∫

I

∂tu
1dx − M12F 2(u(t, �+))

]
.

Thus, the left-hand side of (3.13) satisfies the following inequality:

L ≥
∫

QT

[
λ(1 − σ)|∂tu|2 +

(
1 − 1

4σλ

)
|Ξ|2 +

1
2
∂t (A∂xF (u) · ∂xF (u))

]
dxdt

−
∫ T

0

a′(t)
[∫

I

∂tu
1dx − M12F 2(u(t, �+))

]
dt. (3.14)

Concerning the right-hand side of (3.13), using Young’s inequality we obtain

R ≤ 1
2

(
1

λ(1 − σ)
+

(
1 − 1

4σλ

)−1
)∫

QT

|∂x(MF (u))|2dxdt

+
1
2

∫
QT

[
λ(1 − σ)|∂tu|2 +

(
1 − 1

4σλ

)
|Ξ|2

]
dxdt. (3.15)

Combining the estimates for L and R [i.e. (3.13)–(3.15)], we have

∫
QT

[
λ(1 − σ)|∂tu|2 +

(
1 − 1

4σλ

)
|Ξ|2

]
dxdt +

∫
I

A∂xF (u) · ∂xF (u)
∣∣t=T

t=0
dx

≤ Kλσ

∫
QT

|∂x(MF (u))|2dxdt +

∫ T

0

a′(t)
[∫

I

∂tu
1dx − M12F 2(u(t, �+))

]
dt,

where Kλσ = 1
λ(1−σ) + 4σλ

4σλ−1 . We recall that, for k ≥ 2, we have F k(u(t, �−) =
0, hence, by Poincaré’s inequality (with constant CP ), we obtain

∫
I

|F k(u)|2dx ≤ CP

∫
I

|∂xF k(u)|2dx, ∀k ≥ 2.

Using Morrey’s inequality (with constant CS) and Proposition 3.1, we get

∫ T

0

∥∥F 2(u(t, ·)∥∥2

L∞(I)
dt ≤ CS

∫ T

0

∥∥F 2(u(t, ·)∥∥2

H1(I)
dt ≤ (1 + CP )CSC0.
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Consequently, we deduce that

−
∫ T

0

a′(t)M12F 2(u(t, �+))dt

≤ ∥∥M12
∥∥

L∞(0,∞)

(∫ T

0

a′(t)2dt

) 1
2

(∫ T

0

∥∥F 2(u(t, ·)∥∥2

L∞(I)
dt

) 1
2

≤ ∥∥M12
∥∥

L∞(0,∞)
a1

√
(1 + CP )CSC0

μ
,

where a1 was introduced in [H2]. Thanks to Proposition 3.1, we also have∫
QT

|∂x(MF (u))|2dxdt ≤ ‖M‖2
L∞(0,∞)

C0

μ
.

Similarly, we also have the bound∫
QT

a′(t)∂tu
1dxdt ≤ 1

4λσ
a2
1 + λσ

∫
QT

|∂tu
1|2dxdt.

Finally, we deduce that

λ(1 − 2σ)
∫

QT

|∂tu|2dxdt

+
(

1 − 1
4σλ

)∫
QT

|Ξ|2dxdt + μ

∫
I

|∂xF (u(T ))|2dx

≤ Kλσ
1

4λσ
a2
1 +

∥∥M12
∥∥

L∞(0,∞)
a1

√
(1 + CP )CSC0

μ

+ ‖M‖2
L∞(0,∞)

C0

μ
+

1
μ

∫
I

|∂xF (u0)|2dx,

where all constants are independent of time. Notice that, since we have ob-
tained a bound for ∂tu, we can use Eq. (3.12) and Proposition 3.1 to deduce
that F (u) ∈ L2(0, T ;H2(I)). Furthermore we also have a uniform estimate
for F (u) in L∞(0, T ;H1(I)), which implies F (u) ∈ L∞((0, T ) × I). Since F is
monotone and it satisfies (2.7), this gives u ∈ L∞((0, T ) × I). In conclusion,
knowing that u is bounded, we deduce that the estimates for F (u) lead to
analogous bounds for u in L2(0, T ;H2(I)) ∩ H1(0, T ;L2(I)). �

The following technical result will be used in the proof of Theorem 2.1.

Lemma 3.3. Let f : QT → R be a function in X = L2(0, T ;H2(I)) ∩ H1(0, T ;
L2(I)), then

f ∈ Hr(0, T ;Hs(I)), ∀ r, s ≥ 0 such that r +
s

2
≤ 1,

and, in turn,

f ∈ Cα,β(Q̄T ) = C0,α([0, T ];C0,β(Ī)), ∀ α, β ≥ 0 such that 2α + β ≤ 1
2
.
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Proof. Thanks to the higher order extensions for Sobolev functions, we can
define f on a larger rectangular domain R ⊆ R

2 containing QT . Introducing a
cut-off function, we further extend f to the whole space ensuring sufficiently
fast decay at infinity. Let us call g such an extension and observe that the
norm of g in X ′ = L2(R;H2(R)) ∩ H1(R;L2(R)) is controlled by the corre-
sponding norms of f on QT . In particular, for a suitable choice of g, we have
the inequality:

‖g‖X′ ≤ 2 ‖f‖X .

Let 〈κ〉 = (1 + |κ|2)1/2. Denoting by (ω, κ) the conjugate variables of (t, x) in
Fourier space, we have that

〈ω〉ĝ ∈ L2(R2), 〈κ〉2ĝ ∈ L2(R2).

This implies that
(〈ω〉 + 〈κ〉2) ĝ ∈ L2(R2) and we obtain

〈ω〉r〈κ〉s|ĝ| ≤ (〈ω〉 + 〈κ〉2)r+ s
2 |ĝ|.

We obtain the desired fractional Sobolev regularity provided that r + s
2 ≤ 1.

The Hölder regularity follows from the standard embeddings for fractional
Sobolev spaces (see e.g. [5]). In particular, for r, s > 1

2 , we take α = r − 1
2 and

β = s − 1
2 . �

Proof of Theorem 2.1. Thanks to Theorem 2.2, we know that classical solu-
tions exist for short times and that, as explained in [1], they can be extended by
standard methods to a maximal interval of existence denoted by J(u0). In order
to show that such solutions exist for arbitrarily large time we are going to use
the criterion provided by Theorem 2.3. In particular, we need Hölder continuity
of u with respect to time, as well as a uniform L∞ bound in the space variable.
Thanks to Proposition 3.2 we know that u ∈ L2(0, T ;H2(I))∩H1(0, T ;L2(I))
uniformly in time. This implies that we can apply Lemma 3.3 and obtain
uniform Hölder estimates. Thus Theorem 2.3 allows us to conclude the proof.

�

4. Degenerate systems

Consider a system of equations of the type:

∂tu = ∂x(M(t)F (u) + A(u)∂xF (u)). (4.1)

Notice that this is similar to system (2.1), but the matrix A(x) has been
replaced by A(u), which now plays the role of a “mobility matrix” (whereas
M satisfies the same assumptions introduced earlier). Such system is possibly
degenerate in the sense that the matrices A(u) and DF (u) may vanish if u = 0
(for all the details see Definition 4.1 and condition (4.2) below). Also in this
case, we will prove global existence of solutions under suitable assumptions
on F . We will show that entropy methods developed in recent years, and, in
particular, the so-called “boundedness-by-entropy principle” presented in [7],
can be applied without major modifications.
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Definition 4.1. (Entropy structure) We say system (4.1) has an entropy struc-
ture if there exists a function H : RN → R such that

• H is a convex function of class C2 and it defines the following entropy
functional

E[u] =
∫

Ω

H(u)dx.

• the map F (·) = DH(·) (i.e. the gradient of H) defines a change of coordi-
nates (bi-Lipschitz diffeomorphism) from an open and connected domain
U ⊂ R

N into the whole R
N .

Definition 4.2. (Weak formulation) We say that the vector function u is a weak
solution of (4.1) subject to the Dirichlet boundary condition u(t, �±) = 0, for
a.e. t > 0, if

u ∈ L2(QT ), A(u)∂xF (u) ∈ L2(QT ) ∂tu ∈ L2(0, T ; (H1(I))′).

and, for any test function η ∈ C∞
0 (I) and a.e. t ≥ 0, it holds

〈∂tu, η〉 +
∫

Ω

[A(u)∂xF (u) · ∂xη − ∂xMF (u) · η] dxdt = 0,

where 〈·, ·〉 indicates the duality pairing. Moreover we require u(t, ·) → u0(·)
in H1(I)′ as t → 0.

Remark 6. (Entropy decay) The new unknown w ∈ R
N obtained setting w =

DH(u) = F (u), for u ∈ U , is commonly referred to as the entropy variable. The
domain U (from Definition 4.1) is typically a bounded Lipschitz subset of RN .
We consider the boundary condition F (u)

∣∣
∂I

= 0, which implies w
∣∣
∂I

= 0.
Using Definition 4.1, we will see that for solutions of (4.1) in the sense of
Definition 4.2 we have dE

dt ≤ 0.

We now present the main existence result of this section.

Theorem 4.3. (Boundedness-by-entropy principle, [8]) Consider problem (4.1)
with boundary condition u(t, �±) = 0 for a.e. t > 0, let U be an open and
bounded subset of Rn and suppose u0 ∈ U . Consider the following hypotheses:

1. There exist γ1, γ2 ∈ R such that γ1 < γ2 and U ⊂ (γ1, γ2)N . Furthermore,
there exist α∗

i ,m
i ≥ 0 (i = 1 . . . N) such that for any vector ξ ∈ R

N and
any u ∈ U

[A(u)Hess(H)(u)]ξ · ξ ≥
N∑

i=1

αi(ui)2(ξi)2, (4.2)

where αi(ui) coincides either with α∗
i (u

i−γ1)mi−1 or with α∗
i (γ2−ui)mi−1.

2. We have A ∈ C0(Ū ;RN×N ) and there exists L > 0 such that, for all u ∈
U and all i.j = 1 . . . N for which mj > 1, it holds |A(u)Hess(H)ij(u)| ≤
L|αj(uj)|.

3. It holds u0(x) ∈ U for a.e. x ∈ I.
Then there exists a bounded weak solution u ∈ Ū of problem (4.1) in the sense
of Definition 4.2 for all t > 0.
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Proof. The proof is analogous to the one given in [7], the only differences
consist in the presence of Dirichlet boundary conditions (instead of no-flux) and
in the first order terms (which were not present in the original proof). Neither
of these variations affects the argument in a significant way. In particular,
the first order terms do not contribute to the estimates since, once we change
variables to w = F (u), and we test against w in the weak formulation, such
terms vanish. In particular, we have:

dE

dt
=

∫
QT

∂tu · wdxdt =
∫

QT

[∂x(Mw) · w + ∂x(A(u)∂xw) · w] dxdt

=
∫

QT

∂x

[(
1
2
Mw · w

)
− A(u)∂xw · ∂xw

]
dxdt

= −
∫

QT

A(u)∂xw · ∂xwdxdt,

which is the key estimate in [7]. The rest of the proof follows without major
modifications. �
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