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Abstract

We formally introduce and solve the synthesis problem for
LTL goals in the case of multiple, even contradicting, as-
sumptions about the environment. Our solution concept
is based on “best-effort strategies” which are agent plans
that, for each of the environment specifications individually,
achieve the agent goal against a maximal set of environments
satisfying that specification. By means of a novel automata
theoretic characterization we demonstrate that this best-effort
synthesis for multiple environments is 2EXPTIME-complete,
i.e., no harder than plain LTL synthesis. We study an impor-
tant case in which the environment specifications are increas-
ingly indeterminate, and show that as in the case of a single
environment, best-effort strategies always exist for this set-
ting. Moreover, we show that in this setting the set of solu-
tions are exactly the strategies formed as follows: amongst
the best-effort agent strategies for ϕ under the environment
specification E1, find those that do a best-effort for ϕ under
(the more indeterminate) environment specification E2, and
amongst those find those that do a best-effort for ϕ under the
environment specification E3, etc.

1 Introduction
An artificial agent should have automated reasoning capabil-
ities to decide and plan which actions to perform to achieve
its goals in its environment. While early work in planning
focused on reachability goals in environments described as
planning domains, recent approaches consider more sophis-
ticated goals and environment specifications expressed via
automata or temporal logic (Bacchus and Kabanza 1996;
D’Ippolito, Rodrı́guez, and Sardiña 2018; De Giacomo
and Rubin 2018; Camacho, Bienvenu, and McIlraith 2018;
Aminof et al. 2019a). These have strong correspondences
with the reactive synthesis problem in theoretical computer
science, see e.g., (Camacho, Bienvenu, and McIlraith 2019).
In the classic formulation (Pnueli and Rosner 1989), the syn-
thesis problem concerns finding an agent strategy that guar-
antees that a specification formula, expressed in linear- time
temporal logic (LTL) (Pnueli 1977), is satisfied irrespective
of the actions of the environment.

In most cases, the agent has one model of the environment
(specified, e.g., in LTL) which it uses to deliberate to achieve

its goals. Yet, some recent work (Aminof et al. 2020;
Ciolek et al. 2020) has argued that it is not realistic in com-
plex AI scenarios to have a single specification of the envi-
ronment. Indeed, an agent may have multiple (possibly even
contradictory) assumptions about the environment’s behav-
ior. For example, an agent may assume certain expected be-
havior from the environment, yet may still want to consider
deteriorated environments where certain exceptional faults
may arise. In these cases, one solution is to plan or synthe-
size against the environment that is considered to be most
likely, but this may not lead to an ideal response.

In this paper, instead, we study how to do synthesis si-
multaneously for all such models. Humans often reason in
this way when choosing actions, preferring strategies that
may be more resilient to a variety of circumstances, should
these materialize. Simply put, not only do we want to suc-
ceed if the environment behaves as we expect, but also if it
does not, or at least we also want to do the best we can. In-
deed, it may simply be impossible to derive a strategy that
succeeds under all circumstances. Yet, we are interested in
defining and understanding what the best behavior for the
agent may be under these conditions. We focus on the gen-
eral case where the agent tasks and alternative environment
specifications are expressed in LTL. In this setting we study
best-effort synthesis under multiple environment specifica-
tions. Our main contributions are:

1. We define a general notion of best-effort synthesis under
multiple environment specifications.

2. We study the important natural case of chains of environ-
ment specifications, where the first, the nominal environ-
ment, can enact less behaviors (or strategies), and the fur-
ther one goes down the chain the more environment be-
haviors the agent considers possible. We show that in this
case there is always an agent strategy that is simultane-
ously best effort under all environments in the chain.

3. We give a characterization of best-effort strategies in
terms of tree-automata.

4. We use this automata characterization to achieve an opti-
mal 2EXPTIME algorithm for best-effort synthesis under
multiple environment specifications.
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Notably, the latter result shows that the increased expres-
sivity in our formulation does not result in an increase of
worst-case complexity with respect to classical LTL synthe-
sis (Pnueli and Rosner 1989).

2 Preliminaries
Given a sequence x, we write xi for its ith element; the first
element is x0; the length of a finite sequence is |x|; the prefix
of x of length 0 ≤ i ≤ |x| is denoted by x<i or x≤i−1.

Linear-time Temporal Logic (LTL) For a set AP of
atomic propositions, formulas of LTL over AP are defined
by the following BNF (where p ∈ AP ):

ϕ ::=p |ϕ ∨ ϕ |¬ϕ |Xϕ |ϕUϕ

We use the usual abbreviations, ϕ ⊃ ϕ′
.
= ¬ϕ ∨ ϕ′, true .

=
p ∨ ¬p, Fϕ .

= trueUϕ, Gϕ .
= ¬F¬ϕ, etc. The size |ϕ|

of a formula ϕ is the number of symbols in it. A trace τ ∈
(2AP )ω is an infinite sequence of valuations of the atoms.
For n ≥ 0, write τn for the valuation at position n. Given a
trace τ , an integer n, and an LTL formula ϕ, the satisfaction
relation (τ, n) |= ϕ, stating that ϕ holds at step n of the
sequence τ , is defined as follows:

• (τ, n) |= p iff p ∈ τn;

• (τ, n) |= ϕ1 ∨ ϕ2 iff (τ, n) |= ϕ1 or (τ, n) |= ϕ2;

• (τ, n) |= ¬ϕ iff it is not the case that (τ, n) |= ϕ;

• (τ, n) |= Xϕ iff (τ, n+ 1) |= ϕ; and

• (τ, n) |= ϕ1 Uϕ2 iff there exists m ≥ n such that:
(τ,m) |= ϕ2 and (τ, j) |= ϕ1 for all n ≤ j < m.

We write τ |= ϕ if (τ, 0) |= ϕ, read τ satisfies ϕ.

Reactive Synthesis The problem of (reactive) synthesis
is to construct an agent that achieves a goal while contin-
ually interacting with its environment. We specify goals
and environments by LTL formulas. Let X and Y be dis-
joint finite sets of Boolean variables, called the environment
variables and agent variables, respectively. Then 2X (resp.
2Y ) is the set of environment (resp. agent) moves. A play
π
.
= X0·Y0·X1·Y1 · · · is an element of (2X ·2Y )ω . The trace

induced by π is the infinite sequence (Xi ∪ Yi)i≥0. Given
an LTL formula ϕ over AP .

= X ∪ Y , say that π satisfies ϕ,
written π |= ϕ, if the trace induced by π satisfies ϕ.

A history h is a finite prefix of a play. An agent strategy
is a function σag : (2X · 2Y )∗ · 2X → 2Y that maps histories
ending in environment moves to agent moves. Similarly, an
environment strategy is a function σenv : (2X · 2Y )∗ → 2X

that maps histories ending in agent moves (including, since
the environment moves first, the empty history λ) to envi-
ronment moves. Σallag denotes the set of all agent strategies.

While our definition of strategies of a player as functions
from (joint) histories is quite common in the game theory lit-
erature, one can also define strategies as functions from his-
tories projected on opponent moves only. The former defini-
tion is more general, as it also specifies what to do on histo-
ries that are not consistent with the strategy. Note, however,
that one can easily obtain the latter from the former. For ex-
ample, given an agent strategy σag : (2X · 2Y )∗ · 2X → 2Y ,

one can obtain σ′ag : (2X)+ → 2Y by taking σ′ag(x)
.
=

σag(f(x)), where f(x) is the unique joint history of odd
length consistent with σag whose projection on environment
moves is x, i.e., define f inductively by: f(x0)

.
= x0; and

f(x<i)
.
= f(x<i−1) · σag(f(x<i−1)) · xi−1.

For an agent (resp. env) strategy σ and a play/history ρ,
say that σ and ρ are consistent, if for every proper prefix ρ<i
of odd (resp. even) length we have that ρi = σ(ρ<i). Let
PLAY(σag, σenv) be the unique play consistent with both σag
and σenv. An agent strategy σag enforces ψ, written σag B
ψ, iff PLAY(σag, σenv) |= ψ for every environment strategy
σenv; if such a strategy exists we say the agent can enforce
ψ. A symmetric definition holds for environment strategies.

We write ΣEenv for the set of all environment strategies that
enforce E . If ΣEenv 6= ∅ we say that E is an environment spec-
ification (aka assumption). The idea of treating environment
specifications as environment-enforceable formulas is justi-
fied in (Aminof et al. 2018). Write ΣE,henv for those environ-
ment strategies that enforce E and are consistent with the
history h. For the rest of this paper, we use E to denote an
environment specification. The synthesis under assumption
problem asks, for an LTL goal ϕ and an LTL environment
specification E , to find (if there is one) an agent strategy σag
such that PLAY(σag, σenv) satisfies ϕ for every σenv that en-
forces E , and in this case we say that σag enforces ϕ under E .
This problem is 2EXPTIME-complete (Aminof et al. 2019a;
Aminof et al. 2018). The case E = true, called the synthesis
problem, was pioneered in (Pnueli and Rosner 1989).

For the constructions in this paper, we will also need re-
fined notions that start at a history h. Let the σag, σenv exten-
sion of h be the unique play π, extending h, satisfying for
every i ≥ |h| that if i is odd then σag(h<i) = hi and if i is
even then σenv(h<i) = hi. Observe that the σag, σenv exten-
sion of h is equal to PLAY(σag, σenv) if h is consistent with
both σag and σenv. An agent strategy σag enforces ψ from h,
written σag Bh ψ, if the σag, σenv extension of h satisfies ψ
for every environment strategy σenv; if such a σag exists we
say that the agent can enforce ψ from h.

Given agent (resp. env) strategies σ, σ′, and a history h,
let σ′′ .= σ[h ← σ′] be the following strategy: for a his-
tory h′ ending in an environment (resp. agent) move, let
σ′′(h′)

.
= σ′(h′) if h is a prefix of h′, and let σ′′(h′) .

= σ(h′)
otherwise. Informally, σ′′ does what σ′ does from h on-
wards, and elsewhere does what σ does. We say that σ′′ is a
shift of σ by σ′ at h. The following is immediate:
Lemma 1. If σh ∈ ΣE,henv and σenv Bh E , then σh[h ←
σenv] ∈ ΣE,henv , and it agrees with σenv on h and its extensions.

The next Lemma characterizes plays that are not consis-
tent with all environment strategies enforcing a given E .
Lemma 2. Given an LTL formula E , a play π is inconsistent
with all environment strategies enforcing E iff: (i) π does not
satisfy E; or (ii) the environment can not enforce E (equiva-
lently, the agent can enforce ¬E) from some prefix h of π.

Say that σag enforces ψ where possible if σag enforces ψ
from h for every history h from which the agent can enforce
ψ. Note that if the agent can enforce ψ then an agent strat-
egy enforcing ψ where possible in particular enforces ψ. A
similar definition holds for environment strategies.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

43



Lemma 3. For every LTL formulaψ, there is an environment
(resp. agent) strategy that enforces ψ where possible.

Proof. Define an environment strategy (the agent case is
similar) σ by considering all histories h of even length, in
length-lexicographic order. If σ is not yet defined on h then
define it as follows: if there is σhenv s.t. σhenv Bh ψ, define σ
to be equal to σhenv on h and all histories extending h that are
consistent with σhenv; otherwise, define σ only on h, arbitrar-
ily. The construction is correct since σhenv also witnesses the
fact that the environment can enforce ψ from h′ for every
extension h′ of h that is consistent with σhenv.

3 Synthesizing for Multiple Environments
We ground our notion of “best-effort” on the game-theoretic
notion of dominance (Apt and Grädel 2011), and in our con-
text of reactive synthesis we draw on (Aminof et al. 2020).
We first recall what it means for an agent strategy to domi-
nate (i.e., be no worse than) another with respect to an agent
goal ϕ and a single environment specification E .

Definition 1. Let ϕ be an agent goal, and let E be an envi-
ronment specification. The dominance order ≥ϕ|E on agent
strategies is defined by σ ≥ϕ|E σ′ iff for every σenv B E ,
PLAY(σ′, σenv) |= ϕ implies PLAY(σ, σenv) |= ϕ.

We write σ >ϕ|E σ′ if σ ≥ϕ|E σ′ and σ′ �ϕ|E σ. In this
case we say that σ strictly dominates σ′ (for goal ϕ under
environment specification E). Note that ≥ϕ|E is a preorder,
and >ϕ|E is a strict partial order.

Definition 2. Let ϕ be an agent goal, E be an environment
specification, and Σag be a set of agent strategies. We say
that an agent strategy σag ∈ Σag is maximal (also called
best-effort), wrt Σag, ϕ, E , if there is no σ′ag ∈ Σag such that
σ′ag >ϕ|E σag. Write MAXϕ|E(Σag) for the set of strategies
in Σag that are maximal wrt Σag, ϕ, E .

In the definition above, in case Σag = Σallag (the set of all
agent strategies), we talk about the maximal strategies for ϕ
under E . Intuitively, if σ1 >ϕ|E σ2 then σ1 does at least as
well as σ2 against every environment strategy enforcing E ,
and strictly better against at least one such environment strat-
egy. In particular, if σ2 is not maximal and σ1 strictly domi-
nates it, then an agent that uses σ2 is not doing its “best” to
achieve the goal: if it used σ1 instead, it could achieve the
goal against a strictly larger set of environment strategies.
Hence, within our framework, we consider maximal strate-
gies as doing a “best-effort” to achieve the goal, and use the
terms “maximal” and “best-effort” interchangeably.

Remark 1. Enforcing strategies dominate all others, i.e., if
ϕ is agent-enforceable under E , then MAXϕ|E(Σ

all
ag ) is the

set of strategies enforcing ϕ under E . On the other hand, in
general, maximal strategies may not dominate all others.

The Synthesis Problem Having recalled best-effort
strategies we now define the novel problem of synthesizing
them under multiple environment specifications. Our solu-
tion concept requires strategies to be best-effort for the goal
under each of the environment specifications individually:

Definition 3 (Best-effort Synthesis under Multiple Environ-
ment Specifications). Given an LTL goal ϕ and environ-
ment specifications E1, . . . , En, return an agent strategy in⋂

MAXϕ|Ei(Σ
all
ag ), or return “no solution” if there is none.

We call any such strategies best-effort (wrt. ϕ, E1, . . . , En).

The case of a single environment specification (n = 1)
was indirectly studied in (Aminof et al. 2020) who: a)
proved a best-effort strategy always exists, and b) gave a
non-optimal algorithm that finds such a strategy.

The problem may have no solution in the case n > 1.
For instance, in a game reminiscent of matching pennies, in
which the agent first chooses x ∈ {H,T} and then the en-
vironment chooses y ∈ {H,T}, and the goal of the agent
is to have x = y, then, for y ∈ {H,T} writing Ey for the
assumption that the environment will play y, a best-effort
(in fact winning) strategy assuming Ey is for the agent is to
play y; thus there is no agent strategy that is best-effort for
both environments EH and ET . We will see in Section 3 that
the synthesis problem under one or multiple environment as-
sumptions is 2EXPTIME-complete.

Chains of Environment Specifications We consider an
important special case of our problem in which the assump-
tions form a chain E1, E2, . . . , En, i.e., every environment
strategy that enforces Ei also enforces Ei+1, for i < n. We
show below that, remarkably, in this setting there always ex-
ists a solution. Moreover, the second example in Section 4
shows that every assumption in the chain may be needed to
identify the solutions. In other words we cannot just take
the least or the greatest element in the chain to find the solu-
tion (in particular,

⋂
MAXϕ|Ei(Σ

all
ag ) is not always the same

as MAXϕ|
∧
Ei(Σ

all
ag ) or as MAXϕ|

∨
Ei(Σ

all
ag )). Moreover, the

set of solutions are exactly the strategies formed as follows:
amongst the best-effort agent strategies for ϕ under the en-
vironment specification E1, find those that do a best-effort
for ϕ under the environment specification E2, and amongst
those find those that do a best-effort for ϕ under the environ-
ment specification E3, etc. This is of practical significance,
because, intuitively, we can consider the chain as encoding
an order of environment specifications from the most to the
least determinate. The special case of n = 2, where the
agent can enforce the goal under E1, was studied in (Aminof
et al. 2020) where it was shown that the best-effort synthesis
problem is decidable (but their algorithm is not optimal).

Formally, consider a set of environment specifications
E1, E2, · · · , En, each expressed in LTL, such that, for every
i < n, an environment strategy that enforces Ei also enforces
Ei+1, i.e., ΣEienv ⊆ Σ

Ei+1
env . This setting will also be used for

the examples discussed in Section 4.
The following theorem states that in this setting the syn-

thesis problem in Definition 3 always has a solution:

Theorem 1. Given LTL formulas ϕ, E1, . . . , En satisfying
ΣEienv ⊆ Σ

Ei+1
env for every i < n, the set of best-effort strate-

gies
⋂
i MAXϕ|Ei(Σ

all
ag ) is non-empty.

This theorem follows immediately from the following two
semantic properties which are of interest in their own right.
The first property states that the set of strategies that solve
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the best-effort synthesis problem under a chain of environ-
ments can be formed by iteratively choosing amongst best-
effort strategies for the goal under the current environment
from those already selected from the previous environment:
Theorem 2. Given LTL formulas ϕ, E1, . . . , En satisfying
ΣEienv ⊆ Σ

Ei+1
env for every i < n, and a set Σag of agent strate-

gies, the set MAXϕ|En(MAXϕ|En−1...(MAXϕ|E1(Σag)) . . .) is
equal to

⋂n
i=1 MAXϕ|Ei(Σag).

Proof sketch. The proof is by induction on n. The case
n = 1 is trivial, the case n = 2 was essentially
proved in (Aminof et al. 2020). For n > 2, let Σkag

.
=

MAXϕ|Ek(MAXϕ|Ek−1...(MAXϕ|E1(Σag)) . . .), for 1 ≤ k ≤
n, and use the case n = 2 taking Σag = Σn−2ag in the expres-
sion MAXϕ|En(Σn−2ag ) ∩ MAXϕ|En−1

(Σn−2ag ), then apply the
inductive hypothesis to Σn−2ag .

The second result shows that a solution to the previous
process always produces at least one strategy:
Theorem 3. Given LTL formulas ϕ, E1, . . . , En satis-
fying ΣEienv ⊆ Σ

Ei+1
env for every i < n, the set

MAXϕ|En(MAXϕ|En−1...(MAXϕ|E1(Σallag )) . . .) is non-empty.
At first glance this may seem obvious: by starting with

a non-empty partially ordered set, and successively taking
the maximal elements, are we not guaranteed to get a non-
empty set? While this is clearly the case for finite sets, it is
not the case in general for infinite sets (as here), where max-
imal elements may not exist. In fact, the proof of this theo-
rem requires a sophisticated construction, which extends the
results in (Berwanger 2007; Aminof et al. 2020).

Solving the Synthesis Problem Our main algorithmic re-
sult about synthesis is the following:
Theorem 4. The best-effort synthesis under multiple envi-
ronment specifications problem is 2EXPTIME-complete.

The lower bound already holds for n = 1, E =
true (Aminof, De Giacomo, and Rubin 2021), i.e., a sin-
gle environment specification and no assumption (and thus
also for the case of chains where there is always a best-effort
strategy). For the upper bound, we provide in section 5 an
automata-theoretic approach that in fact shows how to build
a tree-automaton whose language is the set of (encodings of)
strategies that are best-effort for a given goal ϕ and environ-
ment specifications E1, · · · , En.

4 Examples
In this section we provide two planning examples.

Example 1 An agent’s position is in the middle of an up-
hill snowy-route from Home to Destination, initially not
wearing snow tires. The agent can move forward and back-
ward and when at Home she can wear snow tires. For-
mally, we have the following fluents (i.e., variables under
the control of the environment): Pos ∈ {1, · · · , N} and
SnowTiresOn, and abbreviations AtHome .

= (Pos=0)
and AtDest

.
= (Pos=N). We also have the follow-

ing actions (under the control of the agent): fwd for go-
ing forward one step; bwd for going backward one step;

wearSnowTires for wearing snow tires, which works only
when AtHome. All these actions have no preconditions.
The goal is ϕ .

= F(AtDest).
Using these fluents and actions we consider three possi-

ble environments: E1, E2, E3 organized in a chain such that
ΣE1env ⊆ ΣE2env ⊆ ΣE3env. These environment share all the same
initial state, which is the following (where kinit is some po-
sition in the middel of the route):

Pos=kinit ∧ ¬AtHome ∧ ¬AtDest ∧ ¬SnowTiresOn
Each of these environments reacts differently to the ac-

tions of the agent, i.e., specifies different effects, which be-
come more and more indeterminate as we follow the chain.

Environment E1 is a simple deterministic planning do-
main, in which each action always works as expected, i.e.,
the action effects are:1

G(fwd ∧ ¬AtDest ∧ Pos=k ⊃ X(Pos=k+1))
G(bwd ∧ ¬AtHome ∧ Pos=k ⊃ X(Pos=k−1))
G(fwd ∧AtDest ⊃ X(AtDest))
G(bwd ∧AtHome ⊃ X(AtHome))
G(wearSnowTires ∧AtHome ⊃ X(SnowTiresOn))

In this environment there are several winning agent strate-
gies for the goal. For example, one possible winning agent
strategy is σ1: “go forward till AtDest”. Another possi-
ble winning strategy is σ2 “go backward till AtHome, wear
snow tires, go forward till AtDest”. Yet another possible
winning strategy is σ3 “go forward as long as you don’t slip”
(a ‘slip’ is when the agent tries to move in some direction
but its position does not change: Pos=k ∧ (fwd ∨ bwd) ∧
X(Pos=k)) then follow σ2. In fact σ3 is one of the many
other winning strategies that are also available, e.g., those
that are a middle ground between the first two.

Environment E2 is analogous to E1, except that the actions
fwd and bwd are now nondeterministic to capture that the
road may be slippery because of snow.

G(fwd ∧ ¬AtDest ∧ ¬SnowTiresOn ∧ Pos=k ⊃
X(Pos=k+1 ∨ Pos=k))

G(fwd ∧ ¬AtDest ∧ SnowTiresOn ∧ Pos=k ⊃
X(Pos=k+1))

G(fwd ∧AtDest ⊃ X(AtDest))

G(bwd ∧ ¬AtHome ∧ Pos=k ⊃
X(Pos=k−1 ∨ Pos=k))

G(bwd ∧AtHome ⊃ X(AtHome))

G(wearSnowTires ∧AtHome ⊃ X(SnowTiresOn))

Moreover E2 includes an additional stuck condition: ”if for-
ward and slip and forward again, then slip forever”, i.e.,

G((Pos=k ∧ fwd ∧X((Pos=k) ∧ fwd)) ⊃ G(Pos=k))

Finally, environment E3 is the same of E2, but without the
“stuck condition” above, capturing not only that the road
can become slippery, but also that the agent does not know
if and when it may get stuck forever.

In E2 the agent has no winning strategies. However, σ2
and σ3 are now best-effort. Note, however, that σ1 is not,

1For brevity we omit the formulas for the frame assumption,
i.e., valuations of unmentioned fluents remain as before.
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since after the agent learns that she slip while going forward,
she then knows that going forward again will get her stuck.
Also under E3 the agent has no winning strategies; however,
all three strategies σ1, σ2, σ3 are best-effort. In particular,
σ1 which was not best-effort under E2 is best-effort under
E3, since we have more uncertainty of how the environment
will react to the fwd action.

This example shows that, as expected, having a less de-
termined environment specification (i.e., more environment
strategies) makes it more difficult to have a winning strat-
egy. Indeed, the agent has winning strategies only in E1, and
only best-effort (but not winning) strategies in E2 and E3.
Interestingly, it also shows that as the environment becomes
less determinate, the agent can have more best-effort strate-
gies. Indeed E3 admits more best-effort strategies than E2.
Finally note that, our synthesis algorithm returns a strategy
that is best-effort in all E1, E2 and E3 (e.g., σ2), and in fact
winning in E1 where the goal is indeed enforceable.

Example 2 In this example every environment contributes
towards the solution, and since the environment specifica-
tions form a chain one cannot consider only the first or last
environment (i.e., equivalently, only the conjunction or the
disjunction of all the environment specifications).

Consider a chemical plant that has three warehouses, pri-
mary, secondary, and tertiary (P, S, T, respectively). The
same toxic chemical is stored in each wharehouses. The
chemical is not flammable, except under certain rare condi-
tions. The plant is equipped with a DRD (Disaster Response
Drone). The DRD has a limited carrying capacity of 200 kg.
One can load it with 200 kg of a chemical that can neutral-
izes up to 10 times its weight of the toxic chemical, or with
both 100 kg of the neutralizer and 100 kg fire extinguisher.
We will call these actions N and F, respectively.

The environment and the DRD interact as follows: the
environment declares one of the warehouses P or S or T to
have a chemical leak; the DRD is sent in response, either
in configuration N or F; the environment decides how bad
the situation has become by the time the DRD arrives; this
consists of selecting how much leaked chemical has to be
neutralized, and whether there is a fire or not; the DRD uses
the chemicals it carries to (hopefully) handle the situation.

The goal of the DRD is to neutralize all the leaked chem-
icals and put out any fires. We now describe the three envi-
ronment assumptions E1, E2, E3.

E1: The first environment assumption is the most favourable.
The warehouses have the regulation amounts of the toxic
chemical: at most 2000 kg in primary, at most 1000 kg in
secondary, at most 500 kg in tertiary. The circumstances
needed for fire do not exist. Note that the only constraint
on a best-effort strategy under E1 is for the agent to do N
if the environment declares P .

E2: This is like assumption E1, but a fire (that can be han-
dled with 100 kg of fire extinguisher) is also a possibil-
ity in primary or secondary (tertiary simply does not have
the conditions needed for fire, e.g., no electricity is routed
there). Note that the only constraint on a best-effort strat-
egy under E2 is to do F if the environment declares S.

E3: This is like assumption E2, but somebody may have also
broken the regulations and stored up to 2000 kg in the
secondary or tertiary warehouses. Note that the only con-
straint on a best-effort strategy under this environment as-
sumption is to do N if the environment declares T .

A best-effort strategy for this set of environment assump-
tions has to satisfy all of the stated constraints. Thus, the
only best-effort strategy for the series of environment as-
sumptions is that the agent does N if the environment de-
clares P or T , and does F if the environment declares S.

5 Automata-theoretic Characterization
We provide an automata-theoretic characterization of the set
of best-effort strategies for a single environment. We state
the result for ease of reference (we will shortly formalize the
terminology used in the statement):
Theorem 5. One can, given LTL formulas ϕ and E , compute
in 2EXPTIME a nondeterministic parity tree-automaton
(NPT) Aϕ,E of size 2EXP and index EXP whose language
is MAXϕ|E(Σ

all
ag ).

In the rest of this section we show how to build the au-
tomaton from Theorem 5. It is worth noting that (Aminof
et al. 2020) also shows how to build an automaton recog-
nizing the same language. However, while that paper does
not provide a complexity analysis, performing such an anal-
ysis shows that the approach in (Aminof et al. 2020) only
achieves an automaton of size quadruple-exponential. We
begin with a review of tree-automata (Section 5), then give
a local characterizations of dominance and maximality and
some useful lemmas (Section 5). We then give high-level
sketch of the construction of the automaton (Section 5), its
formal construction (Section 5) and, finally, a sketch of the
correctness of this construction (Section 5).

Tree-Automata For sets Γ and D, a (full) D-branching
Γ-labeled tree is a function T : D∗ → Γ. We use alternat-
ing tree-automata which are like classic finite-state automata
that process infinite trees instead of finite words. Also, they
incorporate both nondeterminism and its dual, universality, .

An alternating parity tree automaton (APT) A is a tuple
(D,Γ, Q, q0, δ, c) consisting of a finite set D of directions,
a finite input alphabet Γ, a finite set Q of states, an initial
state q0, a transition function δ that maps elements in Q×Γ
to positive Boolean formulas over D × Q, and a priority
function c : Q → N. A run of A on a D-branching Γ-
labeled tree T is a (D∗×Q)-labeled treeR whose domain is
a prefix-free closed subset of N∗ such that the root is labeled
by (λ, q0), and for each node v with R(v) = (w, q) there
is a satisfying assignment C ⊆ D × Q of δ(q, T (w)) such
that for every (d′, q′) ∈ C there is a child v′ of v such that
R(v′) = (w · d′, q′). Intuitively, an APT A takes a tree
T : D∗ → Γ as input and processes it starting at the root
in the initial state; then, if A is at node w ∈ D∗ of T and
the current state is q ∈ Q, it picks a satisfying assignment
C ⊆ D ×Q of δ(q, T (w)) and, for each (d′, q′) ∈ C sends
a copy of itself in state q′ in the direction d′. The run R is
accepting if on every branch of R, the smallest priority seen
infinitely often is even. The tree T is accepted by A if it
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has an accepting run. The set of all trees accepted by A is
called its language. A special case is the co-Büchi condition
where certain states should not be seen infinitely often, i.e.,
the priorities are from the set {1, 2}.

Two automata are equivalent if their languages are equal.
An APT is nondeterministic (resp. universal) if for every
(q, a) ∈ Q × Γ there is a set S of |D|-tuples of states such
that δ(q, a) is the disjunction (resp. conjunction) over all
(q1, · · · , q|D|) ∈ S of the formulas

∧
d∈D(d, qd). An APT

in which every such S contains just a single tuple is called
deterministic. These classes of automata are denoted NPT,
UPT, and DPT, respectively.

APTs have robust closure properties (Muller and Schupp
1995; Löding 2021). We measure the cost of operations on
an APT in terms of two parameters: its size is the cardi-
nality of Q, and its index is the cardinality of c(Q). APTs
are closed under Boolean operations with no blowup; every
APT can be converted into an equivalent NPT with an ex-
ponential blowup in size and polynomial blowup in index.
If L is a language of D-branching (Γ × Γ′)-labeled trees,
the projection of L onto Γ is the language of D-branching
Γ-labeled trees defined as follows: the tree T is in the pro-
jection of L iff there exists a D-branching Γ′-labeled tree T ′
such that the tree w 7→ (T (w), T ′(w)) is in L. NPTs are
closed under projection with a polynomial blowup in size
and a polynomial blowup in index.

We also use deterministic (resp. universal) parity au-
tomata on words, denoted DPW (resp. UPW). We think of
words as trees with |D| = 1, i.e., no branching.

Theorem 6. (Vardi and Wolper 1994) Given an LTL formula
ϕ, over the atomic propositions AP .

= 2X∪Y , one can com-
pute in EXPTIME a UCW, of size EXP, that accepts exactly
the traces satisfying ϕ.

A consequence of Theorem 5 is the upper bound in The-
orem 4, i.e., a 2EXPTIME algorithm for synthesizing best-
effort strategies under multiple environment specifications:

Proof of the upper bound in Theorem 4. Let l be the size of
the largest input formula among ϕ, E1, . . . En. For each
i ≤ n construct, using Theorem 5, an NPT Aϕ,Ei for the
language MAXϕ|Ei(Σ

all
ag ) of size (resp. index) at most 2EXP

(resp. EXP) in l. For two NPTs of sizes s1, s2 and indexes
k1, k2, one can build an NPT for the intersection of their lan-
guages of size s1s2

(k1+k2)!
k1!k2!

and index (k1 +k2) (Chatterjee,
Henzinger, and Piterman 2010). Thus, we can build an NPT
A for the intersection

⋂n
i=1 MAXϕ|En(Σallag ) of size 2EXP in

l and EXP in n, and index polynomial in n and EXP in l. An
NPT can be tested for non-emptiness — and if non-empty
a finite-state representation of a tree in its language can be
extracted — in time polynomial in its size and EXP in its
index. Thus, the whole procedure is 2EXP in l and EXP in
n, and thus at most 2EXP in the size of the input.

Characterizing Dominance and Maximality We use lo-
cal characterizations of dominance and maximality based on
assigning values to histories (Berwanger 2007; Aminof et al.
2020). The value of a history h, and an agent strategy σag
consistent with h, is defined iff h is a prefix of some play

PLAY(σag, σenv) where σenv ∈ ΣEenv is an environment strat-
egy enforcing E . The value is: 1 (aka “winning”) if ϕ holds
for all such plays; −1 (aka “losing”) if ¬ϕ holds for all such
plays; and 0 (aka “pending”) otherwise. Thus, the value cap-
tures how well a given agent strategy does (for achieving the
goal ϕ), starting at a given history h, against environment
strategies in ΣE,henv .

More formally, let HE(σag) be the set of histories h that
end in an environment move, are consistent with the agent
strategy σag, and for which ΣE,henv 6= ∅. Then:
Definition 4. For a goal ϕ, an environment spec E ,
agent strategy σag, and history h ∈ HE(σag), define
valϕ|E(σag, h) as follows:

• valϕ|E(σag, h) := 1 (winning) if PLAY(σag, σenv) |= ϕ for
every σenv ∈ ΣE,henv ;

• valϕ|E(σag, h) := −1 (losing) if PLAY(σag, σenv) |= ¬ϕ
for every σenv ∈ ΣE,henv ;

• valϕ|E(σag, h) := 0 (pending) otherwise.
We can compare two agent strategies by looking at those

histories at which they make a different decision, i.e., “split”.
Formally, two agent strategies σ1, σ2 split at a history h if
h ends in an environment move, is consistent with σ1 and
with σ2, and σ1(h) 6= σ2(h). The following proposition
characterizes dominance by comparing the values of agent
strategies at their split points.
Proposition 1 (Characterization of Dominance). Given
agent strategies σ1, σ2, we have that σ1 ≥ϕ|E σ2 iff for ev-
ery history h, such that ΣE,henv 6= ∅, at which σ1, σ2 split: (i)
valϕ|E(σ1, h) ≥ valϕ|E(σ2, h), and (ii) it is not the case
that valϕ|E(σ1, h) = valϕ|E(σ2, h) = 0. Furthermore,
σ1 >ϕ|E σ2 iff, in addition, (iii) for some h at which σ1, σ2
split, valϕ|E(σ1, h) > valϕ|E(σ2, h).

The next definition assigns values to histories alone:
Definition 5. For a history h ending in an environment
move, define valϕ|E(h) as the maximum of valϕ|E(σag, h),
where σag varies over all agent-strategies for which h ∈
HE(σag); if there are no such agent strategies then write
valϕ|E(h) = und (which stands for “undefined”).

The following proposition follows from Proposition 1,
and characterizes maximal strategies.
Proposition 2. A strategy σag is best-effort for ϕ under E iff
valϕ|E(σag, h) = valϕ|E(h) for every history h ∈ HE(σag).

Our automata will be guessing strategies that witness
properties of many histories at once. For this we need some
supporting lemmas.
Lemma 4. Given LTL formulas ϕ, E , and an agent strat-
egy σag, there is an environment strategy σenv that enforces
E where possible and, for every h ∈ HE(σag) for which
valϕ|E(σag, h) = 0, the σag, σenv extension of h satisfies ϕ,
and is consistent with some strategy in ΣEenv.

Proof. The proof is essentially the same as that of
Lemma 3 by taking, for every h ∈ HE(σag) for which
valϕ|E(σag, h) = 0, the strategy σhenv to be a strategy in ΣEenv
satisfying PLAY(σag, σ

h
env) |= ϕ.
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The next Lemma characterizes non-winning histories in
terms of environment strategies.

Lemma 5. Given LTL formulas ϕ, E and a history h such
that ΣE,henv 6= ∅: valϕ|E(h) 6= 1 iff the environment can en-
force E ∧ ¬ϕ from h.

Proof. Given an agent strategy σag, it is clear from the defi-
nitions that valϕ|E(σag, h) 6= 1 iff there is σenv ∈ ΣE,henv such
that PLAY(σag, σenv) |= ¬ϕ. The fact that a single σenv can
witness this for all σag follows from the determinacy of the
corresponding game.

More formally, let E ′ .= hX ∧ E where hX is an LTL for-
mula saying that the environment’s first move is h0, and, for
odd i < |h| − 1, if the agent played hi then the environment
responds with hi+1. Similarly, let ϕ′ .= hY ∧ ϕ where hY
is an LTL formula expressing that, for even i < |h| − 1, if
the environment plays hi then the agent responds with hi+1.
Intuitively, E ′ and ϕ′ add to E and ϕ the assurance that the
environment/agent will follow h as long as the other does.

The lemma follows from the following chain of equiv-
alences. The environment can enforce E ∧ ¬ϕ from h iff
it can enforce E ′ ∧ ¬ϕ′ (we will show this below), iff the
agent cannot enforce E ′ ⊃ ϕ′ (by determinacy of the cor-
responding game (Apt and Grädel 2011)), iff there is no
agent strategy σag for which PLAY(σag, σenv) |= ϕ′ for all
σenv ∈ ΣE

′

env (by Theorem 9 in (Aminof et al. 2019a)), iff for
every σag consistent with h there is σenv ∈ ΣE,henv such that
PLAY(σag, σenv) |= ¬ϕ, in other words, iff valϕ|E(σag, h) 6=
1.

We now prove the first equivalence in the chain above.
Note that (†): E ′ ∧ ¬ϕ′ = hX ∧ E ∧ (¬hY ∨ ¬ϕ). By the
assumption of the Lemma, take some strategy σh ∈ ΣE,henv .
For the⇒ direction, suppose σenv enforces E ∧ ¬ϕ from h.
We will show that σ′env

.
= σh[h ← σenv] enforces E ′ ∧ ¬ϕ′.

Take some play π consistent with σ′env. By our choice of σh,
we have that h is consistent with σ′env. Thus, if the agent
proceeds along h so does the environment. Hence, hX holds
on π. If π does not extend h then (i) ¬hY holds and (ii) σ′env
and σh agree on π. Thus, by our choice of σh (i.e., that it
enforces E), we have that π satisfies E . On the other hand, if
π extends h then π |= E ∧ ¬ϕ since σenv enforces E ∧ ¬ϕ.
Thus, in both cases, by (†), π |= E ′ ∧ ¬ϕ′.

For the⇐ direction, suppose σenv enforces E ′ ∧ ¬ϕ′. We
show that σenv enforces E ∧ ¬ϕ from h. Note that σenv in
particular enforces hX . Hence, h is consistent with σenv,
and for every σag, the σag, σenv extension of h, call it π, is
consistent with σenv. Hence, in particular, π |= E . Since π
extends h it also satisfies hY and thus, π |= ¬ϕ by (†).

High-level Description of the Automaton Aϕ,E The au-
tomatonAϕ,E in Theorem 5 will accept an input strategy σag
iff σag satisfies the characterization of maximality in Propo-
sition 2. To achieve the size and index stated in Theorem 5,
we use a sophisticated construction. In what follows, since
ϕ, E are fixed, we may drop them and write val(−) instead
of valϕ|E(−) and H(−) instead of HE(−).

The automaton will guess, using its nondeterminism, a
value guess(h) ∈ {−1, 0, 1} for every history h of odd
length consistent with σag for which it believes val(h) 6=

und; it will then verify that if val(h) 6= und then
guess(h) = val(σag, h) = val(h). By Proposition 2, the
input strategy σag is maximal iff the automaton can suc-
cessfully guess and verify these values. The automaton will
make no attempt to correctly guess, nor verify, that val(h) =
und. Indeed, if val(h) = und then there are no require-
ments regarding h that σag should satisfy. Thus, if it guessed
(and “verified”) by mistake a value guess(h) ∈ {−1, 0, 1},
it can only make the automaton do unnecessary work, but it
cannot make it accept a non-maximal strategy.

To help it correctly verify the guessed values, the automa-
ton will employ the characterization in Lemma 2. In partic-
ular, it will optionally guess for a history h a flag ¬E indi-
cating that the agent can enforce ¬E from h. This guess can
be verified by guessing a corresponding agent strategy σ¬Eh
and checking that it enforces ¬E from h. By Lemma 3, the
automaton will actually guess a single strategy σ¬Eag that will
serve as σ¬Eh for all such h.

Observe that if val(σag, h) = 1 then for every extension
h′ of h, consistent with σag, we have that val(σag, h′) = 1,
or is undefined; and if val(h) = −1 then val(h′) ∈
{−1, und} for every extension h′ of h. Thus, once the au-
tomaton verifies that val(σag, h) = val(h) ∈ {−1, 1} it
does not need to verify anything for any extension h′ of h
in order to prove that σag is maximal. Similarly, if the agent
can enforce ¬E from h then 2, by Lemma 2, val(h) = und,
and thus val(h′) = und for all extensions h′ of h. Hence,
the automaton does not have to guess or verify anything for
histories extending ones for which it guessed ¬E .

In order to verify that if val(h) 6= und then guess(h) is
correct, the automaton will verify two things:

(a) guess(h) ≤ val(σag, h), i.e., the guessed value is no
larger than the correct value of the input strategy at h;

(b) val(h) ≤ guess(h), i.e., no agent strategy consistent with
h achieves a larger value than the guessed value.

Since obviously val(σag, h) ≤ val(h), this shows that
guess(h) = val(σag, h) = val(h), as claimed.

If the guessed value is 1, then (since it is the highest pos-
sible value) it is enough to verify (a). I.e., that every trace
extending h that is consistent with σag and some strategy in
ΣEenv satisfies ϕ. By Lemma 2, this can be done by show-
ing that every trace τ consistent with σag extending h, but
that does not extend any history h′ from which the agent can
enforce ¬E , satisfies E ⊃ ϕ. Thus, the automaton checks
that every trace τ consistent with σag extending h, but not
extending an h′ for which ¬E was guessed, satisfies E ⊃ ϕ.

If the guessed value is −1, then (since this is the lowest
possible value) it is enough to verify (b). I.e., that every trace
extending h, that is consistent with some strategy in ΣEenv,
satisfies ¬ϕ. By Lemma 2, this is the case iff every trace
extending h, but not extending any h′ from which the agent
can enforce ¬E , satisfies E ⊃ ¬ϕ. Thus, the automaton
checks that every trace extending h, but not extending an h′
for which ¬E was guessed, satisfies E ⊃ ¬ϕ.

2One can actually show that for histories that are minimal in the
prefix order this condition is also necessary, i.e., val(h) 6= und iff
the environment can enforce E from every prefix of h.
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If the guessed value is 0, the automaton has to verify
both (a) and (b). To verify (a), by definition, it has to find
σh ∈ ΣE,henv , such that PLAY(σag, σh) |= ϕ. By Lemma 1,
instead of guessing σh, the automaton can guess a strategy
σenv
h that enforces E from h and for which the σag, σhenv ex-

tension of h satisfies ϕ. To do this for all such h, the au-
tomaton will actually guess, by Lemma 4, a single strategy
σenv. To verify (b), by definition, one has to show that no
agent strategy consistent with h achieves the value 1 on h.
By Lemma 5, this can be done by guessing a strategy σE∧¬ϕh
and checking that it enforces E ∧ ¬ϕ from h. By Lemma 3,
a single strategy σE∧¬ϕenv can serve as σE∧¬ϕh for all such h.

Detailed Construction of the AutomatonAϕ,E The con-
struction of the NPTAϕ,E in Theorem 5 will proceed in four
steps.

1. We build a UPT Uϕ,E that instead of making all the
guesses described above (in Section 5), expects these
guesses to be written on its input trees. Thus, Uϕ,E will
only be concerned with the task of verifying that the
guesses written on the input tree are correct.

2. We build an APT A that universally launches, at the root
of an input tree, both Uϕ,E and a constant size APTAlegal
that is charged with the simple task of verifying that the
annotation of the input tree with all these guesses is done
in a legal way (e.g., that every strategy written on the tree
specifies exactly one move for each of its input histories).

3. We convert the APT A to an equivalent NPT A′.
4. We obtainAϕ,E by “projecting out” all the extraneous an-

notations on the input trees. That is, unlike A′ that ex-
pects a tree labeled with all the guesses of strategies, val-
ues, etc., Aϕ,E expects the tree labeled only by the agent
strategy σag, and guesses everything else on its own.

We give a brief analysis of size and index of the resulting
NPT Aϕ,E . We will see that the UPT Uϕ,E has size EXP
and constant index. Thus, so does the APT A (since it is
the product of Uϕ,E with the constant sized Alegal). Thus,
the NPT A′ has size 2EXP and index EXP, and so does its
projection Aϕ,E — as stated in Theorem 5.

We now focus on the encoding and annotations of the in-
put trees and the construction of Uϕ,E .

We assume w.l.o.g. that the sets X,Y of agent and envi-
ronment variables are of the same size n (otherwise we pad
with dummy variables). Thus, the input trees will be |2n|-
branching, where the empty history corresponds to the root,
a historyX0 ·Y0 · · · , Xk ·Yk corresponds to a node of depth
2k, and a history X0 · Y0 · · ·Xk · Yk ·Xk+1 corresponds to
a node of depth 2k + 1. Nodes at even (resp. odd) depth
are called environment nodes (resp. agent nodes) since it is
that player’s turn to move. From now on we will not distin-
guish between histories and nodes. We label such a tree by
an agent (resp. environment) strategy σ, as follows: if h is
an agent (resp. environment) node then mark with the sym-
bol σ its child node h ·σ(h). Note that agent strategies mark
environment nodes, and vice versa.

The input trees of Uϕ,E are labeled/marked with moves
of two agent strategies σag and σ¬Eag , and two environment

strategies σenv and σE∧¬ϕenv . In addition, an agent node con-
sistent with σag (i.e., whose parent is the root or is marked
by σag) is optionally marked by a number in {−1, 0, 1}, and
any node may be optionally marked by ¬E . Finally, every
environment node h = X0 · Y0 · · ·Xk · Yk is marked by the
atomic proposition Xk, Yk, i.e., the last move of the agent
and of the environment leading up to h (these atomic propo-
sitions are read by the UCW’s making up Uϕ,E in order to
verify that certain traces satisfy some LTL formulas).

A marking of a tree is legal iff it satisfies the following:
for the agent strategies σ ∈ {σag, σ¬Eag } (resp. environment
strategies σ ∈ {σenv, σE∧¬ϕenv }) marking the tree, agent (resp.
environment) nodes are not labeled by σ, and every agent
(resp. env) node has a unique child labeled by σ; the atomic
propositions are marked on environment nodes and are equal
to the last two directions leading to this node; a node is
marked by a number iff it is an agent node consistent with
σag that is not marked by ¬E and none of its ancestors is
marked by 1, −1 or ¬E . A node can be marked by ¬E only
if none of its ancestors is marked by ¬E .

Observe that one can easily build an APT Alegal with a
constant number of states that accepts a tree iff it is legal.

Intuitively, the UPT Uϕ,E will be constructed in such a
way that it accepts a (legally marked) tree iff (†):

(†i) σ¬Eag enforces ¬E from every node marked with ¬E ;

(†ii) σenv enforces E from every node marked with 0;
(†iii) σE∧¬ϕenv enforces E ∧¬ϕ from every node marked 0;
(†iv) if a node h is marked 0 then the σag, σenv extension
of h satisfies ϕ;
(†v) σag ∈ MAXϕ|E(Σ

all
ag ).

The UPT Uϕ,E is made up of 6 component UPW’s, i.e.,
Uψ for ψ ∈ {ϕ, E ,¬E , E ⊃ ϕ, E ⊃ ¬ϕ, E ∧ ¬ϕ}. Infor-
mally, the componentU¬E verifies that the agent can enforce
¬E from nodes marked ¬E ; the component UE⊃ϕ is used
in the verification of the correctness of the 1 markings; Uϕ
together with UE verify that the value of a node h marked
by 0 is not actually −1, and UE∧¬ϕ verifies that no other
agent strategy achieves a higher value for h than σag; finally,
UE⊃¬ϕ is used in the verification of −1 markings.

For ψ ∈ {E ⊃ ϕ, E ⊃ ¬ϕ,ϕ, E ∧ ¬ϕ, E ,¬E}, the UPW
Uψ is built by applying Theorem 6 to get a UCW Aψ for ψ,
and modifying this UCW by adding to every state a Boolean
flag >,⊥, designating ‘active’ or ‘inactive’, respectively.
The transition relation ofUψ is identical to that ofAψ except
that the flag may also be flipped when reading certain inputs,
as will be described later. Finally, the (parity condition) pri-
ority function of Uψ assigns the priority 0 to all states with
the flag ⊥, the priority 1 to the co-Büchi states of Aψ with
a > flag, and the priority 2 to the remaining states. Thus, a
run of a copy of Uψ rejects a trace iff from some point on the
flag is> and the sequence of atomic propositions labeled on
that trace does not satisfy ψ. At the beginning, the flag is ⊥,
it is changed according to the following rules:

1. UE⊃ϕ sets the flag to > when reading a node marked 1;
2. Uϕ, UE set the flag to > when reading a node marked 0,

and reset it to ⊥ when reading an agent node unmarked
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by σenv;

3. UE∧¬ϕ sets the flag to > when reading a node marked 0,
and resets it to ⊥ when reading an agent node unmarked
by σE∧¬ϕenv ;

4. UE⊃¬ϕ sets the flag to > when reading a node marked
−1;

5. U¬E sets the flag to > when reading a node marked ¬E .

The automaton Uϕ,E launches all of its 6 component
UPW’s in a universal mode at the root. While reading a node
h, a copy of each of its component UCWs sends copies to
all or none of the sons of h, as follows:

1. UE , and UE∧¬ϕ always send copies to all sons;

2. UE⊃ϕ sends no copies if h is inconsistent with σag, or
marked by ¬E ;

3. Uϕ sends no copies if h is inconsistent with σag;

4. UE⊃¬ϕ sends no copies if h is marked by ¬E ;

5. U¬E sends no copies when active and h is an environment
node unmarked by σ¬Eag (i.e., once active it follows σ¬Eag ).

This completes the description of Uϕ,E .
Note that each UCW Aψ has size EXP and a constant

index (by Theorem 6) and thus, so does the UCW Uψ , as
well as the UPW Uϕ,E (since it is a product of a constant
number of these UCW’s).

Correctness of the Construction of the Automaton Aϕ,E
The statement of correctness is as follows: an agent strategy
σag is in MAXϕ|E(Σ

all
ag ) iff there exists a legally marked tree

with σag written on it which is accepted by Uϕ,E . This, in
turn, is based on the following relatively easy observations
about the run of Uϕ,E on a tree. Assuming that the tree is
legally marked, then:

1. All copies of U¬E accept iff †(i) holds.

2. All copies of UE accept iff †(ii) holds.

3. All copies of UE∧¬ϕ accept iff †(iii) holds.

4. All copies of Uϕ accept iff †(iv) holds.

5. All copies of UE⊃ϕ accept iff ∀h with guess(h) = 1, all
traces consistent with σag extending h (that do not also
extend a node marked by ¬E) satisfy E ⊃ ϕ.

6. All copies of UE⊃¬ϕ accept iff ∀h with guess(h) = −1,
all traces extending it (that do not extend a history marked
by ¬E) satisfy E ⊃ ¬ϕ.

6 Related Work
In classical game-theory, it is argued that a rational player
would not choose a strictly dominated strategy. This idea
was introduced to games on graphs in (Berwanger 2007)
which provides the local characterisation of best-effort, and
studies properties of the set of strategies that survive iterated
deletion of dominated strategies, so called “iteratively ad-
missible strategies”; finer algorithmic results in the context
of model-checking were studied in (Brenguier, Raskin, and
Sassolas 2014) for graph-games with ω-regular objectives.

(Aminof et al. 2020) studies the problem of best-effort
synthesis under two environments (linearly ordered ex-
pected and exceptional with the assumption that the goal is
enforceable under the expected environment), and show it
to be decidable; an analysis of their algorithm shows it is
in 4EXPTIME. Theorem 5 provides an optimal 2EXPTIME
algorith also for this special case.

Best-effort strategies have been studied in the game-
graphs literature. (Faella 2009) argues for best-effort strate-
gies as reasonable responses in environments that may not
be adversarial, characterizes goals admitting positional best-
effort strategies, and shows how to compute such strategies
with no environment specifications. (Aminof, De Giacomo,
and Rubin 2021) provide an optimal and simple graph-based
algorithm for computing a best-effort strategy for an agent
under a single assumption. Other works assume that players
always use best-effort strategies, e.g., (Brenguier, Raskin,
and Sankur 2017) introduce assume-admissible (AA) syn-
thesis which is a compositional approach to synthesis.

Synthesis of dominant (i.e., maximum, rather than max-
imal) strategies have been studied in the trace-based set-
ting for game-graphs (Damm and Finkbeiner 2011) and for
distributed reactive-synthesis (Damm and Finkbeiner 2014;
Finkbeiner and Passing 2020).

Apart from (Aminof et al. 2020), multiple environ-
ments have been considered in a number of other synthe-
sis/planning contexts. (Ciolek et al. 2020) studies plan-
ning in multiple environments consisting of nondeterminis-
tic fully observable planning domains (FOND). They only
consider winning (not best-effort) policies, and propose
that as the environment becomes more indeterminate also
the goal should become less demanding. (Finkbeiner and
Gölz 2018) introduces the synthesis problem in distributed
environments, i.e., it is the environment (not the system)
that consists of several components with different knowl-
edge/information. They formulate the problem as a Petri-
game with one system token and a bounded number of en-
vironment tokens, and show the problem to be EXPTIME-
complete. Also generalized planning can be seen as a form
of synthesis under multiple assumption (Srivastava 2011;
Hu and De Giacomo 2011; De Giacomo et al. 2016). In
the language of this paper, this is the problem of finding
a strategy that enforces the goal in multiple environments
which share the same observables and available agent ac-
tions but not the same internal structure. Such environments
are typically specified as deterministic planning domains. In
our case, the multiple environments are fully observable and
share the same set of fluents and actions, although they are
specified in LTL (hence may be non-Markovian) instead of
planning domains (which are Markovian). Moreover, we al-
low for best-effort solutions.

Many complex synthesis problems can been expressed
in a number of logics for strategic reasoning, notably in
Strategy Logic and its variations (Mogavero et al. 2014;
Berthon et al. 2021; Belardinelli et al. 2020; Aminof et al.
2019b). These allow one to quantify over strategies, and
thus can naturally express complex strategic properties, in-
cluding dominance and maximality. However, doing so does
not seem to provide optimal algorithms, as we do here.
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