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Entropic barriers as a reason for hardness in both classical and quantum algorithms
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We study both classical and quantum algorithms to solve a hard optimization problem, namely 3-XORSAT
on 3-regular random graphs. By introducing a new quasi-greedy algorithm that is not allowed to jump over large
energy barriers, we show that the problem hardness is mainly due to entropic barriers. We study, both analytically
and numerically, several optimization algorithms, finding that entropic barriers affect in a similar way classical
local algorithms and quantum annealing. For the adiabatic algorithm, the difficulty we identify is distinct from
that of tunneling under large barriers, but does, nonetheless, give rise to exponential running (annealing) times.
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I. INTRODUCTION

Hard discrete optimization problems are ubiquitous in sci-
entific disciplines and practical applications. The problem of
minimizing a complex cost function (or equivalently maxi-
mizing a reward function) naturally appears in many different
contexts: e.g., in physics in the computation of ground state
configurations, in statistics in the maximization of the likeli-
hood, in machine learning in the training of artificial neural
networks, and so on.

Although real-world problems have usually local structures
that make their analysis difficult, it is commonly believed that
the main source of computational hardness arises from the
strong long-range correlations that exist among variables, and
this effect can be studied also in more idealized and simple-
to-solve models, where some analytic control is possible. In
other words, in hard optimization problems, starting from an
optimal or near-optimal configuration, the change of a single
variable (or a small subset of variables) often requires the
rearrangement of many more variables in order to remain
close to optimality; often the variables to be rearranged are
not even close to the modified variable. This property makes
the search for the optimal configuration a challenging task
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even for sophisticated algorithms (see for example the case
of backtracking algorithms, like DPLL [1]).

An ideal setting for studying this kind of hard optimization
problems is provided by constraint satisfaction problems de-
fined on sparse random graphs. Such problems have a twofold
benefit: They can be solved analytically using the cavity
method, a tool from statistical physics of disordered systems,
and they can be efficiently handled on a computer, as the finite
mean degree of the graph makes the computational resources
(CPU and memory) required to represent an instance of the
problem on the machine grow only linearly with the problem
size.

Random constraint satisfaction problems (rCSP) are op-
timization problems where N discrete variables need to be
assigned in order to satisfy M = αN constraints, each one
involving a small subset of variables. The most famous among
rCSP is perhaps random K-SAT [2]. Recently these rCSP have
been the subject of intense studies based on statistical physics
ideas with the aim of understanding the origin of their compu-
tational hardness [3–16]. Indeed, a common feature of all the
hard rCSP is the presence of a broad range of the constraints
per variable ratio α such that solutions to the problem exists
with high probability (in the large N limit), but all known
solving algorithms are unable to find any solution in a time
growing polynomially with the problem size N . In this hard
region it is expected that any solving algorithm requires a time
growing exponentially with the problem size, t ∼ exp(aN ).

By defining an energy function that counts the number
of violated constraints, one can visualize the rCSP as the
problem of searching for a zero-energy configuration in a
complex energy landscape. The hard phase in rCSP does
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actually corresponds to an energy landscape with exponen-
tially many (in the system size) local minima that can trap the
searching dynamics. The energy barriers between these min-
ima are usually considered the main source of computational
complexity, as any local dynamics is required to jump over
these barriers in order to proceed further in the search for the
optimal configuration.

Based on the above picture, it is often believed that a
quantum evolution—that allows for tunneling events—may
escape local minima more efficiently than a classical stochas-
tic dynamics. This physically reasonable expectation implies
that quantum algorithms may be faster in the search for op-
timal configurations than their classical counterparts, and has
fueled interest in quantum algorithms that could benefit from
this phenomenon: quantum annealing [17–22], its more re-
cent variant, the quantum approximate optimization algorithm
[21], and population transfer [23–25] are some well-known
examples. All these algorithms typically show a complexity
growth comparable with the best classical algorithms but,
despite their initial promise, it is entirely possible that the
limitations they exhibit are insurmountable, and it is unlikely
that they could solve NP-hard problems in polynomial time.
The limitations might come from the exponentially small
tunneling rate out of a local minimum (a phenomenon linked
to many-body localization and the existence of an emergent
integrable dynamical phase [20,26–28]) or might come from
other dynamical phenomena [29]. In this paper we identify
one such phenomenon.

We consider one of the hardest sparse rCSP, namely ran-
dom 3-XORSAT, and show that the problem hardness can be
interpreted as coming essentially from entropic barriers: A
local algorithm searching for a solution is hindered not only
by the energy barriers around a local minimum, but also by the
possibility to explore a large number of directions and local
minima with a small change in energy. This is an entropic
barrier. We introduce a quasi-greedy algorithm, unable to
jump over large energy barriers, and notice that it is able to
solve the problem as efficiently as state-of-the-art algorithms
designed to overcome large energy barriers. The latter algo-
rithms efficiently solve problems where energy barriers are
the only obstacle, but still suffer from entropic effects. While
we expect entropic barriers to be a generic feature of rCSP, the
observation that a quasi-greedy algorithm performs as well as
the others suggests that this model is a perfect candidate to
understand the effect of entropic barriers.

We investigate several algorithms, both classical and quan-
tum, in order to better understand the effect of entropic
barriers. For all the algorithms analyzed, we find that the
time to reach a solution scales exponentially with the system
size and quantum dynamics seem to suffer from the pres-
ence of entropic barriers as much as the classical algorithmic
dynamics. As the effort to build a quantum computer are
finally giving up some results [30], we believe it is impor-
tant to identify all possible stumbling blocks for quantum
architectures.

II. MODEL DEFINITION AND ITS KNOWN SOLUTION

The random 3-XORSAT problem is among the simplest
rCSP [3]: it is made of N binary variables xi ∈ {0, 1} that have

to satisfy M = αN parity checks of the kind

xi ⊕ x j ⊕ xk = bi jk, (1)

where the variables entering each constraint are randomly
chosen and the parity check bit bi jk is 0 or 1 with equal
probability. In a K-XORSAT problem each constraint involves
K variables, but for the sake of simplifying the presenta-
tion we restrict to the random 3-XORSAT problem, where
each constraint involves exactly 3 randomly chosen variables.
Increasing α the typical problem becomes more and more
difficult to solve. Solutions exist with high probability in the
large N limit until the sat-unsat threshold αs [31]. However,
the most interesting transition from the point of view of
searching algorithms is the clustering (or dynamical) transi-
tion that takes place at αd before αs [6]. For α ∈ [αd , αs] the
space of solutions is shattered in exponentially many cluster of
solutions [6,32] and this is what makes the search for solutions
much more difficult [3,6,15]. Actual thresholds for random
3-XORSAT are αd = 0.818 and αs = 0.918. This picture has
been proven rigorously to a large extent [33]. The hardness of
the problem of finding a solution for some classes of local al-
gorithms in the region α ∈ [αd , αs] has been proven [34–36],
and found to depend on the so-called “overlap gap property”,
which in practice implies the clustering of solutions taking
place after the dynamical transition αd . In other words, for
α > αd the geometry of solutions is such that the Hamming
distance d between any pair of solutions is either very small
d < d1 (for pairs of solutions in the same cluster) or very
large d > d2 (for pairs of solutions in different clusters) [6].
It is exactly the existence of such a range of distances with
no solutions that creates an algorithmic bottleneck, while for
α < αd local algorithms can sample the space of solutions
[33]. So we are going to focus our attention on a 3-XORSAT
problem beyond the dynamical threshold αd [37].

Given that we are interested in using this model as a
benchmark for optimization, we need two more ingredients:
(i) We need to define an energy function whose ground state
configurations are the solutions to the problem; the simplest
choice consists in just counting the number of violated parity
checks via the following Hamiltonian:

H0[s] = 1

2

(
M −

M∑
a=1

Ja

∏
i∈∂a

si

)
, (2)

where si = (−1)xi are Ising spins and Ja = (−1)ba the cou-
plings, being a an index running over all interactions (triplets
for 3-XORSAT) and ∂a the set of variables entering the a-th
interaction. (ii) At least a solution must always exist, and
this can be ensured by enforcing a specific configuration to
satisfy all the constraints. For example, by setting all b = 0,
the configuration xi = 0 ∀i is always a solution. One may
think this way of building the model naturally favors the
imposed or planted configuration, but this is not the case for
the XORSAT problem. As noticed since Ref. [38], finding
the imposed or planted solution is like finding the crystal in
a model of a liquid that upon cooling spontaneously forms a
glass: it is well known that crystallization requires an activated
dynamical process (nucleation), which is exponentially rare in
models with long range interactions, as the random XORSAT.
Planted models, which are hard to solve are the most natural
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candidates for optimization benchmarks and the planted
XORSAT turns out to be the hardest among these [5]. Prop-
erties of planted models have been studied in a great detail
[39,40] and reviewed in [41].

It is worth noticing that the planted model, being equivalent
to the solution of a set of linear equations in GF (2), can
be seen as the noiseless limit of a fundamental problem in
cryptography, namely “learning parity with noise” [42,43].
We stress that, restricting to local algorithms in the very sparse
regime (as we do here), the noiseless problem is as hard as the
problem with a very small amount of noise. So our results
can shed light on the origin of the hardness in the problem of
learning parity with noise.

The Hamiltonian for the planted model simplifies to the
following:

H[s] = 1

2

(
M −

M∑
a=1

∏
i∈∂a

si

)
, (3)

which is indeed minimized by the configuration si =
1 ∀i. This is the energy function we are going to mini-
mize in order to test classical and quantum optimization
algorithms.

The last relevant choice regards the interaction hypergraph,
that is the set of M triplets. In the model where the M triplets
are chosen randomly the degree of each variable is a Poisson
random variable of mean 3α. A different choice is the one
where the interaction hypergraph is chosen such that each
variable has the same degree d: this is called a random reg-
ular hypergraph and can be generated via the configurational
model where N variables are given d legs each and M = Nd/3
interactions are given 3 legs each, and then variables and
interactions legs are coupled in a random way, just avoiding
that the same variable enters more than once in the same
interaction. We are going to use the random regular version for
the numerical simulations, while the random Poisson version
is used for some analytic computations. The two versions
share the same physical behavior.

The statistical properties of the random regular XORSAT
problem are well known [39,44–46]. Hereafter we are going
to focus our studies on the d = 3 case. In this case the random
and the planted models are equivalent in the large N limit for
any positive temperature (at T = 0 the subextensive differ-
ences between the two models may lead to some discrepancy
in the number of solutions discussed in Refs. [47,48]). We
are going to use the planted model in order to be sure that
a solution always exists even for finite (and small) values
of N .

Having fixed the degree of the hypergraph such that the
XORSAT problem is in its hard phase, we can consider now
the Gibbs measure corresponding to Hamiltonian H in Eq. 3
at any temperature T . The XORSAT problem corresponds to
the problem of finding a zero-energy ground state, so it is
somehow related to the T = 0 physics of the model, but the
behavior of the model at T > 0 is interesting as well. Indeed it
is well known [38] that when a model is beyond the dynamical
transition point at T = 0 (e.g., for α > αd ) it undergoes a
dynamical phase transition at a positive temperature Td and
for T < Td it has an exponentially large number of metastable

e

ethr

O(exp(aN))O(N)

t

FIG. 1. Schematic picture for the energy relaxation in hard opti-
mization problems. On short times the energy relaxes to a threshold
value, while the ground state (solution) is reached only for times
growing exponentially with the system size. The first regime can be
described by ordinary differential equations taking the large N limit
at t/N fixed, while the second requires the estimation of rare and
large fluctuations.

states dominating the thermodynamics, N ∼ exp[N�], where
� is the so-called complexity.

This is the case for the 3-regular 3-XORSAT model that
shows a dynamical phase transition at Td = 0.255 and a
nonzero complexity of states at T = 0 that extends from
e ≡ 〈H〉/N = 0 to e = ed = 0.0206705. Actually not all
these states are expected to play a relevant role in the
relaxation dynamics searching for ground states: from pre-
vious studies [45,46] we expect states above the marginal
energy emarg = 0.018203 to unlikely trap smart searching
algorithms.

Unfortunately a precise connection between relaxation al-
gorithms searching for low energy configurations (e.g., T = 0
Langevin dynamics) and the energy landscape that we can
describe in a precise way via the computation of the complex-
ity is still missing (and recent results have clarified that the
situation is much more complicated than previously expected
[49–51]). So we cannot make an analytical claim about the
threshold energy, which is hard to go below by searching algo-
rithms, but this threshold energy is certainly positive and close
to emarg. Reaching a solution, that is an e = 0 configuration,
is a very hard problem and requires in general times scaling
exponentially with the system size N .

III. THE OPTIMIZATION ALGORITHMS

In the study of the optimization algorithms, that is the out
of equilibrium processes that try to minimize the energy, the
order in which the large size limit (N → ∞) and large times
limit (t → ∞) are taken is extremely important. We expect an
algorithm-dependent threshold energy, ethr > 0, to exist such
that configurations with e > ethr can be reached in an “easy”
way (e.g., in a time scaling linearly with N), while to reach
a solution (i.e. a configuration with e = 0) a time growing
exponentially in N is required in general for hard problems.
(see the schematic picture in Fig. 1).

We will see that for some algorithms we are able to
provide an approximate description of the dynamics in the
regime where the N → ∞ limit is taken before the t → ∞
limit, thus estimating ethr (that in the best cases is close to
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FIG. 2. Simulated annealing is not able solve the 3-regular 3-
XORSAT problem, since it converges in the long time limit to a
positive energy (close to the marginal energy emarg). The four curves
have annealing rates �T = 10−3, 10−4, 10−5, 10−6 (from top to bot-
tom). The blue (dark gray) curve represents the energy above the
dynamical transition in the large N limit.

the marginal energy emarg.) However the interesting question
about the scaling of times to reach a solution requires a
different analytic approach where fluctuations are taken into
account. Most of our results are in the regime where times
are made large while keeping N finite are based on numerical
experiments.

The presentation of our results about optimization algo-
rithms is somehow split in two parts. In Secs. III A and III B
we discuss the regime of linear times where large sizes can
be studied and analytical solutions in the large N limit can
be obtained (thus estimating the threshold energy for various
algorithms). In Secs. III C and III D we study the regime
where times are made exponentially large in the system size
N , and estimate the exponential growth rate of the time to
reach a solution.

A. Simulated annealing: A warming up with the most widely
used optimization algorithm

Simulated annealing (SA) is maybe the most widely used
optimization algorithm. It consists in implementing a Monte
Carlo Markov chain sampling from the Gibbs-Boltzmann
distribution PGB(s) ∝ exp(−H(s)/T ) with a temperature T
slowly decreasing towards zero. In Fig. 2 we report the results
of Simulated Annealing run on samples of size N = 105 with
a cooling schedule where the temperature is decreased by
�T after each Monte Carlo sweep (MCS): the four curves
corresponds to �T = 10−3, 10−4, 10−5, 10−6 (from top to
bottom).

From the simulated annealing results it is clear that an
efficient, but still linear-time, algorithm is not able to solve the
3-regular 3-XORSAT problem, and seems to converge to con-
figurations with a threshold energy close to emarg. To achieve
the zero energy configuration we need to use an algorithm
that can go below the threshold energy, overcoming energetic
and/or entropic barriers.

B. A broad class of stochastic search algorithms

Given a particular spin configuration, let us classify its
variables according to the number of unsatisfied interactions

they belong to: we say a variable is of type k if it belongs
to k unsatisfied interactions. In the present model k ∈ [0, 3]
since d = 3 for all variables. We call fk (t ) the fraction of
variables of type k at time t , that satisfy 0 � fk (t ) � 1 and∑3

k=0 fk (t ) = 1 at any time.
The searching algorithm we propose is extremely simple

and works as follows: at each time step it chooses one variable
of type k with probability pk (t ) ∝ wk fk (t ) and flips it. The
time is then incremented by 1/N in order to have a well
defined continuous process in the large N limit.

Starting from a random configuration the behavior of
the algorithm is determined only by the vector of weights
w = (w0,w1,w2,w3). The stopping condition depends on the
weights: if all weights are non-null the algorithm never stops;
while if w0 = 0 the algorithm cannot flip variables participat-
ing only in satisfied interactions and thus any solution is a
stopping configuration. We fix w0 = 0 hereafter so as to make
any solution a stopping configuration for the algorithm. We
study several choices for the vector of weights (the weights
need not be normalized, but the probabilities pk ∝ wk fk

are).

1. Analytic description

Before presenting the actual performance of this algorithm,
we would like to stress that the evolution of the algorithm can
be described analytically under some assumptions, which are
similar to those already used in the literature to approximately
describe the relaxation dynamics in model defined on a Bethe
lattice [32,52,53]. In this section we derive a set of differential
equations for fk (t ), adapting the technique first introduced in
[54].

At each time step the fractions { fk (t )} change depending on
the variable chosen. For example, if a variable of type k = 3
is chosen and flipped, then that variable changes its type from
3 to 0 (3 → 0), i.e., the fraction f3 decreases by 1/N and the
fraction f0 increases by 1/N ; at the same time its 6 neigh-
boring variables decrease by one the number of their types,
and one needs to compute the number of changes n3→2, n2→1

and n1→0 in order to properly update the fractions { fk} (for
example � f2 = (n3→2 − n2→1)/N). The three numbers n3→2,
n2→1 and n1→0 are random variables distributed according
to the multinomial distribution Mult({p3→2, p2→1, p1→0}, 6).
Under the approximation that no correlation exists between
the types of neighboring variables once the common interac-
tion is removed (cavity approximation) we can compute the
parameters of the multinomial distribution:

p3→2 ∝ 3 f3, p2→1 ∝ 2 f2, p1→0 ∝ f1, (4)

where the proportionality constant is fixed by p3→2 + p2→1 +
p1→0 = 1. One more example: if the variable chosen to be
flipped is of type 2, then, apart from the change 2 → 1,
we have that n3→2, n2→1 and n1→0 are distributed according
to Mult({p3→2, p2→1, p1→0}, 4), while n0→1, n1→2 and n2→3

are distributed according to Mult({p0→1, p1→2, p2→3}, 2),
where

p0→1 ∝ 3 f0, p1→2 ∝ 2 f1, p2→3 ∝ f2, (5)

with again the normalization condition p0→1 + p1→2 +
p2→3 = 1. So, the variations of the fractions due to a single
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spin flip are random variables given by

� fk (t ) = 1

N

[
n(2(3− j))

k−1→k − n(2(3− j))
k→k+1 + n(2 j)

k+1→k

− n(2 j)
k→k−1 + δ j,3−k − δ j,k

]
w/prob. p j (t ),

where the superscript (d ) in n(d ) refers to the total num-
ber of events in the multinomial distribution, and we fix
n−1→0 = n0→−1 = n3→4 = n4→3 = 0. The generalization of
the above equation to other random graphs or interaction types
is straightforward. Rescaling the time such that a spin flip
happens every �t = 1/N , and taking the average over a small,
but finite, time interval, corresponding to O(N ) single spin
flips, the stochastic equation above can be converted in the
N → ∞ limit to an ordinary first order differential equation in
terms of mean values E[n(d )

k→�
] = d pk→�. For simplicity, we

keep using the same notation, but now { fi(t )} are not single
trajectories, but mean values over the trajectories:

f ′
k (t ) =

3∑
j=0

p j (t )[2(3 − j)(pk−1→k − pk→k+1)

+ 2 j(pk+1→k − pk→k−1) + δ j,3−k − δ j,k]. (6)

An easy check is that
∑3

k=0 f ′
k (t ) = 0, so the total probabil-

ity is conserved. The solution to Eq. (6) can be easily achieved
by any integration algorithm for ordinary differential equa-
tions. This analytic solution will be compared in the following
with the actual evolution of the algorithm.

2. Actual performances

Let us start from a greedy version of the algorithm, that
is an algorithm that can never increase the energy (it is the
equivalent of gradient descent, but here the space of config-
urations is discrete, so gradients are not well defined). This
greedy version of the algorithm requires w1 = 0 because flip-
ping a variable of type 1 would increase the energy (i.e., the
number of unsatisfied interactions); only weights w2 and w3

can be non-null in the greedy case. For this greedy version the
number of stopping configurations is very large (their entropy
is computed in Appendix A): Any configuration where each
variable participate to 0 or 1 unsatisfied interactions is a stop-
ping configuration. These configurations are local minima of
the energy function and we call them blocked.

In Fig. 3 we show the energy or fraction of unsatisfied
constraints as a function of the running time of the greedy
algorithm (w1 = 0) for different choices of the ratio w3/w2

(the w’s are not normalized so only their ratio matters). Points
are the numerical data and the lines are the solution to the
ODE in Eq. (6). We notice the agreement between analyt-
ics and numerics is almost perfect, because at those energy
values correlations are very weak. The same almost perfect
agreement can be seen also at the level of fraction of variables
fk participating in k unsatisfied constraints (see Fig. 4 for the
case w2 = w3 = 1).

Let us consider now non-greedy versions of this algorithm,
that is cases with w1 > 0 where the energy can sometimes
increase during the evolution, although we expect on average
the energy to relax to the threshold value.
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FIG. 3. Evolution of the energy for several greedy versions
(w1 = 0) of the algorithm. Points are numerical data and lines are
the analytic description.

The first interesting case is the one that corresponds to
WalkSAT [55]. A detailed description of this algorithm is
given in Sec. III C; for the present purposes it is enough
to say that in WalkSAT variables are flipped accordingly to
the number of unsatisfied constraints they belong to, that is
wk ∝ k. The numerical results and the comparison with the
analytical description is provided in Fig. 5: the agreement is
excellent. Although this version of the algorithm would run
forever, after a finite time a stationary regime is reached and
nothing interesting happen any more in the large N limit. Once
the threshold energy has been reached, then the search for the
solution takes place via rare fluctuations as discussed in the
Sec. III C.

However, having achieved a good analytic description of
the WalkSAT algorithm is not enough, because this algorithm
works at very high energies: Its threshold energy is 1/4 for
3-regular 3-XORSAT, more than twice the energy that the
greedy version achieves and more than 10 times the marginal
energy we expect to be the relevant threshold energy for smart
searching algorithms.

So we are interested in studying more efficient versions
of this algorithm and we explore the case where w1 is much
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FIG. 4. The actual evolution of fraction of variables in a greedy
version (w1 = 0) of the algorithm (data points) are well described by
the analytic solution (full curves). The algorithm stops when f2 =
f3 = 0.
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FIG. 5. Evolution of the energy and fraction of variables during
the WalkSAT algorithm. The analytic description of the relaxation to
the threshold energy is almost perfect.

smaller than w2 and w3 (in practice we fix w2 = w3 = 1 and
explore the range w1  1). Notice that if w1 is made very
small, the algorithm in practice is allowed to make an energy-
increasing spin flip only when no other move is allowed, that
is when the configuration is blocked. We have simulated also
a version of the algorithm where this is made explicit and the
results are equivalent.

In Fig. 6 we report the evolution of the energy for Walk-
SAT, the greedy version and several quasi-greedy versions of
the algorithm. We observe that the threshold energy is 1/4 for
WalkSAT, close to 0.1 for the greedy version, but approaches
very closely the marginal energy emarg for w1  1. So the
quasi-greedy versions of this algorithm seems very effective
in reaching the same energy values simulated annealing can
achieve.

The analytic description of the algorithm changes a lot
depending on the energy value. For high enough energies,
correlations are very weak and the analytic solution matches
perfectly the numerical data: this is true for WalkSAT and
the greedy version as already shown in Figs. 3, 4, and 5. For
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FIG. 6. Evolution of the energy for WalkSAT and several
(quasi-)greedy versions of the algorithm. The vector of weights
(w0,w1, w2, w3) appears in the legend. The analytic description
under the assumption of lack of correlations is reported with a full
curve and fails to describe the algorithms at the lowest energies, when
correlations arise.

w1 = 0.1 we start seeing some deviations at times t ∼ 1, that
luckily enough disappear for larger times.

The most interesting cases are those with w1 � 10−2. First
of all we observe a very weak dependence on w1 (the three
values used w1 = 10−2, 10−3, 10−4 give practically the same
results), so we are working in the limit where the algorithm
does an energy-increasing spin flip only when no other move
is available. So this algorithm is not able to jump over barriers
of height larger than 1 (or few units at most), that correspond
to �e = O(1/N ).

Indeed this quasi-greedy algorithm follows closely the
greedy version until the time, t∗ ∼ 0.3, when the latter reaches
a blocked configuration that stops it. For t > t∗ the quasi-
greedy algorithm keeps decreasing the energy at a much
slower pace, eventually approaching an energy very close to
the marginal one (that we expect to be a lower bound for the
threshold energy in linear time algorithms).

In the regime t > t∗ the analytical approximation based on
the lack of correlations fails dramatically in many important
aspects: it keeps predicting a very fast energy decrease and
it estimates a too small asymptotic energy. The reason for
such a failure is clear: Low energy configurations are very
peculiar and have strong correlations among variables, even
among variables, which are far apart. In this energy range, our
approximation fails and the analytic solution is meaningless.

It is worth stressing that we are still working on timescales
growing linearly with N (the first regime depicted in Fig. 1).
So the failure of the analytic approximation is not due to
the fluctuations that become important in the second regime
of exponentially large timescales. Here we are still working
in a regime such that every spin variable has been flipped a
finite number of times. Nonetheless the evolution of the quasi-
greedy algorithm bring the system in configurations correlated
up to some distance, such that hypothesis leading to Eq. (6) are
no longer valid.

From a preliminary study we have understood that in
this energy regime the algorithm proceeds by performing
collective rearrangements of variables forming a local tree-
like structure, and the size of these collective rearrangements
seems to grow while approaching the threshold energy (this
reminds us a lot what happens in similar problems ap-
proaching the dynamical transition [56,57]). The analytical
description of the quasi-greedy algorithm in this low energy
regime is deferred to a future work.

We move now to the problem of estimating the large de-
viation rate to reach a solution via a rare fluctuation from
the threshold energy. Given the differences in the threshold
energies clearly visible in Fig. 6 we expect quite different
rates for WalkSAT and the several quasi-greedy versions of
the algorithm.

C. WalkSAT: The large deviations rate to reach a
solution from a simple argument

WalkSAT is a popular randomized (or stochastic) algo-
rithm for solving constraint satisfaction problems [55]. In
its simplest version works as follows: starts from a random
configuration; at each time step, if all constraints are satisfied
returns the solution, otherwise picks uniformly at random an
unsatisfied constraint and flips a randomly chosen variable
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participating that constraint. The flip certainly satisfies the
chosen constraint (interaction) but may unsatisfy many other
constraints: so the algorithm may increase the energy during
the evolution.

An approximated analytic description of this algorithm
exists [2,52,58] from which we learn that for the hard problem
we are studying the algorithm relaxes to a positive energy in
a linear time and then reaches a solution by a rare fluctuation
taking an exponential time. However it is not clear which kind
of barrier the algorithm crosses, given that the energy increase
is in principle without bounds.

Actually the analytic description of the WalkSAT algo-
rithm can be made even simpler than in previous approaches
[2,52,58] by noticing that (i) the algorithm stays most of the
time on configurations of very high energy where correlations
are very weak and (ii) the fluctuation leading to a solution is
so rapid that correlations do not arise.

These insights suggest that keeping track of the energy
alone should capture the essential features of the algorithm.
In practice, we think of the energy as a stochastic process, and
write down a stochastic differential equation that describes its
dynamics during the computation. The details of the calcula-
tion are presented in the following section.

1. Analytic description

In this section we focus on random p-XORSAT, with α

constraints per spin: every spin participates in a Poisson dis-
tributed number of interactions (with average and variance
pα), while every interaction involves exactly p spins. Random
p-XORSAT is known to be less correlated than the regular
version [see the comment after Eq. (3)], so we expect it to be
more amenable to a simple description.

Consider a uniformly random spin configuration s. Every
spin is connected to a Poisson distributed number of broken
constraints with average pαu, where αu = H[s]/N . The same
spin is also connected to a Poisson number of satisfied con-
straints with average p(α − αu). The fundamental idea of our
approach is to assume that WalkSAT is incapable of building
any correlations that violate this property, which is strictly true
only on fully random configurations. This is reasonable, as
most of the time is spent in high-energy states.

Given an initial random configuration s, we run WalkSAT
for T steps and denote the number of broken constraints at this
time H(T ). When we take one more step, H(T ) changes by

�HT +1
T = −1 − u(T ) + s(T ), (7)

where u(T ) is the number of excess broken constraints con-
nected to the spin (i.e., excluding the one that was selected
by WalkSAT) and s(T ) is the number of satisfied constraints
connected to it. As explained earlier, we assume that at all
times they are distributed as if the configuration was random.
The simplicity of this expression is a peculiarity of XORSAT:
Every time one variable is flipped, all the clauses connected to
it change state (satisfied ones become broken and vice versa).
The same approach could be adapted to other rCSP, with an
appropriate choice of the energy increment.

After a number �T of steps, larger than one but small
compared to the number of spins N , the total energy

change is

�HT +�T
T = −�T −

�T −1∑
k=0

u(T ) +
�T −1∑

k=0

s(T ), (8)

and we approximate the two sums using the central limit
theorem:

�T −1∑
k=0

u(T ) ≈ pαu�T + R1

√
pαu�T ,

�T −1∑
k=0

s(T ) ≈ p(α − αu)�T + R2

√
p(α − αu)�T , (9)

where R1 and R2 are two independent standard Gaussian ran-
dom variables. In these expressions we assume �T is short
enough that the energy density αu does not appreciably change
over the interval �T . The sum of the two terms involving R1

and R2 is again a Gaussian variable, so that the total energy
change after �T steps is approximately

�HT +�T
T = −�T + p(α − 2αu)�T + √

pαR
√

�T . (10)

We are interested in the large N limit, so it is convenient to
change variable from T to t = T/N . Dividing the previous
equation by N we obtain a stochastic differential equation
describing an Ornstein-Uhlenbeck process:

dαu(t ) = 2p

(
pα − 1

2p
− αu

)
dt +

√
pα

N
dW. (11)

To estimate the scaling with N of the time necessary to reach
a solution, it is best to study the Fokker-Planck equation
associated to Eq. (11):

∂P

∂t
= − ∂

∂αu

(
2p

(
pα − 1

2p
− αu

)
P

)
+ 1

2

pα

N

∂2P

∂α2
u

. (12)

Regardless of the boundary condition P(αu, t = 0), after an
initial transient, the energy is distributed according to the
stationary solution of Eq. (12) (the normalization constant cN

is irrelevant here)

Pst(αu) = cN exp

(
−2N

(αu − α0)2

α

)
, (13)

which is centered around the finite value (if pα > 1)

α0 = pα − 1

2p
. (14)

This indicates that the time necessary to reach the solution
grows more rapidly than O(N ), but also gives us a concrete
way to estimate it: the typical time over which a transition
from energy α0 to zero happens is the reciprocal of the rate

tsol ∼ 1

Prob(αu = 0, t → ∞| αu = α0, t = 0)

= exp

(
N

(pα − 1)2

2αp2

)
. (15)

As expected, the solution time scales exponentially with the
problem size. This analytical solution does show, in its sim-
plicity, the mechanism by which a solution is found and why
we call it entropic barriers. At equilibrium, reached after
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FIG. 7. Comparison to the numerics for 3-XORSAT. The vertical
axis is the logarithm of the probability of solution in linear time
divided by N . The black dots are the numerical data reported in [52]
and the blue (lower) line is the analytic approximation derived in that
reference, based on large deviation theory. The red (upper) line is our
approximation [see Eq.(15)].

O(N ) steps, the system fluctuates around a very high energy
threshold α0. This is well above any local minimum where
the system could be stuck. With exponentially small probabil-
ity however a rapid fluctuation of O(N ) spin flips can bring
the system to the real solution, but this happens with expo-
nentially small probability. So, only an exponentially small
fraction of all the possible sequences of N spin flips will pick
the right direction to the solution, hence the problem is of an
entropic nature, not an energetic one. We will discuss this in
more details after comparing with numerical results.

2. Comparison with numerics

A comparison with the actual rate measured in numerical
experiments in Ref. [52] is provided in Fig. 7. The quality of
the rate reported in Eq. (15) and obtained under the assump-
tion of lack of any correlation is surprising and supports the
idea that WalkSAT makes a random search without building
any relevant correlation in the problem.

It is interesting to notice that the same simple argument can
be made also in the 3-regular 3-XORSAT case and provides
the following scaling for the time to a solution

tsol ∼ exp(N/6). (16)

The rate μ = 1/6 � 0.167 is again close to the numerics
reported in Ref. [59], where μ ≈ 0.124 was measured.

Notice that the physical interpretation of this calculation is
that the equilibrium distribution is centered around a relatively
large nonzero value of the cost function, as seen in Fig. 8.
The solution is found by one rare fluctuation, which brings the
system out of equilibrium by a “lucky” series of O(N ) flips,
which points in the exact direction to the ground state. During
this series, no significant correlation is created between the
values of the various random variables so the central limit
theorem we used is valid. We expect this to be the behavior
of a random algorithm, which works at high temperature,
tackling a problem with entropic barriers.

In the analysis of more complex algorithms, the ones that
work at lower temperatures, this assumption is most probably
violated. Correlations between the random variables need to
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FIG. 8. Equilibrium distribution of the density of UNSAT
clauses αu for the Fokker-Planck equation (12). A solution is found
when a rare fluctuation reaches the value αu = 0, which occurrs with
probability exponentially small in N .

be taken into account when computing the rate of the rare
fluctuation that will lead to finding of the ground state. If one
wants to make progress in the analysis of such algorithms one
needs to go beyond what done in this paper.

D. Times to reach a solution via the quasi-greedy algorithm

Given that the quasi-greedy version of the algorithm has a
much lower threshold energy than the WalkSAT algorithm we
expect rare fluctuations leading to a solution to happen with a
better exponential rate. Unfortunately in the quasi-greedy case
the computation can not be done analytically because, as seen
above, the approximation based on the lack of correlations
provides very poor results and so it is not useful at all. We
thus resort to a numerical computation.

We have observed above that in the limit w1  1 the
dependence on w1 is extremely weak in the first regime of
linear times. The same is true also for the second regime of
exponential times. The exponential rate μ determining the
mean time to reach a solution tsol ∼ exp(μN ) does not show
any visible dependence on w1. So, we have fixed w1 = 0.05
to carry on our numerical experiments with the quasi–greedy
version of the algorithm.

In Fig. 9 we report with blue points the average time to
reach a solution running the quasi-greedy algorithm. The time
we report is the mean number of sweeps, where a sweep
corresponds to N spin flips. The average is taken over 106

different runs and the error is smaller than the symbol size. For
large N the data is very well fitted by an exponential growth
with rate μQG = 0.0835(5).

In the same figure (Fig. 9) we report also the mean time
to reach a solution by the WalkSAT algorithm. It is clear that
the rate is much larger, although for these sizes we are still
observing the preasymptotic behavior and for larger sizes the
rate will converge to μWS ≈ 0.124 [59].

A much more meaningful comparison is the one with the
parallel tempering (PT) algorithm. PT is considered the state-
of-the-art for thermalization (and optimization) in the field of
disordered systems, as it can deal efficiently with very rough
energy landscapes. For spin glass models, which are similar to
the problem we are studying here, it has been recently shown
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FIG. 9. Mean times to reach a solution measured as spin flips per
variable. The exponential growth of the time to reach a solution by
the quasi-greedy version of the algorithm has a rate μQG ≈ 0.0835,
much smaller than the one of WalkSAT and comparable to the one of
“parallel tempering” (which is however much slower because of the
prefactor).

that PT performs comparably to population annealing (PA)
[60] another standard algorithm to optimize complex energy
functions. We prefer to study the performance of PT in finding
a solution, rather than PA, because in PT it is straightforward
to compute the time to solution once the temperature schedul-
ing is fixed. While in PA one needs to increase the size of the
population during the run and if the solution is not found a new
run with larger sizes should be done; moreover comparing
population sizes and running times requires some extra care.

We have run PT with an optimal temperatures scheduling
derived in Appendix B. The results in terms of Monte Carlo
sweeps per replica are shown in Fig. 9. The comparison with
the quasi–greedy algorithm is very favorable for the latter:
the growth rate for PT is slightly larger than μQG (but still
decreasing and could eventually converge to the same value)
and the prefactor for PT is larger by 2 orders of magnitude
than the one for the quasi-greedy algorithm.

E. Quantum annealing

Originally proposed twenty years ago [17,61], quantum
annealing is a quantum algorithm designed to solve classical
optimization problems, exploiting the adiabatic theorem of
quantum mechanics [62,63]. First, we encode the given clas-
sical problem in a problem Hamiltonian HP, so that solutions
correspond to its ground states. The problem Hamiltonian is
typically in the form of a cost function with all terms commut-
ing among themselves (in this sense it is a classical problem).
A convenient and customary choice is to have the problem
Hamiltonian be diagonal on the σ z basis. Then, we choose a
fluctuation Hamiltonian HF , an arbitrary operator that should
provide “quantum fluctuations” and must have a known and
simple ground state. A popular choice is to use a uniform field
in the σ x direction to provide fluctuations:

HF =
∑

i

σ x
i , (17)

where the sum runs over all spin variables in the system. The
quantum annealing algorithm consists then in time-evolving

the ground state of

H (t ) ≡ t

T
HP +

(
1 − t

T

)
HF (18)

from t = 0 to t = T . For a long enough annealing time T , the
adiabatic theorem guarantees that a system initially prepared
in the ground state of H (0) = HF , known by construction, will
evolve into a state belonging to the ground state manifold of
H (T ) = HP. Measuring this state on the σ z basis we obtain
a solution to the original problem. Notice that choosing the
fluctuation Hamiltonian as in Eq. (17) guarantees the initial
ground state has finite overlap with every state in the com-
putational basis; the algorithm will not miss a solution only
because the corresponding state had no initial amplitude. The
adiabatic theorem also provides a lower bound on T : for the
algorithm to succeed, the annealing time should be longer than

T � maxt 〈ψ1(t )|∂sH (s)|ψ0(t )〉
mint �2(t )

s ≡ t

T
, (19)

where |ψ0(t )〉 is the instantaneous ground state at time t ,
|ψ1(t )〉 is the first excited state, and �(t ) is the energy
gap between them. We have already encountered a classical
Hamiltonian encoding XORSAT in Eq. (3). The quantum
mechanical version is simply

HP = 1

2

(
N −

N∑
a=1

∏
i∈∂a

σ z
i

)
. (20)

In our numerics, we use this as the problem Hamiltonian and
a uniform transverse field as the fluctuation one. Once we
fix the annealing time T and initial state |ψ (0)〉, QA will
end up in some final state |ψ (T )〉. Let the probability of
measuring an energy equal to the ground state energy, which
in our model is EGS = 0, be ε in this state. As T increases,
ε will approach unity. The complexity of the algorithm is
not expected to change with ε, as long as ε = O(1). In fact,
since ε is the probability to find the ground state after a
time T , one can enhance this probability by repetition of the
algorithm. A success probability of ε after two repetitions
becomes 1 − (1 − ε)2 = 2ε − ε2, and even a small ε, after
n = O(1/ε) repetitions can be made close to 1. This repeti-
tion, or restart technique, is commonly used in algorithms for
CSP [2], like WalkSAT. One commonly adopted definition for
the time complexity of QA is to invert the relation between ε

and annealing time: one fixes ε and N , and asks what is the
corresponding annealing time T (N, ε). For large enough N it
is reasonable to expect an exponential scaling of the form

T (N, ε) ∼ A(N, ε) exp (μN ), (21)

where the prefactor A(N, ε) is allowed to have a polynomial
dependence on N , while the rate μ does not depend on ε. In
practice, T (N, ε) is rarely estimated from real-time unitary
evolution, since the required computational power quickly
becomes unmanageable as the number of spins grows above
N = 20. There are two common strategies adopted to sidestep
this problem: estimate the energy gap between the ground and
first excited state via exact diagonalization or quantum Monte
Carlo [19,47,48] and invoke the adiabatic theorem to impose
a bound on T (N, ε), or perform the evolution in imaginary
time assuming that the scaling of the imaginary analog of
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FIG. 10. Annealing time T as a function of instance size N and solution probability ε. Every dot corresponds to an instance, with darker
color indicating a more degenerate ground state. Notice how the rate μ is insensitive to the target probability, as expected from the restart
argument given in the main text. The red line is a linear fit performed on the median value of the annealing time, using the standard deviation
of log(T ) as error bar.

T (N, ε) will be the same as the original quantity [18]. Both
methods find exponential scaling of the time for hard classical
problems, a fact that has been connected with the order of the
thermodynamic transition [47] (however, there are models ex-
hibiting a first order transition but only an algebraically small
gap [64]). While both methods provide reasonable bounds on
the scaling of the annealing time, it is unclear how the entropy
of excited states affects those estimates. Since entropic effects
are the primary focus of this work, we decided to perform
real–time evolution to minimize confounding factors, even if
this means limiting the simulations to moderate sizes. The role
of entropic effects in similar problems have been discussed
in the past, see for example [65] and [66]. We integrated the
time–dependent Schrödinger equation via an explicit high–
order adaptive Runge-Kutta method [67] implemented in the
QuSpin library [68].

The results are presented in Fig. 10: it is clear that in-
stances with a unique solution (dark-blue dots) are harder than
instances with multiple solutions (lighter-blue dots), but not
exponentially so. For any choice of the solution probability ε,
the growth rate μ is compatible with

μ = 0.25 ± 0.07 (22)

This value is higher than the one predicted in [19], that in
our notation would read μ � 0.167. Although the difference
is only one standard deviation and could be easily be due to
statistics (or the more limited fitting region N ∈ [12, 18]), one
should keep in mind that the simulations in that reference
are run only on instances with a unique solution, and use a
Quantum Monte Carlo method to estimate the gap, which is
then connected to μ by the adiabatic theorem, upon making
some assumption on the matrix elements of local operators.
However one should point out the observed insensitivity of
the rate μ to the degeneracy of the ground state: if one posits
to find the solution of the problem with an O(1) probability
as N grows, the same rate of growth of the solution time
is found for problems with one solution (for which one can
apply the adiabatic theorem connecting the gap with the time,
as in previous studies [69]) and those with many solutions,
for which most of the action occurs at finite energy density,
where entropy dominates. Again we find a trade-off between
entropic effects at high energy density and energy barriers
effects close to the ground state. We can also recognize here a
striking parallel with the difficulties attributed to localization

phenomena [20], where many small avoided crossings occur
between states, which are O(N) spin flip apart.

IV. CONCLUSIONS

In Figs. 11 and 12 we compare the spectrum of a typical
instance with unique solution to the spectrum of an instance
with eightfold degenerate ground state, as a function of the
transverse field. When the ground state is unique (Fig. 11),
one of the states in the first excited manifold peels off and has
an avoided crossing with the ground state. The performance of
the quantum adiabatic algorithm is limited by the size of this
gap. When the ground state is degenerate (Fig. 12) the picture
is qualitatively different: as the transverse field is turned off, a
few excited states go through a cascade of avoided crossings,
eventually ending in the ground state manifold. In this case,
knowledge of the minimum gap between the ground state and
the first excited state is not enough to understand the scaling
of the annealing time: we should know how many states end
up in the ground state, and what avoided crossings those have.
Typically, these states will start high in the spectrum, where
there will be many crossings, and so where entropy is impor-
tant. These instances are not naturally described by the picture
of trapped states, which tunnel to the solution (like a single
level crossing) and we cannot avoid noticing the similarity
with the phenomenon of entropic barriers, in the sense that
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FIG. 11. Lowest 30 levels in the spectrum as a function of trans-
verse field strength t/T for an instance with nondegenerate ground
state. Compare to Fig. 20 in [48].
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FIG. 12. Lowest 30 levels in the spectrum as a function of trans-
verse field strength t/T for an instance with eightfold degenerate
ground state.

only a “lucky” sequence of flips from one state to the other
can lead to ground state manifold. And this, too, occurs with
exponentially small probability.

Last, we must notice that the threshold energy for this
problem is emarg � 0.02, so a more quantitative understanding
of the difference between excited states below the threshold
energy and above it in the context of quantum annealing
requires studying instances with N � 100 or larger. For the
small sizes we can currently study via the exact integration of
the Schrödinger equation the ground state degeneracy seems
the best indicator for identifying hard instances.

For rCSP problems, some algorithms encounter entropic
barriers rather than energetic barriers. This in particular hap-
pens when the algorithm works at energies higher than the
threshold energies for the given problem and they find the
ground state by a rare fluctuation, which picks the right se-
quence of O(N ) spin-flips among the exponentially many. We
have shown this explicitly with a family of almost-greedy al-
gorithms, which includes WalkSAT. These algorithms evolve
in t = O(N ) to their equilibrium state (this part of the evo-
lution can be followed by a system of coupled differential
equations), and then must benefit from a rare stochastic fluc-
tuation to find the ground state. In the case of WalkSAT
we found the fluctuation rate—and hence the time to find
a solution—with a simple Brownian motion (and a corre-
sponding Fokker-Planck) analysis of the algorithm. This was
possible exactly because the algorithm’s equilibrium state is
at high energy, so the region where strong correlations exists
between the variables is not explored.

We have also introduced a new class of quasi-greedy algo-
rithms, which are not able to jump over large energy barrier.
We have shown that algorithms belonging to this class are
very effective in reaching the threshold energy in times O(N )
and also in reaching the ground state by rare fluctuations in
times O( exp(μN )), with a value for the μ exponent not larger
than the one exhibited by state of the art algorithms. Given
that these algorithms are not able to jump over large energy
barriers, they provide a direct evidence that the most effective
search for solutions in the hard XORSAT problems is limited
mainly by entropic barriers. As it is likely to happen in many
other hard optimization problems.
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FIG. 13. Mean energy of the stopping configurations for the
greedy dynamics as a function of the ratio w3/w2.

Very recently, the role of the entropic barriers in the XOR-
SAT problem has been thoroughly discussed in Ref. [70]. In
the search for the planted solution, the authors compare the
free-energy barrier that a thermal algorithm needs to over-
come and the entropic barrier that limits the evolution of
a microcanonical algorithm. They find that the free-energy
barrier is just slightly smaller than the entropic one, thus
supporting the idea that the entropic contribution is the leading
one.

One more evidence that the entropic barriers are the lead-
ing one in the XORSAT problem comes from the effectiveness
of the class of quasi-greedy algorithms we have introduced in
this work. Indeed an algorithm from this class of quasi-greedy
searches has been used in a challenge, whose participants
were asked to find the ground state of a 3-regular 3-XORSAT
problem [71]. A very optimized version of the quasi-greedy
algorithm, running on Nvidia VT100 GPU, has rank first in
the challenge [72], supporting our claim that the quasi-greedy
algorithm introduced here are very effective, as the actual
barriers are entropic in nature.

We have shown, by a time integration of the time-
dependent Schrödinger equation, that a similar situation is
encountered by quantum annealing algorithms.

Therefore we conclude that, in situations in which algo-
rithms work in regions of the phase space in which trapping
in local minima is not a real problem, the real problem is
entropic barriers, which get for themselves the task of making
the solution time exponential. The fact that two such phenom-
ena, apparently so different from each other, can trade places
and make sure P �= NP is a fascinating, and we believe not
widely appreciated aspect of complexity theory. That quantum
algorithms might suffer from a similar trade-off is, if possible,
even more surprising.
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FIG. 14. Entropy S0 of blocked configurations as a function of
the energy ρ.

APPENDIX A: COUNTING BLOCKED CONFIGURATIONS
AND THE SIZE OF THEIR BASINS OF ATTRACTION

The greedy version of the algorithm we have introduced
has many possible stopping configurations. Indeed any config-
uration where each variable participate to at most one violated
interaction is a local minimum of the energy function and thus
can block the greedy dynamics. We call these configurations
blocked, because by seeing the dynamics as the evolution of
energy defects that can just annihilate in pairs, in a blocked
configuration energy defects cannot evolve since they are iso-
lated.

We start from the observation that all greedy dynamics tend
to a threshold energy around 0.11; more precisely in Fig. 13
we plot the energy of the stopping configurations for several
greedy dynamics as a function of the ratio w3/w2 (the only
degree of freedom of the algorithm once we fix w0 = w1 =
0).

It is thus natural to ask whether it is possible to relate
the stopping energy of the greedy dynamics to the entropy
of blocked configurations. In order to compute the latter we
use the replica symmetric cavity method, that is the Bethe
approximation.

We consider the dual lattice to a 3-regular random 3-
hypergraph, which is again a 3-regular random 3-hypergraph,
where the variables are now the constraints and we assign
variables ni ∈ {0, 1} indicating whether a constraint is satis-
fied (ni = 0) or not (ni = 1). The interaction among triplets of
constraints (those shared by a variable in the original model)
forbids any configuration with more than one violated con-
straint per triplet (n1 + n2 + n3 � 1).

The energy of a spin configuration now corresponds to
the density of variables ni = 1 that we call ρ. Under the
Bethe approximation the joint probability distribution can be
factorized as follows:

P({ni}) �
N∏

i=1

p1(ni )
N∏

(i jk)

p3(ni, n j, nk )

p1(n1)p1(n j )p1(nk )
(A1)

where the second product is over the N randomly cho-
sen triplets forming the 3-regular 3-hypergraph. Given that
the random hypergraph is regular we can assume the one-
particle and 3-particles marginal probabilities, p1(ni ) and

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

b
=

lo
g(

si
ze

ba
si

n)
/N

ener

N = 30
N = 26
N = 22

FIG. 15. The size of the basin of attraction grows exponentially
with the size and the depth of the energy minimum. Finite size effects
are evident only for the lowest energies.

p3(ni, n j, nk ), being site independent. These can be written
explicitly in terms of the energy ρ as

p1(n) =
{

1 − ρ if n = 0
ρ if n = 1, (A2)

p3(n1, n2, n3) =
{

1 − 3ρ if n1 + n2 + n3 = 0
ρ if n1 + n2 + n3 = 1. (A3)

From the Bethe approximation in Eq. (A1) the entropy of
blocked configurations can be written as

S0 = −
∑

n1,n2,n3

p3(n1, n2, n3) log p3(n1, n2, n3)

+ 2
∑

n

p1(n) log p1(n)

= − (1 − 3ρ) log(1 − 3ρ) − ρ log ρ

+ 2(1 − ρ) log(1 − ρ) (A4)

which is plotted in Fig. 14.
S0 is non-negative for ρ � 0.315742 and has a maximum

in ρ� = 0.170209. The threshold energy for the greedy algo-
rithms we have studied is in the range [0, ρ�], but we cannot
estimated it from S0 alone, because each blocked configura-
tion has a basin of attraction whose size matters as much as
the entropy of blocked configurations.

Given the important role of the basins of attraction in
predicting the large time limit of relaxation dynamics we have
measure their sizes in problems of small size, N � 30, where
an exact enumeration can be performed. For each blocked
configuration we have measured the size of the basin of
attraction as the number of initial conditions that a greedy
dynamics brings to that blocked configuration. These sizes
are in general exponentially large in N and thus we define
b = log(size of basin)/N .

We report in Fig. 15 the results for b as a function of the
energy of the blocked configuration for different sizes. The
data have been averaged over different samples and different
blocked configuration at fixed energy. It is remarkable that
even for such small sizes the data show rather weak size
dependence and are thus reliable.

The dotted line in the figure is just a guide for the eyes
to convince the reader that the observed b(e) is not far from
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FIG. 16. A schematic picture of the energy landscape in the
3-regular 3-XORSAT problem. Most energy minima (including the
solutions to the problem) have a basin of attraction, which is likely
to be connected to the energy level emax where the dynamics starts.
However the entropic barrier makes very unlikely to choose the pit
leading to a solution.

following a linear behavior up to the energy of most numerous
configurations emax = 1/2. According to this linear behav-
ior the size of a basin of attraction depends linearly on the
depth of the energy minimum (the blocked configuration).
The simplest picture compatible with these data is the one
schematically represented in Fig. 16 where each energy min-
imum corresponds to a pit whose edge is close to emax, such
that the size of the pit grows exponentially with its depth, that
is the distance from the edge.

According to the simplified picture in Fig. 16 every pit is in
principle accessible from the initial configuration (which has
typically an energy emax). However those leading to a solution
correspond to a tiny minority of the configurations at emax and
thus is extremely unlikely that the dynamics enter one of these
(this is essentially the origin of the entropic barrier).

Combining the number of energy minima exp(NS0) with
their size exp(Nb) we can compute the large deviation rate
to find one of the energy minima as a function of their en-
ergy. This is shown in Fig. 17, where indeed the maximum
is achieved at e ∼ 0.11 (marked by a vertical dotted line),
which is the typical energy reached by the greedy algorithm
in the large N limit. For finite values of N these data also
provide the exponential rate to find a solution via the greedy
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FIG. 17. Combining the entropy of blocked configurations S0

and the log size of the basins of attractions b we can compute the rate
of the large deviation probability of finding a block configuration
of a given energy [shifted by log(2) because it is not normalized].
The maximum is achieved at an energy close to 0.11 (marked by
a vertical-dotted line) where the greedy algorithm converges in the
large N limit.

algorithm: This is just the probability of randomly choosing
one of the pits having the bottom at e = 0 and corresponds to
μ = maxe(S0 + b) − (S0 + b)|e=0 ≈ 0.2.

APPENDIX B: AN OPTIMAL TEMPERATURE
SCHEDULING FOR PARALLEL TEMPERING

The main problem in setting up an optimized PT is the
choice of the temperature set. However in the present model
we are in a lucky situation because we known that the 3-
regular random 3-XORSAT has no thermodynamical phase
transition and so, after convergence, the energy sampled by
the PT must be the one of the paramagnetic solution, e(β ) =
[1 − tanh(β/2)]/2. In the large N limit we can assume that
the extensive energy at inverse temperature β is a Gaussian
variables with mean E (β ) = Ne(β ) and variance σ 2(β ) =
−Ne′(β ). This Gaussianity assumption (which is rather well
satisfied, but in the vicinity of the ground state) allows us to
compute the probability of swapping two replicas at tempera-
tures β1 and β2, which has to be a function of the ratio of the
energy difference to the energy fluctuation

pswap = f

(
E (β2) − E (β1)√
σ 2(β1) + σ 2(β2)

)
.

In the large N limit such a ratio can be written as

E (β2) − E (β1)√
σ 2(β1) + σ 2(β2)

� Ne′(β )�β√
Ne′(β )

� �β
√

Ne′(β ).

The explicit form for the function f is given by

f (z) =
∫

dx dy
e− x2

2 − (y−z)2

2

2π
min

(
1, ez(x−y)

)
.

The best way to allow replicas to wander fast between temper-
atures is to fix a constant pswap between any pair of successive
temperatures, that is using temperature intervals set by

�β = f −1(pswap)√
Ne′(β )

,

which implies in the large N limit the following recursive
equation for the temperatures to be used in the optimized
parallel tempering

βn+1 = βn + 2r√
N (1 − tanh(βn/2)2)

,

where r = f −1(pswap). The solution to the above recursive
equation converges in the large N limit to the following set
of temperatures:

βn = 2 arcsinh

[
tan

(
rn√

N

)]
, (B1)

with the index n running up to �√Nπ/(2r)�.
The optimal value for r is the one minimizing the mean

traveling time between the extremal temperatures, which is
proportional to [r2 f (r)]−1. The minimum is achieved at ropt ≈
1.68, that corresponds to an optimal swapping rate f (ropt) ≈
0.23 (this result is well known as the 0.23 rule). We run all out
PT simulations with the temperature set defined in Eq. (B1)
with r = ropt.
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