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A single‑agent extension 
of the SIR model describes 
the impact of mobility restrictions 
on the COVID‑19 epidemic
Matteo Paoluzzi1*, Nicoletta Gnan2,3, Francesca Grassi4, Marco Salvetti5,6, 
Nicola Vanacore7 & Andrea Crisanti2,3

Mobility restrictions are successfully used to contain the diffusion of epidemics. In this work we 
explore their effect on the epidemic growth by investigating an extension of the Susceptible‑Infected‑
Removed (SIR) model in which individual mobility is taken into account. In the model individual 
agents move on a chessboard with a Lévy walk and, within each square, epidemic spreading follows 
the standard SIR model. These simple rules allow to reproduce the sub‑exponential growth of the 
epidemic evolution observed during the Covid‑19 epidemic waves in several countries and which 
cannot be captured by the standard SIR model. We show that we can tune the slowing‑down of 
the epidemic spreading by changing the dynamics of the agents from Lévy to Brownian and we 
investigate how the interplay among different containment strategies mitigate the epidemic 
spreading. Finally we demonstrate that we can reproduce the epidemic evolution of the first and 
second COVID‑19 waves in Italy using only 3 parameters, i.e , the infection rate, the removing rate, 
and the mobility in the country. We provide an estimate of the peak reduction due to imposed mobility 
restrictions, i. e., the so‑called flattening the curve effect. Although based on few ingredients, the 
model captures the kinetic of the epidemic waves, returning mobility values that are consistent with 
a lock‑down intervention during the first wave and milder limitations, associated to a weaker peak 
reduction, during the second wave.

People mobility and interactions are key events in epidemic spreading. Recent works, related or not to Covid-19 
pandemics, have shown how travel distance and duration impacts on the diffusion of transmissible  diseases1,2. 
In many studies, mobility data have been derived from mobile phone traffic  changes1–6 and remarkably good fits 
of the observations have been obtained using compartmental models.

These models describe the spread of infectious diseases among homogeneous compartments with differ-
ent health status. The basic model is the Susceptible-Infected-Removed  (SIR7) model, in which the susceptible 
compartment evolves into Infected with an infection rate α . The infected population will be then removed 
with a removing rate γ . To take into account the complexity of disease evolution, the basic SIR model has been 
generalized in several ways, introducing various sub-populations and describing, by different reaction rates, the 
conversion among interacting compartments. For instance, an Exposed compartment is added in SEIR models 
and Susceptible can become Exposed but not Infected. Exposed become Infected, and Infected evolve into 
Removed. In the case of Covid-19 outbreak, up to 8 population compartments have been  used8.

Social interactions also influence disease spread and their inclusion in models of infectious disease spread 
is strongly  advocated9,10. Simulations based on synthetic populations of hundreds thousands individuals can be 
performed  (see11 as an example related to Covid-19). Alternatively, descriptions of average population behaviour 
can be performed, dividing people in age classes and identifying contact frequency and duration in the places 
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normally attended by each age class (school, work, leisure, home etc.)12,13. Contacts within and among groups 
determine the values assigned to SIR reaction rates for each group. Reference values for these contact matrices 
have recently been proposed for the European population as a part of the POLYMOD  project14 and used to 
forecast the spread of several pandemic outbreaks, such as avian influenza in  200814 and Covid-1915. Values have 
also been recalculated during different phases of Covid-19 pandemic in some  countries16–18 .

Even in the simplest form with only three populations, SIR models are very effective in describing epidemic 
 spread19. The interplay between the two control parameters, α and γ , determines the evolution of the epidemic, 
with two possible scenarios for the evolution of the infection: in the first one, the epidemic wave spreads expo-
nentially, reaches the epidemic peak, and then decreases. The second scenario deals with epidemic extinction: the 
new cases do not grow and the epidemic extinguishes exponentially fast. The basic reproduction number Rt , i. e., 
the average number of secondary infections caused by a primary  case20, controls the crossover between these two 
regimes: when Rt < 1 , epidemic spreading ends. In the case of a SIR model Rt can be computed analytically and 
its value is Rt = α/γ . In the framework of SIR models, it is clear that there are at least two strategies for main-
taining Rt < 1 . One can improve the capacity in removing infected subjects that corresponds to make γ large, 
for instance thanks to pharmaceutical treatments that allow infected agents to heal or via non-pharmaceutical 
interventions (NPIs), such as isolation of suspected/ascertained cases. Alternatively, the value of the infection 
rate α can be reduced by vaccination or NPIs, such as physical distancing that modifies the structure of the social 
interactions. These mitigate or extinguish the epidemic spreading, as they change the social contact matrices and 
thus lower the probability of contagion. One of the effects of all NPIs is the so-called flattening the curve effect: 
The slowing-down of the epidemic spreading due to interventions makes the epidemic longer, as the attainment 
of herd immunity is delayed, but less severe because of an effective reduction of the epidemic peak which keeps 
infections within the limits of cases affordable by the healthcare system. In the first year of the current Covid-19 
epidemic, NPIs were set in place in many countries, most often in the form of generalized lockdown, although 
in some cases prevention has relied on tracking and case  isolation21. Following restrictions, in several countries 
the dynamics of infection growth changed from exponential to a power  law22. This sub-exponential growth rate 
can be reproduced by a standard SIR models, introducing a new compartment that accounts for quarantined 
 population23. However, being based on the dynamics of conversion between compartments, SIR models describe 
the average events in population groups, and cannot account for individual behaviours, which are relevant to the 
transmission of infectious  diseases9,10. Indeed, a recent network-based  analysis24 has shown that there is a critical 
number of interactions below which the number of infected people grows almost linearly. Interactions among 
people have been modelled using coarse-grained field theories such as dynamical density functional  theory25. 
However, microscopic descriptions of individual agents bring details about epidemic spreading, with reference to 
several issues and have been used in studies about the spreading of infectious diseases for more than a  decade26, 
also for Covid-19 pandemics. As mentioned above, very realistic society models are obtained by simulations 
involving tens of thousands individuals, each characterized by hundreds of parameters (for instance,  see11,27). 
Of course, such a detail, although informative, becomes computationally very expensive. In this work, we have 
looked for a compromise between detail and simplicity, using methods typical of statistical mechanics. Social 
interactions in different environments (work, school, leisure places etc.), which determine infection spread, are 
ultimately modulated by people mobility. Depending on the degree of the details to reproduce, diverse approaches 
are suitable for taking into account the complexity of people  mobility28,29. For instance, long-distance displace-
ments by airplane travel have been superimposed to a standard SIR model in the form of additional stochastic 
equations that describe the dynamics of each  compartment12,29. This approach is very detailed in terms of the 
destinations reached, but still relies on the homogeneous population assumption.

To be able to introduce individual behaviours in predicting how mobility restrictions, and hence reduction of 
social interactions, impact on epidemic spreading, we propose an approach that models mobility in a ”society” 
using single agents that move onto a two-dimensional grid. Within each cell of the grid agents interact according 
to a classical SIR. In order to mimic different ranges of human mobility, we assume that agents perform Lévy-
walks, which are characterized by many short displacements, with occasional longer  ones30. This movement pat-
tern is used by animals belonging to many species across the evolutionary tree. It represents the foraging strategy 
of choice for rural human  populations31,32 or for people playing in a virtual wild  environment33, but also by human 
crowds approaching pedestrian  crossings34. It has even been suggested that it is an imprinted strategy thanks to 
its evolutionary  importance31. In non-rural settings, people normally alternate, long displacements to go to a 
place (for instance, from home to work), with short-range movements while they remain on the site for a while 
and Lévy walk well approximate this traveling  pattern30,34,35. In this framework, mobility restrictions set in place 
to contain epidemic spread are modelled as limits imposed to the Lévy distribution of jumps, through a jump 
parameter. We show that the proposed model is able to account for the non-exponential epidemic growth induced 
by mobility restrictions and to reproduce real data from the first and the second COVID-19 epidemic wave in 
Italy, using a minimal set of parameters. The model also gives insight into the equilibrium between mobility 
reduction and case tracing/isolation and the possibility to exempt population groups from mobility limitations.

The main advantage of the proposed model is its flexibility and analytical power: by changing the density of 
agents and the jump parameter, different types of social interactions can be studied. Transmission and recovery 
rates can be adapted to other diseases. Finally, different levels of mobility restrictions can be introduced, adapt-
ing the model to different situations.

Results
Combining agent mobility patterns and SIR model. To take into account agent  mobility19 in a sce-
nario compatible with a SIR model, we developed the model pictorially illustrated in Fig. 1. As explained in 
details in the Methods Section, the agents can move on a lattice through jumps processes, modelled using a 
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Lévy walk of jump parameter β36–38. When β becomes large, i.e., for β → 2 , agents tend to perform a Brownian 
random walk with very short jumps. As β → 1 , agents can travel long distances in just one step. There are no 
constraints on the number of agents that can occupy a single cell. In each cells, agents can be infected by neigh-
bours according to the SIR rules. Thus, the parameters that control the model are the jump parameter β plus 
the standard SIR parameters, infection rate α and removal rate γ . The agent-based lattice model considered here 
reduces to a standard SIR model when the well-mixed population condition is satisfied, i. e. when large jumps 
dominate the dynamics (Fig. 2).

For reproducing the kinetics of real data we made the following assumptions:

• In the absence of containing strategies, the infection is characterized by a high infection rate (we take α = 0.9 ) 
and a low removal rate ( γ = 0.025 or 0.05). Using as a unit of time the update of all agent positions (see 
Methods for details), the removal rate introduce a time scale τI = γ−1 = 40 or 20 . This characteristic time 
scale represents the average time an agent remains infected and can thus spread the infection. This condition 
ensures that we are in an epidemic regime, i. e., the mean-field value is Rt ≫ 1 . We stress that, since the SIR 
dynamics with only three sub-populations is a simplification of the real chain of epidemic transmission, the 
parameters we choose for the epidemic spreading are not strictly related to those of Covid-19. Because we 
are interested in the effect of mobility restriction on epidemic spreading, we fix the epidemic parameters in 
a way that, without mobility restrictions, we are sure to stay in the worst-case scenario with an exponentially 
fast spreading of the infection.

• The parameter β ∈ [1, 1.99] tunes the intensity of mobility restrictions. The higher its value, the stricter the 
limitations. β is one of the fitting parameters.

• Other interventions that mitigate the epidemic spreading tend to increase the removal rate γ . We thus assume 
that γ is another fitting parameter. This is because typical measures, for instance, quarantine, remove infected 
agents from the system. In this way, we reabsorb the presence of many hidden sub-populations into an effec-
tive value of γ.

• We define the parameter δ , i. e., the fraction of infected agents at the epidemic peak with respect to the entire 
population, that provides a quantitative measure of the reduction of the epidemic peak. In other words, the 
parameter δ represents the efficiency of a given containing strategy compared to the uncontrolled situation 
where all the agents turn out to contract the infection (which is the case of our model for γ ≪ α , α = 0.9 , 
and β = 1).

Figure 1.  Agent-based SIR model on a lattice. (a) Agents of different colors, representing the SIR states, move 
on a lattice. White cells represent empty sites. Green cells are occupied by susceptible (S) agents, blue cells 
contain only removed (R) agents. Red cells contain only infected (I) agents. Shaded cells contain agents in a 
mixture of states. Agents can move among cells performing jumps (black arrows) whose length follows Lévy 
statistics. The letters i and j, with i = 1, ..,Nb and j = 1, ...,Nb define the location of the cell (i, j). (b,c) Agents 
in the same cell undergo a SIR dynamics: (b) S become I at a rate α ; (c) I become R at rate γ . (d) The jump 
dynamics allows an agent to move from the cell (i, j) to (i + k, j + l) . The probability to perform a large/small 
jump is controlled by the parameter β ∈ [1.0, 1.99] . Large β values correspond to small jumps, i. e., a random 
walk that gives rise to Brownian motion. Small β values correspond to large jumps.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24467  | https://doi.org/10.1038/s41598-021-03721-x

www.nature.com/scientificreports/

To detail how mobility restrictions induce deviations from the SIR model, we calculate, via numerical simula-
tions, the epidemic curves as a function of time for different values of β as illustrated in Fig. 2a. Here, the SIR 
parameters are α = 0.9 and γ = 0.025 , i. e., the corresponding SIR model is in the fully blown epidemic regime. 
For small β the epidemic growth is well captured by the exponential function, indicating that we are in the 
epidemic regime. As β increases the curve turns out to be flattened and the peak reduces to 80% . Moreover, the 
growth of the epidemic for the largest β examined is well described by the power law I(t) ∼ t

2 . The value of the 
exponent is comparable with those measured in different countries during the COVID−19 epidemic  wave23. The 
model considered here suggests that the crossover from exponential growth to power-law might be related to 
changes of the mobility patterns that, in our picture, shift from being dominated by large jumps to small ones. 
This finding is consistent with the observation that a sub-exponential growth in the number of infected people 
is a consequence of containing  strategies23. Moreover, in the microscopic description adopted here, the crossover 
in the kinetics of I(t) is driven by just one parameter.

The crossover from exponential to power-law growth reflects the drastic change in the structure of clusters 
of infected agents, as illustrated in Fig. 2b–g, where typical configurations with the same fraction of infected 
agents are shown ( I/N = 0.25,α = 0.9, γ = 0.025 ). As one can see, in the high mobility region ( β = 1 ), infected 
agents are spread almost everywhere in the system. As β increases, infected sites tend to form a single cluster. 
This phenomenology is consistent with the literature of mobile agents undergoing SIR  dynamics39,40. This struc-
tural change is quantitatively documented by the density distribution of infected sites shown in panel (h) of the 
same figure (see section Methods for details). As one can appreciate, the distribution becomes double-peaked 
as β increases. The first peak around zero indicates the presence of an extended region of susceptible agents. The 
peak at high values is due to the growing cluster of infected agents. As highlighted in panel (i), the cluster grows 
linearly in time and thus the number of infected grows with t2.

Another interesting aspect to understand with this model is the trade off between mobility restrictions 
and and other kind of interventions that have the effect of increasing the removal rate. In particular in Asian 

Figure 2.  Agent dynamics impacts the epidemic spreading process. (a) The graph shows the dependency of the 
epidemic curves on β = 1.20, 1.50, 1.75, 1.80, 1.85, 1.87, 1.90, 1.92, 1.95, 1.97, 1.99 (increasing values of β from 
yellow to violet). As β decreases, the epidemic grows exponentially fast (dotted black curve) and approaches 
the evolution of SIR model in well-mixed population (dashed red curve). The dash-dot blue curve is a power 
law ∼ t2 . The parameters of the SIR reactions are α = 0.9 and γ = 0.025 . (b–g) Typical configurations taken 
at the same fraction of infected agents I/N ∼ 0.25 for increasing values of β = 1.0, 1.2, 1.4, 1.6, 1.8, 1.9 (red 
are infected sites, green the susceptible ones, we keep white the sites populated by removed agents). (h) The 
probability distribution function of the local density of infected sites. (i) Radius of the cluster of infected agents 
( β = 1.99 ) as a function of time. The red dashed line is a linear fit.
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 countries41, NPIs applied during the COVID-19 waves have relied mostly on contact tracing and/or preventive 
quarantine, with little mobility reduction, leading to effective and durable control of epidemic spreading, as 
reviewed by Ref.21. To understand if there is an optimal balance between containing strategies (characterized by 
β ) and efficiency in removing infected agents (denoted by γ ), we calculate the fraction of infected population at 
the epidemic peak (the maximum of I(t)) as a function of the jump parameter β and of the removal rate γ . As 
above, the initial occupation number of each site is, on average, one. The infection rate is α = 0.9 . The resulting 
phase diagram is shown in Fig. 3. The color indicates the fraction of infected population: in the violet region, this 
fraction goes to zero (epidemic is suppressed) while in the yellow region such a value goes to one, indicating an 
epidemic regime. The phase diagram fully recapitulates the effectiveness of the two strategies used to mitigate 
the infection spread, a strong lockdown with limited contact tracing, or an efficient contact tracing a moderate 
reduction of the mobility.

However, even under the strictest lockdown, several activities could not be stopped (hospitals, food supply 
chain, ...), meaning that a single mobility parameter cannot fully describe this varied situation. To understand 
what could be the impact of heterogeneous motility patterns on the evolution of the epidemic, we introduce in 
the model some regions characterized by a high mobility (jump parameter, β2 ), while the majority of the the cells 
have restricted mobility, with a jump parameter β1 = 1.99 (see Methods for more details). By varying β2 and the 
density of more mobile cells (parameter ρ ) we are able to draw the phase diagram shown in Fig. 4.

As in the previous case, in the violet area the epidemic spreading is stopped, while in the yellow area the 
epidemic peak reaches the entire population. Epidemic spreading takes place above a critical curve: for a given 
value of mobility β2 < β1 , the system can support a maximum fraction of regions with that mobility. Above that 
fraction, the system falls into an epidemic regime. It turns out that even a small fraction of regions with β2 < 1.9 
triggers the epidemic spreading. Our results confirm that, in the absence of contact tracing able to mitigate the 
spreading of the infection, only those activities that are strictly necessary should be carried on in order to prevent 
an enhancement of infections.

The first and second COVID‑19 epidemic wave in Italy. As the proposed model is able to describe the 
transition from an exponential to a power-law epidemic growth, and is capable to provide meaningful predic-
tions on the epidemic trend using only few parameters, it is important to validate it with real data. Therefore, 
we next tested the model against data from the first and second waves of COVID-19 in Italy. The epidemio-
logical data are very sensitive to the ability of a given country in testing the population, identifying new cases 
among asymptomatic people, which reflects the capacity of the health  system2. During the first wave, testing was 
restricted by lack of reagents, so the number of positive individuals has been largely underestimated. Daily data 
for the second wave are much more reliable, thanks to more extensive testing. For this reason, we look at the time 
evolution of different indexes that are (i) Daily new positive cases (NP), (ii) Positive cases at a given time (P), (iii) 
Hospitalized cases (H), and (iv) Daily deaths (D). The latter two indicators are independent of testing capacity. 
The fitting parameters are the mobility parameter β , and the removing rate γ , while a quantitative measure of 
the flattening the curve effect, is given by the parameter δ . The infection rate is kept fixed to the value α = 0.9 
for all the simulations. As discussed above, δ represents the fraction of agents that do not contract the infection. 
The mobility parameter β and the removing rate γ can be tuned to reproduce the epidemic spreading. We use 
official data released daily from the Presidency of the Council of Ministers - Department of Civil  Protection42. 
As shown in Fig. 5 there is a very good agreement between data and model predictions. The model appears to fit 
particularly well the number of hospitalized cases (H) and the total number of positive cases (P). Both indexes 
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Figure 3.  Effect of different containment strategies. The phase diagram is obtained considering as control 
parameters β , that represents mobility restrictions, and γ , the efficiency in removing infected agents. The color 
scale represents the fraction of the initial susceptible population that becomes infected, ranging between 0 
(epidemic suppression, violet region) and 1 (fully-blown epidemic, yellow region). Containment is achieved 
as β increases (corresponding to increasing mobility restrictions) even with low removal rate, or increasing γ 
(effective removal of infected agents), even with limited mobility restrictions.
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are time-accumulated data, known to lead to an underestimation of uncertainty of  fits43. However, daily number 
of new cases (NP) and deaths (D) are also well fit, and the four indexes considered provide estimates for the 
fitting parameters β , γ and δ that are consistent with each other, supporting the validity of the model. Thus, the 
observed evolution of the indexes is well captured by the model with β = 1.95 , meaning strong mobility restric-
tions, and γ ∼ 0.025 . The resulting peak reduction ( δ ) is around 50%.

For a further validation of our model, we perform a comparison between the model and the data of the second 
epidemic wave. As a starting date, we have taken September 20th, and data are updated to December 28th, 2020. 
For fitting, we have subtracted the baseline and normalized values to the epidemic peak. Results are shown in 

Figure 4.  Sites of different mobility affect epidemic spreading. (a) Each cell labelled by (i, j) is characterized 
by its own mobility parameter βij . We consider the special case of a binary mixture ( βij = β1,2 ) of high and 
low mobility regions. Changing the density ρ of β2 sites and the value of β2 , we obtain the the phase diagram 
presented in panel (b), obtained for β1 = 1.99 , α = 0.9 , and γ = 0.05 , conditions that grant contained epidemic 
spreading thanks to the low-mobility group. A small amount of sites with small values of β2 can trigger the 
epidemic spreading.

Figure 5.  Model description of the first epidemic wave. (a) Time evolution of the epidemic curves in Italy 
during the first 150 days for Daily positive cases (NP), Positive cases (P), Hospitalized cases (H) and Deaths (D), 
as indicated. Black symbols are data, red curves are the fits to the model. Data  (from42) are normalized at the 
peak value. Time is measured in days from the day zero, February 4th, 2020. (b) Mobility parameter β , removal 
rate γ , infection rate α and the corresponding peak reduction δ are indicated for the four indexes considered in 
(a). The shaded area represents the standard deviation, dashed red line is the average.
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Fig. 6. As for the first wave, fit to daily (NP and D) and cumulative data (H and P) yield comparable values of the 
three parameters, β , γ and δ . The second wave is described by a lower value of β = 1.55 , as a consequence of less 
severe restrictions, which were less effective, as shown by a smaller reduction of the epidemic peak, described by 
δ ∼ 72.5% . Note that, also for the fit of the second wave, the infection rate has been kept fixed to α = 0.9 while 
the values of γ found in the two waves are almost the same, indicating that the main difference in the growth 
of the epidemic can be attributed to a different mobility during the two waves. The values of γ and α we obtain 
from the fit are almost the same during the two waves. This fact indicates that β turns out to be the significant 
fitting parameter. Although at a very coarse-grained level, in the sense that the parameters of the model are not 
sensitive to the details of the mobility restriction imposed during the two epidemic waves, the model captures 
the efficiency of the lock-down on March 2020 and correctly returns a small value of β with a substantial peak 
reduction. The second wave, characterized by mobility restriction heterogeneous in space and time, i. e., different 
implementations in different regions, are reflected by a higher value of β that suggests the presence of regions of 
different mobility. Moreover, the strong relationship between peak reduction and mobility restriction provides 
clear evidence of the crucial role played by NPI in containing the epidemic.

Discussion and conclusions
The SIR model has been introduced almost a century  ago7 to describe the spread of infectious diseases among 
population compartments with different health status and used successfully to model real epidemics. Being based 
on the dynamics of conversion between compartments, the model describes the average behaviour of popula-
tion groups. Recently, it has been also extended to account for mobility (see for instance Ref.1), but still with 
reference to population compartments. To be able to describe individual behaviours while retaining simplicity 
and analytical power of the SIR scheme, we have used methods typical of statistical mechanics and introduced 
a single-agent extension of the SIR model where mobility is taken into account. Some considerations on the 
strengths of the model can be done.

(i) The model is simple since it uses only three parameters, the infection rate ( α ), the removing rate ( γ ), and the 
mobility ( β ). Agents move in jumps on a grid, with a dynamics based on Lévy walks of exponent β for exploring 
different regions of the grid. NPIs based on mobility restrictions can be thus modeled as increasing the parameter 
β towards the limit β → 2 , which corresponds to Brownian  walks36. Since for β → 1 the model approaches the 
limit of a SIR in a well-mixed population, we can provide an estimate of the peak reduction, i. e., the flattening 
the curve effect due to mobility limitations. The model shows that, in principle, mobility reduction can not only 
induce the flattening the curve effect, but can also trigger the epidemic extinction. However, close to the crossover 
between epidemic spreading and epidemic extinction (see Fig. 3), for a given ability in removing (or healing) the 
infected agents, a small change in mobility might affect dramatically the epidemic evolution. Our model suggests 
that strategies based only on mobility reduction are not suitable for containing the epidemic spreading since a 
small amount of high mobility agents can trigger epidemic waves (as shown in Fig. 4).

(ii) The model is computationally affordable and can be implemented without a detailed design of society struc-
ture, at variance with more sophisticated agent-based models. To describe data from the COVID-19 epidemics 
we have done some assumptions. The first one is that mobility is homogeneous in space and thus β is not 

Figure 6.  Model description of the second epidemic wave in Italy. (a) Time evolution during the first 75 days 
of the second wave of Daily positive cases (NP), Positive cases (P), Hospitalized cases (H) and Deaths (D), as 
indicated. Black symbols are data, red curves are the fits to the model. Data  (from42) are normalized at the peak 
value. Time is measured in days from the day zero, September 20th, 2020. (b) Mobility parameter β , removal 
rate γ , infection rate α and the corresponding peak reduction δ are indicated for the four indexes considered in 
(a). The shaded area represents the standard deviation, dashed red line is the average.
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space-varying, and the second assumption is that the complicated structure of sub-populations can be reab-
sorbed into an effective value of the removing rate γ . These choices have allowed us to maintain a small number 
of fitting parameters.

(iii) The model is effective, as it correctly recapitulates the different restrictions to mobility imposed in Italy dur-
ing the first and second waves. As a first step, we have looked at global data integrated over the country, using 
the assumptions described above. In this picture, mobility restrictions in Italy contributed to reduce the peak of 
the epidemic by about 50% during the first wave, and by about 25% , during the second wave. Combining both 
epidemiological and mobility  data2, it has been shown that, in the framework of a metacommunity Susceptible-
Exposed-Infected-Recovered (SEIR) model, emergency containment measures reduced the transmission by 45% 
during the first epidemic wave in Italy, that is compatible with our results. We emphasize that, in our picture, 
mobility is described by the parameter β . This means that we can extract useful information for monitoring the 
effects of mobility restrictions on the pandemic wave. For instance, we can estimate the actual degree of mobility 
limitations consequent to the imposed restriction, or the peak reduction with respect to the worst-case scenario. 
If the fitted value of β is small, it means that —effectively— the mobility has not been reduced. On the other hand, 
larger values of β indicate that prescribed limitations have been actually implemented. The estimates of β are 
compatible with the different levels of mobility restrictions set in place during the two waves. The β → 2 values 
during the first wave might be considered compatible with a lock-down situation. On the other hand, during the 
second wave, interventions have been heterogeneous in the country with regions of higher/lower mobility. This 
scenario might be compatible with, on average, a smaller β value and, as a consequence, less efficient control of 
the peak reduction. It is interesting to note that, even in its simplest form with a single value of the β parameter, 
the proposed model adequately represents the nation-wide evolution of the epidemic wave. Likely, this occurs 
because mobility restrictions dominate the NPIs set in place. Finally, we notice that our estimate of γ does not 
change during the two waves, i. e., γ ∼ 0.02 . Since γ ≪ α , there is not epidemic extinction. However, we have 
shown that combining  mobility reduction with interventions that increase the removing rate γ , it is possible to 
trigger an epidemic extinction even in the case γ < α.

(iv) The model is versatile, as it can be used to estimate the effectiveness of other interventions, or different mobil-
ity rates. As shown by the examples discussed here, from its simple form, the model can be adapted to include 
several sub-populations or regions with different α , β and γ values (for instance to mimic young and old people) 
or to include spatial heterogeneity, in which different interventions are applied. Moreover, the model might be 
also extended to include fluxes of agents. In this way, it would be possible to study how the injection of infected 
mobile agents can trigger epidemic waves.

Given the above observations, we can state that the proposed model is flexible and reliable thus offering the 
potentiality to be exploited in future works on social interactions or transmission of diseases.

Methods
Model with homogeneous restrictions. The model consists of N point-like agents that can move on a 
two dimensional lattice of Nc × Nc cells with periodic boundary conditions. The side of the simulation box is 
L = 300 and the linear size of each cell of the lattice has been set to ℓ = L/Nc = 1 . At the beginning of the simu-
lations, the agents cover uniformly the lattice with an average density ρ̄ = N/L2 . We have considered different 
average densities ranging from ρ̄ = 1 to ρ̄ = 0.01 . As it is shown in Fig. 7, where we report the phase diagram 
obtained by varying β and ρ̄ with γ = 0.05 and α = 0.9 , the average density ρ̄ has to be reduced  by an order of 
magnitude for obtaining a substantial reduction of the epidemic spreading. It is worth noting that the model 
does not take into account some aspects of human everyday life, as for instance the fact that people usually visit 
some preferred places more than others and interact more often with specific groups of people. We can argue 
that, in our framework, the overall effect of these preferential interactions is to slow down the spreading of the 

Figure 7.  Effect of average density and position resetting. (a) The phase diagram has been obtained by varying 
the average density ρ̄ and the parameter β with α = 0.9 and γ = 0.05 . (b) Number of infections for α = 0.9 , 
γ = 0.025 , and β = 1.2 for different values of resetting time, i. e., r = 0, 2, 5, 10, 50 (in time-step unit). Inset: 
peak reduction as a function of r.
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infection. To prove this we have performed additional simulations in which, after some time steps r, the posi-
tions of all the agents are reset to their initial value. Results are shown in Fig. 7b for different reset times. As one 
can appreciate, the resetting mechanism has a very little effect on the epidemic spreading, as documented in the 
inset of the same panel where we show the peak reduction δ as a function of r.

To perform the data fits of the COVID-19 pandemic, we have used simulations with ρ̄ = 0.6 . We do not 
employ any restriction on the number of agents that can stay at the same time step in a given cell. Interactions 
occur only among agents within the same cell. As a standard  procedure19, each agent brings a state variable 
that describes the SIR state, i. e., Susceptible (S), Infected (I), and Removed (R). For contracting the infection, a 
susceptible (S) agent has to occupy a cell where there is at least one infected (I) agent, as sketched in Fig. 1. The 
infection is contracted by a susceptible agent with a rate α (for each Infected agent presents in the cell). Infected 
agents (I) are removed (R) with rate γ i. e., an infected agent remains infectious for an average time τI = γ−1 . 
The dynamics is implemented as follows. For each agent labelled by i, with i = 1, ..,N , we propose a displacement 
�ri = ri(cos θi , sin θi) , with θi a random angle extracted by a uniform distribution, i. e., θi ∈ [0,π ] , and ri extracted 
by a Lévy distribution of parameter β . The Lévy statistics is obtained using the Mantegna’s  algorithm44. Because 
of the periodic boundary conditions, we choose to bound ri between 0 and L/4. Random numbers have been 
generated using the standard C library. The simulation is organized as follows: N susceptible agents are randomly 
distributed among cells, one of them is randomly selected as a seed of the infection changing its state from S to I. 
We first update the SIR state of each agent in each cell and then we update the position of each agent. A complete 
updating of all the agent positions fixes the unit of time. Moreover, the position of each agent is updated at every 
step. The curves I(t) have been obtained by averaging over Ns = 100 independent runs. Each run starts with one 
infected agent. The probability distribution function of local density has been computed by dividing the system 
into cells of linear size ℓc = 5 and counting the number of infected lattice sites on each cell. The local density has 
been computed on configurations containing the same fraction of infections, i. e., I/N ∼ 1/4 . For computing 
the distribution function, we have performed averages on 200 independent configurations.

We then tested the model ( Im(t) ) against data ( Id(t) ). To this aim, we performed several simulations with dif-
ferent γ and β values, while keeping α = 0.9 and we established which set of parameters provide the Ĩm(t) curve 
that best match Ĩd(t) where the upper tilde indicates that both curves have been normalized to their own maxi-
mum. Best curves are obtained by minimizing the distance d[Ĩd , Ĩm] =

∫
tmax

tstart
dt |Ĩd(t)− �Ĩm(κt + tstart ,α,β , γ )|

2 , 
with tstart ∈ [0, 5] . Most of the fits have been performed with � = 1.0 but in case of noisy data such as for the Daily 
Positive Cases this value has been varied in the interval � ∈ [0.9, 1.0] to obtain a better match.

Effects of non‑homogeneous mobility restrictions. The case in which some population groups 
retained almost normal mobility while the majority of the population was restricted, was inserted in our model 
considering a binary mixture of regions described by a jump parameter β1 or β2 , as sketched in Fig.  4. The 
regions are chosen randomly at the beginning of the simulation, introducing the density ρ of the sites having 
jump parameter β2 . We started from a situation of epidemic extinction, using β1 = 1.99 (agents perform small 
jumps), α = 0.9 , and γ = 0.05 . We then changed β2 from 1.05 to 1.99 and the density of β2 sites ρ ∈ [0, 1].
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