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a b s t r a c t

Photovoltaics (PV) has reached high level of maturity in terms of material efficiency and low production
costs. For this reason, nowadays, lot of emphasis is put on the reduction of the operation and mainte-
nance costs. Soiling is one of the issues that most affect these costs. So, the understanding of its electrical
and economic implications is essential to optimize the cleaning routines and minimize the associated
costs. This paper investigates the possibility of estimating soiling directly from PV performance data,
without the need of installing specific soiling monitoring equipment, which typically needs careful and
regular maintenance. Five analytical methods are evaluated and applied to the data of PV modules of
different technologies (m-Si, CdTe and CIS). An experimental campaign is conducted in a location in
Southern Spain with low-moderate levels of soiling. The methods show promising accuracies when used
to obtain the soiling losses of a module, especially during soiling-intense and long dry periods.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, the widely known negative impacts of using fossil
fuels to produce energy on the environment has promoted a change
on the energy mix of most countries [1]. The national governments
all over the world have been driving reforms in the policies on the
installation of renewable energy systems [2e4]. Consequently, the
worldwide total renewable energy capacity installed at the end of
2020 (2799 GW) is more than twice the value of 2011 (1330 GW).
The development of photovoltaics (PV) has been particularly sig-
nificant, as the installed capacity has increased tenfold in the last
decade, reaching nowadays a global value greater than 700 GW [5].
The recent exponential growth of the PV technology is mainly due
to the deployment of large-scale PV plants across the world [6e8].
In installations of this size, the optimization of the operation and
maintenance (O&M) actions plays a key role to maximize the rev-
enue. The cleaning of the PV modules to remove the accumulated
dust on their surface, also known as soiling, is one of these O&M
actions.
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Soiling is a phenomenon that diminishes the output power of PV
modules. This power reduction varies as a function of several
meteorological and environmental parameters, such as precipita-
tion, wind and particulate matter [9]. Furthermore, the losses can
significantly differ from one location to another, causing power
drops higher than 50% in desert regions [10]. Soiling is considered
one of the natural factors that affect the most the performance of
photovoltaic technology [11]. Soiling is a reversible PV issue, and it
is therefore possible to plan effective and profitable mitigating
actions if its impact is known. However, this should be tailored to
the specific conditions of each site, thus requiring a constant soiling
monitoring. During the last two decades, several approaches to
evaluate and quantify the soiling impact on PV systems have been
developed. These approaches are described in section 2, where the
purpose and the potential application of this study are also
discussed.

This study presents the first investigation concerning the ac-
curacy of different PV power calculation methods for soiling
extraction in real time. The main goal is to provide some guidance
to the PV community about how the investigatedmethods estimate
in real time the soiling losses of modules of different technologies
at a certain location. As detailed in the next section, studies that
present soiling extraction algorithms and studies on methods for
the prediction of the output power of PV systems have already been
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

Symbols
FF Fill Factor
GPOA Plane-of-Array Global Irradiance [W/m2]
Isc Short-circuit Current [A]
Im Current at the maximum power point [A]
k Boltzmann's constant [1.38 $ 10�23 J K�1]
Kmismatch Constant that represents the difference, or mismatch,

in maximum power between two modules of the
same model at identical conditions

Pm Maximum Power [W]
PM2.5 Mass concentration of suspended fine particles

(diameter <2.5 mm) [mg/m3]
PM10 Mass concentration of suspended coarse particles

(diameter <10 mm) [mg/m3]
q Electron Charge [1.602 � 10�19 C]
Rs Series Resistance [U]
rs Normalized cell series resistance [�]
SRatio Soiling Ratio [�]
Tc Cell Temperature [�C]
Tm Module Temperature [�C]
Voc Open-circuit Voltage [V]
voc Normalized Open-circuit Voltage [�]
Vm Voltage at the maximum power point [V]

Greek letters
a Temperature coefficient of the short-circuit current

[%/ᵒC]
b Temperature coefficient of the open-circuit voltage

[mV/ᵒC]

g Temperature coefficient of the maximum power
[%/ᵒC]

Abbreviations
a.m. Ante Meridiem
a-Si Amorphous Silicon
AMPP Approximate Maximum Power Point
ANN Artificial Neural Network
CdTe Cadmium Telluride
CIGS Copper Indium Gallium Selenide
CIS Copper Indium Selenide
CODS Combined Estimation of Degradation and Soiling
FRP Fixed Rate Precipitation
IEC International Electrotechnical Commission
MBE Mean Bias Error [%]
MUX Multiplexer
m-Si Monocrystalline Silicon
O&M Operation and Maintenance
p-Si Polycrystalline Silicon
p.m. Post Meridiem
PV Photovoltaic
R2 Coefficient of Determination
RMSE Root Mean Square Error [%]
SRR Stochastic Rate Recovery
STC Standard Test Conditions

Subscripts
ref reference (clean) conditions
measured measured data point
modeled modeled data point
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presented in the literature. However, currently, there is a lack of
works bringing these two research directions together. The present
study is intended to fill this gap by using a two-step procedure.
First, the analytical methods are applied tomodel the output power
that the module should provide in clean conditions, i.e. the ex-
pected power. Second, the soiling loss is determined by comparing
the modeled and the measured power values. The methodology is
tested on modules of three different technologies (m-Si, CdTe and
CIS) installed in the University of Ja�en (Spain), in a location with
low-moderate levels of soiling, and the results are validated against
actual measured soiling losses, calculated as the ratio of the power
outputs of a soiled module to that of a clean one.

The paper is structured as follows: Section 2 describes the state
of the art related to the quantification of the impact of soiling on PV
systems and the motivation of the study; Section 3 presents both
the PV test facility and the methodology followed to obtain and
analyze the results; Section 4 shows the results and presents a
discussion regarding the goodness of the methods for the different
technologies; last, Section 5 recapitulates the main conclusions
found during the study.

2. Background and motivation

The increase in the deployment of PV expected in the upcoming
years [12], primarily in high-soiling risk areas [13], will cause a rise
in the soiling loss impact. This fact may potentially enhance and
promote the need for a better soilingmonitoring, as this task plays a
key role in the establishment of appropriate mitigation strategies
[14]. Currently, the losses that soiling causes in PV systems can be
2

extracted directly or indirectly. On the one hand, soiling losses can
be directly monitored in real time through the measurements of
specialized instruments. Among them, soiling stations are the most
widespread solutions. They consist of two PV devices: one kept
always clean and the other left to naturally soil. Soiling is quantified
through the soiling ratio (SRatio), calculated as the ratio between
the electrical outputs of the soiled and the clean devices. However,
nowadays, the trend in PV soiling monitoring is turning towards
optical sensors [15e17]. These minimize the disadvantages of
soiling stations, as they do not require an exhaustive preservation
during their operation, thus reducing the impact of imperfect
maintenance on the results [18]. Although these direct measure-
ments return real-time results, the main issues that are pending to
be solved are: (1) the cost and high maintenance for the soiling
stations, and (2) the few field validation results of the optical
sensors.

On the other hand, soiling losses can be indirectly estimated
through the analysis of PV performance and/or environmental data.
There are several publications that presented algorithms and
models to generate soiling profiles from these data. Kimber et al.
[19] presented the fixed rate precipitation (FRP) model, which used
PV performance data and rainfall data as inputs. This model only
considers precipitations as responsible of cleaning the PV modules,
and it assumes that soiling accumulates at the same rate during
different dry periods. These two statements are not necessarily
always true, as there are other meteorological variables (wind, dew,
particle matter concentration, etc.) that can clean the modules or
vary the rate at which soiling accumulates [20]. The model intro-
duced by Deceglie et al. [21], called stochastic rate recovery (SRR),
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does not require any meteorological data as input, because it
automatically detects cleaning events as positive shifts of the per-
formance ratio. In addition, it models the soiling rate between two
consecutive cleaning events by using Monte Carlo simulation,
producing a series of potential soiling profiles. Skomedal et al. [22]
proposed an algorithm for the combined estimation of degradation
and soiling, called CODS and based on an iterative procedure. This
was found to outperform the SRR model when applied to synthetic
soiling data. A more recent study, presented by Micheli et al. [23],
introduced a method that identifies change points during dry pe-
riods, offering the possibility of distinguishing variations in soiling
accumulation rates within the same dry periods. All these extrac-
tion models allow estimating the soiling losses from historical PV
performance time series, but they have not been conceived to
provide real time soiling measurements.

Other models try to estimate the daily soiling profile through
the analysis of time series of environmental parameters. The
models presented by You et al. [24], Coello and Boyle [25], and Toth
et al. [26] consider deposition velocity, precipitation and particulate
matter (PM) concentration data to estimate the dust density
deposited on the PV modules surface. Then, they correlate this dust
density value with the soiling loss through different empirical ex-
pressions. Javed et al. [27] presented an artificial neural network
(ANN) approach to model the relation between a wide set of
environmental parameters and the soiling loss. In addition to
deposition velocity, precipitation and PM concentration, they
consider other parameters, such as ambient temperature, relative
humidity, frequency of wind gusts, etc. These environmental
parameters-based models present the advantage of not requiring
PV performance data to determine the soiling losses. However, they
have not shown yet a high accuracy when compare against the
abovementioned approaches.

This study intends to investigate the possibility of estimating the
soiling losses from monitored PV performance data without the
need of specialized equipment, thus lowering the O&M costs.
However, in contrast with the previously described models, the
focus is on the estimation of the losses in real time. This point is
what differentiates this study from previous ones. There are at least
three significant reasons that support the importance of moni-
toring soiling losses in real time:

� detecting sudden dust events, such as dust storms or extraor-
dinary construction activities [14];

� informing the PV plants' owners about the need for unsched-
uled cleanings due to the previously mentioned sudden dust
events;

� increasing PV profits as a consequence of making quick adjust-
ments to the cleaning schedule.

The currently available approaches, which also make use of PV
performance data, can provide information on the impact of soiling
on historical PV performance profiles, but they do not allow PV
plants’ operators to know if it is convenient to conduct non-
expected cleanings as they do not return the results in real time.
The main aim of this study is to address this issue by testing
different methods, which use only real-time PV performance data
for real time soiling loss monitoring. In this way, the PV modules
themselves could become real time soiling monitors, thus
complying with the requirement for soiling measurements stated
in the IEC standard [28]. Furthermore, a large number of power
measurements available within each site will make it possible to
monitor soiling losses at a string or even at a module level. Thus,
nonuniform spatial distributions of soiling losses on a PV plant can
be detected [29]. In addition, these methods can be easily imple-
mented on an embedded software platform to facilitate the
3

knowledge of the actual soiling losses anytime. These were origi-
nally developed for power prediction of PV systems, but have not
yet been tested for soiling monitoring. The reasons behind their
choice for this study are described in section 3.2.1.

Previous investigations have already compared the accuracy of
various PV power calculation methods. Fuentes et al. [30] applied
five different algebraic methods to predict the output power and
the energy yield of monocrystalline (m-Si) and polycrystalline sil-
icon (p-Si) PV modules installed in two different locations in Spain
with a Continental-Mediterranean climate. The modeled results
were then validated against measured values and it was found that
the methods that returned the best estimations of the power, and
thus of the energy, were the Osterwald's method [31] and the
approximate maximum power point (AMPP) method [32], for the
m-Si and the p-Si modules, respectively. Torres-Ramírez et al. [33]
compared two analytical methods for different types of thin-film
PV modules in the same locations of [30]. Makrides et al. [34]
analyzed four different methods to estimate the energy yield of 12
grid-connected PV systems, with a nominal capacity of ~1 kWp, of
different technologies, which include different types of crystalline
silicon modules and thin film modules, during 5 consecutive years.
Among the evaluated methods in the study, only the single-diode
model required as inputs data that cannot be found in the manu-
facturer's datasheet. So the authors estimated these inputs (five
parameters of the model) using simulation tools. Wang et al. [35]
analyzed the accuracy of three different prediction methods to
model the power output of modules of five different technologies
(m-Si, p-Si, a-Si, CIGS and CdTe). The main conclusion of this latest
studywas that the accuracy values of the evaluatedmethods for the
thin-film modules was lower in comparison with the values asso-
ciated to the crystalline silicon ones. However, despite the already
validated accuracy of the aforementioned methods for the PV po-
wer estimation, these have not been yet employed for soiling
monitoring purposes.

In this study, the accuracy of some of these PV power calculation
methods to estimate soiling losses is addressed, considering mod-
ules of three different PV technologies. In the next sections, the
methods employed are described, and the results returned from
each one are thoroughly analyzed.

3. Materials and methods

This section presents the photovoltaic test installation used in
this study and a description of the methodology.

3.1. Outdoor photovoltaic test facility

The data analyzed in this study are sourced from a PV facility
located at the University of Ja�en (latitude 37� 490N, longitude 3�

480W), in Spain. Ja�en is a medium-size town located in the south-
east of Spain with a typical annual global horizontal irradiation
around 1800 kWh/m2 [36], where soiling is markedly seasonal,
withmost of the losses concentrated in 3 or 4months. This is due to
(i) the lack of precipitations typically experienced from the end of
the spring to the end of the summer and to (ii) the pollination of the
olive trees that cover more than 40% of the province's surface [37].
In addition, occasional dust intrusions from the Sahara desert [38],
especially in summer, increase the accumulation of soiling on the
surface of the PV modules, and thus the power losses. The PV
system is comprised of six PV modules of three different technol-
ogies: m-Si, CdTe and CIS, with 2 identical modules per technology
(Fig. 1). The use of these three PV technologies to conduct the
investigation is accounted for the need of testing the methods in
materials with different spectral responses and with different ex-
pected degradation rates. Monocrystalline silicon (m-Si) and CIGS



Fig. 1. Experimental setup on the rooftop of the University of Ja�en.
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modules present a similar wide waveband, while the waveband of
CdTe technology is narrower and with a major part located in the
visible region of the spectrum. The difference between m-Si and
CIGS modules can be found in the expected degradation rates.
Indeed, previous studies [39,40] have reported that the degradation
rate of CIGS modules was significantly higher than that of m-Si
modules.

As it can be seen in Fig. 1, the modules are installed in an open
rack facing south at a tilt angle of 30�. The electrical characteristics
of the modules provided by the manufacturers are detailed in
Table 1. All the modules were calibrated outdoors just before the
start of the experimental campaign in order to minimize the
sources of uncertainty and to discover possible mismatch between
modules of the same technology. The outdoor calibration proced-
ure is explained in detail in Section 3.2.2. A block diagram of the
monitoring system is shown in Fig. 2. The global irradiance on the
plane-of-array (GPOA) was measured with a calibrated reference PV
cell (Atono 1250) placed beside the modules. This reference cell
was automatically cleaned daily at dawn with a pressurized water
spray (Atonometrics RDE300 [41]) to avoid the accumulation of
soiling on its surface. Furthermore, an additional GPOA measure-
ment was taken as backup with a pyranometer (Huksefluxe SR20),
which was manually cleaned once a week. The module tempera-
tures were measured with J-type thermocouples adhered to the
backside of the modules. The electrical data of the modules were
acquired in form of IV curves, which were measured using a self-
designed capacitor load based tracer, similar to the one described
in Ref. [42]. The ambient parameters and the IV curves were
collected each five minutes with a National Instruments data
logger. This data logger was controlled through a program created
Table 1
Information of the PV modules at Standard Test Conditions (global irradiance of
1000 W/m2, a cell temperature of 25 �C and an air mass 1.5 global spectrum).
Nameplate values of the electrical and temperature characteristics.

PV Technology m-Si CdTe CIS

Pm [W] 200 80 40
Voc [V] 45.62 60.80 23.3
Isc [A] 5.85 1.88 2.68
Vm [V] 36.49 48.5 16.6
Im [A] 5.50 1.65 2.41
Temperature coefficient of Pm, g [%/�C] �0.40 �0.25 �0.60
Temperature coefficient of Voc, b [mV/�C] �137 �164 �100
Temperature coefficient of Isc, a [%/�C] 0.06 0.04 0.01

4

with LabVIEW software, which filtered out the erroneous negative
current or voltage points from the IV curves. In addition, the pro-
gram also extracted in real-time the three relevant points of each IV
curve: short-circuit current (Isc), open-circuit voltage (Voc) and
maximum power (Pm).

Two modules were available for each technology. One of the
modules of each pair was manually cleaned weekly, whereas the
other onewas left to naturally soil. This way, the soiling losses could
be directly calculated by comparing the electrical outputs of the
soiled to the cleanmodule. Thesemeasured soiling loss values were
used to validate the losses calculated with the analyzed methods.

3.2. Methodology

In this subsection, the equations and the principles of the
analytical methods studied in this work are presented. In addition,
both the nomenclature and the procedure followed to extract the
soiling losses and the outdoor calibration process of the modules
are detailed. Also the evaluationmetrics used to assess the accuracy
of the methods are described here.

3.2.1. Analytical methods
In this study, five analytical methods were chosen by taking into

account the following two conditions: (i) the methods should have
been widely validated for the prediction of the maximum power of
PV modules; (ii) the PV electrical inputs should be easy to obtain
from the manufacturer datasheet or from an outdoor calibration
considering IV curve data. The details of the five evaluated methods
are given below.

3.2.1.1. Sandia array performance model (SAPM). This method [43]
considers that the maximum power only depends on the plane-of-
array irradiance (GPOA) and on the cell temperature.

Pm ¼ PmSTC ,
GPOA

GSTC
,½1þg , ðTc �25�CÞ�; (1)

where Pm is the maximum power, Tc is the cell temperature [�C],
and g is the maximum power temperature coefficient [�C�1]. The
subscript “STC” stands for the standard test conditions. The cell
temperature is calculated from the measured module temperature
(Tm) through the following formula:

Tc ¼ Tm þ G
GSTC

,DT ; (2)

where DT [�C] is a parameter that depends both on the module
construction and its mounting. Its value was set to 3 �C, as rec-
ommended by Ref. [43] for open-rack modules.

3.2.1.2. Constant fill factor method (FFk). This method [30] assumes
that the fill factor does not vary with operation conditions. Short-
circuit current (Isc) and open-circuit voltage (Voc) are calculated
through equations (3) and (4), respectively. Pm is obtained through
(5).

Isc ¼ IscSTC ,
GPOA

GSTC
,½1þa , ðTc �25�CÞ�; (3)

Voc ¼VocSTC þ b,ðTc � 25�CÞ; (4)

Pm ¼ FF,Isc,Voc; (5)

where a [�C�1] and b [V/�C] are the temperature coefficients for Isc
and Voc, respectively. FF is the nameplate fill factor.



Fig. 2. Block diagram of the monitoring system. MUX represents the “multiplexer”, which selects between different inputs signals and forwards the chosen one to the single output
line to the IV curve tracer.
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3.2.1.3. Variable fill factor method (FFv). In contrast to the previous
method, this one [30] considers that the fill factor does not remain
constant. Isc and Voc are calculated through (3) and (4) and the
changes in fill factor value are calculated through equations
(6)e(8). The series resistance (Rs) is assumed to stay constant with
irradiance, but not with temperature, and is obtained through
equation (7).

FF ¼ FFo,

0
BB@1� Rs

Voc=Isc

1
CCA; (6)

Rs ¼ Voc

Isc
,

�
1� FF

FFo

�
; (7)

where FFo is the intrinsic cell fill factor and is calculated as:

FFo ¼ voc � lnðvoc þ 0:72Þ
voc þ 1

; (8)

where voc is the normalized open-circuit voltage, which is calcu-
lated through the following equation:

voc ¼ Voc

k,Tc
,q; (9)

where k is the Boltzmann's constant [1.38 � 10�23 J K�1], q is the
electron charge [1.602� 10�19 C] and Tc is the cell temperature in K.

The last step is the calculation of Pm using equation (5).
5

3.2.1.4. Approximate maximum power point (AMPP). This method,
introduced by Araujo and S�anchez [32], estimates the voltage (Vm)
and the current (Im) at the maximum power point (MPP) from the
values of Isc and Voc. The calculation of the Pm through this method
is detailed below:

a) Isc and Voc at certain conditions of GPOA and Tc are calculated by
using equations (3) and (4).

b) Im and Vm are calculated from Isc, Voc and a set of three pa-
rameters (a, b and rs). The expressions used to obtain these
parameters are:
rs¼1� FFSTC
FFo

; (10)
a¼ voc þ 1� 2,voc,rs; (11)

a

b¼

1þ a
; (12)

where rs is the normalized cell series resistance, FFSTC is the fill
factor at STC, and, FFo and voc are calculated by using equations (8)
and (9), respectively.

Im ¼ Isc,
�
1� a�b

�
; (13)
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Vm ¼Voc,

�
1� b

voc
, ln a� rs ,

�
1� a�b

��
; (14)

c) Finally, the maximum power is calculated as the product of Im
and Vm as:

Pm¼ Im,Vm; (15)

3.2.1.5. PVSAT method. This method [44] estimates the maximum
power using a simple regression fit model that takes into account
the irradiance and the cell temperature through the following
equation:

Pm¼GPOA , ða1 þ a2 ,GPOA þ a3 , logðGPOAÞÞ,ð1þg , ðTc �25�CÞ
� Þ;

(16)

where a1, a2, and a3 are empirical coefficients, which were obtained
during the outdoor calibration process by using the curve fit
function available in the Python's SciPy package [45]. The initial
guesses were set to: a1 ¼ �1, a2 ¼ 0, and a3 ¼ 0.2. In addition, these
bounds were chosen:�2� a1 �0, 0.0� a2 � 0.3, and 0.0� a3 � 0.5.

3.2.2. Outdoor calibration
This subsection describes the approach followed to determine

the electrical parameters of the PV modules at STC, with the aim of
improving the precision of the estimations. The need for this out-
door independent calibration was previously recommended by
Fuentes et al. [30], which found errors of significantly lower
magnitude when the methods were provided in inputs with the
independently calibrated values instead of with the nameplate
ones. In this study, the outdoor calibration was conducted twice:
just before the start of the 11-month experimental campaign and at
the end of it. This was done to check the possible degradation of the
modules and to remove its impact on the soiling losses calculations.

The outdoor calibration process was based on the collection of
approximately 50 IV curves measured on 3 consecutive clear-sky
days within 1 h of the solar noon after manually cleaning the PV
modules. Only IV curves that had been measured with a GPOA >
700 W/m2 and with variations of GPOA < 0.5% during the IV sweep
were considered. Then, the characteristic electrical parameters (Pm,
Isc and Voc) were extracted from each of the selected IV curves and
translated to STC using the following equations [43]:

PmSTC ¼ Pm ,
GSTC

GPOA
,

1
½1þ g,ðTc � 25�CÞ�; (17)

IscSTC ¼ Isc ,
GSTC

GPOA
,

1
½1þ a,ðTc � 25�CÞ�; (18)

VocSTC ¼Voc � b,ðTc �25�CÞ; (19)

The FF at STC was calculated as follows:

FFSTC ¼ PmSTC

IscSTC,VocSTC
; (20)

The Rs at STC was obtained through equation (7) using as inputs
the parameters at STC.

The final values of the electrical parameters at STC were calcu-
lated as the simple average of the complete set of available and
previously translated data. Those values are shown in Table 2. Non-
negligible differences between the nameplate values listed in
6

Table 1 and the calibrated value can be noted; for instance, in the
case of the Pm of both m-Si modules, the calibrated value is ~4%
higher than the nameplate one. Hence, if the nameplate values had
been introduced in the equations of the methods, major errors
would have been returned. On the other hand, regarding the
degradation, it can be seen that both m-Si modules did not degrade
during the experimental campaign. However, the degradation of
the CdTe and the CIS modules was significant and it was almost the
same for the soiled and the clean modules in both cases in terms of
maximum power, with drops of ~2% and ~5% for the CdTe and the
CIS modules, respectively. The way in which degradation was
considered within the application of the methods is explained
below, in Section 3.2.3.

3.2.3. Soiling extraction
The metric used to quantify the soiling losses was the soiling

ratio (SRatio), which represents the ratio between the electrical
output of a soiled PV device and the theoretical electrical output of
the same device in clean conditions. The lower its value, the higher
the soiling losses; while a soiling ratio of 1 indicates the absence of
losses. The soiling extraction procedure is summarized in the
flowchart of Fig. 3.

The previously presented methods were used to calculate the
maximum power of the soiled module in clean conditions (Pm,ref)
using as inputs the irradiance and the cell temperature. Then, this
value was introduced in the following equation to obtain the
instantaneous SRatio:

SRatiomodeled ¼
Pmmeasured

Pmref

; (21)

where Pmmeasured and Pmref are the measured power and the reference
power obtained through the analytical methods, respectively.

To obtain daily SRatio values, the simple average of all the SRatio
data obtained between 11 a.m. and 1 p.m. was calculated [28]. The
choice of this time window can be justified to minimize the influ-
ence of the angle of incidence. In addition, to reduce the noise in the
soiling extraction, data points measuredwith GPOA < 700W/m2 and
with fluctuations of GPOA > 1% during the IV sweep were removed.
Furthermore, a two-sigma filter [46] was applied to eliminate any
points outside of two standard deviations of the daily-average
SRatio. In case an outlier had been detected, the daily SRatio was
recalculated with the remaining points. Last, a daily SRatio was
discarded if more than 60% of the measurements had to be filtered
out. It should be reminded that the measurements were takenwith
a five minute sampling interval, and hence a total of 25 points were
measured within a two hour interval.

The effect of degradation on the daily SRatio values was
removed through the division of the uncorrected daily SRatio by
the degradation rate of the maximum power of the soiled module,
linearly interpolated from the values listed in Table 2.

The soiling ratio values calculated with the analytical methods
were compared with the SRatio measured by comparing the
measured maximum powers (Pm) of the soiled and the clean
modules:

SRatiomeasured ¼
Pm ðsoiled moduleÞ
Pm ðclean moduleÞ,Kmismatch; (22)

where Kmismatch quantifies the disparity in Pm between the clean
and the soiled modules, when both are in the same conditions. The
value of this factor for the three different PV technologies under
study was obtained from the values of Pm in Table 2. As it was
mentioned before, despite the significant differences in the
degradation rates between modules of different technologies,



Table 2
Results of the outdoor calibration: electrical parameters of the PV modules at STC (G ¼ 1000 W/m2 and Tc ¼ 25 �C). The initial values and the final ones correspond to the
calibrations conducted in May 2020 and May 2021, respectively.

Technology Module Parameter Initial calibrated value Final calibrated value

m-Si Soiled Pm [W] 208.02 ± 0.71 207.85 ± 0.63
Isc [A] 5.82 ± 0.04 5.81 ± 0.05
Voc [V] 45.57 ± 0.47 45.68 ± 0.52
FF 0.785 ± 0.003 0.785 ± 0.001
Rs [U] 1.651 ± 0.012 1.668 ± 0.014

Clean Pm [W] 203.17 ± 0.84 202.94 ± 0.69
Isc [A] 5.80 ± 0.03 5.79 ± 0.04
Voc [V] 45.60 ± 0.63 45.54 ± 0.74
FF 0.767 ± 0.002 0.765 ± 0.003
Rs [U] 1.842 ± 0.014 1.849 ± 0.018

CdTe Soiled Pm [W] 70.78 ± 0.29 69.24 ± 0.37
Isc [A] 1.82 ± 0.01 1.78 ± 0.01
Voc [V] 59.66 ± 0.25 59.59 ± 0.17
FF 0.652 ± 0.001 0.653 ± 0.001
Rs [U] 11.355 ± 0.021 11.678 ± 0.019

Clean Pm [W] 76.58 ± 0.38 75.05 ± 0.31
Isc [A] 1.84 ± 0.01 1.80 ± 0.01
Voc [V] 61.83 ± 0.46 61.71 ± 0.43
FF 0.672 ± 0.002 0.675 ± 0.002
Rs [U] 10.918 ± 0.099 10.994 ± 0.107

CIS Soiled Pm [W] 42.44 ± 0.28 40.28 ± 0.22
Isc [A] 2.50 ± 0.01 2.48 ± 0.01
Voc [V] 25.08 ± 0.09 24.97 ± 0.12
FF 0.676 ± 0.002 0.651 ± 0.002
Rs [U] 3.191 ± 0.031 3.387 ± 0.063

Clean Pm [W] 36.79 ± 0.31 34.98 ± 0.67
Isc [A] 2.79 ± 0.01 2.78 ± 0.02
Voc [V] 23.12 ± 0.10 22.94 ± 0.19
FF 0.570 ± 0.002 0.549 ± 0.002
Rs [U] 3.518 ± 0.021 3.604 ± 0.033

Fig. 3. Flowchart of the soiling extraction procedure.
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Fig. 4. Top: Measured and modeled weekly-averaged SRatio values for the m-Si technology. The blue bars represent the accumulated precipitation within a week. Bottom: Dif-
ference between weekly mean actual and modeled SRatio. The grey area represents a tolerance margin of ±0.005.
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modules of the same technology showed almost identical degra-
dation rates; thus it was valid to assume that this mismatch factor
remained constant during the length of the experimental
campaign.
3.2.4. Evaluation metrics
To assess the accuracy and the suitability of the analyzed

methods in the extraction of the soiling losses, two statistical in-
dicators were calculated: the relative mean bias error (rMBE) and
the relative root mean square error (rRMSE). The rMBE returns the
average deviation of the modeled values from themeasured ones. A
negative value indicates that the method underestimates the soil-
ing losses (i.e. overestimates the soiling ratio), whereas a positive
one shows an overestimation of the losses (i.e. underestimation of
the soiling ratio). The rRMSE provides the average prediction error,
it is always positive and the lower its value the better the accuracy
of the method.

rRMSE ð%Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
PN

i¼1ðSRatiomeasured � SRatiomodeledÞ2
q

SRatiomeasured
,100 ;

(23)

rMBE ð%Þ¼
1
N
PN

i¼1ðSRatiomeasured � SRatiomodeledÞ
SRatiomeasured

,100; (24)

where N is the total number of days considered for the analysis.
The difference between the measured and the modeled SRatio
8

values was also calculated on a weekly basis. This was done to
identify if the analyzed methods were more accurate in specific
periods of higher losses, such as dry periods, compared to periods
with frequent precipitations. The analysis of the error indicators
was also repeated taking into account only data recorded during
the most soiling intense periods.
4. Results and discussion

The SRatios modeled using the aforementioned analytical
methods and the SRatios directly measured from the soiled and the
clean modules’ data (eq. (22)) were assessed during an 11-month
period (from June 2020 to May 2021). In this section, the results
for the different PV technologies are presented along with a
detailed discussion on the soiling modeling accuracy of each
method.
4.1. Assessment of the methods

Fig. 4 compares the measured and the modeled values of SRatio
for the m-Si PV module. As it can be seen, the PVSAT method is the
one that performed the best, returning modeled SRatio values very
close to the measured ones. Differences in SRatio less than 0.01
were returned by the SAPMmethod during the full period, with the
exception of one week inmid-October 2020. This weekly valuemay
be considered unreliable because of two days with presence of dew
drops on the modules during the measurement time window. In
addition, the method appears to slightly overestimate the soiling



Fig. 5. Top: Measured and modeled weekly-averaged SRatio values for the CdTe technology. The blue bars represent the accumulated precipitation within a week. Bottom: Dif-
ference between weekly mean actual and modeled SRatio. The grey area represents a tolerance margin of ±0.005.

Fig. 6. Top: Measured and modeled weekly-averaged SRatio values for the CIS technology. The blue bars represent the accumulated precipitation within a week. Bottom: Difference
between weekly mean actual and modeled SRatio. The grey area represents a tolerance margin of ±0.005.
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Fig. 7. Top: Relative RMSE values for the different methods and PV technologies. Bottom: Relative MBE values for the different methods and PV technologies. The values were
calculated using daily SRatio data of the complete experimental campaign.
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losses, which is then confirmed through the rRMBE value presented
in Section 4.2. The results of the FFk and the AMPP methods are
almost identical. These methods returned higher differences when
compared with the two previously analyzed methods (PVSAT and
SAPM), especially noticeable during February 2021 with a mean
difference in SRatio of �0.02; i.e. an underestimation of the soiling
losses around 2%. In addition, these methods seem to be affected by
seasonality, as they slightly overestimated the soiling losses during
the summer and fall seasons (mean difference of þ0.004) and
underestimated the losses during the winter and the spring (mean
difference of �0.01). Last, the FFv method also accurately modeled
the soiling losses, with the exception of the last two months of the
experimental data campaign, in which a clear underestimation of
the losses was noticed (mean difference of �0.03). This can be
potentially due to a significant variation in the modules’ series
resistance because of its reliance on the irradiance [47], which this
method neglected (Section 3.2.1.3).

Fig. 5 compares the measured and the modeled values of SRatio
for the CdTe PV module. It can be appreciated that all the methods
except the FFv one modeled the soiling losses with a high accuracy
as no differences in SRatio higher than 0.02 were obtained in any
week. In addition, in 70% of the weeks, the error between the
measured and the modeled SRatio was within the tolerance margin
of ±0.005. The PVSAT method returned slightly higher errors (be-
tween 0.01 and 0.02) for the period from mid-November 2020 to
March 2021. On the other hand, the results of the FFv method were
10
really poor, with absolute differences in SRatio higher than 0.03 in
most of the weeks. This value in the context of the location of the
study, with an annual average SRatio of 0.99 in 2020, allows to state
that this latter method should not be used to calculate the soiling
losses directly from PV performance for this technology.

Fig. 6 compares the measured and the modeled values of SRatio
for the CIS PV module. In this case, the same conclusion stated for
the CdTe module can be deduced regarding the FFv method.
Nevertheless, in this case, the method did accurately estimate the
soiling losses during the first long dry spell that lasted almost 2
months (from mid-June to mid-August). The higher errors regis-
tered between November 2020 and March 2021 can be due to the
variations of the series resistance with irradiance that this method
did not consider. On the other hand, the two methods that best
estimated the soiling losses were the FFk and the AMPP, with a
rRMSE <1%. The SAPM and the PVSAT methods also estimated the
losses with a relative acceptable accuracy (mean difference of
~0.005), and only in oneweek (Early-February 2021), the difference
in SRatio between the measured and the modeled exceed the 0.02
threshold.

4.2. Discussion

This subsection intends to complement the results already
presented in the previous section. The metrics described in Section
3.2.4 are used to assess the accuracy of the different methods for



Fig. 8. Frequency distribution of SRatio prediction error intervals. The height of the bars was calculated by comparing measured and modeled daily SRatio values of days that met
the requirements detailed in Section 3.2.3.

�A. Fern�andez-Solas, J. Montes-Romero, L. Micheli et al. Energy 244 (2022) 123173
the three analyzed PV technologies. Fig. 7 shows the rRMSE and the
rMBE values, which were calculated considering all the data in the
time series dataset. The FFv method is the one that performed the
worst, as it returned the highest errors in both rRMSE and rMBE, for
the three technologies, however the magnitude of the errors was
significantly smaller for the m-Si module. In the case of the FFk and
the AMPP methods, similar results were obtained for the three
technologies, with rRMSE values ranging between 0.76% for CdTe
and 1.28% for m-Si, and with rMBE values between �0.21% and
0.20%. These latter values indicate that there was not significant
bias, and therefore, in addition to confirming the accuracy of these
methods, they demonstrate that both the calibrated values and the
approach followed to remove the degradation component are
correct. It also should be remarked that these two methods are the
most accurate for estimating the soiling losses for both thin-film
technologies (CdTe and CIS), with rRMSE values below 1%. In the
case of the PVSAT method, it was the one with the best accuracy for
the m-Si module (rRMSE ¼ 0.79%). In addition, when compared
with the rest of the methods, excepting the FFv, it is the one with
the largest rMBE for the CdTe module. This can be accounted for the
values of the empirical coefficients that were calculated through a
regression model during the outdoor calibration process. Last, the
SAPM method returned fine results for the m-Si and the CdTe
modules (rRMSE <1%), being the error higher (rRMSE ¼ 1.76%) for
the CIS module.

The results of Fig. 7 are useful to evaluate the average precision
11
of the methods during an extended time period, 11 months in this
study. These can be complemented with the data reported in Fig. 8,
which shows the frequency distribution of the mean error in the
daily SRatio calculations for the three PV technologies. Seven un-
even bin intervals were established, whose width increased with
the value of the error. It can be appreciated that for them-Si and the
CdTe modules, in more than 90% of the days, the modeling error of
all the methods, with the exception of the FFv, was within the three
central intervals, i.e. the absolute error was lower than 2%. Themost
consistent method for the m-Si module was the PVSAT, which in
65% of the days returned SRatio values that differed less than 0.5%
when compared against the measured SRatio. In the case of the
CdTe module, three of the methods: SAPM, FFk and AMPP provided
accurate results with an almost equal and relative high frequency,
in more than 45% of the days. In addition, the aforementioned
slightly positive bias of the PVSAT method can be clearly observed
in the CdTe histogram (Fig. 8 e middle). For the CIS module, it can
be noticed the lower consistency of the methods when compared
with the other two PV technologies. The FFk and the AMPP are the
two methods that more often estimated the SRatio with lower er-
ror; in approximately 30% of the days, the error was between�0.5%
and 0.5%.

The accuracy of soiling monitoring becomes particularly
important during periods with no natural cleaning events, at the
end of which the soiling losses typically reach the highest values.
The importance of obtaining accurate results during dry periods,



Fig. 9. Evolution of the soiling ratio for the m-Si module. The red rectangles mark the three dry periods longer than 14 days. The light orange area indicates a period with a high
soiling deposition rate due to high values of particulate matter (daily PM10 values > 40 mg/m3), which were registered by an air quality station placed near the PV facility [48].

Fig. 10. Statistical error indicators for the different methods and PV technologies. Comparison between the results obtained when all the days of the experimental campaign were
considered and the results when only dry periods are taken into account.
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when soiling losses are usually higher, is accounted for the need to
precisely know when is the best day to conduct an artificial
cleaning. In this way, the difference between the profits and the
cleaning costs can be maximized. For this reason, the error metrics
were also calculated only taking into account periods of at least 14
days without precipitation. Three dry periods were registered
during the experimental campaign, as can be appreciated in Fig. 9.
The length of the longest one was 59 days, from June 13 to August
10. However, it should be noted that no measurements were
registered between July 28 and August 10 due to a failure of the
monitoring system. The other two dry periods, with lengths of 35
days and 18 days, occurred in AugusteSeptember 2020 and in
October 2020, respectively. Fig. 10 shows both the values of the
error indicators obtained for the full experimental campaign and
those associated only to the previous dry periods. According to
rRMSE values, it should be highlighted that for the m-Si module, all
the methods, including the FFv, returned values lower than 1%
during the dry periods. In particular, the error of the PVSAT method
was only 0.39%, the half of the value returned when data from the
full experimental campaign were considered. The same reduction
in error was found for the CdTe module, with the exception of the
FFvmethod. For the CISmodule, only significant drops in the rRMSE
values can be noticed for the PVSAT and the FFv methods. Never-
theless, the rRMSE value of the latter method was still excessive
(2.13%) for the estimation of the SRatio. On the other hand, negli-
gible changes in the rMBE values were obtained for all the methods
and the technologies when using only days within the dry periods,
as no important bias was appreciated using the complete set of
data.

5. Conclusions

This work demonstrates the possibility of calculating the losses
due to soiling in PV modules without the need of any specific
monitoring system. Five different analytical methodswere tested to
extract the soiling losses in real time directly from PV performance
data. The methods were applied to PV modules of three different
technologies (m-Si, CdTe and CIS). These soiling loss predictions
were then validated against actual measurements, obtained by
comparing the power outputs of a clean module to that of a natu-
rally soiled one.

The analyzed methods only need as inputs the power output of
the module, the plane of array irradiance and the cell temperature,
thus allowing their application in any PV system with a basic
monitoring system. In this work, the investigation was conducted
at module level, notwithstanding the methods can be equally
applicable to string or system level. Compared to existing models
that can extract soiling losses from historical PV performance time
series, the investigated methodologies can estimate the losses in
real time requiring a limited number of inputs.

The implementation of thesemethods in a low-moderate soiling
location during an 11-month period shows promising results. The
constant fill factor (FFk) and the approximate maximum power
point (AMPP) methods were the two ones that returned the lowest
errors for the three technologies, with rRMSEs between 0.76% and
1.28%. The SAPM and the PVSAT also provided the SRatio values
with high accuracy for both the m-Si and the CdTe modules.
However, their application for the CIS module did not provide
precise results. On the other hand, the variable fill factor method
(FFv) returned the highest errors for the three technologies,
therefore indicating that it should not be applied to estimate soiling
losses, as it is greatly affected by seasonality, caused by changes in
the solar spectrum throughout the year. It was also shown that the
magnitude of the errors of all the methods notably diminished
when only dry periods were considered. This fact presents a great
13
importance, as is within these periods when artificial cleanings
should be conducted to increase the energy production. For the m-
Si and the CdTe modules, all the methods, excepting the FFv for the
CdTe module, returned rRMSE <1%.

The presented results show the goodness of several analytical
methods to estimate the soiling losses directly from the PV per-
formance of three different PV technologies. High accuracies were
obtained despite the low levels of soiling experienced during the
experimental campaign, and common conclusions can be extracted
for some of the methods, making them technology-independent.
However, further research should be conducted to validate the
methodology presented in this work in locations with different
climatic conditions and higher levels of soiling. Additionally, the
application of themethods at a system level should be developed to
confirm the findings of this study. Future studies should also
address the influence of considering angular and spectral correc-
tions in the methods here presented.
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