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The spin-glass transition in a field in finite dimension is analyzed directly at zero temperature using
a perturbative loop expansion around the Bethe lattice solution. The loop expansion is generated
by the M -layer construction whose first diagrams are evaluated numerically and analytically. The
Ginzburg criterion, from both the paramagnetic and spin-glass phase, reveals that the upper critical
dimension below which mean-field theory fails is DU = 8, at variance with the classic results DU = 6
yielded by finite-temperature replica field theory. The different outcome follows from two crucial
properties: finite-connectivity of the lattice and zero temperature. They both also lead to specific
features of the replica-symmetry-breaking phase.

Spin glass (SG) models are the prototype of disordered
systems: the Hamiltonian is very simple (two spin in-
teractions plus an external field), but the presence of
quenched disorder in the couplings generates a very com-
plex behavior. The fully connected (FC) mean-field (MF)
version of the model, introduced by Sherrington and
Kirkpatrick (SK) in ref. [1], was solved forty years ago
[2]: the SK model undergoes a phase transition from a
paramagnetic phase at high temperatures to an SG phase
below a critical line in the temperature-field (T -h) plane,
called de Almeida-Thouless (dAT) line [3], that diverges
for T → 0: i.e. at T = 0 the SK model is in the SG phase,
no matter how strong the external field is.

The solution to the SK model requires the introduc-
tion of n copies of the system, called replicas, with n
that goes to zero at the end of the computation. This
mathematical trick, useful to carry on the computation,
was shown to have a deeper, physical implication: the
SG phase is precisely characterized by the spontaneous
breaking of replica symmetry. In the SG phase, an expo-
nential number of pure states are organized in an ultra-
metric structure and the order parameter is the so-called
replica-overlap, a quantity that describes the similarities
between the different pure states. At the dAT line, the
paramagnetic solution becomes unstable. To identify the
dAT line one can compute the fluctuations around the
paramagnetic solution, via the study of the spectrum of
the Hessian of the replicated free energy. One can identify
three sub-spaces or sectors of Hessian eigenvectors, that
are called replicon, longitudinal and anomalous [4, 5].
On the dAT line, the replicon eigenvalue becomes crit-
ical and stays critical in the whole SG phase, which is
thus a marginally stable phase. This highly non-trivial
solution has been proved to be rigorously exact [6].

Beyond MF, things are much less clear. In particular,

it is not exactly known whether the finite-dimensional SG
model has a transition to an SG phase when the external
field is present. Numerical simulations suggest a positive
answer for D = 4 [7], but for D = 3 the results are
inconclusive due to the huge finite-size effects and the
very large equilibration times [8, 9]: at the state of the
art, it is impossible to decide if a transition exists just
based on numerical results.

Usually, in statistical mechanics, the finite-dimensional
behavior of models can be deduced using the powerful
method of Renormalization Group (RG) [10]. One can
set up a field theory for the order parameter associated
with the desired transition, constructing a Lagrangian
that is the most general one compatible with the symme-
tries of the problem. The basic approximation is the so-
called tree approximation or the Landau-Ginzburg (LG)
theory. It corresponds to the assumption that there are
no fluctuations in the field and it results to be exact for
the MF-FC model. The next step is to see how the fluctu-
ations, associated with the finite-range interactions, will
modify the MF picture. Choosing to perform this task
perturbatively leads to a loop-expansion around the LG
solution. Looking at when the one-loop correction be-
comes important, one identifies the upper critical dimen-
sion DU at which the MF theory does not predict the
correct critical behavior anymore: this is the so-called
Ginzburg criterium. At this point, a perturbative expan-
sion around the MF solution can be constructed, with a
small parameter ε = DU −D, to see how the MF transi-
tions are modified at dimension D below DU.

Unfortunately, this program cannot be carried out so
simply for SG models in a field. The MF theory in the
high-temperature phase and the first-order perturbative
expansion around it were analyzed in different papers
[11–16]. Let us stress that the Lagrangian is very com-
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plicated in this case, having three bare masses, associated
with the three sectors, and eight cubic vertices involving
the replica fields, that are all the possible invariants un-
der the replica symmetry and particular care should be
taken to handle the limit of the number of replicas n go-
ing to 0. The results of the various works are however
not sufficient to fully understand which is the fate of the
transition in finite dimension. For D > DFC

U = 6, the
MF-FC Fixed Point (FP) is stable, however, its basin of
attraction shrinks to zero approaching DFC

U from above.
The main problem is the absence of a perturbative sta-
ble FP below six dimensions [11, 13]. However, this lack
is not a proof for the non-existence of an SG phase in
lower dimensions and many scenarios on the fate of the
SG transition have been put forward. Some authors have
tried to extract information from the perturbative anal-
ysis nonetheless [15, 16] possibly including quartic inter-
actions [17] that are known to have a non-trivial role
[18]. It could also be possible that a non-perturbative
FP exists, that governs the SG phase for low enough di-
mensions [19]. Recently, the perturbative expansion was
computed up to the second-order [20, 21]. The authors
find a strong-coupling FP that could in principle be stable
at any dimension, even above DFC

U . This new fixed-point
is in a way a “non-perturbative” one because it cannot
be reached continuously from the MF-FC one just lower-
ing the dimension. However, the perturbative analysis in
the strong-coupling regime is uncontrolled: for this rea-
son, the existence and relevance of this new FP cannot
be stated just with the methods of Refs. [20, 21].

Another approach is the use of non-perturbative real-
space RG methods: their use is the natural choice if we
are looking for a non-perturbative FP in finite dimen-
sions. The Ensemble RG (ERG)[22] and the Migdal-
Kadanoff (MK) RG [23] were applied to the SG in a field,
finding a critical FP for high enough dimensions (D & 8),
while resulting in no SG phase at lower dimensions. The
new FP found is a T = 0 FP, thus different from the
MF-FC one. We remind that in the FC model there is
no transition at T = 0 as a consequence of the diverg-
ing connectivity, an unrealistic feature that is not present
in finite-dimensional models. However, the MK and the
ERG RG flows are obtained after some crude approxima-
tions, as usually done when using non-perturbative RG,
that are not exact. Thus they can provide useful indica-
tions, but cannot offer a definite answer to the problem.

Recently, a new loop expansion around the MF Bethe
solution has been proposed in Ref. [24]. The Bethe lattice
(BL) is a different type of MF lattice on which the SG in
a field can be solved. At variance to the FC lattice, the
finite connectivity in the BL allows for local fluctuations
of the order parameter. This is an important feature
shared with finite-dimensional systems.

The loop expansion around the Bethe solution is ob-
tained via the M -layer construction [24]. One introduces
M copies of the original finite-dimensional lattice and

generates a new lattice through a local random rewiring
of the links. For large M the resulting M -layer lattice
looks locally like a BL (and thus all observables tend to
their MF BL values with small 1/M corrections), while
at large distances the lattice retains its finite-dimensional
character. This has important consequences for critical
behavior: close to the MF critical point the system dis-
plays MF critical behavior until the correlation length
reaches a size where the finite-dimensional nature of the
model is dominant and the correct non-MF exponents
are observed due to universality. The 1/M expansion
(for M = 1 one recovers the original model) takes the
form of a diagrammatic loops expansion with appropri-
ate rules [24] and it is very useful to study critical phe-
nomena. Similarly to field-theoretical loops expansion,
one can apply the Ginzburg criterion and identify the
upper critical dimension DU where the corrections alter
the MF behavior. For D < DU the expansion can then
be used to obtain the critical exponents through standard
RG treatments.

The expansion around the BL solution has the same
advantages as standard field-theoretical loop expansions,
but has a larger range of applicability, as it can be used
for any problem that displays a continuous phase transi-
tion on the BL. Recent applications include the Random
Field Ising model (RFIM) at zero temperature [25], the
bootstrap percolation [26] and the glass crossover [27]. It
has also been applied to the SG in a field in the limit of
high connectivity for T > 0 [28], showing that in such a
limit the expansion is completely equivalent to the stan-
dard expansion around the MF-FC solution [11, 13]. This
is in agreement with the fact discussed in Ref. [24] that
the 1/M expansion and the standard field theoretical ex-
pansion are completely equivalent if the physics of the
model on the BL is like the one on the FC lattice.

In this paper, we study the M -layer BL expansion of
the SG in a field at T = 0 from both the paramagnetic
and the SG phase. We show that finite connectivity and
zero temperature lead to a critical behavior different from
the one of the replicated field theory expansion at finite
temperature. In particular, the Ginzburg criterion leads
to an upper critical dimension DU = 8 from both sides
of the critical point.

To be concrete we consider the model Hamiltonian

H = −
∑

(ij)∈E

Jijσiσj − h
∑
i

σi , (1)

where the spins take the values σi = ±1, h is a constant
external field [29] and the quenched couplings Jij have a

Gaussian distribution with J = 0, J2 = 1
z−1 , z being the

(fixed) connectivity of the model. The first sum is over
the set of edges E of a D-dimensional lattice.

Approaching the transition from the paramagnetic side
the order parameter is zero and we analyze, as usual, the
behavior of spin correlations. Working at T = 0 it is
worth considering the response function Rij defined via
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the following procedure: being σ? the ground state (GS)
configuration; compute the new GS under the constraint
σi = −σ?i ; if also σj flips, then Rij = 1, otherwise Rij =
0. Following Ref. [24], a generic correlation or response
function G(x) between two points at distance x on the
original lattice is given at leading order in 1/M by

G(x) =
1

M

∞∑
L=1

N (x, L)GBL(L) , (2)

where N (x, L) is the number of non-backtracking paths
of length L connecting the two points at distance x on
the original lattice (M = 1) and GBL(L) is the correlation
function between two spins at distance L on a BL with
connectivity z = 2D. While N (x, L) is known [24]

N (x, L) ∝ (2D − 1)L exp
(
−x2/(4L)

)
L−D/2, (3)

the crucial model-dependent quantity to be computed is
GBL(L). One can show (see SM) that the average re-
sponse function on the BL can be computed exactly by
applying L times an integral operator. Consequently, its
behavior at large L is given by

RBL(L) ∝ λL , (4)

where λ is the largest eigenvalue of the integral operator
and goes to λc = 1

2D−1 at the critical point of the BL,
such that the total response diverges and the paramag-
netic solution is no longer stable [30]. Inserting Eqs. (4)
and (3) into Eq. (2), we obtain for the Fourier transform
of the response function in the small momentum region
as

R(p) ∝ 1

M

∑
L=1,∞

[λ · (2D − 1)]
L

exp(−Lp2)

' 1

M

∫ ∞
0

dL exp
(
−L(p2 + τ)

)
=

1

M

1

p2 + τ
(5)

with τ ≡ − log(λ(2D − 1)). Note that τ → 0 when
λ → λc: at leading order the response has the form of
the bare propagator in a field theory and becomes critical
at the BL critical point.

Let us now look at the 1/M2 corrections to the bare
propagator. According to Ref. [24], this is given by the
sum of the contributions coming from all the paths that
connect the two points at distance x on the original lat-
tice containing just one topological loop. The contribu-
tion of a specific topological diagram in Fourier space is

G̃loop(p) =
1

M2

∑
~L

N (p, ~L)GBL

loop(~L) , (6)

where ~L is a vector containing the lengths of each line in
the topological diagram and the factor N (p, ~L) accounts
for the number of such topological diagrams on the orig-
inal regular lattice with M = 1. The term GBL

loop(~L) is

LB

LA

LO

LI

LA

LO

LI

Figure 1: One loop topological diagrams relevant for the
first order correction around the BL: the “quartic loop”
on the left has a vertex with four lines, while the “cubic

loop” on the right has only vertices with three lines.

again the only term depending on the model: it is the so-
called line-connected value [24] that the observable takes
on a BL in which the analyzed topological loop has been
manually inserted. The term “line connected” means
that one should add the value of the observable evalu-
ated on each of the subgraphs that are obtained from
the original structure by sequentially removing its lines
times a factor −1 for each line removed.

Let us point out two crucial differences between this
expansion and the standard expansion around LG theory:

• the latter has just cubic vertices, while in the BL
expansion vertices of all degrees can be present;

• the diagrams of the BL expansion have a clear phys-
ical meaning while the Feynmann diagrams of the
standard expansion are just a smart way to com-
pute the desired corrections.

At one loop we consider the two diagrams shown in
Fig. 1. The left one has a quartic vertex, for this reason, it
is not included in the standard cubic theory. We compute
GBL

loop(~L) on this diagram with the same tools as for the
0-loop term (all the details in the SM). The resulting
contribution to the response function coming from this

quartic loop is RBL

4-loop(~L) ∝ LAλΣ(~L) , where Σ(~L) is the

sum of all L’s, i.e. Σ(~L) = LA+LI +LO in this diagram,
and λ is the same eigenvalue on the BL as in the previous
discussion. The cubic loop (on the right in Fig. 1) has
cubic vertices and is already present in the LG theory. Its
behavior should be analyzed when LA and LB are large,
because we checked that when one of the two internal
legs is short, the diagram reduces to the quartic loop. For

large LA and LB , we obtain RBL

3-loop(~L) ∝ LALB
LA+LB

λΣ(~L),

with Σ(~L) = LA + LB + LI + LO.

The term N (p, ~L) has already been computed [25] and
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it reads respectively for the quartic and cubic loops

N (p, ~L) ∝ (2D − 1)Σ(~L)

LA
D/2

e−(LI+LO)p2 , (7)

N (p, ~L) ∝ (2D − 1)Σ(~L)

(LA + LB)
D/2

e
−
(
LI+LO+

LALB
LA+LB

)
p2
. (8)

Inserting the above expression and RBL

3-loop(~L) in Eq. (6),
we obtain the correction to the response given by the
cubic loop. In order to apply the Ginzburg criterion, it
is more convenient to consider the inverse susceptibility

(MR(p))−1 = τ + p2+

+
c

M

∑
LA,LB

LALB
(LA + LB)D/2+1

e
−LAτ−LBτ−

LALB
LA+LB

p2
,

that can be rewritten as

(MR(p))−1 = A (τ − τc) +B p2 +O(p4) , with

τc =
c

M

∑
LA,LB

LALB
(LA + LB)D/2+1

, (9)

A = 1− c

M

∑
LA,LB

LALB
(LA + LB)D/2

, (10)

B = 1− c

M

∑
LA,LB

L2
AL

2
B

(LA + LB)D/2+2
. (11)

We see that for large but finite M , the M -layer lattice
has the same critical behavior of the BL (M =∞), with
small O(1/M) shifts of the critical temperature and of
the constants A and B. However, the above sums over
LA and LB are divergent respectively for D ≤ 6, D ≤ 8
and D ≤ 8 and thus the Ginzburg criterion tells us that
the critical exponents cannot be those of the Gaussian
theory below DU = 8. The same argument applied to
the quartic loop would give a critical dimension equal to
6 (the diagram indeed appears in the computation of the
connected correlation of the RFIM [25]) and allows to
neglect the quartic loop with respect to the cubic one.

To go below the upper critical dimension we rescale
lengths as L = x/τ and momenta as p2 = k2τ , obtaining

(MR(p))−1/τ = 1 + k2 +
c τD/2−4

M
×

×
∫ ∞
τ/Λ

dxA

∫ ∞
τ/Λ

dxB
xA xB e

−xA−xB−
xAxB
xA+xB

k2

(xA + xB)D/2+1
. (12)

The above expression shows that loop corrections are not
negligible for D < DU = 8 when τ → 0. Indeed for
D < DU the integral would be divergent at short dis-
tances if not for the lattice cutoff Λ. One should check
if, by standard mass, field, and coupling constant renor-
malization the above 1-loop diagrams and higher-order
diagrams as well can be made finite in the limit Λ→∞.
Then the critical exponents can be computed by standard

methods [31–33] provided an O(ε) non-trivial FP of the
β function can be identified (at variance with the T > 0
case [11]): this program is currently underway. An inter-
esting question is if this putative zero-temperature FP
describes also the T > 0 physics, i.e. if the temperature
is an irrelevant operator in the Wilson RG sense.

We now consider the Ginzburg criterion coming from
the Replica Symmetry Breaking (RSB) phase. At zero
temperature RSB implies the presence of many local
ground states (LGS), i.e. configurations whose energy
cannot be decreased by flipping any finite number of spins
[34]. An essential property is that the lowest LGSs differ
from the GS by an extensive number of spins, but have
energy differences of order one. As a consequence, the
effective local field acting on a site for a given realization
of the disorder depends on the LGS considered. How-
ever, at variance with the T > 0 case, at T = 0 and finite
field we found that only a finite fraction of the sites (that
we call the RSB cluster) displays RSB, while sites not on
the RSB cluster have the same effective local field on all
relevant LGSs. The probability pRSB that a given site is
in the RSB cluster goes to zero continuously when the
dAT line is approached from within the RSB phase [35].
This picture is compatible with what is found in ref. [23],
where, analyzing the exponents connected to the T = 0
critical FP identified with the Migdal-Kadanoff RG, one
finds that the system is ordered but only on a fractal
system-size set.

The Ginzburg criterion was originally formulated in
the phase where the order parameter is non-zero and
prescribes to compare its fluctuations (on the correla-
tion length scale) with the square of its average. In the
RSB phase, a convenient local order parameter is the
RSB cluster indicator function equal to one if a site is on
the RSB cluster and zero otherwise. The average order
parameter is thus pRSB and its fluctuations are given by
the probability pRSB(x, y) that sites at positions x and
y on the lattice are both on the RSB cluster. On the
M -layer lattice, the fluctuations pRSB(x, y) are expressed
by Eq. (2) where GBL(L) must be replaced by the proba-
bility pBL

RSB(L) that two sites at distance L on the BL are
both on the RSB cluster. One finds [35]

pBL

RSB(L) ∝ p2
RSBL

3λL , (13)

where λ(z− 1) = 1− a pRSB (a is a constant) close to the
dAT line. This implies that performing the summation
over L in momentum space as in eq. (5) we obtain an
expression proportional to (apRSB + p2)−4 due to the L3

factor. Going back to real space we can now compare
the fluctuations on the scale of the correlation length

ξ ∝ p−1/2
RSB with p2

RSB:

1

M

G(b ξ)

p2
RSB

∝ 1

M
p
D/2−4
RSB

∫ ∞
0

dα

αD/2−3
e−α−

b2

4α . (14)

This noise-to-signal ratio is small due to the 1/M pref-
actor, but it diverges in the critical region (pRSB � 1) for
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D ≤ 8, confirming from the RSB side of the transition
that the upper critical dimension is DU = 8.

We already mentioned that the expansion around the
BL was applied to the SG in a field for T > 0 and in the
limit of large z in Ref. [28]. Even if we take the limit
T → 0 of that expansion, the 1-loop correction results to
be of the standard form (the detailed computation is in
the SM). Finite connectivity is thus a crucial ingredient
in the computation, and the limits z → ∞ and T → 0
cannot be exchanged. This is a clear indication that for
SG models the expansion around the FC model cannot
describe the behavior of finite-dimensional systems.

We emphasize that the FP we have found in this work
by expanding around the BL is different from the finite
temperature MF-FC one even for D > DU. Indeed when
T > 0 one can demonstrate that the critical behavior of
all the possible correlation functions is the same (mainly
because they all receive a critical contribution by the only
critical eigenvalue that is the replicon [28, 36]). However,
if the relevant FP is a T = 0 one, different correlation
functions could decay differently (this effect is linked to
the degeneracy of the three eigenvalues that become all
critical at T = 0), so one should look at them all. This
is what happens in the RFIM, whose physics is governed
by a T = 0 FP and whose correlation function associated
with disorder fluctuations decays more slowly than the
one associated with thermal fluctuations [36]. The same
behavior is predicted by the MK RG of Ref. [23] for the
SG in a field. We leave the analysis of the disorder cor-
relation function to future work.

A final remark on the value DU = 8, that was already
special in the standard replica field theory: the danger-
ously irrelevant quartic coupling become singular under
the RG for D < 8, and the standard MF-FC theory has
to be corrected to take this into account [18]. Moreover,
in Ref. [23] the upper critical dimension was found to be
D ' 8 with the MK RG method, while for D < 8 no
stable SG phase was found. The role of dimension D = 8
needs to be better investigated looking at the finite-size
scaling of observables at T = 0. Long-range SG models
[37] are natural candidates to perform this analysis.

This research has been supported by the European Re-
search Council under the European Union Horizon2020
research and innovation program (grant No. 694925 –
Lotglassy, G. Parisi).
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[12] T. Temesvári, C. De Dominicis, and I. Pimentel, Eur.

Phys. J. B 25, 361 (2002).
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(2012).
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predicts an upper critical dimension equal to 8 for spin glass models in
a field”

SPIN GLASS MODELS ON THE BETHE LATTICE

We consider a spin glass model of N Ising spins, σi = ±1, with Hamiltonian

H = −
∑

(ij)∈E

Jijσiσj −H
∑
i

σi .

The edge set E defines the interaction graph, which is a random regular graph of fixed degree z, also known as Bethe
Lattice (BL), H is a constant external field and the quenched couplings Jij are random variables extracted from a
Gaussian distribution with EJ [J ] = 0 and EJ [J2] = 1

z−1 (this scaling ensures a well-defined Hamiltonian in the z →∞
limit).

A complete description of this model, even at T = 0, can be found in Ref. [38], however, we report here some of
the main ingredients useful for the subsequent computations. To solve the model in the high-temperature region, we
consider cavity fields hi→j and ui→j defined on each edge of the graph. They parametrize, respectively, the marginal
probability distribution on σi in the cavity graph where edge (ij) has been removed, and the marginal probability
distribution on σj just considering the information coming from the edge (ij), in other words the marginal probability
in the cavity graph where all edges involving vertex j, but (ij), have been removed.

The BL has the special property that in the large N limit the loops of finite length have a vanishing density. In
other words, the BL is locally tree-like. For this reason, the different cavity fields ui→j arriving in j from its neighbors
can be considered as independent in the large N limit: this property makes the BL a mean-field solvable model. In
fact, one can write self-consistent equations involving the cavity fields that at T = 0 read

hi→j = H +
∑

k∈∂i\j

uk→i (15a)

ui→j = sign(hi→jJij) min(|hi→j |, |Jij |) (15b)

where ∂i is the set of neighbors of i. These equations allow us to solve the model on a given (locally tree-like) graph.
However, in the large N limit, if we are interested in computing a self-averaging observable, like a free-energy or a
correlation function, it is enough to known the probability distribution of the cavity field that satisfies the following
self-consistency equation

PB(u) = EJ
∫ z−1∏

i=1

PB(ui)dui δ

(
u− sign

(
J(H +

∑
i

ui)
)

min
(
|J |, |H +

∑
i

ui|
))

(16)

This distribution gives the correct statistical description for the cavity messages that in turn provide the correct
marginal probabilities in the paramagnetic phase of a spin glass model defined on a very large z-regular random graph
(a BL).

In the main text, an expansion around the BL for spin glass models on finite-dimensional lattices was used to
compute the critical behavior of the two-point connected correlation function. Due to the symmetry of the coupling
distribution, the first non-trivial two spins correlations for the SG in a field are the squared correlations. In particular,
the connected squared correlation between two points at distance x is defined as

Gc(x) = EJ
[
〈σ0σx〉2 − 〈σ0〉2〈σx〉2

]
. (17)

where 〈·〉 denotes the thermal average while EJ is the average over the quenched disordered couplings, as before. Gc(x)
is the correlation function associated to the thermal fluctuations and it goes to 0 when T → 0 as Gc(x) = O(T 2).
For this reason, in the following we will define a rescaled connected correlation function that stays finite at T = 0.
The associated susceptibility is the so-called spin-glass susceptibility and diverges at the dAT line in the MF solution.
While in Ref. [28] the computation of GBL(L), and of its 1-loop correcting term GBL

loop(~L), was done analytically for
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all the possible two-points squared correlations in the limit z → ∞ and T > 0 for the SG in a field, the analytical
computation is unfeasible when z is finite.

To obtain the zero-order expansion, one needs to compute the correlation between two points at distance L on a
BL. Since on a BL there exists only one path of finite length between two given spins σ1 and σ2, we can obtain an
effective two-spins Hamiltonian by integrating out all the internal spins along the path

H[σ1, σ2] = −h1σ1 − J12σ1σ2 − h2σ2, (18)

The effective Hamiltonian is fully determined by a triplet (h1, h2, J12) of effective fields and effective coupling. At zero
temperature, the Gibbs measure is concentrated on the ground state (σ∗1 , σ

∗
2) of the effective Hamiltonian that can be

easily computed from Eq. (18). Since we are at T = 0, the connected correlation function in Eq. (17) is ill-defined;
therefore, we work with its rescaled version that we called response function [25]

Rij = P
[
〈σi〉j = −σ∗i

]
, (19)

where 〈·〉j denotes the expectation over the ground state of the system conditioned to the flipping of the spin σj , i.e.
〈σj〉j = −σ∗j . In practice, Rij = 1 if σi flips due to the flipping of σj , and Rij = 0 otherwise.

Table I: Rules for computing the ground state configuration (σ∗1 , σ
∗
2) of the Hamiltonian in Eq. (18) given the triplet

of cavity messages (h1, h2, J12).

σ∗
1 σ∗

2

|h1| < min(|J12|, |h2|) sign(J12h2) sign(h2)
|h2| < min(|J12|, |h1|) sign(h1) sign(J12h1)
|J12| < min(|h1|, |h2|) sign(h1) sign(h2)

Making use of the rules in Tab. I to compute the ground state of the two-spins effective Hamiltonian, it is quite
easy to show that, in terms of the effective triplet (h1, h2, J12), the response function can be written as

R12 = P
[
|J12| > |h1|

]
, (20)

The crucial quantities for the computation of the response RBL(L) between two spins at distance L on a BL are thus
the triplets of effective coupling and fields at distance L. We keep track of the distribution of triplets in two different
ways: in Sec. we explain how to perform unbiased Monte Carlo sampling to propagate an empirical distribution of
triplets along a line; in Sec. instead, we will approximate the distribution introducing an analytical Ansatz that we
argue to be exact in the large L limit. In both cases, we build on previous approaches proposed for the Random Field
Ising Model (RFIM) in Ref. [25].

NUMERICAL COMPUTATION OF THE DISTRIBUTION OF EFFECTIVE TRIPLETS ON A LINE

Triplets can be computed in a recursive fashion. Let us join two chains, the first one between σ1 and τ , characterized
by the triplet (u1, uτ,1, J1), and the second one between τ and σ2 identified by (uτ,2, u2, J2). In order to compute the
triplet describing the effective Hamiltonian between σ1 and σ2 we need to sum over τ and keep only the lowest energy
term because we are working at T = 0:

H(σ1, σ2) = −σ1u1 − σ2u2 + min
τ

[−J1σ1τ − hτ − J2τσ2]

≡ E − (u1 + u′1)σ1 − J12σ1σ2 − (u2 + u′2)σ2

(21)

where h = H + uτ,1 + uτ,2 +
∑
k∈∂τ\1,2 uk→τ is the total field acting on spin τ , while uk→τ are z − 2 independent

random variables extracted from PB(u) and

u′1 = (A−B + C −D)/4 ,

u′2 = (A−B − C +D)/4 , (22)

J12 = (A+B − C −D)/4 ,

with A = |J1 + J2 + h|, B = |J1 + J2 − h|, C = |J1 − J2 + h|, D = | − J1 + J2 + h|.
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In practice, we start from a population PL=1(u0, u1, J1) of random triplets (0, 0, J), with J extracted from a
Gaussian distribution. We evolve the population PL−1 into the population PL following the rules summarized in
Eq. (22), where each triplet of the population PL−1 is joined to a random triplet (0, 0, J) and z− 2 cavity fields uk→τ
extracted from PB(u) are added on the central spin.

Unfortunately, this procedure is very ineffective, because at each step a constant fraction of the population (the one
satisfying the condition |h| > |JL−1|+ |J |) produces a new triplet with JL = 0: in this way the part of the population
keeping information about branches with non-zero effective couplings shrinks very fast during the iterations.

To amplify this signal, one could evolve two populations of the same size: one population stores the triplets
corresponding to the branches with JL 6= 0, while a second population keeps the pairs (u0, uL) along branches with
JL = 0. This is what has been done in the RFIM case. However, for the SG, looking carefully at the evolution
rules in eq.(22), one can notice that among the triplets (u0, uL, 0), the pair of fields could become independent in
some situations. To further amplify the signal then, we evolve three populations of the same size: the population
AL stores the triplets along branches with JL 6= 0, the population BL keeps correlated pairs (u0, uL) along branches
with JL = 0, while the population CL keeps pairs (u0, uL) of independent fields along branches with JL = 0. When
an effective triplet TL−1 at length L − 1 is joined with a triplet (0, 0, J) to form a new triplet TL, we encounter the
following different cases:

• TL−1 ∈ AL−1 and |h| < |JL−1|+ |J | → TL ∈ AL

• TL−1 ∈ AL−1 and |h| > |JL−1|+ |J | → TL ∈ BL

• TL−1 ∈ BL−1 and |h| < |J | → TL ∈ BL.

In all the other cases TL ∈ CL. At the same time, we measure the probabilities pL and cL that are the weights of the
AL and BL populations respectively.

As shown in Fig. 2, both pL and cL decay exponentially fast in L, as

pL = aLλL + bλL + o(λL), cL = cL2λL + dLλL + eλL + o(λL) ,

where λ is the largest eigenvalue of the linear operator associated to the linearization of the BP equations (15) around
the fixed point

λ g(u) = EJ
∫ z−2∏

i=1

PB(ui)dui g(u′) du′ I

[
|H +

∑
i

ui + u′| < |J |

]
δ

(
u− sign(J)|H +

∑
i

ui + u′|

)
(23)

with I[.] being the indicator function. At the critical point, H = Hc, λ(Hc) = 1/(z − 1) holds. One can calculate λ
numerically in the Bethe solution as the growing factor associated with the evolution of a perturbation.

Once we have a population of triplets at each length L, it is quite simple to compute the response function making
use of Eq. (20).

Notice that only events with a non-zero effective coupling contribute to the response function: this is the reason why
amplifying the population of cavity messages with JL 6= 0 is mandatory to have a precise measurement of correlations
in the T = 0 limit. In the same way, amplifying the population of cavity messages with JL = 0 and correlated fields
will improve the signal for the response function at one loop (see Sec. ).

In Fig. 3, we show the response function RBL(L) at distance L averaged over the population of the triplets generated
as explained above, in a BL with fixed connectivity z = 3, at zero temperature and critical field Hc: it decays as
RBL(L) ∝ λL, with λ = 1

z−1 , as already found analytically in the z →∞ limit [28].

SEMI-ANALYTICAL COMPUTATION OF THE DISTRIBUTION OF EFFECTIVE TRIPLETS ON A
LINE

In this section, we reproduce the numerical results of the previous section introducing an Ansatz PL(u0, uL, J)
for the leading behavior at large L of the joint distribution of the effective coupling and fields between two spins at
distance L in a BL at T = 0. The Ansatz has the same form of one for the RFIM [25], except for the fact that the
effective coupling J can take both positive and negative values. The reason why it cannot be different is that in the
paramagnetic phase on a tree the RFIM solution at T = 0 can be mapped into the SG solution in a field through a
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Figure 2: Probability pL to have JL 6= 0 and probability cL to have null coupling and correlated fields (u0, uL) on a
chain of length L in a Bethe lattice: both decay exponentially in L. Measurements are taken at the critical field

Hc = 0.358 for z = 3. Errors are smaller than symbols.

simple transformation. The Ansatz, at leading order LλL, is the following:

PL(u0, uL, J) =δ(J)

[
PB(u0)PB(uL)− b LλLg(u0)g(uL)+

− c1LλLg′(u0)g′(uL)− c2LλLg′′(u0)g′′(uL)

]
+

+ aL2λLρ e−ρ|J|Lg(u0)g(uL)

(24)

Imposing the normalization of the Ansatz,
∫
du0 duL dJ PL(u0, uL, J) ≡ 1, we obtain the condition b = 2a. The

normalized Ansatz thus becomes:

PL(u0, uL, J) =δ(J)

[
PB(u0)PB(uL)− 2aLλLg(u0)g(uL)+

− c1LλLg′(u0)g′(uL)− c2LλLg′′(u0)g′′(uL)

]
+

+ aL2λLρ e−ρ|J|Lg(u0)g(uL)

(25)

At this point, we impose the self-consistency of the part with J 6= 0: joining two chains of length L1 and L2, the
J 6= 0 part has to keep the same form with the only substitution of L with L1 + L2. This is true if the condition

a =
ρ

4P̂ (0)
(26)
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Figure 3: Response as a function of the distance L on the Bethe lattice, and amputated response on the loop of
Fig. 1 with L1 = L2 = L. The leading behaviour on a line is R ∝ λL, while that on the cubic loop is

R3−loop ∝ Lλ2L. Measurements are taken at the critical field Hc = 0.358 for z = 3.

holds, where

P̂ (h) =

∫
g(u) du g(v) dv

z−2∏
i=1

PB(ui) dui δ

(
h− (H + u+ v +

∑
i

ui)

)
. (27)

We then impose the self-consistency of the whole Ansatz: joining on a central spin τ two chains of length L1 and L2,
for which the distribution of fields and coupling is given in eq. (25), following the rules in eq. (22) for the computation
of the resulting new triplet of effective fields and coupling once one sums over τ , one should obtain a distribution that
has the same form as the one in eq. (25) with L = L1 + L2. This is true only if c1 = c2 = 0, neglecting contribution
O(λL), that are already ignored in eq. (25). The final Ansatz thus takes the following form

PL(u0, uL, J) = δ(J)

[
PB(u0)PB(uL)− 2aLλLg(u0)g(uL)

]
+ aL2λLρ e−ρ|J|Lg(u0)g(uL) . (28)

We stress that all the quantities entering this Ansatz can be computed analytically [38]: PB(u) from Eq. (16), g(u)
from Eq. (23) and ρ from the decay of the mean coupling on branches with J 6= 0 or from the properties of the linear
operator discussed in detail in the SI of Ref. [25].

As for the RFIM, the Ansatz is encoding the fact that at T = 0 the quantity JL is either exactly 0 or of order 1/L
with a probability of order LλL. This continuous distribution plus a peak at J = 0 for the renormalized coupling was
already displayed in the finite-dimensional lattice analyzed with the MK RG near the T = 0 critical point in Ref. [39].
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Figure 4: Topological loop responsible for the leading correction to the critical value of the response function

COMPUTATION OF THE ONE LOOP CONTRIBUTION AT FINITE z

Now we aim at extending the above Ansatz to describe the joint probability distribution of the cavity fields relevant
in the computation of the correlation in a loop of the type shown in Fig. 4. Some considerations can help us. First of
all, the path between the two spins should be connected (i.e. made on non-zero effective couplings) if we want a non-
zero response function, thus on the external legs, the only possible term that we can put is of the form λLI+LO . For
this reason, we will just compute what in jargon is called the amputated correlation function on the internal branches
of the loop. In the internal loop we have to compute the convolution of two triplets (J1, u

1
i , u

1
o) and (J2, u

2
i , u

2
o) of

effective fields and coupling at the end of chains of lengths L1 and L2

PL1,L2
(ui, uo, J) =

∫
du1

i du
2
i du

1
o du

2
o dJ1 dJ2 P (u1

i , u
1
o, J1)P (u2

i , u
2
o, J2)

δ(ui − u1
i − u2

i ) δ(uo − u1
o − u2

o) δ(J − J1 − J2) . (29)

We have already said that the loop contribution to the observable is the connected one, given by the value of the
observable computed on the loop minus the observable computed on the two paths LI + L1 + LO and LI + L2 + LO
considered as independent. We can easily obtain this loop correction disregarding the asymptotic term PB(uI)PB(uO)
in the Ansatz for the two internal branches of length L1 and L2.

There are two relevant contributions to the connected loop: the first one, which we call PA, is the one obtained by
a loop in which both J1 6= 0 and J2 6= 0. The second one, called PB , have J1 6= 0 and J2 = 0 or J1 = 0 and J2 6= 0.
The third contribution with J1 = J2 = 0 reduces to a disconnected loop, giving no contribution to the connected
correlation. Performing the integral in eq. (29), we obtain for the two interesting contributions:

PAL1,L2
(ui, uo, J) = 2λL1+L2 P̂ (ui)P̂ (uo)a

2ρL2
1L

2
2

e−|J|L2ρL1 − e−|J|L1ρL2

L2
1 − L2

2

PBL1,L2
(ui, uo, J) = −2λL1+L2 P̂ (ui)P̂ (uo)a

2ρ
(
L1e

−|J|L1ρ + L2e
−|J|L2ρ

) (30)

with P̂ (h) defined in eq. (27). At this point we average the response over the loop probability distribution obtaining:

RA ≡ P
[
|J | > |uo|; (ui, uo, J) ∼ PAL1,L2

]
= 2 a λL1+L2

L3
1 − L3

2

L2
1 − L2

2

RB ≡ P
[
|J | > |uo|; (ui, uo, J) ∼ PBL1,L2

]
= −2 a λL1+L2 (L1 + L2)

(31)

For the RFIM, RA = −RB and the leading contribution to the response coming from the loop is null, while for the
SG it is

RBL

3−loop(~L) ≡ λLI+LO (RA +RB) = −2 a λΣ(~L) L1L2

L1 + L2 (32)

with Σ(~L) = LI + L1 + L2 + LO. The two branches act as resistors in parallel. We can check this result numeri-
cally by computing the amputated one-loop response using random triplets for the two branches obtained from the
enriched populations discussed above. Putting L1 = L2 = L in Eq. (32), we have a leading behaviour of the type
R3−loop(L,L) = aLλ2L, that perfectly describes the data in Fig. 3. To check the dependence on L1 and L2, we
numerically verified that putting L1 = 2L2 = 2L one obtains R3−loop(L, 2L) = − 4

3aLλ
3L, as shown in Fig. 3.
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THE T = 0 LIMIT OF THE SOLUTION OBTAINED WITH T > 0 AND z → ∞

In Ref. [28] we computed at positive temperatures (T > 0) the analytical expression for the connected correlation
function on a BL with a manually inserted cubic loop in the z →∞ limit (to recover previous results obtained in the
fully-connected model). The result can be summarized as follows:

Rz=∞3−loop =λLI+LO
R

[(
L2λ

L2−1
L/A λL1

R + L1λ
L1−1
L/A λL2

R

)
b1β

2 + λL1+L2

L/A b2

+(λL2

L/Aλ
L1

R + λL1

L/Aλ
L2

R )b3 + λL1+L2

R b4

]
(33)

with λR the eigenvalue associated to the replicon sector, λL/A the degenerate longitudinal-anomalous eigenvalues and
β = 1/T the inverse temperature. The coefficients read

b1 =− 32(2m2 − 3m4)(1− 7m2 + 11m4 − 5m6)2

b2 =64(1− 7m2 + 11m4 −m6)2

b3 =− 80(1 + 35m2
2 + 77m2

4 +m4(18− 68m6)− 2m2(6 + 52m4 − 23m6)− 8m6 + 15m2
6)

b4 =32
(
1 + 44m2

2 + 101m2
4 +m4(22− 90m6)− 2m2(7 + 67m4 − 30m6)− 10m6 + 20m2

6

)
(34)

with m2, m4 and m6 the moments of order 2, 4, 6 of the magnetization. Their definition is the following

ma =
1√
2π

∫ ∞
−∞

e−z
2/2 tanha

(
β(
√
Qz +H)

)
dz , (35)

with Q solution of the self-consistency equation Q = m2. One thus could look at the T = 0 limit of these expressions
and compare them to what we have presented above.

Let us emphasize that for any positive temperature on the dAT line λR is the only critical eigenvalue and thus the

leading term in the response function is of the type λ
Σ(~L)
R . At T = 0, however, λL/A → λR and the leading terms in

the one-loop response could change.
To compute the T = 0 limit, we should substitute in the equations the values for the moments of the magnetization

in the zero temperature limit. Expanding Eq. (35) around T = 0 we find

ma =1− C1(a)

Te−H2/2

√
2π

−

(
Te−H

2/2

√
2π

)2

(H2 − 1) +

(
Te−H

2/2

√
2π

)3
3H4 − 10H2 + 5

2

+

− C2(a)
T 3e−H

2/2

2
√

2π
(H2 − 1) , (36)

with C1(a) ≡
∫∞
−∞(1 − tanha(x))dx and C2(a) ≡

∫∞
−∞ x2(1 − tanha(x))dx, whose numerical values are C1(2) = 2,

C1(4) = 8/3, C1(6) = 46/15, C2(2) = π2/6, C2(4) = 2(3 + π2)/9, C2(6) = 4/3 + 23π2/90.
Substituting expression (36) in the coefficients defined in Eq. (34) we find b1 = O(T 6), b2 = O(T 6), b3 = O(T 4)

and b4 = O(T 2), implying that in the T = 0 limit the dominating term for the response function is the one coming

from the replicon, as for T 6= 0, that has a behaviour λ
Σ(~L)
R . This result is different from what we computed directly

at T = 0 and finite z.
One may attempt to improve this result, obtained in the z →∞ limit, by using the actual values of the magnetization

moments computed at finite z in the Bethe solution. This would represent the simplest idea to go beyond the z =∞
result. However, we find that the coefficients entering the expansions up to the second order in T of the magnetization
moments,

m2 = 1 +m
(1)
2 T +m

(2)
2 T 2 +O(T 3) , (37)

m4 = 1 +m
(1)
4 T +m

(2)
4 T 2 +O(T 3) , (38)

m6 = 1 +m
(1)
6 T +m

(2)
6 T 2 +O(T 3) , (39)

do satisfy the following relations

m
(1)
4

m
(1)
2

=
m

(2)
4

m
(2)
2

=
4

3

m
(1)
6

m
(1)
2

=
m

(2)
6

m
(2)
2

=
23

15
, (40)
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independently on the distribution of the cavity fields. This implies that using the non-Gaussian cavity fields obtained
at finite z would not change the result obtained in the z →∞ limit, that is using Gaussian fields. This is true up to
second order in T , and this is enough as the leading term b4 is of that order of magnitude. We checked this result
numerically for a BL with a finite and small value for z.

The results of this Section prove that computing the leading term of the correlation at T > 0, where the only
critical eigenvalue is the replicon, inevitably produces a wrong result in the T → 0 limit, where the degeneracy among
different eigenvalue plays an important role. This is true both in the fully connected model (z → ∞) and also for z
finite within the Bethe solution. The only way to perform the right computation is by working directly at T = 0 as
we have done in the present work.
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