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Abstract:  This paper proposes a Deep-Q-Network (DQN) controller for network selection and adaptive resource allocation 

in heterogeneous networks, developed on the ground of a Markov Decision Process (MDP) model of the problem. Network 

selection is an enabling technology for multi-connectivity, one of the core functionalities of 5G, and for this reason the present 

work considers a realistic network model that takes into account path-loss models and intra-RAT (Radio Access Technology) 

interference. 

Numerical simulations validate the proposed approach and show the improvements achieved thanks to the DQN algorithm with 

respect to a classic Reinforcement Learning algorithm and baseline approaches in terms of connection-flows' acceptance, 

resource allocation and load balancing. 
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1. Introduction 

The exponential increase in bandwidth, coverage and data 

rate demands, along with the diversification of use cases that 

are planning to use cellular Radio Access Networks (RANs) 

to provide connectivity, have prompted the development of 

the fifth generation (5G) Radio Access Technology (RAT). 

Through the support for higher mobile bandwidths 

complemented with low latency and more reliable 

communications, the 5G RAT is expected to address the 

significant increase in data rate demands that network 

operators are expecting and to support the diversification of 

services required by User Equipment (UE) during the 

coming years. Moreover, 5G specifications, starting from 

release 16 [1] will include other RATs in the 5G 

environment, such as 4G LTE and Satellite Access Points 

(APs). In this system where the connections demand 

continues to increase, an appropriate network resources 

management is required since an optimal allocation of those 

resources will guarantee better performances and will help 

to ensure user requirements in terms of Quality of 

Experience (QoE) without overloading the network. 

In this paper a Network Selection technique relying on 

Markov Decision Procesess (MDPs) and on Deep-Q-

Network (DQN) [2] algorithm has been studied. A 

centralized controller will take care of allocating in the best 

way requests coming from UE analyzing the network state 

in terms of APs load and UE perceived transmission power. 

The goal of this study is to show the effectiveness of the 

proposed Deep Reinforcement Learning approach by 

simulations with a realistic multi-RAT (5G/4G/Sat.) 

network scenario. Moreover, several classes of user requests 

have been modeled, in order to represent different 

connection service requirements in terms of downlink 

bitrate, Quality of Service (QoS) requirements and QoE 

profiles. 

The remainder of the paper is organized as following: 

section 2 provides an overview of the state of the art and the 

main contributions of the paper; in section 3 a sketch of the 

control algorithm is presented, while in section 4 some 

preliminaries on MDPs and DQN are introduced; in section 

5 the problem modelling is discussed and section 6 reports 

the simulation results and the validation of the proposed 

algorithm. Finally, section 7 draws the conclusions and 

highlights future works. 

 

2. State of the art, innovations and 
limitations of the proposed 
approach 

Network selection plays a fundamental role in the 

provision of stable connections with an adequate level of 

QoS and hence network operators and providers commonly 

exploit several advanced techniques to select the best AP to 

allocate new connections. Among the various techniques 

proposed in the literature, Multiple Attribute Decision 

Making (MADM), proved to be one of the most flexible 

solutions to capture user preferences and QoE related aspects 

in the decision process [3]–[7]. In MADM solutions, the 

information characterizing the decision making is made by 

the so-called attribute values and attribute weights: the first 

ones describing characteristics, qualities and performances 

of different alternatives, whereas the latter ones are used to 

measure the relevance of attributes. 

Modelling the network selection problem as a MADM, it 

is then possible to decide the trade-off among service QoS 

requirements, user preferences and overall network 

congestion.  

A similar approach is followed in the present work, in 

which a different QoE profile is associate to the various 

connections, depending on its specific service characteristics 

Among the other solutions, we mention approaches based 

on fuzzy logic [8]–[11], a methodology that allow fast 

decision making but heavily rely on operator's knowledge 
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and best practices, and Game-Theory [12]–[16] 

In Game theory-based approaches, the problem is 

modelled as a set of players/agents coupled with a set of 

network states and possible agent actions, commonly 

utilising the Markov Decision Process (MDP) framework 

[17]. The main idea behind this method is that player's 

actions are influenced by the choices and actions of the other 

players. The interaction among the players can either be 

adversarial, i.e., each agent tries to maximise its own 

performance, or cooperative, when agents share a common 

objective.  

The approaches mentioned so far are typically employed 

in scenarios in which the controller is provided with a model 

of the network and user behavior, such as a statistical 

distribution of the incoming connection requests and QoE 

profiles, like in [18], [19] where the authors studied how to 

maximise QoE/QoS for specific services (e.g., Video 

Streaming applications. On the contrary, this work employs 

Reinforcement Learning (RL) [17] a model-free control 

methodology that allows the network controller to 

automatically acquire the knowledge on the system by 

interacting with it and experiencing its response to different 

control policies.  

RL has been extensively applied in the network control 

domain [20]–[25] and has become particularly appealing 

over the last few years thanks to the innovations bought by 

its deep learning based variant, namely Deep Reinforcement 

Learning (DeepRL) [2], that allowed RL-based controllers 

to address problems previously challenging due to their 

complexity and high dimensionality [26]. 

The main contributions of this work are: 

• The design of a two-step network control algorithm 

based on Deep Reinforcement Learning for the 

problem of network selection and optimal resource 

management in the heterogeneous 5G networks 

setting, also envisaging the presence of satellite 

communication systems. 

• The inclusion in such control framework of QoE 

maximisation by considering three different service 

types with different QoS-QoE relations. 

• The development of an open-source network 

simulator [27] able to model several different radio 

access technologies, including satellite systems, in 

terms of network resource usage. 

 

3. Sketch of the Control Algorithm 

The algorithm designed in this work is a 2-step process: 

first, the controller that governs the RAN receives a 

connection request and determines on which available AP it 

should be allocated. The AP reserves for the allocation the 

network resources needed to satisfy the connection 

minimum QoS requirements to guarantee service provision; 

then, the distributed controllers that oversee the various APs 

distribute the remaining network resources to the 

connections they sustain to improve the QoE of their users. 

Figure 1 reports a functional diagram of the proposed control 

scheme, highlighting the flow-chart of the algorithm and the 

related data flow. 

The first part of the control algorithm proposed will be 

based on a Deep Reinforcement Learning agent, whereas the 

network resource allocation will distribute the available 

resources over the various connections according to their 

priority. 

The next section provides the reader with the needed 

background on MDP and DeepRL. 

 

4. Markov Decision Process, Q-
Learning and Deep Q-Networks 

A MDP is defined as the tuple {𝑆, 𝐴, 𝑇, 𝑅, Σ, 𝛾}, where 𝑆 

and 𝐴 are the (continuous or discrete) finite state and action 

sets, respectively, 𝑇 is the transition probability function 

𝑇 ∶ 𝑆 × 𝐴 × 𝑆 → [0, 1] , with 𝑇(𝑠, 𝑎, 𝑠′) denoting the 

probability that the next state is 𝑠′ when the current state is 

𝑠 and the chosen action is 𝑎 and with ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑠′∈𝑆 =

1, 𝑅 is the one-step reward function 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ+, 

Σ  is the initial state distribution and 𝛾 ∈ (0, 1)  is the 

discount factor that weights future rewards against 

immediate ones. The set of actions might be state-dependent 

as not all the actions might be available at each state; the set 

of actions available at a given state 𝑠 ∈ 𝑆 will be denoted 

by 𝐴(𝑠) ⊆ 𝐴. 

MDPs rely on the Markov Property (also known as the 

memory-less property), according to which the future 

evolution of a system given an action and state pair does not 

depend on the previous actions and states that the system 

incurred into. 

A deterministic policy 𝜋 ∶ 𝑆 → 𝐴 selects one action for 

each state. Let Π be the set of feasible policies 𝜋 such that 

𝜋(𝑠) ∈ 𝐴(𝑠) for all 𝑠 ∈ 𝑆. The expected discounted reward 

obtained by starting from state 𝑠 and following policy 𝜋 

thereafter is represented by the state-value function, defined 

as 

𝑉𝜋(𝑠) = 𝔼𝜋 (∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡, 𝑠𝑡+1) 

𝑡

│𝑠0 = 𝑠) (1) 

 

where 𝔼𝜋  is the expected value under policy 𝜋  and 𝑠𝑡 

and 𝑎𝑡 represent the state and action at time 𝑡. Similarly, 

the state-action-value function 

   

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 (∑ 𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) 

𝑡

│𝑠0 = 𝑠, 𝑎0 = 𝑎) (2) 

 

represents the expected discounted reward obtained by 

following policy 𝜋 when starting from state 𝑠 and taking 

action 𝑎 ∈ 𝐴(𝑠). 

Solving the MDP means to find the optimal policy 𝜋∗ 

that maximises the expected cumulative discounted reward, 

i.e., 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋∈Π𝑉 𝜋(𝑠). Dynamic programming [17] 

approaches can be used to exactly determine 𝜋∗, but they 

typically require the complete knowledge of the MDP 

dynamics – in particular of 𝑇 and 𝑅 – and their computing 

time exponentially increases with the dimensions of state 
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and action sets. 

Conversely, RL algorithms, such as Q-Learning, aim 

at obtaining an estimate of the optimal state-action-value 

function 𝑄 𝜋∗ based on the experience the controller gathers 

by interacting with the environment, in the form of the (state, 

action) pairs it observes and the rewards it collects. RL 

algorithms in general assume no knowledge of the 

environment dynamics, and start interacting with it with 

mostly random policies in a process known as exploration. 

As the RL agent obtains a better knowledge of the 

environment, it starts exploiting its knowledge to determine 

what it considers to be the better actions, until the estimated 

𝑄 𝜋 converges to 𝑄𝜋∗, from which it is possible to retrieve 

the optimal policy as 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄𝜋∗(𝑠, 𝑎′). 

The standard update rule for Q-Learning is 

 

𝑄(𝑠𝑡, 𝑎𝑡)  = (1 − 𝛼𝑡)𝑄(𝑠𝑡, 𝑎𝑡) + 

+ 𝛼𝑡(𝑟𝑡 + 𝛾 max
𝑎∈𝐴(𝑠𝑡+1)

𝑄(𝑠𝑡+1, 𝑎))  
(3) 

where 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) is the measured reward obtained 

at time 𝑡 and 𝛼𝑡 > 0 is the learning rate, which, in order 

to assure convergence, is subject to the conditions 

∑ 𝛼𝑡 = ∞∞
𝑡=1  and ∑ 𝛼𝑡

2 < ∞∞
𝑡=1 . 

The balancing between exploration and exploitation is 

controlled by the parameter 휀𝑡 ∈ [0, 1] in the so-called 휀-

greedy policies: at any time 𝑡, the agent chooses a random 

action with probability 휀𝑡, whereas it chooses the action that 

maximizes the state-action-value function (i.e., 

𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝑠)𝑄(𝑠, 𝑎)) with probability (1 − 휀𝑡). 

It is worth noting that in standard RL approaches the 

Q function is updated only for the visited state-action pairs, 

so, in order to have a complete estimation of the optimal Q 

function it is needed to visit at least once every state-action 

pair. This implies that the state space 𝑆 and the action space 

𝐴  must be finite and discrete, and if their dimensions 

increase also RL algorithms incur in the so-called curse of 

dimensionality. 

To address these issues, the Deep Q-Network (DQN) 

algorithm was proposed in [2] as a Deep Learning solution 

for function approximation-based [17] Q-Learning. DQN 

approximates the Q function by the means of a Deep Neural 

Network able to approximate high-dimensional functions 

with a low-dimensional representation. The training process 

for the Neural Network is detailed in [2] and, despite having 

included some technical solutions to address the Neural 

Network limitations, such as target network and memory 

buffers, conceptually it remains the same as in the standard 

Q-Learning, with equation (3) replaced by the training 

process of the Neural Network and in particular by the 

updates of its weights. 

The main advantage of using DQN is its ability to cope 

with continuous state spaces and it proved capable of solving 

complex problems, such as playing videogames. Note that 

DQN still considers discrete action sets; actor-critic 

solutions such as Deterministic Deep Policy Gradient 

(DDPG) should be used when dealing with continuous 

actions. 

 

5. Problem modelling 

This section presents the modelling of the network 

selection problem as an MDP. In particular, the subsections 

from 5.1 to 5.3 formulate the sets and functions required for 

the MDP formalism, while the subsection 5.4 and 5.5 detail 

the physical processes that allow the conversion of network 

resources into bitrate provision. 

 

Let 𝐼 be the set of User Equipments (UEs) connected 

within a RAN constituted by a set 𝑃 of Access Points (APs). 

Each UE 𝑖 ∈ 𝐼 is connected to an AP 𝑝 ∈ 𝑃 of the RAN, 

that is characterized by a certain amount 𝑊𝑝  of physical 

resource blocks (PRBs) available. In addition, let 𝑃𝑖 ⊆ 𝑃 

be the set of APs available at UE 𝑖, depending on its position 

and antennas. Moreover, let 𝐾 be the set of different service 

types considered, each one characterized by a different 

minimum bitrate 𝐵𝑘 , 𝑘 ∈ 𝐾. Finally, let 𝑛𝑝𝑘 be the number 

of requests of type 𝑘 allocated to an AP 𝑝. 

Figure 2: QoE profile of elastic services (k=1) 

Figure 1: Flow-chart of the control algorithm 
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Three different types of services are here considered, as 

in [28], namely: elastic services, non-elastic services and 

multi-codec ones, each characterised by a different QoE 

profile. 

Let 𝑏𝑝𝑘
𝑖 be the bitrate allocated on AP 𝑝 for the service 

𝑘  requested by the UE 𝑖 . We can model the three QoE 

profiles as the functions 𝑟𝑝𝑘
𝑖 (𝑏𝑝𝑘

𝑖 ) depicted in Figure 2 -

Figure 4. In particular: 

• Elastic services have a linear QoE behaviour with 

respect to the allocated bitrate, starting from a 

minimum level 𝑏𝑘
1  up to a maximum bitrate 𝑏𝑘

2 

where the perceived quality saturated, as depicted 

in Figure 2. This service captures applications such 

as of web-surfing and file downloading. 

• Non-elastic services have a threshold-like behavior 

with respect to the allocated bitrate, so if the bitrate 

is less than 𝑏𝑘
1 the perceived quality is 0, otherwise 

is maximal, as depicted in Figure 3. This service 

type represents well real-time applications with 

guaranteed bitrate requirements. 

• Multi-codec services have a stair-like QoE profile, 

as the perceived quality has different thresholds 

corresponding to the utilised codec, that depends on 

the amount of bitrate allocated 𝑏𝑘
1, 𝑏𝑘

2, 𝑏𝑘
3 , as 

reported in Figure 4. This service type represents 

multi-codec video and audio streaming. 

The proposed modelling of the services is compliant 

with the 5G standards, as the so-called QoS-flows that 

constitute the various connections can be associated with one 

of the three service types introduced above depending on 

their QoS requirements and characteristics. 

5.1. State space definition 

As already introduced, each AP is characterized by the 

amount of its physical resources available for allocation, 

denoted as 𝑊𝑝, 𝑝 ∈ 𝑃. 

To allow the controller to take an optimal decision on the 

allocation of a new incoming connection request from a 

given UE, the stat of the network should contain information 

regarding: (i) the congestion level of the physical resources 

over the various APs; (ii) the coverage quality that the APs 

provide to the UE; (iii) the service class, to infer its 

associated QoE profile, and its bitrate requirements. 

In this sense, the minimum quantity of physical 

resources that need to be allocated to sustain a single QoS-

flow 𝑖 of type 𝑘 on a given access point 𝑝 is denoted as 

𝑤𝑝𝑘
𝑖 , with 𝑖 ∈ 𝐼𝑝𝑘, where 𝐼𝑝𝑘 is defined as the set of QoS-

flows of type 𝑘  related to AP 𝑝 . Note that, referring to 

Figure 2 to Figure 4, this quantity represents the amount of 

resources needed to provide the UE with a connection with 

an associated bitrate 𝑏𝑘
1. 

Let 휂𝑝
1(𝑡) denote the amount of resources allocated at 

time 𝑡 to sustain the allocated services (i.e., the amount of 

physical resources required to support the on-going QoS-

flows at their minimum bitrate level). By definition: 

 

휂𝑝
1(𝑡) =  ∑ ∑ 𝑤𝑝𝑘

𝑖 (𝑡)

𝑖∈𝐼𝑝𝑘𝑘∈𝐾

, 𝑝 ∈ 𝑃 
(4) 

 

Let 𝑙𝑝(𝑡) be the load level of an AP 𝑝, defined as the 

allocated physical resources over the total available ones: 

 

𝑙𝑝(𝑡) =
휂𝑝

1(𝑡)

𝑊𝑝
, 𝑝 ∈ 𝑃 (5) 

 

Given a UE 𝑖 ∈ 𝐼 requesting a service of type 𝑘 ∈ 𝐾, 

the state space is then given by the following three 

quantities: 

• the load level related to each AP 𝑝 ∈ 𝑃; 

• the Reference Signals Received Power (RSRP) 

value 𝒫𝑖,𝑝  for each AP 𝑝 , measured by the UE 

itself; 

• the minimum amount of bitrate required for the 

requested service class 𝐵𝑘 (𝑏𝑘
1 in the figures). 

The state set can then be defined as: 

 

𝑆 = {𝑠 = {(𝑙𝑝)
𝑝∈𝑃

, (𝒫𝑖,𝑝)
𝑖∈𝐼,𝑝∈𝑃

, (𝐵𝑘)𝑘∈𝐾}} (6) 

 

The resulting state 𝑠 ∈ 𝑆  is a vector with 2|𝑃| + 1 

elements. With little abuse of notation, we will denote by 

𝑙𝑝(𝑠), 𝒫𝑖,𝑝(𝑠)  and 𝐵𝑘(𝑠)  as the load level of AP 𝑝 , the 

RSRP value and the minimum required amount of bitrate in 

state 𝑠, respectively. 

Figure 3: QoE profile of non-elastic services (k=2) 

Figure 4: QoE profile of multi-coded services (k=3) 
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5.2. Action space definition 

When a new connection request arrives to the network 

controller, there are two possible outcomes: (i) the controller 

accepts the request and allocate it to (exactly) one AP 𝑝; (ii) 

the connection is rejected as there are no APs that can handle 

it due to insufficient resources. The RAN controller is then 

required to act as an advanced Connection and Admission 

Controller (CAC). 

We now define the action set similarly to [28]. Let 𝛿𝑝 

be a vector with 2|𝑃| + 1 values, i.e., the same dimension 

of the state vector 𝑠 ∈ 𝑆, where all the values are zeros but 

the element associated to the AP 𝑝 . The single non-zeros 

element is 𝛿𝑝  represents the extra load (5) that would be 

added to access point 𝑝  in the case the new connection 

request is accepted. It follows that, in each state 𝑠, a request 

service may be allocated on AP 𝑝 if and only if 𝑠 + 𝛿𝑝 ∈

𝑆, i.e., by allocating the new request to the AP 𝑝 the new 

generated state still belongs to 𝑆. 

The action set available in a state 𝑠 ∈ 𝑆 is then defined 

as: 

 

𝐴(𝑠) = 

{(휁1, 휁2, … , 휁|𝑃|) │ ∑ 휁𝑗 = 1

𝑗∈1,…,|𝑃|

, 휁𝑗 ∈ {0,1} ∀𝑗} ⋃ 𝟎 
(7) 

 

where 𝟎 is a 𝑃-vector of zeroes, and the action is a vector 

whose only non-zero element is equal to one and indicates 

which AP has been selected for the allocation. The special 

case in which 𝑎𝑖 = 𝟎 represents a condition in which the 

connection request must be rejected due to a lack of network 

resources, as no AP can allocate the incoming request 

assuring its minimum required bitrate. 

In the simulation in section 6, we will assume that the 

requests of the service type 𝑘 ∈ 𝐾  for each UE arrive 

according to a Poisson distribution in time with mean value 

𝑣𝑘  and that their termination rates follow an exponential 

distribution with mean termination frequency 𝜇𝑘. 

5.3. Reward function definition 

In the presented definition of the states and actions, it 

was assumed that the network controller only allocates the 

network resources needed to satisfy the minimum amount of 

bitrate required by the various connections. As introduced in 

Section 3, the network control algorithm follows a two-step 

procedure: firstly, it selects which AP will serve the 

incoming connection request; then, each AP distributes its 

remaining resources 휂𝑝
1(𝑠) over its connections, according 

to some prioritization order that may take into account the 

user tariff or operator preferences. 

In our simulations, the APs will firstly distribute 

uniformly their available resources to the multi-codec 

services, so that each connection receives a bitrate up to 𝑏3
3, 

and afterwards the remaining resources are uniformly 

distributed to the elastic services up to a bitrate of 𝑏1
1. Non-

elastic services, due to their threshold-like behaviour, are 

always given a bitrate of 𝑏2
1. 

To define the reward function, we have to introduce 𝑆𝑝𝑖 

as the amount of additional bitrate that the AP 𝑝 is able to 

provide to the connection 𝑖 using a share of its remaining 

resources. This quantity is then directly linked to the QoE 

associated to the connection, as the function 𝑟𝑝𝑘 of Figure 

2 to Figure 4 takes in general as an argument the quantity 

𝑏𝑘
1 + 𝒮𝑝𝑖 that represents the total bitrate available to the 

service 𝑖 of class 𝑘. 

The reward function shall then capture three cases: 

• the connection request is rejected (i.e., no AP 

allocates the connection); 

• the connection is allocated on an AP with a low 

resource usage; 

• the connection is allocated on an AP that is already 

providing several other connections. 

To capture those three cases, the reward 𝑟𝑡(𝑠𝑡, 𝑎𝑡 , 𝑠𝑡+1) 

obtained by the controller when allocating a connection 𝑖 of 

class 𝑘 of AP 𝑝 can be defined as: 

 

𝑟𝑡(𝑠𝑡 , 𝑎𝑡, 𝑠𝑡+1) = 

= {

−𝑟0 < 0, 𝑖𝑓 𝑎𝑡 = 𝟎

𝑟𝑝𝑘(𝑏𝑘
1 + 𝒮𝑝𝑖), 𝑖𝑓 𝑙𝑝(𝑡 + 1) ≤ 0.5

𝑟𝑝𝑘(𝑏𝑘
1 + 𝒮𝑝𝑖) − 𝑟𝑠𝑎𝑡, 𝑖𝑓 𝑙𝑝(𝑡 + 1) > 0.5

 
(8) 

 

The negative reward −𝑟0 represents a penalty given to 

the agent if the allocation is rejected to capture the cost 

incurred by the network operator in failing to provide a 

connection. The term 𝑟𝑝𝑘(𝑏𝑘
1 + 𝒮𝑝𝑖)  is a positive reward, 

shaped depending on 𝑘  as in Figure 2 to Figure 4, that 

captures the QoE of the new user and the term −𝑟𝑠𝑎𝑡 is a 

negative reward subtracted from 𝑟𝑝𝑘(𝑏𝑘
1 + 𝒮𝑝𝑖) in case the 

new allocation is destined to an AP whose saturation level is 

higher than the desired threshold (50% in our case). 

The long-term maximization of this reward allows the 

network controller to maximise the overall QoE of its users 

while keeping the connection rejection rate minimised. 

5.4. 5G NR and 4G LTE resource allocation 

description 

To relate the physical resources that appear in the state 

definition with the transmission bitrate needed by the reward 

function to estimate the QoE level, it is now needed to detail 

their relation and how one translates into the other for both 

terrestrial and satellite APs. 

5G New Radio (NR) APs have a limited set of resources 

[29], both in terms of frequency bandwidth and time to 

allocate UE requests. The minimum allocation unit for a 5G 

NR AP is the Physical Resource Block (PRB), each 

composed by 12 frequency subcarriers with a 2𝜇 ⋅ 15kHz 

bandwidth and a time duration of 2−𝜇 ⋅ 1ms, where 𝜇 ∈

 {0,1,2,3,4} is the parameter called numerology defined by 

5G NR standards. The number of PRBs available on AP 𝑝 

depends on the available total bandwidth on the AP and on 

its numerology, as defined by 5G NR standards [29]. 
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For 4G LTE APs the definition of PRB still stands, but 

the numerology parameter is constrained to 𝜇 =  0, so there 

is no flexibility on using less/more subcarrier bandwidths 

and more/less time slot durations. 

The receiving power, or RSRP, 𝒫𝑖,𝑝 that appears in the 

states of equation (6), represents the transmission power 

measured by the UE 𝑖 ∈  𝐼 between itself and the AP 𝑝 ∈

 𝑃 is computed as follows: 

 

𝒫𝑖,𝑝 = 𝒫𝑝 ⋅ 𝐺𝑝 ⋅ 𝐿𝑝 ⋅ 𝐿𝑖,𝑝 (9) 

 

where 𝒫𝑝  is the AP's antenna power, 𝐺𝑝  is the AP's 

antenna gain, 𝐿𝑝 is the AP's feeder losses and 𝐿𝑖,𝑝 is the 

path loss between UE 𝑖 and AP 𝑝. 

In our simulations, the path loss 𝐿𝑖,𝑝 is computed through 

the COST-HATA model [30] that is a statistical model that 

considers many factors as the buildings density (rural, 

suburban, urban), the carrier frequency used for the 

communications and the relative heights of UE and AP. 

In order to estimate the number of resource blocks to be 

allocated by the AP 𝑝 ∈  𝑃 for the communication with the 

UE 𝑖 ∈  𝐼 , the signal-over-interference-plus-noise-ratio 

(SINR) has to be computed. The thermal noise part can be 

computed according to: 

 

𝒩𝑝 = 𝑘𝑏𝑇𝑒𝑛𝑣𝐵𝑝Θ𝑝 (10) 

Θ𝑝(𝑡) =
∑ ∑ 𝐶𝑗,𝑝(𝜏)𝑁𝑗,𝑝(𝜏)𝑗∈𝐼\𝑖𝜏∈(𝑡−𝑇,𝑡)

𝑇 ⋅ #𝑅𝑝
 (11) 

  

where Θ𝑝(𝑡)  is the Resource Blocks Utilization Ratio 

(RBUR) of AP 𝑝 at time 𝑡, 𝑘𝑏 is the Boltzmann constant, 

𝑇𝑒𝑛𝑣  is the environmental temperature, 𝐵𝑝  is the total 

bandwidth for the AP 𝑝 , 𝑇  is the length of the moving 

average, 𝐶𝑗,𝑝(𝑡) is equal to 1 if UE 𝑗 is connected to AP 𝑝 

at time 𝑡  and 0 otherwise and 𝑁𝑗,𝑝 (𝑡)  is the number of 

PRB allocated by AP 𝑝  to UE 𝑗  and #𝑅𝑝  is the total 

number of resource blocks of AP 𝑝. 

The interference part is computed as follows: 

 

𝒥𝑖,𝑝 = ∑ 𝐹𝑝,𝑝′

𝑝′≠𝑝

𝑃𝑖,𝑝′ ⋅ Θ𝑝′(𝑡) (12) 

 

where 𝐹𝑝,𝑝′   is 1 if AP 𝑝  and 𝑝′  share the same carrier 

frequency and 0 otherwise. 

Using (10) and (12) it is possible to compute the SINR, 

and so it is possible to estimate the data-rate that can be 

transmitted allocating one PRB to UE 𝑖 using the Shannon 

formula 

𝑟𝑖,𝑝 = 2−𝜇10−3𝐵𝑃𝑅𝐵 log2(1 + 𝑆𝐼𝑁𝑅𝑖,𝑝) (13) 

 

𝐵𝑃𝑅𝐵  is the bandwidth of a single PRB and it can be 

computed as 𝐵𝑃𝑅𝐵  =  12 ⋅  2𝜇15 kHz. 

Now, given a certain bitrate request 𝑏𝑝
𝑖  from UE 𝑖, it is 

possible to compute the number of resource blocks to be 

allocated by AP 𝑝  to satisfy the request: 𝑛𝑖,𝑝
𝑃𝑅𝐵  =

⌈(𝑏𝑝𝑘
𝑖 𝑟𝑖,𝑝⁄ )⌉. 

5.5. Satellite resource allocation description 

Contrary to ground APs, the satellite APs use Time 

Division Multiple Access (TDMA) in order to serve multiple 

UEs at the same time. In this case, the minimum allocation 

unit is a block of symbols that occupies a certain time slot in 

the satellite time-frame.  

The receiving power 𝑃𝑖,𝑝 can be still computed as (9), 

but in this case the path loss function will be the Free Space 

Path Loss 

 

𝐿𝑖,𝑝
𝐹𝑆𝑃𝐿 = (

4𝜋𝑑𝑖,𝑝𝑓

𝑐
)

2

, (14) 

 

where 𝑑𝑖,𝑝 is the Euclidean distance between UE 𝑖 and AP 

𝑝 , 𝑓  is the carrier frequency used and 𝑐  is the speed of 

light. 

The thermal noise can be computed as (10) and the 

interference can be computed as (12). Using the Shannon 

formula (considering that this time the bandwidth is the total 

bandwidth of the satellite AP since the TDMA utilises all the 

bandwidth only for a certain amount of time), one has that 

the bitrate obtainable by a single block of symbols is 

 

𝑟𝑖,𝑝 = 𝑏𝐵 log2(1 + 𝑆𝐼𝑁𝑅𝑖,𝑝), (15) 

 

where 𝑏 is the ratio between the number of symbols in a 

single block and the total number of symbols of the satellite 

AP. The number of blocks to be allocated for a requested 

bitrate 𝑏𝑝𝑘
𝑖   from UE 𝑖  is then computed as 𝑛𝑖,𝑝

𝑏𝑙𝑜𝑐𝑘𝑠  =

⌈(𝑏𝑝𝑘
𝑖 𝑟𝑖,𝑝⁄ )⌉ 

 

6. Simulation results and validation 

In order to demonstrate the effectiveness of the proposed 

approach, a simulative environment has been built up 

according to the model definition previously introduced. 

6.1. Scenario definition 

We developed a scenario consisting of four terrestrial 

access points (NR1 and NR2 are 5G NR APs and the 

remaining two are 4G LTE APs) and a satellite access point 

in a 2.5 × 2.5Km area, as shown in Figure 5. 
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In particular for 5G NR access points we considered a 

carrier frequency of 1.7GHz (band n66) with numerology 

𝜇 = 2 , while for 4G LTE access points we considered a 

carrier frequency of 800MHz (band 20). All the terrestrial 

APs have 20dB power, 16dB antenna gain and 3dB feeder 

losses. For the satellite access point we considered the 

Inmarsat implementation from example 6.6.2 of [31]. A total 

of 100 UEs has been considered in the given area, and each 

of them follows a Poisson distribution for requesting data 

with a certain service type and for the duration of such 

request; the parameters for each service type are described 

in Table 1. Moreover, we considered 𝛾 =  0.9 , 휀 =  1 , 휀 -

decay = 0.9995 and 𝜖 -min = 0.01. As for the DQN 

parameters, we considered a replay buffer of 2000 tuples, a 

batch size of 64 tuples and the update of target network 

weights happens every 50 steps. Finally, the DNN hidden 

layers have a tanh activation function, the learning rate of 

the DNN is 10−4  and the network performs 4 ⋅  104 

training steps before finishing the training. 

 

Table 1 Service type requests 

 Elastic Non-elastic Multi-codec 

Bitrate (Mbps) 10 200 100 

Arrival rate (sec) 2 6 4 

Dwelling time (sec) 30 120 90 

 

6.2. Simulation results 

Results displayed in the following graphs will focus on 

the performances of the controller in terms of QoS-flows 

allocation and their management. In order to validate the 

results of the proposed DQN algorithm, a set of other 

approaches have been simulated. In particular a classical, 

tabular, Q-Learning (QL in the figures) approach has been 

simulated, together with a Least Loaded (LL in the figures) 

approach, where a new request will be allocated to the least 

loaded AP, and a Max-RSRP (MR) approach, where a new 

request will be allocated to the AP with the maximum 

receiving power. The Q-Learning approach shares the same 

MDP representation as the one presented for the DQN, save 

for the fact that the state-space needed to be discretised so 

that the AP loads and the RSRP values contained in the states 

in (6) were uniformly quantised into four levels. 

The various controllers have been tested on the same 

scenarios to obtain fair results among their performances. 

Moreover, to ensure more balanced experiments, the results 

shown are the average between ten different scenarios, each 

one tested by all the different controllers. Finally, both the 

DQN and the QL controllers have been trained before the 

execution of the simulations. Several metrics are showed to 

better understand the performances of controllers with 

Figure 5: Considered network scenario 

Figure 6: Overall rejection rates 

Figure 7: Rejection rates divided by service type 

Figure 8: Allocated bitrate percentage divided by service type 
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respect each other. 

As it emerges from Figure 6, the DQN controller 

outperforms the other controllers in terms of rejection rate, 

even if both the Max-RSRP (MR) one and the Q-Learning 

(RL) one have similar results. This behaviour is not 

surprising, since the Max-RSRP approach allocates requests 

to the AP with minimum path-loss, so the number of 

requested physical resources will be in general lower, and 

the Q-Learning approach has a similar behaviour w.r.t. the 

DQN approach, since the only difference is in its finite state 

space. 

Figure 7 reports the rejection rate of each controller 

divided by service type. In the figure we can note how all 

controllers allocate a lower percentage of the non-elastic 

service requests, whereas the LL controller shows a 

significantly higher rejection rate for the elastic services. 

In terms of bitrate, the DQN approach results to be the 

best one, allocating around 48Gbit over the accepted 

incoming requests. 

Figure 8 details the allocated bitrate percentage with 

respect to the total requests bitrate divided by service type. 

The result demonstrates that DQN behaves almost in the 

same way of MR for what concerns the elastic services, 

while it allocates about 6% more than the other approaches 

for what regards non-elastic traffic and about 3% for what 

regards the multi-codec requests. 

Finally, from Figure 9, that represents the average 

percentage of successful allocations on each AP over all the 

requests made by UEs, it is evident that the Least-Loaded 

controller is the one that better balances the load among the 

APs: despite its limited performances according to the other 

metrics presented, due to its  definition it allocates requests 

to the least used AP at the given time instant, resulting into 

an overall reasonable balance among all the APs. 

The other controllers appear to be less balanced when 

allocating resources, with one or two Base Stations exploited 

more than the others. In particular, the DQN controller relies 

heavily on the Satellite Base Station to allocate incoming 

requests, allocating about 30% of requests to this AP. DQN 

is hence the only approach that manages to fully exploit 

Satellite resources, as the others tend to utilise mainly the 

NR Base Stations. 

Figure 10 represents the QoE collected by each of the 

controllers. The values for each controller are computed 

summing the QoE gained by each request according to the 

QoE profiles defined in section 3 and then normalised on the 

result obtained by the DQN controller. As expected, the Q-

Learning controller has similar performances with respect to 

the DQN one, that reaches the highest level of QoE. The 

performance gap increases when comparing a learning-

based agent against the other approaches. 

7. Conclusion 

The paper proposed a Network Controller based on Deep 

Reinforcement Learning to enable the integration of satellite 

systems into 5G heterogeneous networks. The proposed 

controller dealt with the problem of Network Selection by 

formulating it as a Markov Decision Process, and was 

compared to several standard benchmark algorithms. The 

proposed solution proved to be able to cope with large scale 

scenarios involving 100 different UEs. 

For validation purposes, the authors developed an open 

source network simulator [27] that realistically captures the 

network resource usage of different radio technologies, 

including satellite connections. 

Overall, the proposed controller improved the 

performances of the network, increasing the connection-

flows acceptance rate and providing a better resource 

management with respect to the other methods tested. 

Future works are related to the introduction of other 

unmodeled complexities in the simulator, such as user and 

access point mobility. Actor-critic algorithms [32] will also 

be explored to enable the split of QoS-flows and multi-

connectivity, allocating a single flow over different access 

points at the same time. 
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